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A Steganographic Scheme for Secure
Communications Based on the
Chaos and Euler Theorem

Der-Chyuan Lou and Chia-Hung Sung

Abstract—Steganography has been proposed as a methodology
for transmitting messages through innocuous covers to conceal
their existence. This work proposes an asymmetric image stegano-
graphic method based on a chaotic dynamic system and the
Euler theorem. The hidden message can be recovered using orbits
different from the embedding orbits, and the original image is not
required to extract the hidden message. Experimental results and
discussions reveal that the proposed scheme possesses security,
imperceptibility and survivability.

Index Terms—Asymmetric orbit, covert communication, dy-
namic system, man-in-the-middle attack, steganography.

1. INTRODUCTION

HE DEVELOPMENT of the Internet has allowed digital

data to be transmitted conveniently over networks. How-
ever, users must be aware that unprotected data transmitted
on an open network is not secure, and can easily be inter-
cepted by unauthorized users. Consequently, protecting data
during transmission is an important issue. The cryptography
techniques discussed in [1], which transform messages into a
clutter, are good for securing textual data, but unsuitable for
digital media. For example, the RSA encryption algorithm [2]
is unsuitable for large amounts of data because of its relatively
slow performance. Furthermore, deciphering can be defeated
by flipping one bit in the cipher stream.

Information-hiding techniques [3] such as steganography
[4]-[7] and watermarking [8]-[11] provide another method
of protecting digital data. These techniques embed the data
into digital media such that the embedding results remain
meaningful and yet appear innocuous to outsiders. The char-
acteristics of information-hiding systems have been widely
discussed, and some of their properties include robustness,
tamper resistance, imperceptibility, low computational costs
and false positive rate [12]. In practice, it is probably impossible
to design a information-hiding system that excels in all of these
properties, and instead a careful analysis of the application is
required to determine an acceptable balance of these properties.
For example, digital watermarking embeds a short signature
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into a digital image for copyright protection. Such a scheme
may not require a large capacity, but must be robust to removal
and detect the ownership reliably; even after image processes
such as rotation, translation, cropping and quantization are ap-
plied. Steganography hides secret messages in digital covers to
conceal the existence of the secret messages, and must include
a method of embedding data invisibly, allow the extracted data
to be readable only by the authorized user and incorporate a
degree of survivability for covert communications.

The most general steganographic model was the prisoners’
problem, presented by Simmon [13] in 1984. This scenario in-
volves two separated prisoners, Alice and Bob, who wish to
communicate covertly to hatch an escape plan. Alice hides a
message in a cover-object to obtain the stego-object, where the
cover-object can be an image, audio or video. Any communi-
cations between the pair are examined by the warden, who will
place them in solitary confinement if she/he finds their secret
messages.

Kurak and McHugh [4] presented a steganographic technique
called image downgrading. Four least significant bits (LSB) of
the pixels of a cover-image are exchanged with four most signif-
icant bits of a secret message. This method is restricted to LSB
and generally achieves high capacity and low perceptibility, but
is vulnerable to extraction by unauthorized parties. Bender et al.
[5] presented a patchwork that alters the statistical properties of
a cover-image. Pairs of image regions are selected by using a
pseudorandom number generator (PRNG) and the pixel intensi-
ties in various regions are increased or decreased by a constant
quantity. This kind of minor modification is generally unnotice-
able. Furthermore, Matsui and Tanaka [6] presented a stegano-
graphic system on a quantized image. This system calculates the
difference between adjacent pixels and feeds them into a quanti-
zator, which outputs a discrete approximation of the difference.
The system also uses a stego-key, which is a table that assigns a
specific bit to every possible value in the error difference. If the
approximate difference does not match the data bit on the table,
itis replaced by the nearest difference with an associated bit that
equals to the embedded data bit. Marvel et al. [7] presented an
image spread spectrum steganographic method that both hid and
recovered messages in the frequency domain. The secret mes-
sage was encrypted using a conventional symmetric encryption
scheme, and the resulting encoded message was then modulated
using a PRNG. These steganographic schemes have symmetric
properties, namely a shared key or table for messages embed-
ding and extraction. Hence, the prisoners’ problem assumes that
the two communicating partners must share a secret in advance
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to secure their communications. However, an attacker is able
to remove or read the embedded message completely once the
shared key is known to the public. Moreover, there also exists
the problem of the shared key distribution.

