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ABSTRACT
Stencil computations are an integral component of applications in
a number of scientific computing domains. Short-vector SIMD
instruction sets are ubiquitous on modern processors and can be
used to significantly increase the performance of stencil computa-
tions. Traditional approaches to optimizing stencils on these plat-
forms have focused on either short-vector SIMD or data locality
optimizations. In this paper, we propose a domain-specific lan-
guage and compiler for stencil computations that allows specifica-
tion of stencils in a concise manner and automates both locality and
short-vector SIMD optimizations, along with effective utilization
of multi-core parallelism. Loop transformations to enhance data
locality and enable load-balanced parallelism are combined with a
data layout transformation to effectively increase the performance
of stencil computations. Performance increases are demonstrated
for a number of stencils on several modern SIMD architectures.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming; D.3.4 [Programming Languages]: Pro-
cessors—Code Generation, Compilers

Keywords
DSL, Multicore, SIMD, Split Tiling, Stencils

1. INTRODUCTION
There is increasing interest in developing domain-specific frame-

works for high-performance scientific computing due to the diver-
sity of current/emerging parallel architectures. In addition to the
benefit of a DSL (Domain Specific Language) on user productivity,
a significant advantage is that semantic properties derived from the
high-level abstractions can be utilized to develop powerful special-
ized compiler transformations that can be tailored to the character-
istics of different architectural platforms. Using the Stencil Domain
Specific Language (SDSL) [11], this paper describes a set of com-
piler transformations that are needed to generate efficient code for
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multicore processors with short-vector SIMD ISAs such as SSE,
AVX, VSX, LRBNi etc.

Stencil computations involve arithmetic operations on physically
contiguous data elements, e.g., c0*(A[i-1]+A[i]+A[i+1]). Since
vector operations with ISAs like SSE require the loading of phys-
ically contiguous data elements from memory into vector registers
and the execution of identical and independent operations on the
components of vector registers, stencil computations pose chal-
lenges to efficient implementation on these architectures, requiring
the use of redundant and unaligned loads of data elements from
memory into different slots in different vector registers. We [12]
had previously addressed this issue through adimension-lifting-
transpose (DLT) data layout transformation. However, only se-
quential execution was addressed. Further, the approach was only
evaluated on data sets that fit in L1 cache. Tiling over spatial and
the time dimensions is essential in conjunction with DLT for high
performance on large data sets. However, as elaborated in detail
in the next section, standard time-tiling of stencil codes via skew-
ing introduces inter-tile dependences that are incompatible with the
form of vector parallelism used by the DLT transformation. In this
paper, we develop an integrated approach to perform tiling in con-
junction with DLT transformation to generate efficient parallel code
for stencil computations over large data sets on shared memory
multiprocessors. We compare performance with code generated
by the Pochoir stencil compiler [18] and Pluto [2, 4] for several
benchmarks on multiple target multicore processors, demonstrat-
ing strong performance benefits for 1D and 2D stencils. The paper
makes the following contributions:

• It presents a stencil DSL compiler that integrates data lay-
out transformation for short-vector SIMD ISAs with load-
balanced tiled parallel execution for multi-statement stencils.

• It demonstrates significant performance improvement on sev-
eral multi-core platforms for a number of benchmarks, over
Intel’s ICC compiler and state-of-the-art research compilers
like Pochoir and Pluto.

The paper is organized as follows. In Sec. 2 we use an illustrative
example to explain the main problem to be addressed in integrating
DLT with tiling. Sec. 3.1 describes the stencil DSL and Sec. 3.4
provides a high-level overview of the compiler algorithms devel-
oped. Sections 4 and 5 provide details of the compiler algorithms.
Experimental results are presented in Sec. 6 and related work is
covered in Sec. 7.

2. PROBLEM DESCRIPTION
In this section we first provide some background on the DLT data

layout transformation of Henretty et al. [12] that was developed
to overcome the fundamental data access inefficiency on current



short-vector SIMD architectures with stencil computations. We
then describe why standard time-tiling is infeasible in conjunction
with the DLT transformation and a different form of tiling – split-
tiling – can be used effectively in conjunction with DLT.

2.1 Overview of DLT Transformation
Fig. 1 illustrates the DLT transformation for a one-dimensional

vector of 24 elements for an ISA with a vector length of 4. Whereas
B[0:3] form an aligned vector before transformation, after the DLT
transformation, B[0], B[6], B[12], and B[18] form the first four
elements Bdlt[0:3] in the transformed layout. The next four con-
tiguous elements Bdlt[4:7] in the transformed layout correspond
to B[1], B[7], B[13], and B[19], etc. Thus the sum of aligned
vectors, Bdlt[0:3]+Bdlt[4:7]+Bdlt[8:11], computes< B[0]+B[1]+
B[2],B[6]+B[7]+B[8],B[12]+B[13]+B[14],B[18]+B[19]+
B[20]>. Thus the fundamental problem with vectorized addition of
contiguously located elements in memory is overcome in the trans-
formed layout where operands that need to be combined are located
in the same slot of different vectors rather than in different slots of
the same vector.

(a) Original Layout

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(d) Transformed Layout

A G M S B H N T C I O U D J P V E K Q W F L R X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Dimension Lifted (c) Transposed
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Stencil code:

for (i = 1; i < 24; ++i)
A[i] = B[i-1]+B[i]+B[i+1];

Figure 1: Data layout transformation for SIMD vector length of 4

2.2 Standard Tiling and DLT Transformation
We next use a Jacobi 1D stencil example to explain the prob-

lem with the use of standard time-tiling in conjunction with DLT
layout transformation. Although the input to our stencil compiler
uses a special DSL language (described in Sec. 3.1), we use stan-
dard loop notation in C to motivate the problem since this lower-
level view makes it easier to discuss issues pertaining to loop fusion
and time-tiling when compiling general multi-statement stencils for
high performance – something that to the best of our knowledge is
not addressed by other stencil compilers such as PATUS [5] and
Pochoir [18].

Fig. 2(a) shows code for a 1D Jacobi 3-point stencil with a se-
quence of two spatial loops within an outer time loop, where S1
performs the stencil computation over the spatial domain and S2
copies the output array into the input array for use in the next time
step. In order to enhance data locality, time-tiling may be em-
ployed, but will first require some transformations in order to create
atomic tiles that compute forward for several time steps over a sub-
set of the spatial domain that is small enough to fit within cache.
Fig. 2(b) shows a fused form that creates a unified 2D iteration

for (t=0; t<T; t++) {
for (i=1; i<N-1; i++) {

B[i] = 0.33*(A[i-1] + A[i] + A[i+1]); // S1
for (i=1; i<N-1; i++)

A[i] = B[i]; // S2
}

(a) Unfused

for (t=0; t<T; t++) {
B[1]=0.33*(A[0]+A[1]+A[2]);
for (i=2; i<N-1; i++) {

B[i] = 0.33*(A[i-1] + A[i] + A[i+1]);
A[i-1] = B[i-1];

}
A[N-1] = B[N-1];

}

(b) Fused

Figure 2: Jacobi 1D stencil

space with a statement body including both S1 and S2 (along with
peeling of an iteration at the boundaries of thei loop).

