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ABSTRACT multicore processors with short-vector SIMD ISAs such as SSE,

Stencil computations are an integral component of applications in AVX, VSX, LRBNi etc.

a number of scientific computing domains. Short-vector SIMD Stgncil computations involve arithmeti(_: °pe“’?“°”$ on phygically
instruction sets are ubiquitous on modern processors and can peFontiguous d_ata ele_ments, e.g. CO*(A["1]+A[']+A['+1.])' Since
used to significantly increase the performance of stencil computa- YeCtOf ope.tratlonS with ISAs like SSE require the loading of phys-
tions. Traditional approaches to optimizing stencils on these plat- /@l contiguous data elements from memory into vector registers
forms have focused on either short-vector SIMD or data locality and the execution of |dent!cal and mde_pendent operatlons on the
optimizations. In this paper, we propose a domain-specific lan- components. (.)f veptor reglsters, stencil compqtatlons pose (;hal-
guage and compiler for stencil computations that allows specifica- lenges to efficient |mplementat|c_)n on these architectures, requiring
tion of stencils in a concise manner and automates both locality andthe use (_)f redyndant and u_nall_gned loads of da_ta elements from
short-vector SIMD optimizations, along with effective utilization Memory into different slots in different vector registers. We [12]
of multi-core parallelism. Loop transformations to enhance data had previously addressed this issue th_rougdilraenson-llftlng-
locality and enable load-balanced parallelism are combined with a transpose (DLT). data layout transformation. However, only se-
data layout transformation to effectively increase the performance 9uential execution was addressed. Further, the approach was only

of stencil computations. Performance increases are demonstratec?va"fated on da.ta se.ts that f|t.|n .Ll caghe. .T'"ng. over spatlalland
for a number of stencils on several modern SIMD architectures. the time dimensions is essential in conjunction with DLT fo_r high .
performance on large data sets. However, as elaborated in detail

in the next section, standard time-tiling of stencil codes via skew-

Categories and Subject Descriptors ing introduces inter-tile dependences that are incompatible with the
D.1.3 [Programming Techniqueg: Concurrent Programming— form of vector parallelism used by the DLT transformation. In this
Parallel Programming; D.3.4 [Programming Language$: Pro- paper, we develop an integrated approach to perform tiling in con-
cessors-€ode Generation, Compilers junction with DLT transformation to generate efficient parallel code

for stencil computations over large data sets on shared memory
multiprocessors. We compare performance with code generated
Keywords by the Pochoir stencil compiler [18] and Pluto [2, 4] for several
DSL, Multicore, SIMD, Split Tiling, Stencils benchmarks on multiple target multicore processors, demonstrat-
ing strong performance benefits for 1D and 2D stencils. The paper
makes the following contributions:

1. INTRODUCTION

e It presents a stencil DSL compiler that integrates data lay-

There is increasing interest in developing domain-specific frame- out transformation for short-vector SIMD ISAs with load-
works for high-performance scientific computing due to the diver- balanced tiled parallel execution for multi-statement stencils.
sity of current/emerging parallel architectures. In addition to the o ]
benefit of a DSL (Domain Specific Language) on user productivity, ~ ® Itdemonstrates significant performance improvement on sev-
a significant advantage is that semantic properties derived from the eral multi-core platforms for a number of benchmarks, over
high-level abstractions can be utilized to develop powerful special- Intel's ICC compiler and state-of-the-art research compilers
ized compiler transformations that can be tailored to the character- like Pochoir and Pluto.

istics of different architectural platforms. Using the Stencil Domain The paper is organized as follows. In Sec. 2 we use an illustrative

Specific Language (SDSL) [11], this paper describes a set of com- example to explain the main problem to be addressed in integrating

piler transformations that are needed to generate efficient code forDLT with tiling. Sec. 3.1 describes the stencil DSL and Sec. 3.4
provides a high-level overview of the compiler algorithms devel-
oped. Sections 4 and 5 provide details of the compiler algorithms.
Experimental results are presented in Sec. 6 and related work is
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short-vector SIMD architectures with stencil computations. We
then describe why standard time-tiling is infeasible in conjunction
with the DLT transformation and a different form of tiling — split-
tiling — can be used effectively in conjunction with DLT.