This work aims to design a chaotic asymmetric stegano-
graphic (CAS) methodology for covert communications. An
asymmetric hiding system can be conceived as comprising
two descriptions of a transformation mapping between em-
bedding and extraction based on two different keys. The CAS
system derivates the chaotic communication, which includes a
stego-matrix, computable orbits and embedding method design.
The asymmetric system is not only concerned with securing
the message itself, but also with authenticating the sender to
prevent problems of fraud.

The rest of this paper is organized as follows. Section II de-
scribes the dynamic chaotic system [14], while Section III de-
tails the embedding and extraction processes. Section IV then
presents some experimental results and discusses on security,
imperceptibility and survivability of the CAS scheme. Finally,
Section V gives some conclusions.

II. PRELIMINARY
A. Chaotic Dynamic System

A dynamic system can be considered as a specific state at
each time point with the state changing with time. Two kinds of
dynamic systems exist: discrete time and continuous time. In the
discrete time dynamic system (DTDS), each state results from
a chaotic mapping of the preceding state. For clarity, given an
initial condition at time = 0, a DTDS will be specified using
the equations: 2:(0) = xg, and z(k + 1) = f(z(k)), and thus
zo = f¥ (o) follows, where f* denotes k iterations of f to z.
Generally, a point of DTDS can return to its initial condition
after k iterations of f to x, and the period k is thus termed the
stable orbit.

An example of a chaotic mapping called Arnold’s cat map
[15] is based on modular arithmetic. The transformation is de-
fined as T : R? — R? and can be represented by the following

formula:
() R LT

Because the above computation includes “mod 17,
T maps all points of R? into the unit square U =
{(z,9)|0 <z,2’ < 1,0 <y,y’ <1}. Suppose that U is
divided into p? pixels, where each pixel has a period to return
to its initial position, all p? pixels on U then return to their
initial positions after [[(p?) iterations. Toral automorphism
[14] is another chaotic map that performs “mod N modular
arithmetic. The transformation is defined as A : Ly — Ly
and is represented by the following formula:

sl ey

where (z,y) € Ly = {(z,9)|0 < z,2/ < N,0 < y,y' < N}
and k € [1, N]. Once the matrix A and modular number N are
given, the automorphism period can be investigated through an
exhaustive search.
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DTDS behavior is complex and its diffusion and confusion
characteristics are good candidates for encryption algorithms.
Unfortunately, most chaotic mappings are unstable. Some re-
sults related to the periodicity of the mapping in (2) were re-
ported in [15]. This work notes that covert communications
based on two-dimensional chaotic mapping can work properly
if the stable orbit of a DTDS can be constructed.

B. RSA Cryptosystem

The RSA algorithm uses two asymmetric keys that work in
pairs for encryption and decryption, respectively. Two primes,
p and ¢, are chosen to compute n = p X g and m = (p —
1) x (¢ — 1), and an integer Kp is chosen such that Kp is in
[1, m — 1] with relatively prime to m. Finally, select K in [1,
m—1]such that Kp x Kg = 1( mod m), where K p represents
the public key and Ks denotes the private key. The encryption
E and decryption D are defined as follows:

E(M) = M%7 (modn) = C
and D(C) =CXs(modn) =M 3)

where M and C denote the plain-text and the cipher-text,
respectively.

The RSA scheme allows two people to establish communi-
cations through an insecure channel without shared keys. How-
ever, in the prisoners’ scenario, the warden could send a false
message to Bob using Bob’s public-key, and thus Bob must have
a means of ensuring the identity of the sender. This problem is
termed as man-in-the-middle attack [16].

III. CHAOTIC ASYMMETRIC STEGANOGRAPHY SCHEME (CAS)

This section presents an asymmetric scheme for images
steganography based on a dynamic chaotic system and the
Euler theorem. The basic idea is to use a different secret for
embedding to that used for extraction. The CAS scheme uses
a chaotic mapping of a stego-matrix that provides confusion
and diffusion analogous to cryptography to secure the encoded
message. A lossless compression can maximize the payload of
the embedded data and the error-control coding (ECC) [1] can
effectively correct errors.