Further skewing of this unified iteration space will be required to
create valid “rectangular” tiles, which can equivalently be viewed
as parallelogram-shaped tiles in an unskewed iteration space, as
shown in Fig. 3(a). Because of the shape of valid tiles (they can-
not be rectangular in an unskewed iteration space due to forward
and backward dependences along the spatial dimension), there are
inter-tile dependences between adjacent tiles along both the time
and spatial dimensions. This inter-tile dependence along the spa-
tial dimension makes it infeasible to use DLT because DLT causes
spatially separated data elements (for example, B[0], B[6], B[12],
B[18] in Fig. (1)) to be gathered together in a single vector and
therefore must be operated upon concurrently. The circled value in
each tile of Fig. 3(a) represents the logical time at which the tile can
be executed, such that all tiles it depends on have been previously
computed.

Fig. 3(b) shows a different form of tiling – split-tiles. Here, up-
right and inverted tiles alternate and the inter-tile dependences are
only from an upright tile to its two neighboring inverted tiles. As
a result, concurrent execution of all upright tiles over a given time
range is feasible, followed by concurrent execution of the inverted
tiles over the same time range. Again, the circled values within
the tiles indicate the sequence of execution of the tiles, where tiles
with the same sequence number can be executed concurrently. With
such a tiling strategy, it is now feasible to use DLT, as long as all
data elements grouped into each vector are all within upright tiles
or all within inverted tiles. Further, unlike execution required with
standard tiling, the schedule for parallel tile execution with split-
tiles is fully load balanced and does not have a sequential start and
gradual build up of inter-tile parallelism as required for wavefront-
parallel standard tiling.

In the next section, we provide a description of the stencil DSL
and a high-level overview of the compiler algorithm for code gen-
eration.

3. OVERVIEW OF APPROACH
Before delving into the details of the algorithms, in this section

we first describe the stencil DSL we translate. Next, we provide
overviews of two methods used to tile SDSL codes, nested and
hybrid split-tiling. Finally, a high-level overview of the approach to
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Figure 3: Tiled Iteration Space for 1D Space, 1D Time

transform an input SDSL program into an semantically equivalent
split-tiled DLT program is provided.

3.1 SDSL – Stencil Domain Specific Language
A stencil computation can be summarized as one or more func-

tions being identically applied to points on a regular grid, where the
values of some groups of neighboring elements are used for each
function, and this process is repeated multiple times. The Stencil
Domain Specific Language (SDSL) enables the concise description
of stencil computations and is briefly described in the following
sections.

3.1.1 Program Description
The computation shown in Fig. 4 is a standard Jacobi 2D com-

putation, which averages the value of the 5 neighboring points (up,
down, left, right, and center) to compute the new value of the center
point.

grid g[dim1][dim0];
double griddata a on g at 0,1;

iterate 100 {
stencil five_pt {
[1:dim1-2][1:dim0-2] : [1]a[0][0] =

0.2*([0]a[-1][0]+
[0]a[0][-1]+[0]a[ 0][0]+[0]a[0][1]+

[0]a[ 1][0]);
}

}

Figure 4: A simple Jacobi 2D example in SDSL

Structural Mesh (grid). The first line of Fig. 4 definesg, the
grid where stencil computations may be defined. It is ann-dimension-
al Cartesian coordinate space (a subset ofZ

2 here), and the com-
putations operate on a subset of this grid. We note that grid size
can be a parameter, that is a program constant whose value is not
known at compile-time.

Data Elements (griddata). The second line of Fig. 4 defines
a, a double precision data field with the same structure as gridg.
This field holds data values used in stencil functions, and multiple
fields may be defined over a grid. The gridg is used to define the

size ofa and sets limits on field indices. Theat clause specifies
that there should be two copies of the field, one associated with the
current outermost loop iteration and another at the next outermost
loop iteration.

Computation (iterate and stencil). The last eight lines of
Fig. 4 define a stencil computation. Three key concepts are defined:
(1) outer loop trip count, (2) subgrid(s) over which to apply a stencil
function and (3) stencil function(s).

The outer loop trip count is defined in theiterate construct,
and is 100 in the example. The stencil construct is given a unique
identifier, five_pt, and contains the definition of a subgrid over
which to apply the stencil function definition that follows. In the
example the subdomain[1:dim1-2][1:dim0-2] defines a subset
of the gridg that contains all elements except a single cell border
on all four sides.

A stencil function is defined after the subdomain definition. This
function averages the current point and four of its neighbors ina at
the current timestep and places the resluts ina at the next timestep.
References togriddata consist of the offset from the current iter-
ation in brackets, followed by the the name of the referenced field,
followed by offsets from the current point in each spatial dimension
in brackets.

3.1.2 General Form of an SDSL Program
In general, an SDSL program contains onegrid, one or more

griddata, oneiterate, and one or morestencil definitions,
where eachstencil may define one or more subdomains and the
stencil functions that operate upon them.

The abstract form of an SDSL program is represented in Fig. 5.
The program is constrained to be a collection ofM K-dimensional
grid data andN stencils, with each stencil applying some stencil
function f on one or more grid data. Each stencil function is exe-
cuted on a rectangular subdomainZ⊂Z

K |0≤ lbk
Z ,ubk

Z < dimk∀k∈
{1..K}. While an SDSL program may have multiple subdomains
and stencil functions defined inside onestencil, the abstract ver-
sion in Fig. 5 is semantically equivalent.

grid g[dimK]...[dim1];

griddata g1,g2...,gM on g;

iterate T {
stencil s1 {
[lb_s1_K:ub_s1_K]...[lb_s1_1:ub_s1_1] : f1(...);

}
stencil s2 {
[lb_s2_K:ub_s2_K]...[lb_s2_1:ub_s2_1] : f2(...);

}
...
stencil sN {
[lb_sN_K:ub_sN_K]...[lb_sN_1:ub_sN_1] : fN(...);

}
}

Figure 5: General Form of an SDSL Program

SDSL programs are parallelized and optimized for data locality
using nested and hybrid split-tiling, described in the next two sec-
tions.

3.2 Nested Split-Tiling
In nested split-tiling, ad-dimensional loop spatial loop nest is

recursively split-tiled along each dimension. The outermost spatial
loop at leveld is split-tiled, producing a loop over upright tiles and
a loop over inverted tiles. Inside each of these loops, loop level



for tt

  parfor ii // (A) Upright i

    parfor jj // (1) Upright j

      for t { for i { for j {}}};

    barrier();

    parfor jj // (2) Inverted j

      for t { for i { for j {}}};

    barrier();

  parfor ii // (B) Upright j
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(a) 2D Nested Split-Tiling

for tt

  for ii // (A) (B) (C) (D) Traditional i 

    parfor jj // (1) Upright j

      for t { for i { for j {}}};

    barrier();

    parfor jj // (2) Inverted j

      for t { for i { for j {}}};

    barrier();

t

i

j

1

2

Upright j

Inverted j

1

2

DCBA
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Figure 6: 2D nested and hybrid split-tiling.

d− 1 is split-tiled, giving four tile loop nests. Split-tiling is per-
formed recursively in each new loop nest until the base loop level 1
is reached and there are 2d total loop nests corresponding to all pos-
sible combinations of upright and inverted tiles on each dimension.
Nested split-tiling of a 2D code is illustrated in Fig. 6(a).

Fig. 6(a) depicts, on the left, a series of upright (‘A’) and inverted
(‘B’) tiles in the i dimension. All upright ‘A’ tiles may be exe-
cuted concurrently, followed by all inverted ‘B’ tiles. Below these
tiles are representative cross-sections of an upright and inverted tile
showing the nested split-tiles in thej dimension. These tiles are
labeled such that all tiles with the same number, (‘1’, ‘2’, ‘3’, or
‘4’) may be executed concurrently, and tiles with a lower number
must be executed before tiles with a higher number.