2.1 Overview of DLT Transformation

Fig. 1 illustrates the DLT transformation for a one-dimensional
vector of 24 elements for an ISA with a vector length of 4. Whereas
B[0:3] form an aligned vector before transformation, after the DLT
transformation, B[0], B[6], B[12], and B[18] form the first four
elements BdIt[0:3] in the transformed layout. The next four con-
tiguous elements BdIt[4:7] in the transformed layout correspond
to B[1], B[7], B[13], and B[19], etc. Thus the sum of aligned
vectors, BdIt[0:3]+BdIt[4:7]+BdIt[8:11], computes B[0] + B[1] +
B[2],B[6] + B[7] + B[8], B[12 + B[13] + B[14],B[18 + B[19]+
B[20] >. Thus the fundamental problem with vectorized addition of

contiguously located elements in memory is overcome in the trans-
formed layout where operands that need to be combined are located

in the same slot of different vectors rather than in different slots of
the same vector.
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Stencil code:
for (i =1; i < 24; +4)
Ali] = B[i-1]+B[i]+B[i+1];

Figure 1: Data layout transformation for SIMD vector length of 4

2.2 Standard Tiling and DLT Transformation

We next use a Jacobi 1D stencil example to explain the prob-
lem with the use of standard time-tiling in conjunction with DLT
layout transformation. Although the input to our stencil compiler

uses a special DSL language (described in Sec. 3.1), we use stan-

dard loop notation in C to motivate the problem since this lower-

level view makes it easier to discuss issues pertaining to loop fusion

and time-tiling when compiling general multi-statement stencils for

high performance — something that to the best of our knowledge is
not addressed by other stencil compilers such as PATUS [5] and

Pochoir [18].
Fig. 2(a) shows code for a 1D Jacobi 3-point stencil with a se-
quence of two spatial loops within an outer time loop, where S1

performs the stencil computation over the spatial domain and S2

copies the output array into the input array for use in the next time
step. In order to enhance data locality, time-tiling may be em-
ployed, but will first require some transformations in order to create

for (t=0; t<T, t++) {
for (i=1; i<N-1; i++) {
Bli] = 0.33*(Ali-1] + Ali] + Ali+1]); // SL
for (i=1; i<N-1; i++4)
Alil =Blil; /1 S2

(a) Unfused

for (t=0; t<T; t++) {
B[ 1]=0. 33* (A[ O] +A[ 1] +A[ 2] ) ;
for (i=2; i<N-1; i+4) {
B[i] = 0.33*(A[i-1] + Ali] + Ali+1]);
Ali-1] = Bli-1];

1
AIN-1] = BN-1];
}
(b) Fused

Figure 2: Jacobi 1D stencil

space with a statement body including both S1 and S2 (along with
peeling of an iteration at the boundaries of tteop).

Further skewing of this unified iteration space will be required to
create valid “rectangular” tiles, which can equivalently be viewed
as parallelogram-shaped tiles in an unskewed iteration space, as
shown in Fig. 3(a). Because of the shape of valid tiles (they can-
not be rectangular in an unskewed iteration space due to forward
and backward dependences along the spatial dimension), there are
inter-tile dependences between adjacent tiles along both the time
and spatial dimensions. This inter-tile dependence along the spa-
tial dimension makes it infeasible to use DLT because DLT causes
spatially separated data elements (for example, B[0], B[6], B[12],
B[18] in Fig. (1)) to be gathered together in a single vector and
therefore must be operated upon concurrently. The circled value in
each tile of Fig. 3(a) represents the logical time at which the tile can
be executed, such that all tiles it depends on have been previously
computed.

Fig. 3(b) shows a different form of tiling — split-tiles. Here, up-
right and inverted tiles alternate and the inter-tile dependences are
only from an upright tile to its two neighboring inverted tiles. As
a result, concurrent execution of all upright tiles over a given time
range is feasible, followed by concurrent execution of the inverted
tiles over the same time range. Again, the circled values within
the tiles indicate the sequence of execution of the tiles, where tiles
with the same sequence number can be executed concurrently. With
such a tiling strategy, it is now feasible to use DLT, as long as all
data elements grouped into each vector are all within upright tiles
or all within inverted tiles. Further, unlike execution required with
standard tiling, the schedule for parallel tile execution with split-
tiles is fully load balanced and does not have a sequential start and
gradual build up of inter-tile parallelism as required for wavefront-
parallel standard tiling.

In the next section, we provide a description of the stencil DSL
and a high-level overview of the compiler algorithm for code gen-
eration.

3. OVERVIEW OF APPROACH

Before delving into the details of the algorithms, in this section

atomic tiles that compute forward for several time steps over a sub- we first describe the stencil DSL we translate. Next, we provide
set of the spatial domain that is small enough to fit within cache. overviews of two methods used to tile SDSL codes, nested and
Fig. 2(b) shows a fused form that creates a unified 2D iteration hybrid split-tiling. Finally, a high-level overview of the approach to



Time size ofa and sets limits on field indices. Tla clause specifies

q that there should be two copies of the field, one associated with the
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(a) Standard Tiling

Computation (iterate and stencil ). The last eight lines of
Fig. 4 define a stencil computation. Three key concepts are defined:
(1) outer loop trip count, (2) subgrid(s) over which to apply a stencil
function and (3) stencil function(s).