The embedding method uses local characteristics of the
image blocks to adaptively modify pixel values and thus ensures
imperceptibility. Another advantage is that no cover-image
is required to retrieve the embedded message from the
stego-image. Furthermore, when the receiver receives the
stego-image, she/he can also build a stego-matrix to extract the
embedded message. The chaos deciphering-message must be
ECC decoded and decompressed in sequence for the receiver
to obtain the original message.

The following subsections detail the stego-matrix generation,
embedding and extraction processes.

A. Stego-Matrix Generation

Section II reveals that the period orbit can be investigated
once the toral automorphism matrix and modular number are
given. However, obtaining the closed form formula for the cycle
period is difficult. Based on the above observation, the following
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theorem was derived to generate the stego-matrix and compute
the stable orbit.

Theorem 1: 1If p; and po are two primes and both relatively
1 1
kE k+1
matrix. A stego-matrix S can be defined as follows:

prime to n, and let Q(k) = } be an automorphism

p1 O

0 p “

S = [Q(k)~ [ } ~Q1(k)} (mod 7).
Thus, S has a periodic orbit P = ¢(n). This theorem implies
S#(")(mod n) = I(identity), where ¢(-) denotes the Euler
phi-function.

Proof : See (5)—(6) at the bottom of the page. Referring
to the Euler theorem [1], if n > 2 and gcd(a,n) = 1, then
a®™ =1 (mod n).Letp; and p, be primes relative to 7.
The Euler theorem becomes

p‘f(n)z 1 (mod n) ™)
and
p2™ =1 (mod n). ®)
Hence,
é(n)
21 0 _|1 0
0 2]l o o o
then
g¢(n)
I T B 7 M I R e
~ |k k+1H 0 p™ ||k k+1 (mod n)
- -1
1 1 1
= |k k+1” Hk k-l—l] (mod n)
- [1] ﬂ(mod n) = (10)

Thus, using Theorem 1 the periodic orbit of (™) (mod n) is
¢(n).
Example 1: Let p1 = 5, ps = 7, and k = 15. The stego-

matrix can be
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If n = 17, we can obtain S¢(*7)(mod17) =8'%(mod17) =
[(1) | |- and that makes S'"(mod 17) =S (mod 17).

Here, the periodic orbit of S(mod17) is ¢(17) = 16.

The above example demonstrates that the period orbit can be
obtained from the modular number and the stego-matrix. Both
the stego-matrix S and modular number n can be varied if The-
orem 1 is satisfied. Subsequently, Theorem 2 was derived to
allow the CAS scheme to utilize the chaotic mapping for covert
communications.

Theorem 2: For any integer lattice Ly of size N, A(k)
is a toral automorphism transformation. Given a period orbit
P A(k,N) such that AL (k)rmodV) rmodN),
the extended orbit P’ R x P also exists such that
AL (k)r(modN) = r(modN) is satisfied, where ¥r € Ly
and R € Z7*. The action of ALJ”XP( )rnodV)
r’(modN) and AP ~¢(k)r’ (modN) r(modN) then hold
for all positives 4, 7 and 7, v’ € Ly

Theorem 2 implies that any lattice point in L can be spread
over the entire region Ly by applying the mapping A% (k),
where ¢ < P’ and the lattice point returns to its initial condition
by applying the mapping Aﬁ/*i(k).

B. Embedding Process

We now detail the embedding procedure. Let X de-
note the cover-image of size M x N, defined as X
{.qu,j|0 <i<MO0L<j < N},WhCI‘CLIZi,j S {0,1,...,21—1}
denotes the intensity value, and [ bits represent the pixel value.
Assume that B of length L is the embedded message hidden
in X, where B = {b;|0 <k < L}, and b, € {0,1} is the
binary value of the secret message. Meanwhile, the lossless
compression can compress the hidden message in advance
to maximize the payload of the embedding, and the ECC is
padded with the compressed message to correct errors. The
stego-matrix is used to generate the chaos cipher-message
and adaptive modification is used to design the embedding
procedure, as follows.