The pseudocode in Fig. 6(a) shows the loop nests responsible for
producing the diagram. Nested inside the sequentialtt loop are two
parallelii loops corresponding to the ‘A’ and ‘B’ tiles shown in the
diagram. Nested inside the ‘A’ loop are parallelj j upright (‘1’) and
inverted (‘2’) tile loops corresponding to the tiles shown in the left
cross-section, Similarly, the ‘B’ loop contains nested parallel ‘3’
and ‘4’ loops corresponding to the right cross-section. A barrier
follows eachj j tile loop to enforce tile execution order and ensure
that no dependences are violated.

Nested split-tiling enables parallelization of all spatial loop nests
in a stencil, however (1) it imposes a lower bound on the size of
upright tiles for a given time tile size, or equivalently, (2) it imposes
an upper bound on the time tile size given an upright tile’s size.

In nested split-tiling, upright tiles must be sized such that they
retain their characteristic trapezoidal shape, as in Fig. 3(b). If the
base of the upright tile is not large enough for a given time tile
size, the sloping lines will eventually form a tip. At this point tile
execution cannot extend any further in time.

Given an upright tile with a base size ofT d
U , maximum absolute

value of slopes ind sd
max, maximum offset of all statementsod

max,
and time tile sizeTT the following constraint can be stated:
T d

U ≥ 2∗TT ∗ sd
max +2∗od

max

For higher dimensional problems, the lower bound on upright
tile size causes tiles to overflow cache for even small time tile
sizes. Consider a 3-dimensional stencil with, for all dimensions,
maximum slopesd

max = 2, maximum offsetod
max = 0, andTT = 8.

This requiresT d
U ≥ 32. For an upright tile in all dimensions, in-

cluding the innermost vector dimension, this is at least 32K vector
elements, enough to overflow L1 and L2 cache on most modern
architectures.

3.3 Hybrid Split-Tiling
We overcome the tile size constraints of nested split-tiling with

a hybrid of standard tiling on the outermost space loops and split-
tiling on the inner loops. Hybrid split-tiling for a 2D stencil is
illustrated in Fig. 6(b). The pseudocode contains a singleii loop
nested in thett loop which corresponds to the four traditionali
dimension tiles ‘A’, ‘B’, ‘C’, and ‘D’ shown in the diagram. These
tiles must be executed in sequence from ‘A’–‘D’. Nested inside the
ii loop is the split-tiledj j loop which has the same upright / inverted
tile structure as the split-tiled inner loops described in the previous
section.

Standard tiling does not impose any constraint on tile sizes along
spatial dimensions as a function of the time tile size. Thus, stan-
dard tiles may be compacted to a much smaller size to compensate
for the larger tile sizes required by split-tiled dimensions. This al-
lows for a substantially reduced multidimensional tile footprint. In
the example at the end of Sec. 3.2, we may reduce the tile size of
the outermost dimension to 2, thereby reducing the the tile size to
2K elements. Since inner loops are split-tiled, we retain adequate
parallelism.

3.4 Overview of the Optimization Algorithm
In order to perform combined data layout transformations for

SIMD vectorization with parallel tiling for data locality, we use a
multi-stage process to integrate dimension-lift-and-transpose (DLT)
with multi-level split-tiling. The overall transformation flow is
summarized in Fig. 7.



Input
P: input SDSL program
dsplit: number of dimensions to split-tile

Output
O: optimized C program

O ← performDLT(P)
(~α,~β,~oL,~U) ← backslice(P)

O ← performSplitTiling(O, ~α, ~β, ~oL, ~U, dsplit)

O ← finalizeTiling(O, ~α, ~β, ~oL, ~U, dsplit)
return O

Figure 7: Overview algorithm

FunctionperformDLT applies DLT on all inner-most vectoriz-
able loops, following the method presented in Henretty et al. [12].
We remark that programs that can be modeled in SDSL all have
vectorizable inner-loops, so that DLT can be applied for all sten-
cil functions. Details of this function are provided later in Sec. 5.
Functionbackslice performs backslicing analysis to compute the
exact shape of the split-tiles (that is, computing for each stencil
function the offsets and slopes of a split-tile, to be translated on
the entire spatial domain). This is detailed in Section 4. Function
performSplitTiling uses the split-tile shape information com-
puted to generate split-tile code for thed split inner spatial dimen-
sions. This is detailed in Section 5. Finally, functionfinalize-
Tilingcompletes code generation, by applying standard tiling on
the remaining dimensions, if any. The integration as well as the
complete algorithm is discussed in Section 5.

4. BACKSLICING ANALYSIS
Split-tiling requires the computation of sets of iteration space

points that can be executed atomically – that is a valid tiling – while
preserving parallelism between tiles of the same category (i.e., up-
right tiles have to be parallel with each other). In order to compute
the shape of the split-tile that satisfies those properties, we first
highlight the main ideas using a Jacobi 1D stencil, before describ-
ing the general algorithm for higher dimensional stencils with an
arbitrary number of stencil functions.

4.1 Split-Tiling Jacobi 1D
We illustrate the main ideas behind split-tiling using a Jacobi 1D

example. Fig. 8 shows the corresponding input SDSL program.

grid g[1000];
double griddata a on g at 0,1;

iterate 100 {
stencil f1 {
[1:998] : [1]a[0] =

0.33*([0]a[-1]+[0]a[0]+[0]a[1]);
}

}

Figure 8: A simple Jacobi 1D example in SDSL

In the SDSL intermediate representation, an explicit copy of the
field a1 into the fielda0 is added after each time iteration, leading
to a program equivalent to the C code shown in Fig. 9.

Statementf1 performs the actual stencil computation, producing
thea1 field, statementf2 copies thea1 field to thea0 field. This
sequence is repeated 100 times.

for (t = 0; t < 100; t++) {
for (i = 1; i <= 998; i++) {
f1: a1[i] = 0.33*(a0[i-1] + a0[i] + a0[i+1]);

}
for (i = 0; i <= 999; i++) {
f2: a0[i] = a1[i];

}
}

Figure 9: Jacobi-1D example with explicit copy

4.1.1 Examining an Upright Tile
Let us consider the top segment of an upright tile forf2, over

a span[P,Q], that corresponds to the iterations off2 performed at
time T . In order to correctly compute those iterations, we need the
values[P−1,Q+1] of a1 that were computed by executingf1 on
the segment[P− 1,Q+ 1] time T , which in turn depends on the
values ofa0 over [P−2,Q+2] copied byf1 at timeT −1. Based
on data dependences between the statementsf1 and f2, we can
compute precisely which iterations must have been computed at
previous time steps for each of the statements in order to compute
the segment[P,Q] of f2 at time stepT . This is illustrated in Fig. 10.

Copy (f2)

Compute (f1)

P Q Q+2P-2

2nd slope for f21st slope
for f2

T

T-2

…

Figure 10: Upright split-tile for Jacobi 1D

Fig. 10 shows the set of preceding iterations, for bothf1 andf2,
that must be computed in order to obtain the segment[P,Q] at time
T . We show here a time tile size of 3, that is, we build a split-tile
that computes over three time steps.