Time The outer loop trip count is defined in théerat e construct,

and is 100 in the example. The stencil construct is given a unique
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identifier, fi ve_pt, and contains the definition of a subgrid over
which to apply the stencil function definition that follows. In the
example the subdoma]ri: di nl- 2] [ 1: di nD- 2] defines a subset

of the gridg that contains all elements except a single cell border
on all four sides.

A stencil function is defined after the subdomain definition. This
function averages the current point and four of its neighboasan
the current timestep and places the reslutsam the next timestep.
References tgri ddat a consist of the offset from the current iter-
ation in brackets, followed by the the name of the referenced field,

transform an input SDSL program into an semantically equivalent followed by offsets from the current point in each spatial dimension
split-tiled DLT program is provided. in brackets.

3.1 SDSL - Stencil Domain Specific Language 3.1.2 General Form of an SDSL Program

A stencil computation can be summarized as one or more func-  |n general, an SDSL program contains aié d, one or more
tions being identically applied to points on a regular grid, where the grj ddata, oneiterate, and one or morstenci| definitions,
values of some groups of neighboring elements are used for eachwhere eaclst enci| may define one or more subdomains and the
function, and this process is repeated multiple times. The Stencil stencil functions that operate upon them.

Domain Specific Language (SDSL) enables the concise description  The abstract form of an SDSL program is represented in Fig. 5.
of stencil computations and is briefly described in the following The program is constrained to be a collectiodbK-dimensional
sections. grid data andN stencils, with each stencil applying some stencil
- function f on one or more grid data. Each stencil function is exe-
3.1.1 Program Description cuted on a rectangular subdomairr ZX|0 < I bk, ubZ <dimgvke

The computation shown in Fig. 4 is a standard Jacobi 2D com- {1..K}. While an SDSL program may have multiple subdomains

putation, which averages the value of the 5 neighboring points (up, and stencil functions defined inside asteenci | , the abstract ver-
down, left, right, and center) to compute the new value of the center sjon in Fig. 5 is semantically equivalent.
point.

Space

(b) Split-Tiling

Figure 3: Tiled Iteration Space for 1D Space, 1D Time

grid g[dinK...

griddata g1,92...

(dint];
grid g[dim][din0];
doubl e griddata a on g at 0,1; ,gMon g;
iterate 100 {
stencil five_pt {
[1:dint-2][1:dinD-2] : [1]a[0][0] =
0.2*([0]a[-1][0] +
[0]a[O][-1]+[0]a[ O][O]+[O]a[O][1]+
} [0lal 1][0]); }

:siéncil sN {
[I'b_sN K ub_sNK]...

}
}

iterate T {
stencil sl {

[Ib_sl Kub_s1 K]...[lb_s1 1:ub_s1 1] : f1(...);

stencil s2 {

[Ib_s2_Kub_s2 K]...[lb_s2_1:ub_s2_1] : f2(...);

Figure 4: A simple Jacobi 2D example in SDSL [Ib_sN 1:ub_sN 1] : fN(...);

Structural Mesh (gri d). The first line of Fig. 4 defineg, the
grid where stencil computations may be defined. It is-@mension-
al Cartesian coordinate space (a subseét®here), and the com- SDSL programs are parallelized and optimized for data locality

putations operate on a subset of this grid. We note that grid size ysing nested and hybrid split-tiling, described in the next two sec-
can be a parameter, that is a program constant whose value is notjons.

known at compile-time. o
3.2 Nested Split-Tiling

Data Elements (gri ddat a). The second line of Fig. 4 defines In nested split-tiling, ad-dimensional loop spatial loop nest is
a, a double precision data field with the same structure asggrid  recursively split-tiled along each dimension. The outermost spatial
This field holds data values used in stencil functions, and multiple loop at leveld is split-tiled, producing a loop over upright tiles and
fields may be defined over a grid. The ggids used to define the  a loop over inverted tiles. Inside each of these loops, loop level

Figure 5: General Form of an SDSL Program



for tt
parfor ii // (A) Upright i
parfor jj // (1) Upright jJ
for t { for i { for j {}}};
barrier () ;
parfor jj // (2) Inverted jJ
for t { for 1 { for J {}}};
barrier () ;
parfor ii // (B) Upright j
parfor jj // (3) Upright j
for t { for i { for j {}}};
barrier () ;
parfor jj // (4) Inverted j
for t { for i { for j {}}};
barrier () ;

LI |
Uprlght i, Inverted j

N
Upright i, Upright j Inverted i, Upright j

(a) 2D Nested Split-Tiling

t . for tt
J for ii // (A) (B) (C) (D) Traditional i

parfor jj // (1) Upright j
for t { for i { for j {}}};

barrier () ;

parfor jj // (2) Inverted j

Upright j for t { for i { for j {}}};
barrier();

(b) 2D Hybrid Split-Tiling

Inverted j

Figure 6: 2D nested and hybrid split-tiling.

d —1 is split-tiled, giving four tile loop nests. Split-tiling is per- For higher dimensional problems, the lower bound on upright

formed recursively in each new loop nest until the base loop level 1 tile size causes tiles to overflow cache for even small time tile

is reached and there aré ®tal loop nests corresponding to all pos-  sizes. Consider a 3-dimensional stencil with, for all dimensions,

sible combinations of upright and inverted tiles on each dimension. maximum slopesd,,, = 2, maximum offsebd,,, = 0, andTr = 8.