Step 1) Select p1, p2, and k, and then use Theorem 1 to build
the stego-matrix S.

Two moduli Ng (modulus for the sender) and Ng
(modulus for the receiver) are used to calculate

Step 2)

-1
g [ 1 1 } [5 0} {1 1} (mod n) period orbits Ps and Pr with S, respectively,
15 16 |0 7] |15 16 where Ng # Npg. Extend the period orbits to
| =25 2 P, = lem(Ps, Npyy) and Pp, = lem(Pgr, Npub),
- [—480 37] (mod n). an where N, represents the public large number in
_ -1
— p1 0 -1 |11 pp 01 1
5= Q) [0 pz} Q (k)] (mod n)= [k k+1} [0 pz} {k k+1] (mod ) 5)
[ 0 _ 0 _
s*—[aw- [ V] -armam- [ 0 ]| o)
(f)(n):imes
I R T SR R I S R B
= & k-l—l} [ 0 pg(n) Eok41 (mod mn). 6)
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the RSA cryptosystem and Icm denotes the least
common multiple.

Calculate the private orbits of the sender and re-
ceiver, namely Pss = (P§ — Kpg)(modPs) and
Psp = (Pp — Kpgr)(modPg), using Theorem 2,
where K ps and Kpg denote the public keys of the
sender and receiver, which are used as the partial
iteration.

Compare the order of moduli Ng and Vg, and obtain
the chaos cipher-message B’ by applying S, Pss
and K pp using (12), where B denotes a secret mes-
sage of length L and is represented by a matrix of

Step 3)

Step 4)

size Mp X Np.
SKrr(8lss(B(i,))), if Ng <N,
BI(i',j') = { _je e e e (1)
SN’ (S (B(i,7))), if Ns > N,

where 0 <4 < Mp,0< j < Npand0 < i < Np,0<j <
Ng.

The CAS scheme suffers a peculiar phenomenon called the
“reblocking problem” [17] if the domain of the sender’s per-
mutation is not a subset of that of the receiver. Therefore, it is
important that both sender and receiver agree upon the order of
the applied functions to avoid this problem.

Image steganography attempts to conceal embedded mes-
sages inside a digital image, and thus the embedded message
must be invisible to human eyes. The embedding method
embeds messages bits using the local characteristics of the
image blocks and adaptively modifies the pixel values to
maintain invisibility of the embedded messages. Let = denote
the pixel that hides an embedded message bit. Fig. 1 shows the
relationship between the pixel and surrounding blocks. Here,
Ju,z and g;, represent the block-mean values of the upper
and lower blocks corresponding to x, while g, , denotes the
average value of g, , and g ... That is

a+b+c
Gu,x = T7
d+e+ f
Gz = — 3
and gm,a: — gu,x ;‘gl,m (13)

where a, b, ¢, d, e, and f denote the intensity values
of x’s neighboring pixels. Comparing the distance
D(Guz:91,2) = |9ue — g1,2| With a predefined threshold
reveals the local characteristics of the image blocks. For
example, if D exceeds the predefined threshold, = can be con-
sidered as located in an edge region. The embedding process
can modify pixels more than that of smooth regions because the
luminance edges make surrounding signals less visible. On the
other hand, if D does not exceed the predefined threshold then
x could be located in the smooth region. In this case, x is less
amended to embed the message bit because smooth regions are
highly sensitive to modification.

The embedded bit b; is either 0 or 1, and the embedding
process modifies the intensity of the X pixels according to the
following rules.
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a b
c X d
c f
Fig. 1. Relationship of an image pixel and its surrounding pixels.
Db =0
i) when D(gu z, g1.0) <37, thena’ = gy, — 1. (14)
11) when D(gu,xv gl,z) > 3*T7 if Gu,x S 9l,z,
thena’ =gy, — T, elsex’ = gy o + T.
(15)

2) by =1

i) when D(gu x, g1.0) <31, then 2’ = gy, + 1. (16)
ii) when D(gu,z, 91,2) > 3T, if guo < g1,
thena' =g, + T, elsex’ = g1, — T.
(17)