The dependences are analyzed from the SDSL representation.
Due to the restriction on stencil shapes to be constant integer off-
sets (e.g.,−1, 2, etc.), the dependences are simple integer relations
between time and the access functions. In the next sections we
show how data dependences are used to construct adependence
summary graph and formulate validity constraints on the split-tiles
for the slopes and statement offsets.

4.1.2 Building the Dependence Summary Graph
We begin by creating the dependence summary graph (DSG), a

multigraph with vertices for each stencil function and edges that
summarize flow and anti dependence information between stencil
functions. In general, a vector of 2*d+1 components is used to
model data dependence in an imperfectly nested loop with maxi-
mum loop depth d, with d components representing the distances
along the loops, and the other d+1 components being used to mark
the relative textual ordering within a loop level. However, the struc-
ture of an SDSL program always has the form of an outer time loop
surrounding a sequence of perfectly nested loops. For generation
of valid split-tiled code, the exact textual position of a sequence of
statements is not significant, but only whether a dependence is from
a textually preceding or succeeding statement within the time loop.
Further, when several dependences exist between a pair of state-
ments due to multiple array read references it is only necessary to



identify the maximal spatial extent of dependences along the dif-
ferent directions at each time step. Therefore, instead of using the
standard general representation of dependence vectors, we separate
out the distance vector component along the time (outermost) di-
mension and the components along the spatial dimensions.

For the Jacobi 1D example, we have the following dependences:

D f1→f2 =















flow: f1(t, i) → f2(t, i)
anti: f1(t, i) → f2(t, i−1)
anti: f1(t, i) → f2(t, i)
anti: f1(t, i) → f2(t, i+1)

D f2→f1 =















flow: f2(t, i) → f1(t +1, i−1)
flow: f2(t, i) → f1(t +1, i)
flow: f2(t, i) → f1(t +1, i+1)
anti: f2(t, i) → f1(t +1, i)

The spatial components of the dependence vectors between de-
pendent statements are computed by subtracting the target iteration
from the source iteration, yielding the following vectors:

df1→f2 =















δT = 0,δi =< 0>

δT = 0,δi =<−1>

δT = 0,δi =< 0>

δT = 0,δi =< 1>

df2→f1 =















δT = 1,δi =<−1>

δT = 1,δi =< 0>

δT = 1,δi =< 1>

δT = 1,δi =< 0>

The spatial components of the distance vectors are then coa-
lesced into a tuple for each dependence such that the coalesced
tupleC f s→ f t =< δL,δU > whereδL is the maximum spatial dis-
tance andδU is the minimum spatial distance between two depen-
dent statementsf s and f t. For the Jacobi 1D example the tuples
for each dependence are identical,Cf1→f2 = Cf2→f1 =< 1,−1 >.
These tuples are used to label edges in the DSG, along with a sep-
arate label for the time distanceδT . Assembling the coalesced tu-
ples, time distances, dependences, and statements leads to the DSG
shown in Fig. 11 for the Jacobi 1D example.

Compute
(f1)

Copy
(f2)

<!L,!U> = <1,-1>

!T = 0

<!L,!U> = <1,-1>

!T = 1

Figure 11: Dependence Summary Graph (DSG) for Jacobi 1D

This DSG is subsequently used in Sec. 4.1.3 to build validity
constraints for split-tiles and in Sec. 4.1.4 to compute slopes and
statement offsets.

4.1.3 Building Validity Constraints
We seek to constrain the legal values of tile slope and statement

offsets by assembling a system of linear inequalities based upon the
DSG and the loop bounds of the split-tiled code we will generate.
Pseudocode for the loop nests of Jacobi 1D upright tile is shown
in Fig. 12. Informally, the validity constraints state that, for any
pair of dependent statements, given a region over which the target

for (tt =...)
for (ii =...)

for (t = 0; t < TT ; t ++)
for (i = ii+of1L +α∗ t; i≤ii+TU +of1U +β∗ t; i++)
f1: a1[i] = 0.33*(a0[i-1] + a0[i] + a0[i+1]);

end for
for (i = ii+of2L +α∗ t; i≤ii+TU +of2U +β∗ t; i++)
f2: a0[i] = a1[i];

end for
end for

end for
end for

Figure 12: Loop Nests for Jacobi 1D Upright Tile. Time tile size is
TT ; upright space tile size isTU . Offsets from lower bound areof1

L
andof2

L ; offsets from upper bound areof1
U andof2

U . Slope of lower
bound isα; slope of upper bound isβ.

statement is executed, the source statement will be executed over a
region that is,at minimum, large enough to satisfy the dependence.

From the DSG, we note that to compute statementf2 over some
range[A,B] at timestepT we require that statementf1 be executed
over the range[A−1,B− (−1)] at timestepT . Similarly, to com-
pute statementf1 over some range[C,D] at timestepT we require
that statementf1 be executed over the range[C−1,D− (−1)] at
timestepT −1.

Combining the dependence information from the DSG with the
loop bounds of Fig. 12 gives us validity constraints on values the
loop bounds may take, and results in the following system of in-
equalities for lower bounds:

ii+of1
L +α∗ t ≤ ii+of2

L +α∗ t−1

ii+of2
L +α∗ (t−1) ≤ ii+of1

L +α∗ t−1

The following system constrains the upper bounds:

ii+TU +of1
U +β∗ t ≥ ii+TU +of2

U +β∗ t +1

ii+TU +of2
U +β∗ (t−1) ≥ ii+TU +of1

U +β∗ t +1

Simplifying and rearranging these systems of inequalities yields the
following system of difference constraints for lower bounds:

of1
L −of2

L ≤ −1

of2
L −of1

L ≤ α−1;

the corresponding constraints for upper bounds are shown below:

of2
U −of1

U ≤ −1

of1
U −of2

U ≤ −β−1.

These systems are used in Sec. 4.1.4 to compute valid offsets for
all statements.

4.1.4 Computing Slopes and Offsets
To determine legal values for slopesα andβ we compute, re-

spectively, maximum and minimum cycle ratios [1,7] on the DSG.
A cycle ratioρL(C) on the DSG is computed by finding a cycleC,
summingδL values over the cycle, and dividing by the sum ofδT
values. A cycle ratioρU (C) is calculated in a similar fashion with
δU values. We setα = max(ρL(C)) andβ = min(ρU (C)) for all
cyclesC in the DSG.

We examine the only cycle in our example DSG,C0, between
f1 andf2. The DSG tells us that computingf1 on some inter-
val [A,B] at timeT allows us to computef2 on the interval[A+

δ f 1→ f 2
L ,B+δ f 1→ f 2

U ] at timeT +δ f 1→ f 2
T without violating any de-

pendences. Continuing along the cycle, computingf2 on the in-



terval [A+ δ f 1→ f 2
L ,B+ δ f 1→ f 2

U ] at timeT + δ f 1→ f 2
T allows us to

computef1 on the interval[A+ δ f 1→ f 2
L + δ f 2→ f 1

L ,B+ δ f 1→ f 2
U +

δ f 2→ f 1
U ] at timeT +δ f 1→ f 2

T +δ f 2→ f 1
T .

Substituting in known values for the variousδ variables shows
us that computingf1 over the interval[A,B] at timeT allows us to
computef1 over the interval[A+2,B−2] at timeT +1. Thus, we
see a slope of 2 on the lower bound and a slope of -2 on the upper
bound.