Nested split-tiling of a 2D code is illustrated in Fig. 6(a). This requiresTLjj > 32. For an upright tile in all dimensions, in-
Fig. 6(a) depicts, on the left, a series of upright (‘A’) and inverted cluding the innermost vector dimension, this is at least 32K vector

(‘B’) tiles in the i dimension. All upright ‘A’ tiles may be exe- elements, enough to overflow L1 and L2 cache on most modern

cuted concurrently, followed by all inverted ‘B’ tiles. Below these architectures.

tiles are representative cross-sections of an upright and inverted tile ) o

showing the nested split-tiles in thedimension. These tiles are 3.3  Hybrid Split-Tiling

labeled such that all tiles with the same number, (‘'1’, ‘2", '3, or  We overcome the tile size constraints of nested split-tiling with

‘4’) may be executed concurrently, and tiles with a lower number a hybrid of standard tiling on the outermost space loops and split-

must be executed before tiles with a higher number. tiling on the inner loops. Hybrid split-tiling for a 2D stencil is
The pseudocode in Fig. 6(a) shows the loop nests responsible forillustrated in Fig. 6(b). The pseudocode contains a sifigleop
producing the diagram. Nested inside the sequetttiabp are two nested in thet loop which corresponds to the four traditiorial
parallelii loops corresponding to the ‘A" and ‘B’ tiles shown inthe  dimension tiles ‘A, ‘B’, ‘C’, and ‘D’ shown in the diagram. These
diagram. Nested inside the ‘A’ loop are paralj¢lupright (‘1’) and tiles must be executed in sequence from ‘A—'D’. Nested inside the

inverted (‘2’) tile loops corresponding to the tiles shown in the left i loop is the split-tiled] j loop which has the same upright/ inverted
cross-section, Similarly, the ‘B’ loop contains nested parallel ‘3’ tile structure as the split-tiled inner loops described in the previous
and ‘4’ loops corresponding to the right cross-section. A barrier section.
follows eachijj tile loop to enforce tile execution order and ensure  Standard tiling does not impose any constraint on tile sizes along
that no dependences are violated. spatial dimensions as a function of the time tile size. Thus, stan-
Nested split-tiling enables parallelization of all spatial loop nests dard tiles may be compacted to a much smaller size to compensate
in a stencil, however (1) it imposes a lower bound on the size of for the larger tile sizes required by split-tiled dimensions. This al-
upright tiles for a given time tile size, or equivalently, (2) itimposes lows for a substantially reduced multidimensional tile footprint. In
an upper bound on the time tile size given an upright tile's size. the example at the end of Sec. 3.2, we may reduce the tile size of
In nested spilit-tiling, upright tiles must be sized such that they the outermost dimension to 2, thereby reducing the the tile size to
retain their characteristic trapezoidal shape, as in Fig. 3(b). If the 2K elements. Since inner loops are split-tiled, we retain adequate
base of the upright tile is not large enough for a given time tile parallelism.
size, the sloping lines will eventually form a tip. At this point tile

execution cannot extend any further in time. 3.4 Overview of the Optimization Algorithm

Given an upright tile with a base size G, maximum absolute In order to perform combined data layout transformations for
value of slopes id sﬁ]ax maximum offset of all Statementzgnax, SIMD vectorization with parallel tiling for data locality, we use a
and time tile sizelT the following constraint can be stated: multi-stage process to integrate dimension-lift-and-transpose (DLT)
TY > 25 Tr s sy + 25 0% with multi-level split-tiling. The overall transformation flow is

summarized in Fig. 7.



| nput for (t =0; t < 100; t++) {

P: input SDSL program for (i =1, i <=998; i++) { ] ]

dsplit: nunber of dimensions to split-tile f1: al[i] = 0.33*(a0[i-1] + aO[i] + aO[i+1]);
Qut put }

O: optimzed C program for (i =0; i <=999; i++) {

f2: a0[i] = al[i];

(0] « per for nDLT(P) }

(d,B,6.,5) « backslice(P) }

O « perforndplitTiling(O, @ B, o, §. dsplit)