Here, 2’ denotes the modified pixel, while T represents a small
value used to tune the z’ intensity. Notably, the pixel values
in the edge region are increased or decreased according to the
mean values of the upper and lower blocks. The minimal dis-
tance between the pixels and their surrounding blocks is used
to identify the embedded bit. In contrast, the pixel values in
the smooth region are increased or decreased according to the
average mean values of two blocks surrounding them. The re-
sulting pixel values will be between the mean values of the two
surrounding blocks and they will not produce suspicious ar-
tifacts. Based on the human visual system (HVS), modifying
pixel values using the local characteristics of the image blocks
can maintain the imperceptibility of the embedded data. Mean-
while, the extraction process will be robust because the local
characteristics of the image blocks are still remained even after
attackers use general image processing to remove the hidden
messages. However, making a poor decision of the image block
characteristic may cause incorrect extraction and a false posi-
tive. The use of an appropriate ECC code can correct such errors.

C. Extraction Process

The extraction process resembles the embedding process. In
real applications a cover-image is not required to extract the
hidden message, and thus gy »+, g1,2+, and gy, »+ of each pixel
z* from the stego-image are calculated using (13). Next, the
retrieved bit value is determined using the following rules.

1) When D(gu’x*.,gu’x*) S S*T,
if 2% < gy o+, then b] =0, else b = 1. (18)
ii) when D(gy z*, Guav) > 3%T,

if D(z*, gu o) < D(z*, g1,0+), then b] =0, else b; = 1.
19)
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The receiver then generates the stego-matrix and applies
the remaining orbits Kpgs and Psg to further permutes the
extracted bits B’ using (20) to obtain the encoded message B*.

Shre (SkrB(i4).

sk ((SKr*(B/(,7))), if Ns > N
(20)
where 0 < ¢ < Ng,0 < j < Np,and 0 < % < Mg,
0 < j* < Np.
The ECC decoder and the decompression module are then
used to reconstruct the secret message.

if Ns < Ng,
B(i",5") =

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents some experiments and discussions
on security, imperceptibility, survivability and computational
cost to demonstrate that the CAS scheme is suitable for image
steganography.

A. Multiple-Embedding

Substantially, the extracted message may contain numerous
bit errors. Some pixels from the cover-image are not embedded
message bits but could be mistaken for extracted message bits
by the receiver. Anderson and Peitcolas [16] suggested using re-
dundancy to cope with these errors. In the CAS scheme, redun-
dancy comes from a synonym condition involving the different
moduli between the sender and the receiver. The following ex-
ample illustrates the synonym condition.

—-25 2
—480 37} ’

NS = 143, NR = 253, KPS = 10, and KPR = 17. Based
on the Theorem 1, the orbits are Ps $(143) 120 and
Pr = ¢(253) = 220, and private orbits are Kgs = 110 and
Ksr = 203. Let the length of a message be 1024 bits, and let
the message be represented by a matrix map with size 32 x 32.
Suppose the matrix map contains a position p = (13, 32), and
using (12) can identify two positions in the cover-image, p’ =
(79,88) and p”" = (224,89). The embedding process modi-
fies the pixel at position p” to embed a message bit. However,
when retrieving information from the stego-image, the position
g = (2,50) in the stego-image is found to correspond to two
positions, ¢’ = (79,153) and ¢” = (13, 32) using (20). Here,
q" = p,butq # p”.

The synonym condition will influence the extraction results,
and the same data bit can be embedded into these synonym po-
sitions to strengthen the correctness of the embedded data. This
operation is termed the multiple-embedding rule, and while it
degrades the quality of the stego-image and reduces the proba-
bility of incorrect extraction. The tradeoff is inevitable, and sac-
rificing visual quality to improve the extraction correctness is
worthwhile.