Equivalently, summingδL values and dividing by the sum ofδT
values gives usρL(C0) = 2; a similar calculation gives usρU (C0) =
−2. Since there is only one cycle in the DSG, these values are
max(ρL(C)) and min(ρU (C)), and we setα = max(ρL(C)) = 2 and
β = min(ρU (C)) =−2.

These values forα andβ are substituted into the systems of dif-
ference constraints, and a solution to each of these systems is ob-
tained using the Bellman-Ford algorithm [1, 6]. For the Jacobi 1D
example we obtainof1

L =−1, of1
U = 1, andof2

L = of2
U = 0.

4.2 General Method
Our general algorithm closely follows the principles we have

explained for Jacobi 1D. Since stencils may be multidimensional
slopes and offsets are separately computed for each dimension.
Further, different stencil functions may apply to different subdo-
mains, which may be disjoint, overlapping, or identical. Because
of this we conservatively assume all stencil functions are executed
at all points in the problem domain when calculating dependences.
This is an over-approximation of data dependences and has no im-
pact on the final correctness of the generated code.

We present in Fig. 13 a general algorithm for computing slopes
and offsets for a given input program. This algorithm produces
lower/upper slope vectors with one slope per dimension, and low-
er/upper offset vectors with one offset per stencil statement.

Input
P: input SDSL program

Output
(~α, ~β, ~oL, ~oU ): Vectors of slopes alpha, beta.

Vectors of lower and upper offsets in each
spatial dimension for each stencil statement

D ← calculateDependences(P)
s ← calculateDependenceDistances(D )
DSG ← buildDSG(s,P)
foreach dimension d of P do

αd ← computeMaxCycleRatio(DSG,d)
βd ← computeMinCycleRatio(DSG,d)
~α[d] ← αd
~β[d] ← βd

(~vL, ~vU ) ← buildValidityConstraints(DSG,αd,βd)
~oL[d] ← solveForOffsets(~vL)
~oU [d] ← solveForOffsets(~vU)

end do
return (~α, ~β, ~oL, ~oU )

Figure 13: Algorithmbackslice

The algorithm in Fig. 13 takes an arbitrary SDSL program as
input. Dependence analysis is performed on this program to de-
termine all flow and anti dependences, and dependence distance
vectors are calculated. The dependence distance vectors are used
to build the DSG, where each vertex is an SDSL statement and
each edge is labeled with a time distance. Edges are also labeled
with coalesced distances, computed for each spatial dimension as
in Sec. 4.1.2 and placed in vectors(~δL,

~δU ).
After the DSG is built, slopes and offsets are computed along

each dimensiond. For each dimension of the DSG we compute

α andβ using maximum and minimum cycle ratios. Theαd and
βd values are then added to~α and~β as the slopes ford. Once the
slopes have been computed for a dimension, validity constraints are
constructed as shown in Sec. 4.1.3. Once the slopes and validity
constraints are known for a given dimension,solveForOffsets()
rearranges the validity constraints into a system of differences and
solves for offset values using the Bellman-Ford algorithm. Offsets
for each statement in the current dimension are appended to the
offset vectors. This process is repeated until slopes and offsets have
been computed for all dimensions.

4.3 Proof of Correctness
Upright Tiles: The validity constraints guarantee that no depen-
dences in an upright tile will be violated. In this section we prove
that lower bound slopes calculated with the maximum cycle ratio
always lead to a system of constraints that has a solution; the proof
for the upper bound and minimum cycle ratio is identical.

A system of difference constraints not solvable by the Bellman-
Ford algorithm would contain a negative weight cycle. We show
that this is not possible.

We begin by constructing a graph isomorphic to the DSG where
each vertex is a statement and each directed edge is labeled with its
corresponding validity constraint for the lower boundve

L on some
dimensiond.

All validity constraints take one of the following forms:

os ≤ ot −δe ⇒ os−ot ≤−δe (1)

os ≤ ot −δe +α ⇒ os−ot ≤−δe +α (2)

In (1) the dependence associated with the constraint has source and
target statements at the same timestep; in (2) the statements are 1
timestep apart. The unknown source statement offset isos, the un-
known target statement offset isot , the dependence distance/edge
weight isδe, andα is the unknown slope.

We next show that any cycle of lengthk on this graph restricts
the possible values ofα to be of the following form:

α≥
1
t

k

∑
i=1

δi. (3)

Note that the maximum cycle ratio simply maximizesα subject to
the constraint in (3). In (3),δi is the weight of an edge in the cycle
andt is the number of edges where source and target are separated
by 1 timestep. Every vertexn in the cycle is entered through an
edge f and exited through an edgeg. On edgee, vertexn is the
target of the dependence; on edgeg, vertexn is the source of the
dependence. Summing validity constraintsv f

L + vg
L eliminates the

offset on. The accumulated sum
k
∑

i=1
vi

L eliminates all offsets and

leaves 0≥
k
∑

i=1
δi− t ∗α, which is equivalent to (3).

We now show that a negative weight cycle in the graph used
by the Bellman-Ford algorithm to solve the system of difference
constraints requires a value ofα that violates (3).

All constraints in the system of differences we are solving take
one of two forms, Equation 1 or Equation 2. The graph used
in Bellman-Ford, after removing the start vertex and zero-weight
edges emanating from it, is isomorphic to the DSG and the validity
constraint graph described above. Each vertex is a statement offset,
and each edge is weighted by the difference between the source and
the target offset. The weight of any lengthk cycle is shown in (4).

k

∑
i=1
−δi + t ∗α (4)



Assume there is a negative weight cycle of lengthk. This requires
(5) to be true:

k

∑
i=1
−δi + t ∗α < 0 (5)

Rearranging (5), we haveα constrained by (6):

α <
1
t

k

∑
i=1

δi (6)

The same cycle, on the validity graph, shows thatα is constrained
by (3). This is a contradiction as we knowα was constructed by
maximized subject to (3) thus our assumption of a negative weight
cycle in the graph used to compute offsets was wrong and the sys-
tem of differences constraints used to solve for offsets will always
have a solution.
Inverted Tiles: The loop bounds for each statement in an inverted
tile are set to fully span the gap between adjacent upright tiles (or
a domain boundary). The proof of satisfaction of all dependences
during execution of an inverted tile is a direct consequence of this
“completeness” property of the span of spatial loops of an inverted
tile. Consider all instances at timet, of an arbitrary statementSq
in an inverted tile. Any dependence on instances of any statement
Sp mean thatSp textually precedesSq, or that the dependence is
from instances ofSq at some earlier time step. There are three pos-
sibilities for any such statement instance from which there exists
a dependence: i) it belongs in some upright tile, ii) it belongs in
the same inverted tile, iii) it belongs in some other inverted tile. If
we have case (i), the dependence is satisfied since all upright tiles
are executed before any inverted tiles. If we have case (ii), again
the dependence is satisfied since statements are executed in textual
order within the inverted tile for a time step, and in increasing time
order across time steps. Finally, case (iii) is impossible since other
inverted tiles are separated from the current inverted tile by at least
one upright tile, whose slopes are guaranteed to prevent any depen-
dence edge crossing their boundaries.