Ot“ ”O”a”zeTi”nG(Ov d, B oL, g, dsplit) Figure 9: Jacobi-1D example with explicit copy

return

Figure 7: Overview algorithm 411 Examining an Upright Tile

Let us consider the top segment of an upright tile ffdr over
a spanP,Q], that corresponds to the iterationsf@ performed at
Functionper f or nDLT applies DLT on all inner-most vectoriz-  time T. In order to correctly compute those iterations, we need the

able loops, following the method presented in Henretty et al. [12]. values|P— 1,Q+ 1] of al that were computed by executihg on
We remark that programs that can be modeled in SDSL all have the segmentP — 1,Q+ 1] time T, which in turn depends on the
vectorizable inner-loops, so that DLT can be applied for all sten- vajues ofa0 over[P —2,Q+ 2] copied byf 1 at timeT — 1. Based
cil functions. Details of this function are provided later in Sec. 5. gn data dependences between the statenidntndf 2, we can
Functionbacksl i ce performs backslicing analysis to compute the  compute precisely which iterations must have been computed at
exact shape of the split-tiles (that is, computing for each stencil previous time steps for each of the statements in order to compute

function the offsets and slopes of a split-tile, to be translated on the segmeniP, Q] of f 2 at time steg¥'. This s illustrated in Fig. 10.
the entire spatial domain). This is detailed in Section 4. Function

perfornSplitTiling uses the split-tile shape information com-

puted to generate split-tile code for tHesplit inner spatial dimen- T
sions. This is detailed in Section 5. Finally, functibimal i ze-

Ti I i ngcompletes code generation, by applying standard tiling on

the remaining dimensions, if any. The integration as well as the
complete algorithm is discussed in Section 5. T2

@ Copy (2
O Compute (f1)

4. BACKSLICING ANALYSIS

Split-tiling requires the computation of sets of iteration space
points that can be executed atomically — that is a valid tiling — while Figure 10: Upright split-tile for Jacobi 1D
preserving parallelism between tiles of the same category (i.e., up-
right tiles have to be parallel with each other). In order to compute
the shape of the split-tile that satisfies those properties, we first  rig 10 shows the set of preceding iterations, for Hdtkandf 2,
highlight the main ideas using a Jacobi 1D stencil, before describ- that must be computed in order to obtain the segrfe@] at time
ing the general algorithm for higher dimensional stencils with an T \ye show here a time tile size of 3, that is, we build a split-tile
arbitrary number of stencil functions. that computes over three time steps.
T : The dependences are analyzed from the SDSL representation.
4.1 Sp|lt-TI|II‘lg Jacobi 1D Due to the restriction on stencil shapes to be constant integer off-
We illustrate the main ideas behind split-tiling using a Jacobi 1D sets (e.g..-1, 2, etc.), the dependences are simple integer relations
example. Fig. 8 shows the corresponding input SDSL program.  petween time and the access functions. In the next sections we
show how data dependences are used to constrdepandence
summary graph and formulate validity constraints on the split-tiles

grid g[1000]; for the slopes and statement offsets.
doubl e griddata a on g at 0,1;

iterate 100 { 4.1.2 Building the Dependence Summary Graph

stencil f1 { We begin by creating the dependence summary graph (DSG), a
[1:998] : [1]a[0] = multigraph with vertices for each stencil function and edges that
0.33*([0]a[-1]+[0]a[0]+[ 0] a[1]); summarize flow and anti dependence information between stencil

} functions. In general, a vector of 2*d+1 components is used to

} model data dependence in an imperfectly nested loop with maxi-

mum loop depth d, with d components representing the distances
along the loops, and the other d+1 components being used to mark
the relative textual ordering within a loop level. However, the struc-
ture of an SDSL program always has the form of an outer time loop
In the SDSL intermediate representation, an explicit copy of the surrounding a sequence of perfectly nested loops. For generation
field al into the fielda0 is added after each time iteration, leading of valid split-tiled code, the exact textual position of a sequence of

Figure 8: A simple Jacobi 1D example in SDSL

to a program equivalent to the C code shown in Fig. 9. statements is not significant, but only whether a dependence is from
Statement 1 performs the actual stencil computation, producing a textually preceding or succeeding statement within the time loop.
theal field, statement 2 copies theal field to thea0 field. This Further, when several dependences exist between a pair of state-

sequence is repeated 100 times. ments due to multiple array read references it is only necessary to



identify the maximal spatial extent of dependences along the dif-
ferent directions at each time step. Therefore, instead of using the
standard general representation of dependence vectors, wateepar
out the distance vector component along the time (outermost) di-
mension and the components along the spatial dimensions.