Example 2: Suppose a stego-matrix S =

B. Security Analyzes

Two stages are required to break a steganographic system, as
follows [18]: first, an attacker must discover that steganography
has been used; second, the attacker must manage to read the
embedded message. This section discusses two types of attacks
on steganographic systems [19].
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One type of attack is the stego-only attack, where the attacker
is assumed to have nothing but the stego-image. A stego-image
must not contain any blocking artifacts associated with message
embedding because an attacker could easily utilize those arti-
facts to detect the secret message. The CAS method modifies
pixel values to embed messages based on the local characteris-
tics of the image blocks, and the stego-image does not differ sig-
nificantly from the cover-image. Hence, the stego-image main-
tains high fidelity and shall not arouse suspicion. If the hidden
message is not advertised, a casual attacker will be unaware of
its existence and therefore will not attempt to break it. Further-
more, incidental attacks such as rotation and scaling will not
remove the embedded message and will only make it nonex-
tractable. Finally, despite such attacks, the stego-image can still
be synchronized with the cover-image to extract the embedded
message.

The other type of attack is the known-cover attack. Obvi-
ously, the attacker can detect the difference between a cover-
image and a stego-image if she/he has access to both images.
Steganography is not secure against the known-cover attack.
However, if the difference contains random signals then it is
difficult for the attacker to break the system. Combining the
steganographic method with traditional cryptography can in-
crease security, but in this case embedding and extraction re-
quires that both the sender and the receiver share the key (i.e., the
seed of PRNG) in advance, and thus creates the shared key dis-
tribution problem. Moreover, combining prior enciphering with
steganography also suffers from the problem that deciphering
can be defeated by flipping one bit in the cipher stream.

To overcome the key distribution problem, the sender and re-
ceiver can use public-key cryptosystems to share a secret key
without establishing a secure channel. The RSA algorithm can
avoid slow performance by encrypting the secret key used for
symmetrical cryptographic algorithms. However, this approach
is susceptible to a man-in-the-middle attack, and fraud problem.
For example, in the prisoner problem Alice can encrypt the
secret key using Bob’s public key and then embed it into the
cover-object. The warden could also encrypt a fake secret key
using Bob’s public key and then generate a fake stego-object.
Bob would be unable to verify the received secret key in this
case because he cannot distinguish a message sent by Alice from
one sent by the warden. However, the problem of authentication
can be solved by using asymmetric keys.

Compared to contemporary approaches using a symmetrical
key, the CAS scheme uses a chaotic dynamic system and the
Euler theorem to develop asymmetric orbits in the embedding
and extraction processes. The computable orbit is calculated
using a nonlinear “mod” operation, based on the assumption
that the knowledge of the embedding is not sufficient to allow
an adversary to detect or read the embedded message for covert
communications. The asymmetric method can also be used to
ascertain that messages originate from the sender. For example,
if Alice uses her private key to send messages to Bob, then the
warden will be unable to forge a message from Alice. However,
both Bob and warden will be able to read messages from Alice,
because they know Alice’s public key. The CAS scheme also
protects the message with Bob’s public key. The two-fold au-
tomorphism can keep the message secure and avoid fraud by
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(d

Fig. 2. (a) Original cover-image; (b) stego-image with PSNR = 38.6432 dB,
L = 1024 bits; (c) stego-image with PSNR = 35.5419 db, L = 2048 bits;
(d) stego-image with PSNR = 32.5876 db, L = 4096 bits.

authenticating the identification of the sender. Another advan-
tage is that the two-fold operation also secures this method from
exhaustive and inverse attacks. The chaos cipher-message pro-
vided by the confusion and diffusion of a chaotic map is similar
to that in cryptography but is not vulnerable to the flipping-at-
tack. Consequently, it is appropriate to use DTDS for steganog-
raphy because of the ability of distortion tolerance and crypto-
graphic-like properties.

Based on the above discussion, the CAS scheme uses adap-
tive modification to make the embedded message undetectable
and imperceptible. Asymmetric orbits then make the extracted
chaos cipher-message not vulnerable to security attacks and
fraud problem. Hence, we believe the proposed scheme is
secure.