Multiple Spatial Dimensions: In the proof of correctness, so far
we have focused on the case of a single spatial dimension. For
multi-dimensional stencils, as explained in Sec. 3, tiles may have
different characteristics along the different spatial dimensions. For
example, with two spatial dimensions and nested split tiling, there
are four possibilities: Upright-Upright, Upright-Inverted, Inverted-
Upright, Inverted-Inverted. With hybrid split tiling, one or more
spatial dimensions may be tiled using standard parallel tiles (using
the slopeβ computed for the right boundary in that dimension by
the back-slicing analysis). The proof of validity of execution in the
multi-dimensional case is a consequence of the fact that the loop
bounds along each spatial dimension are independent of iterators
of other spatial dimensions. Consider, for example, a stencil with
three spatial dimensionsi, j, andk, where standard tiling is used
alongk, and split tiling alongi, and j. Let a particular tile be up-
right alongi, and inverted alongj. At some time stept, the set of all
instances of a statementSq will necessarily correspond to a cross
product of ranges along the three spatial extents: [kl:ku,jl:ju,il:iu].
The instances of any statementSp that Sq depends upon, can be

expressed as[kl +δk
L : ku+δk

U , jl +δ j
L : ju+δ j

U , il +δi
L : iu+δi

U ].
We can prove that all such dependences are satisfied by proving that
the extents along each dimension are satisfied. For upright or in-
verted tiles along any dimension, we have proved that the required
extents will be covered by the generated slopes/offsets. For a stan-
dard tiled dimension too, the dependences will be satisfied: on the
lower side, the instances will either lie in the same tile or in an ear-

lier numbered tile that would have been executed before this tile;
on the upper side, the instance will necessarily lie within the same
tile because the slope and offset from the back-slicing computation
is used.

5. CODE GENERATION
Before detailing the code generation algorithm, the structure of

generated code is shown in Figure 14. The example shows code
for a single-statement 1D stencil. Upright and inverted inter-tile
loops can be found, respectively, at lines 11 and 26. Note that the
upright tile loop covers an extent from the lowest bound of any
stencil function to the highest bound of any stencil function, and
the inverted tile tile loop extends beyond this on both sides. This
is needed to ensure that boundary cells are computed as upright
tiles slope away from them. It is enabled by themax() andmin()
expressions that prevent intra-tile loop bounds from taking values
outside of the original loop’s domain (lines 17 and 32). Constraints
on tile size values such asUPR_TILE_SIZE andINV_TILE_SIZE are
imposed as needed to ensure correctness of generated code; this is
explained below.

1 // Time tile loop
2 for (tt = 0; tt < T; tt += TT_SIZE) {
3 // Upright tile loop
4 // F1 is a stencil function , lb_F1 (ub_F1) is the lower (upper) bound of
5 // the grid coordinate where F1 is applied
6 upr_lb = lb_F1; // for multiple stencil functions F1, F2, ..., it is
7 // actually min(lb_F1 ,lb_F2 ,...)
8 upr_ub = ub_F1; // Similarly max(lb_F1 , lb_F2...)
9 // UPR_TILE_SIZE (INV_TILE_SIZE) is the size of the upright (inverted)

10 // tile base
11 for (ii = upr_lb; ii < upr_ub; ii += UPR_TILE_SIZE + INV_TILE_SIZE) {
12 // Time loop
13 for (t = tt; t < min(tt+TT_SIZE ,T); t++) {
14 tile_lb_F1 = ii + offset_F1_lb + upr_alpha*(t-tt);
15 tile_ub_F1 = ii + UPR_TILE_SIZE +
16 offset_F1_ub + upr_beta*(t-tt) - 1;
17 for (i = max(tile_lb_F1 , lb_F1); i <= min(tile_ub_F1 , ub_F1); i++) {
18 // 1D stencil function code.
19 }
20 }
21 }
22 // Inverted tile loop
23 inv_lb = upr_lb - INV_TILE_SIZE;
24 inv_ub = ub_F1 + INV_TILE_SIZE; // for multiple stencil functions
25 // F1, F2, ... it is max(ub_F1 ,ub_F2 ,...)
26 for (ii = inv_lb; jj < inv_ub; ii += UPR_TILE_SIZE + INV_TILE_SIZE) {
27 // Time loop
28 for (t = tt; t < min(tt+TT_SIZE ,T); t++) {
29 tile_lb_F1 = ii + inv_offset_F1_lb + inv_alpha*(t-tt);
30 tile_ub_F1 = ii + INV_TILE_SIZE +
31 inv_offset_F1_ub + inv_beta*(t-tt) - 1;
32 for (i = max(tile_lb_F1 , lb_F1); i <= min(tile_ub_F1 , ub_F1); i++) {
33 // 1D stencil function code
34 }
35 }
36 }
37 }

Figure 14: Illustration of structure of generated code for 1D case

Algorithm 15 is the overall algorithm to perform DLT and split-
tiling on a program that can be expressed in SDSL. It is a more
detailed version of the overview algorithm shown earlier.

FunctionsGetXXX retrieve properties of the SDSL program re-
quired for code generation (e.g., name of arrays, number of dimen-
sions, etc.). FunctionsGenCopyXXXLoop copies the data from the
original layout to the DLT layout. Functionvectorize generates
a sequence of vector intrinsics call (SSE or AVX in our experi-
ments) to compute the same arithmetic operation as the correspond-
ing statement in the stencil function, using SIMD vectors. Func-
tion ChangeBoundsToDLT adapts/creates the loop structure scan-
ning the dimension-lifted data arrays. FunctionsGenMaskedXXX
use SIMD masked write operations to cope with vectors in the gen-
erated code where one of the vector slot (necessarily the first or
last slot only) contains ghost data. The reader may refer to [12] for



Input
P: Stencil program
Lvec: Integer length of a vector (in elements)

Output
Psdlt: C code for Split-tiled, DLT version of the input

SDSL program

Psdlt ← Copy(P)
// Convert arrays to DLT.
A ← GetArrays(Psdlt)
ltime ← GetTimeLoop(Psdlt)
foreach array a in A do

dims ← GetDimensions(a,Psdlt)
lcopyin ← GenCopyInLoop(a,dims,Lvec)
lcopyout ← GenCopyOutLoop(a,dims,Lvec)
ltime.Prepend(lcopyin)
ltime.Append(lcopyout)

end do
// Vectorize statements.
S ← GetStatements(Psdlt)
foreach statement s in S do

svec ← Vectorize(s,Lvec)
lenc ← GetEnclosingLoop(svec,Psdlt)
ChangeBoundsToDLT(lenc)
sstart

vec ← GenMaskedWriteStartStmt(svec,Lvec)
lstart ← GenMaskedStartLoop(sstart

vec ,lenc)
lenc.Prepend(lstart)
send

vec ← GenMaskedWriteEndStmt(svec,Lvec)
lend ← GenMaskedEndLoop(send

vec ,lenc)
lenc.Append(lend)

end do
// Backslice original code.
(~x) ← computeOffsetSlopes(P)
AddBacksliceResults(Psdlt,~x)
// Create nested split-tile loops
ltt ← CreateTimeTileLoop()
d ← GetSpaceDimensionCount(Psdlt)
GenNestedSplitTileLoops(ltt,d)
GenTileBodies(ltt,Psdlt,d)
ReplaceTimeLoop(ltt,Psdlt)

Figure 15: LayoutTransformAndSplitTile

more details. FunctionsGenNestedSplitTileLoops andGenTile-
Bodies are described below.