For the Jacobi 1D example, we have the following dependences:

flow: f1(t,i) — f2(t,i)
) antitfi(t,i) — f2(t,i—1)
P- =9 antift,) —  f2(t0)
anti: fi(t,i) — f2(t,i+1)
flow: f2(t,i) — fl(t+1,i—1)
) flow: f2(t,i) — fit+1,i)
PR =9 flow: f2(t,1) — fL(t+Li+1)
anti: f2(t,i) — fl(t+1,i)

The spatial components of the dependence vectors between de

for (tt=...)
for (ii=...)
for (t=0;, t<Ty; t++)
for (i=ii+o +oaxt; i<ii+Ty+0o +B*t; i++)
f1: al[i] = 0.33*(a0[i-1] + aO[i] + aO[i+1]);
end for
for (i=ii+o2+axt;, i<i+Ty+o2+PB*t; i++)
f2: a0[i] = alfi];
end for
end for
end for
end for

Figure 12: Loop Nests for Jacobi 1D Upright Tile. Time tile size is
Tr; upright space tile size i§;. Offsets from lower bound amii:1

ando}?; offsets from upper bound an§} andof?. Slope of lower
bound isa; slope of upper bound 8.

statement is executed, the source statement will be executed over a

pendent statements are computed by subtracting the target iteratiomegion that isat minimum, large enough to satisfy the dependence.

from the source iteration, yielding the following vectors:

or =0, =<0> or =18 =<-1>
d ) or=0,0=<-1> ) or=19=<0>
2= 5 —085-<0> diosf1 = 5r—18—<1>

o1 =0,8=<1> or =1,8=<0>

The spatial components of the distance vectors are then coa-

From the DSG, we note that to compute statenh@river some
range[A, B| at timestepl' we require that statemeht be executed
over the ranggA —1,B— (—1)] at timestepl . Similarly, to com-
pute statemerftl over some rangfC, D] at timestepl’ we require
that statementtl be executed over the ranfg@—1,D — (—1)] at
timestepTl — 1.

Combining the dependence information from the DSG with the
loop bounds of Fig. 12 gives us validity constraints on values the

lesced into a tuple for each dependence such that the coalescedpop bounds may take, and results in the following system of in-

tupleCfs>ft —< &, &, > whered_ is the maximum spatial dis-
tance anddy is the minimum spatial distance between two depen-
dent statement$s and ft. For the Jacobi 1D example the tuples
for each dependence are identi@fl 2 = cf2=>fl —< 1 —1>.

These tuples are used to label edges in the DSG, along with a sep-

arate label for the time distan&g. Assembling the coalesced tu-

ples, time distances, dependences, and statements leads to the DSG

shown in Fig. 11 for the Jacobi 1D example.

~:8L,6U,> = <1,-1>
Sp=10

87,6 = <1,-1>
6p=1

Figure 11: Dependence Summary Graph (DSG) for Jacobi 1D

This DSG is subsequently used in Sec. 4.1.3 to build validity
constraints for split-tiles and in Sec. 4.1.4 to compute slopes and
statement offsets.

4.1.3 Building Validity Constraints

equalities for lower bounds:
i +of! +axt ii+0of2+axt—1

<
it rax(t—1 <

ii+off +axt—1
The following system constrains the upper bounds:
i+ TU +0) T+ Bt
Ty +0f +B*(t—1)
Simplifying and rearranging these systems of inequalities yields the

following system of difference constraints for lower bounds:
ot —of?

o2 —of*

i+ Ty +0F +pxt+1
||+TU—|— FHBxt+1

ANV

-1
a—1;

<
<

the corresponding constraints for upper bounds are shown below:

of —of < -1
of —off < -p-1.

These systems are used in Sec. 4.1.4 to compute valid offsets for
all statements.

4.1.4 Computing Sopes and Offsets

To determine legal values for slopasand 3 we compute, re-
spectively, maximum and minimum cycle ratios [1, 7] on the DSG.
A cycle ratiop, (C) on the DSG is computed by finding a cy€le
summingd, values over the cycle, and dividing by the sumdef
values. A cycle ratigoy (C) is calculated in a similar fashion with
oy values. We sett = max(p.(C)) andP = min(py (C)) for all

We seek to constrain the legal values of tile slope and statementcyclesC in the DSG. _
offsets by assembling a system of linear inequalities based upon the We examine the only cycle in our example DSG, between

DSG and the loop bounds of the split-tiled code we will generate.
Pseudocode for the loop nests of Jacobi 1D upright tile is shown
in Fig. 12. Informally, the validity constraints state that, for any

f1 andf2. The DSG tells us that computirfd on some inter-
val [A B] at time T allows us to computé2 on the intervalA+