C. Imperceptibility

This subsection demonstrates the imperceptibility of the CAS
scheme. Figs. 2(a) and 3(a) display testimages of size 512 x 512
entitled Lena and Baboon, respectively. Messages of various
lengths were hidden in these images to test the relationship be-
tween image quality and capacity. Table I illustrates the peak
signal-to-noise ratio (PSNR) values of the stego-images. For
each test image, the PSNR values were measured using both
the CAS method and the downgrading method [4] to provide a
comparison. Fig. 2(b) displays the stego-image (Lena) produced
using the CAS method. The PSNR value is 38.6432 dB when the
embedded message length is 1024 bits, and the quality of the
stego-image is very close to that of the original image. Fig. 2(c)
and (d) show two stego-images with PSNR values of 35.5419 dB
and 32.5876 dB, respectively. Generally, the higher the PSNR
value, the better the image quality. The measurements reveal that
the quality of the stego-image declines with the number of bits
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Fig. 3. (a) Original cover-image; (b) stego-image with PSNR = 34.1444 dB,
L = 1024 bits; (c) stego-image with PSNR = 31.3183 dB, L = 2048 bits;
(d) stego-image with PSNR = 28.2366 db, L = 4096 bits.

embedded in the cover-image. However, the PSNR values were
acceptable in all cases.

Fig. 3(b) shows another stego-image (Baboon) produced
using the CAS method, with a PSNR value of 34.1444 dB.
Fig. 3(c) and (d) show other stego-images with PSNR values
of 31.3184 dB and 28.2366 dB, respectively. Clearly, all of
these stego-images have good quality and are free of visible
artifacts after the embedding. In Fig. 3(d), the stego-image
has a lower PSNR value because of having more edge regions
and a larger embedded message than other images. Notably,
heavily textured images have the luminance edges to reduce
the visibility and suspicion of the other signals around them;
even more amendments and large messages are applied.

We observed that even for embedded messages up to 4096
bits in size, the image quality of the stego-image remains good
when the downgrading method is used. This phenomenon oc-
curs because the downgrading method only modifies four LSB
bits from each selected pixel, and the modification ranges from
0 to 15. Although the PSNR value of the downgrading method
is better than that of the CAS scheme, almost no visual artifacts
exist between the stego-images and their original images when
the CAS scheme is applied.

In the CAS scheme messages were also embedded into
the cover-images using different stego matrices to exhibit
the one-time pad property and to examine the impercepti-
bility of the embedded messages. The PSNR results listed in
Table II show the quality of the stego-images measured with
different randomly generated stego matrices. For each image,
the embedded messages are 1024, 2048, and 4096 bits with
different stego matrices. The measured quality differences
among the images are imperceptible, and range between around
0.02 ~ 0.05 dB with Lena and 0.23 ~ 0.29 dB with Baboon.
The measurements reveal that the quality of a stego-image is
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TABLE 1
COMPARISONS OF LSB SCHEME AND THE CAS SCHEME
Stego-images L = 1024 bits L = 2048 bits L = 4096 bits
The method [4] (Lena) 53.6442 50.1237 47.4257
The method [4] (Baboon) 53.3499 50.2320 47.2027
CAS scheme (Lena) 38.6432 35.5419 32.5876
CAS scheme (Baboon) 34.1444 31.3183 28.2366
TABLE 1I
COMPARISONS OF EMBEDDING RESULTS USING DIFFERENT STEGO-MATRICES
Stego-images L = 1024 bits L = 2048 bits L = 4096 bits
Stego matrix 1 (Lena) 38.6660 35.5013 32.5648
Stego matrix 2 (Lena) 38.6432 35.5419 32.5876
Stego matrix 1 (Baboon) 34.1444 31.3183 28.2366
Stego matrix 2 (Baboon) 33.8564 31.0215 28.0072
maintained by using different stego matrices. The distortions 025 Lena with rr‘1essage 124096
are so small that different stego matrices can provide uncondi- Lena with message L=2048
tional security without reducing the imperceptibility. o +- Lena with message L=1024
D. Survivability o
The stego-image must be resistant to added noise in a g 015
noisy channel. The Reed—Solomon (RS) ECC with symbols &
from GF(2™) and RS (N, K) decode symbol errors correctly g
provided they are below (N +1— K))/2. This work uses the RS g g1
(31, 25) that has the ability of correcting three symbol errors. E
The tolerant bit-error rate (BER) is 0.0193, the maximum :
bit-error rate (MBER) is 0.0968, and the message payload is 0.05
0.8065. The normal distribution noise of N(0,42) was added g
to the Lena stego-image, which embedded a message with a . 7
length of 1024 bits. The extracted BER was 0.0086 with added Os: . » —
80 70 60 50 40 30 20 10

noise power § = 10, and increased to 0.0981 when the added
noise power was increased to 6 = 20, slightly exceeding the
MBER threshold for correction used here. However, increasing
added noise power to 6 = 30 caused extracted BER to increase
to 0.2274, and thus a stronger ECC code could be effective in
coping with more added noise to ensure error-free message
recovery. The same noise powers were added to the Baboon
stego-image, in which case the extracted BER results were
0.0086, 0.0922, and 0.2048, respectively. These BER results
indicate that the Baboon stego-image is more resistant to added
noise than that of the Lena stego-image.