Algorithm 16 provides detail for the code generation of split-
tiled code, in the context of a program on which DLT has been
performed first. We remark that in order for the code generation
of themasked writes required by DLT to be correct, we impose
a constraint relating the size of the innermost dimension to the tile
sizes:

|dinnermost | mod(upr_tile_size+ inv_tile_size) = 0

Adding this constraint greatly simplifies the code generation, avoid-
ing the need to handle complex corner cases at the tile boundaries.
This limitation is not a problem in practice, since padding can be
used to comply with this constraint.

FunctionGenInvertedFullBndryTileCondition generates a
conditional to determine whether to execute a full inverted tile or an
boundary inverted tile that includes two loop nests for the start and
end boundaries of DLT codes. FunctionAdjustTimeAndSpace-
LoopBounds alters the loop boundaries of the loops copied from the
original code to tile loop boundaries using the results of backslic-
ing. FunctionTrimMaskedWriteLoops removes the masked write
loops at the start and end of the inverted boundary tile loops, leav-
ing the masked writes between them.

We conclude by presenting the algorithm for generating split-
tiled loop nests shown in Algorithm 17. Hybrid split-tiling code
generation requires minimal changes to Algorithms 16 and 17. Al-
gorithm 17 requires a conditional to check if it is generating code
for the outermost loop. If so, a standard tile loop is generated in-

Input
l: A time tile loop with empty nested split-tile loops inside
Psdlt: Stencil program with DLT performed and backslicing

results inserted
d: Integer representing current loop depth (1 innermost)

Output
l: with split-tile loop bodies generated

if d == 1 then
lorig ← GetOriginalLoopBody(Psdlt)
//Generate upright tile body
lupr ← GetUprightTileLoop(l)
CopyTimeAndSpaceLoops(Psdlt,lupr,1)
RemoveMaskedWriteLoops(lupr)
AdjustTimeAndSpaceLoopBounds(lupr,Psdlt)

linv ← GetInvertedTileLoop(l)
(l f ull

inv ,lbndry
inv ) ← l.GenInvertedFullBndryTileCondition()

//Generate inverted full tile body
CopyTimeAndSpaceLoops(Psdlt,l f ull

inv ,1)

RemoveMaskedWriteLoops(l f ull
inv )

AdjustTimeAndSpaceLoopBounds(l f ull
inv ,Psdlt)

//Generate inverted boundary tile body
CopyTimeAndSpaceLoops(Psdlt,lbndry

inv ,2)

AdjustTimeAndSpaceLoopBounds(lbndry
inv ,Psdlt)

TrimMaskedWriteLoops(lbndry
inv )

else
lupr ← GetUprightTileLoop(l)
GenTileBodies(lupr,Psdlt,d−1)
linv ← GetInvertedTileLoop(l)
GenTileBodies(linv,Psdlt,d−1)

end if

Figure 16: Algorithm GenTileBodies

Input
l: Loop to add nested upright and inverted tile loops to
d: Integer representing current loop depth (1 innermost)

Output
l: with nested upright and inverted tile loops added

if d == 1 then
lupr ← l.AddUprightTileLoop()
linv ← l.AddInvertedTileLoop()

else
lupr ← l.AddUprightTileLoop()
GenNestedSplitTileLoops(lupr, d−1)
linv ← l.AddInvertedTileLoop()
GenNestedSplitTileLoops(linv, d−1)

end if

Figure 17: Algorithm GenNestedSplitTileLoops

stead of a split-tiled loop. Algorithm 16 requires a change to the
AdjustTimeAndSpaceLoopBounds() procedure to correctly tra-
verse the standard tile dimension.

6. EXPERIMENTAL EVALUATION
The effectiveness of the both nested split-tiling and hybrid split-

tiling applied in conjunction with the dimension-lifting transforma-
tion was experimentally evaluated on several hardware platforms
using a variety of stencil kernels. We compare performance to the
diamond-tiling system used by Pluto [2], the cache-oblivious tiling
system used by Pochoir [18], and the Intel C Compiler v13.0.

6.1 Experimental Setup
Hardware: Experiments were performed on three hardware plat-
forms with DVFS features disabled on all of them.AMD Phe-
nom II X6 1100T (K10 micro-architecture) is a 6-core x86-64 chip,
clocked at 3.3GHz; single-precision peak performance of 26.4 GFlop/s/-
core (158.4 GFlop/s aggregate); double-precision peak performance



of 13.2 GFlop/s/core (79.2 GFlop/s aggregate).Intel Core i7-920
(Nehalem micro-architecture) is a quad-core x86-64 chip running
at 2.66 GHz; single-precision peak performance of 21.28 GFlop/s/-
core (85.12 GFlop/s aggregate); double-precision peak performance
of 10.64 GFlop/s/core (42.56 GFlop/s aggregate).Intel Core i7-
2600K (Sandy Bridge micro-architecture) is a quad-core core x86-
64 chip running at 3.4 GHz; single-precision peak performance
of 54.4 GFlop/s/core (217.6 GFlop/s aggregate); double-precision
peak performance of 27.2 GFlop/s/core (108.8 GFlop/s aggregate).

Programs were compiled using the Intel C Compiler v13.0 with
the ‘-O3 -ipo -xHost’ optimization flags was used for split-tiled,
Pluto, and Pochoir codes on all machines. Auto-parallelization and
auto-vectorization was enabled for ICC results with the ‘-parallel
-O3 -ipo -xHost’ optimization flags and appropriate vectoriza-
tion pragmas.
Benchmarks: The following stencil codes were used (with the
names used to refer to them in parentheses): Jacobi 1D (jac-1d-
3), Jacobi 2D (jac-2d-5), Jacobi 3D (jac-3d-7); Laplacian, Gradient
and Poisson 2D; FDTD 2D [16]; Heat 1D/2D/3D distributed with
Pochoir [18].

All array dimensions were set to be significantly larger than last
level cache on all micro-architectures. For all stencils, the foot-
print of each array was set to 244.14MB for single precision and
488.28MB for double precision; this was achieved using 1D arrays
with 64∗107 scalar elements, 2D arrays with 80002 elements, and
3D arrays with 4003 elements. The number of time steps was set to
100 for all benchmarks.

Tile sizes were autotuned for Pluto with diamond tiling, as well
as for our split-tiling work. The autotuning was done over a sam-
pling of the set of tile size combinations that respect the various
constraints (i.e., multiple of vector length) of each framework. Au-
totuning runs were performed for a maximum of 4 hours per SIMD
unit / benchmark combination (how to speed up tile size autotun-
ing, for instance using acceleration/search heuristics is beyond the
scope of this paper, we simply tested all tile sizes in our subset).
For split-tiled codes all threads (one thread per core) were assigned
to the outermost parallel loop using OpenMP parallel for pragmas.