5172 B+ &2 attimeT + &1 "2 without violating any de-

pair of dependent statements, given a region over which the targetpendences. Continuing along the cycle, compufiggn the in-



terval [A+ 6[1”2,B+ 6{,1”2] attimeT +6;Hf2 allows us to a andf using maximum and minimum cycle ratios. Tbg and

computef 1 on the intervalA+ 52+ 5/ B+ 8712 4 By values are then added @andp as the slopes fad. Once the
quZHfl} attimeT +5;1af2 i 5{2%1. slopes have been computed for a dimension, validity constraints are

constructed as shown in Sec. 4.1.3. Once the slopes and validity
constraints are known for a given dimensieaol, veFor O f set s()
rearranges the validity constraints into a system of differences and
solves for offset values using the Bellman-Ford algorithm. Offsets
for each statement in the current dimension are appended to the
offset vectors. This process is repeated until slopes and offsets hav
been computed for all dimensions.

Substituting in known values for the variodsvariables shows
us that computindg 1 over the intervalA, B] at timeT allows us to
computef 1 over the intervalA+2,B— 2] at timeT + 1. Thus, we
see a slope of 2 on the lower bound and a slope of -2 on the upper
bound.

Equivalently, summin@_ values and dividing by the sum éf
values gives upy (Cp) = 2; a similar calculation gives ys (Cp) =
—2. Since there is only one cycle in the DSG, these values are 4.3 Proof of Correctness
max(pL(C)) and mir(py (C)), and we sett = max(p.(C)) = 2 and
B=min(py (C)) = —2.

These values fon and are substituted into the systems of dif-
ference constraints, and a solution to each of these systems is ob
tained using the Bellman-Ford algorithm [1, 6]. For the Jacobi 1D
example we obtain{! = —1,0f} = 1, andoj* = off = 0.

Upright Tiles: The validity constraints guarantee that no depen-
dences in an upright tile will be violated. In this section we prove
that lower bound slopes calculated with the maximum cycle ratio
always lead to a system of constraints that has a solution; the proof
for the upper bound and minimum cycle ratio is identical.

A system of difference constraints not solvable by the Bellman-
4.2 General Method Ford algorithm would contain a negative weight cycle. We show
that this is not possible.

We begin by constructing a graph isomorphic to the DSG where
each vertex is a statement and each directed edge is labeled with its
ctorresponding validity constraint for the lower boufdon some
dimensiond.

All validity constraints take one of the following forms:

Our general algorithm closely follows the principles we have
explained for Jacobi 1D. Since stencils may be multidimensional
slopes and offsets are separately computed for each dimension
Further, different stencil functions may apply to different subdo-
mains, which may be disjoint, overlapping, or identical. Because
of this we conservatively assume all stencil functions are executed
at all points in the problem domain when calculating dependences. 0°<0' -3 = 0°—0'<—3 1)

This is an over-approximation of data dependences and has no im- 0°<0 — 8t = 0°—0d< -&ta )
pact on the final correctness of the generated code.

We present in Fig. 13 a general algorithm for computing slopes In (1) the dependence associated with the constraint has source and
and offsets for a given inpu’[ program. This a|gorithm produces target statements at the same timestep; in (2) the statements are 1
lower/upper slope vectors with one slope per dimension, and low- timestep apart. The unknown source statement offse ihe un-

er/upper offset vectors with one offset per stencil statement. anWhn Faéget séatgmﬁnt offksetdn& tf:e dependence distance/edge
weight isde, anda is the unknown slope.
Input We next show that any cycle of lengkhon this graph restricts
P: input SDSL program the possible values af to be of the following form:
Cut put
(a, ﬁ, oL, o)): Vectors of slopes al pha, beta. 1 k
Vectors of |ower and upper offsets in each a> - Zléi. 3)
spatial dimension for each stencil statenent t i=
» « cal cul at eDependences( P) Note that the maximum cycle ratio simply maximizesubject to
s « cal cul at eDependenceDi st ances( D) the constraint in (3). In (3)) is the weight of an edge in the cycle
DSG ¢ uildosdsP) - andt is the number of edges where source and target are separated
g < conput eMaxOycl eRati o( DSG, d) by 1 timestep. Every vertem in the cycle is entered through an
Ba « computeM nCycl eRati o DSG, d) edgef and exited through an edge On edgee, vertexn is the
g[[j]] = gd target of the dependence; on edgevertexn is the source of the
< bd . T . g Lo
(VL.V0) < buil dval i di tyConst rai nt s(DSG, ag, Bq) dependence. Summing validity constramier v} eliminates the
oL[d] « sol veFor Of f set s( Vi) n koo
oy[d] « sol veFor Of f set s(V()) offseto”. The accumulated suny v| eliminates all offsets and
end do i=1

return (d, B, oL, ou)

k
leaves 0> ¥ & —txa, which is equivalent to (3).

We nOV\} slhow that a negative weight cycle in the graph used
by the Bellman-Ford algorithm to solve the system of difference
) o ] constraints requires a value ofthat violates (3).