Moreover, JPEG compression with different quality factors
(QF) was applied to stego-images to test images resistance
to compression. Fig. 4 illustrates the BER values of mes-
sages of various lengths extracted from the compressed Lena
stego-image. The figure shows that the BER is zero when the
QF exceeds 60. Meanwhile, reducing the QF to 20 produces
0.8304 ~ 0.9416 bits/pixel compressed images with BER
values between 0.0726 and 0.0895, within our MBER range.
Finally, decreasing QF to 10 produces the BER values of
0.1328 to 0.1783, beyond the MBER threshold. As noted
previously, higher correcting code rates could be useful in
correcting errors, but will reduce the message payload.

Fig. 5 shows the BER values of messages of various lengths
extracted from the compressed Baboon stego-image. The resis-
tance to JPEG compression is very similar to that for the Lena

JPEG compression quality factor

Fig.4. BERresults in comparison of JPEG compressed Lena stego-image with
decreasing qualities.
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Fig. 5. BER results in comparison of JPEG compressed Baboon stego-image

with decreasing qualities.



508

stego-image. Notably, the image with more edge regions has
better resistance to JPEG compression and added noise. The re-
sistibility characteristic yields a low BER given low QF com-
pression and high noise power. In contrast, minor JPEG com-
pression and added noise is sufficient to disable the bit plane
of the embedded messages produced using the method in [4].
Hence, we believe that the CAS scheme can survive a noisy
transmission channel.

E. Computational Costs

The stego-image capacity generally increases with the size
of the cover-image. However, chaotic mapping computations
also increase with large images, and this cost must be carefully
considered for given applications. For example, if the content
of the embedded message is time-dependent, the computational
costs for the receiver to receiver the message should be lower
than that for the attacker to decode the message.

When the exponent e is a positive integer that exceeds than
512 bits, the operation of S¢(modn) is time-consuming. A bi-
nary method [20] can speed up the calculation, which scans the
bits of the exponent e from left to right rather than multiplying
S sequentially for e times. On average, the binary method can
perform S€ in 1.5 % k multiplication rather than e multiplica-
tions, where k denotes the bit-length of exponent e in the binary
representation [21]. Clearly, e > 1.5 % k when e is a 512-bit
number. Hence, the binary method effectively reduces the com-
putational costs of the CAS scheme in real applications.

V. CONCLUSIONS

This work presents an asymmetric methodology for images
steganography based on the chaotic dynamic system and the
Euler theorem. This CAS scheme uses the local character-
istics of image blocks to conceal secret messages inside a
cover-image without increasing the dynamic range of the
image content. The cover-image is not required to extract the
hidden message. Meanwhile, the asymmetric orbits mean the
steganography is designed such that an adversary is unable to
use either of the keys to determine the other key. Combining
both the encryption and signature in the secret data allows
the receiver to assure the correctness and trustworthiness
of the received data through decryption and authentication
operations. A two-fold operation secures this method against
exhaustive and inverse attacks, and verification of sender
and receiver identification prevents fraud. An eavesdropper
will be unable to decipher embedded messages because the
permutation orbits of the embedding are not identical to those
of extraction processes.

The performance of the CAS scheme was verified using
messages with various lengths embedded into various images
to produce stego-images. The stego-images do not differ
significantly from the cover-images, reducing detection prob-
ability and leaving the observer unaware of the embedded
data. The ability of this method to cope with added noise and

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 3, JUNE 2004

JPEG compression affords to transmit stego-images over a
noisy transmission channel. Moreover, the method presented
here could be extended to color images to increase the total
message payload.
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