6.2 Experimental Results
Absolute performance for single and double precision experi-

ments across all platforms and codes are given in Figures 18–20.
In all cases Pochoir, nested split-tiled, and hybrid split-tiled codes

are significantly faster than sequential C code auto-parallelized and
vectorized by Intel’s ICC compiler. Not all benchmarks could be
optimized by Pochoir, which can only generate optimized tiled par-
allel code for single statement stencil codes. Multi-statement, multi-
loop stencil codes like FDTD, with three inter-related stencils up-
dating Ex[t] using Ex[t-1] and Hz[t-1], Ey[t] using Ey[t-1] and
Hz[t-1], and Hz[t] using Hz[t-1], Ex[t], and Ey[t]), cannot be ex-
pressed in Pochoir.
1D Benchmarks: Having only one split-tiled dimension allowed
tiles to fit in cache and provided ample parallelism. High perfor-
mance was expected of these codes and was observed. Nested
split-tiling + DLT outperformed ICC, Pochoir, and Pluto on both
1D benchmarks across all platforms. Improvement over Pochoir
ranged from a low of 1.27× for double precision Jacobi-1D on Ne-
halem to a high of 2.2× for single precision Heat-1D on Sandy
Bridge. Hybrid split-tiling does not apply to 1D benchmarks as the
inner loop is split-tiled for both fine grain vector parallelism and
coarse grain thread-level parallelism.
2D Benchmarks: Across all 2D benchmarks hybrid split-tiling
outperformed ICC, Pochoir, Pluto, and nested split-tiling on both
quad core Intel platforms. For the hexacore AMD, performance
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Figure 18: AMD Phenom II X6 SSE2 Performance

of hybrid split-tiling + DLT fell behind both nested split-tiling and
Pluto on several benchmarks, both single and double precision.

This performance anomaly is due to load balancing issues. DLT
effectively turned the dimension of the arrays involved from 8000
× 8000 float/double scalars to 8000× 2000 float vectors and 8000
× 4000 double vectors. With hybrid split-tiling, tiles from the
smaller dimension (subject to the constraints described in Sec. 3.2)
had to be distributed across threads. Smaller tiles with better load
balancing characteristics limited reuse, while larger tiles with sig-
nificant reuse were not plentiful enough to adequately distribute
load across cores.

Nested split-tiling exhibited better load balancing because only
tiles along the larger dimension were distributed across cores. The
outer dimension was large enough to allow both large tiles for sig-
nificant reuse and a large quantity of tiles for load balancing. Hy-
brid split-tiling on quad core Intel platforms did not have any load
balancing issues because the smallest dimension was divisible by
4, allowing for the same number of tiles to be distributed across all
cores.
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Figure 19: Intel Core i7-920 SSE4 Performance

3D Benchmarks: Both hybrid and nested split-tiling fell behind
Pochoir and Pluto on both 3D benchmarks across all platforms.
While hybrid split-tiling was able to significantly reduce the pres-
sure on the memory system for 2D benchmarks, its benefit was not
seen when adding a third dimension. In 3D, both inner dimensions
are split-tiled, thus spatial tile sizes in both inner dimensions must
increase when time tile size is increased.

For both the Heat-3D and Jacobi-3D benchmarks, an increase
of one in the time tile size leads to an upright tile size increase of
four in each dimension. Tile sizes grow fast enough that by the time
significant gains can be achieved from data reuse, the code is bound
by memory latency and bandwidth consumption from spatial tiles
that have grown significantly larger than L1 cache.

The diamond tiles used by Pluto overcome this limitation by
halving the amount of data required for a given time tile size. For
a time tile size of 16 and slopes of 2 on either side, an upright tile
used in nested and hybrid split-tiling must be at least 64 elements at
its base. A diamond tile with a time tile size of 16 begins at a point,
expands to 32 elements at its widest and narrows to a point again.
Pluto is able to reuse data significantly more than both Pochoir and
nested and hybrid split-tiling.
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Figure 20: Intel Core i7-2600K AVX Performance

Further exacerbating the problem is the fact that DLT causes tile
sizes in the innermost dimension to be multiplied by vector size.
Coupled with the constraints on tile size described in Sec. 3.2 this
leads to split-tiling + DLT tile sizes (in KB) that are much larger
than similar tile sizes (size of each dimension). In Heat-3D both
Pluto and Pochoir are able to achieve high performance across all
platforms. It is likely that the smaller tile sizes (in KB) enable
Pochoir to achieve very high performance on this code.

7. RELATED WORK
A number of recent efforts have targeted the optimization of sten-

cil computations for multicore CPUs and GPUs [2, 5, 8–10, 13, 15,
17–19]. Strzodka et al. [17] used time skewing and cache-size
oblivious parallelograms to improve the memory system pressure
and parallelism in stencils on CPUs. Micikevicius et al. [15] hand-
tuned a 3-D finite difference computation stencil and achieved an
order of magnitude performance increase over existing CPU imple-
mentations on GT200-based Tesla GPUs. Datta et al. [8] developed
an optimization and auto-tuning framework for stencil computa-
tions, targeting multi-core systems, NVidia GPUs, and Cell SPUs.



Tiling is a critical transformation for optimizing stencil computa-
tions since they typically perform repeated sweeps over large multi-
dimensional arrays that are much too large to fit within cache. In or-
der to benefit from both intra-step reuse as well as data reuse across
several successive sweeps over the domains, so called “time tiling”
is essential. The standard approach to time-tiling of stencil compu-
tations requires skewing of the iteration space and introduces inter-
tile dependences along the spatial dimensions and thereby restricts
parallelism to wavefront parallelism in the tile space. Alternate ap-
proaches to tiling using overlapped tiles [13], split-tiles [9] or “dia-
mond” tiles [2,14] enable a greater degree of inter-tile parallelism.
In this paper we have developed compiler algorithms for enabling
split-tiling in conjunction with a dimension-lifted-transpose data
layout transformation. Grosser et al. [9] utilize a variant of split-
tiling for GPGPU with substantially different tile shaping, analysis,
and code generation techniques than this work.

Among the numerous research efforts to optimize stencil compu-
tations, a few of them have developed a specialized DSL compiler
for stencils. PATUS [5] is a stencil compiler developed by Chris-
ten et al. that uses both a stencil description and a machine map-
ping description to generate efficient CPU and GPU code for stencil
programs. A stencil-DSL compiler for GPUs that uses overlapped
tiling for parallel execution was recently reported [13].

Tang et al. [18] have developed and publicly released the Pochoir
stencil compiler that uses a DSL embedded in C++ to produce high-
performance code for stencil computations using cache-oblivious
parallelograms for parallel execution on shared-memory systems.
In this paper, we compare performance on several multi-core sys-
tems of the code generated using DLT and split-tiling with the code
generated by Pochoir, showing that we achieve comparable or bet-
ter performance. But unlike the DSL compiler we have described
in this paper, neither PATUS nor Pochoir can generate optimized
time-tiled code for multi-statement stencil computations such as
the FDTD (Finite Difference Time Domain) stencil.

The use of Chapel for the description of dense and sparse stencils
was investigated by Barrett et al. [3]. The Chapel work enables au-
tomated distributed memory parallelization of stencils but does not
address time-tiling or vectorization. Very recent work by Bandishti
et al. [2] enhanced the Pluto compiler to incorporate a strategy for
“diamond” tiling, that is particularly effective in parallelizing sten-
cil computations. However, our approach to combining data layout
transformation in conjunction with split-tiling provides significant
performance advantages over Pluto for a range of stencil bench-
marks, as seen from our experimental results.

8. CONCLUSIONS
In this paper, we have described compiler algorithms for a a

stencil DSL incorporating two key transformations – dimension-
lifted-transpose data layout transformation to optimize vector loads
/ stores, and split-tiling for enhanced inter-tile concurrency. Experi-
mental results on a number of stencil benchmarks on multiple target
multicore platforms demonstrate significant performance improve-
ments achievable over state-of-the-art production compilers such
as Intel’s ICC, but also significant improvements over Pochoir and
recent work on diamond tiling in Pluto. Our compiler has greater
scope of applicability than Pochoir, effectively optimizing arbitrary
multi-statement stencils.
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