The algorithm in Fig. 13 takes an arbitrary SDSL program as Al constraints in the system of differences we are solving take
input. Dependence analysis is performed on this program to de- gne of two forms, Equation 1 or Equation 2.  The graph used
termine all flow and anti dependences, and dependence distancgn Bellman-Ford, after removing the start vertex and zero-weight
vectors are calculated. The dependence distance vectors are usegges emanating from it, is isomorphic to the DSG and the validity
to build the DSG, where each vertex is an SDSL statement and constraint graph described above. Each vertex is a statement offset,
each edge is labeled with a time distance. Edges are also labelethng each edge is weighted by the difference between the source and
with coalesced distances, computed for each spatial dimension aghe target offset. The weight of any lendtizycle is shown in (4).
in Sec. 4.1.2 and placed in vectd ,dy ). «

After the DSG is built, slopes and offsets are computed along _5 -+t @)
each dimensiom. For each dimension of the DSG we compute i;

Figure 13: Algorithmbacksl i ce



Assume there is a negative weight cycle of lenigtiThis requires lier numbered tile that would have been executed before this tile;

(5) to be true: on the upper side, the instance will necessarily lie within the same
K tile because the slope and offset from the back-slicing computation
21765+t*0( <0 (5)  isused.
i=
Rearranging (5), we hawe constrained by (6): 5. CODE GENERATION
1k Before detailing the code generation algorithm, the structure of
a< f_zlf)i (6) generated code is shown in Figure 14. The example shows code
1= for a single-statement 1D stencil. Upright and inverted inter-tile
The same cycle, on the validity graph, shows thhas constrained loops can be found, respectively, at lines 11 and 26. Note that the

by (3). This is a contradiction as we knawwas constructed by upright tile loop covers an extent from the lowest bound of any
maximized subject to (3) thus our assumption of a negative weight stencil function to the highest bound of any stencil function, and
Cyc|e in the graph used to Compute offsets was wrong and the Sys_the inverted tile tile |00p extends beyond this on both sides. This
tem of differences constraints used to solve for offsets will always iS needed to ensure that boundary cells are computed as upright
have a solution. tiles slope away from them. It is enabled by thex() andmi n()
Inverted Tiles: The loop bounds for each statement in an inverted expressions that prevent intra-tile loop bounds from taking values
tile are set to fully span the gap between adjacent upright tiles (or outside of the original loop’s domain (lines 17 and 32). Constraints

a domain boundary). The proof of satisfaction of all dependences Ontile size values such &R _TI LE_SI ZEand| NV_TI LE_SI ZEare

during execution of an inverted tile is a direct consequence of this imposed as needed to ensure correctness of generated code; this is
“completeness” property of the span of spatial loops of an inverted explained below.

tile. Consider all instances at timgof an arbitrary statemer&,

in an inverted tile. Any dependence on instances of any statement .

S, mean thatS, textually precedes,, or that the dependence is 3 | for (1 = o 1 &7 tc += Tsiz8) (

from instances 0%, at some earlier time step. There are three pos} J1 dbrignt tile loop IbF1 (ub_F1) is the I ower bound of

/1 F1 is a stencil function, (upper)

sibilities for any such statement instance from which there exists /1 the grid coordinate where Fl is applied .
6 upr_Ilb = Ib_F1; // for multiple stencil functions F1, F2, ..., it is

a dependence: i) it belongs in some upright tile, ii) it belongs irv /1 actually mn(Ib_Fl,1b_F2,...)

. - ceey - - . . fB upr_ub = ub_F1; // Similarly max(lb_F1, Ib_F2...)
the same inverted tile, iii) it belongs in some other inverted tile. Ify /1" UPR_TILESI ZE (INV_TILE_SIZE) is the size of the upright (inverted)
we have case (i), the dependence is satisfied since all upright tites| (. "(iF 200 10, i < wpr s 11 o= vpromiiesize + nTiLesize) o
are executed before any inverted tiles. If we have case (ii), agamn /1 Time |oop _

. . e . . 13 for (t = tt; t < mn(tt+TT_SIZE, T); t++) {
the dependence is satisfied since statements are executed in texiual tileIb_Fl = ii + offset_F1_Ib + upr_alpha*(t-tt);
L . . . .. . .15 tile_ub_F1 = ii + UPR_TILE_SIZE +
order within the inverted tile for a time step, and in increasing timg offset_F1_ub + upr_beta*(t-tt) - 1;
order across time steps. Finally, case (i) is impossible since othgr for (12 max(tite (Pl 1b-F)i 1 <= min(tite ub F1, wb )i T+ |
inverted tiles are separated from the current inverted tile by at legst ) }
one upright tile, whose slopes are guaranteed to prevent any depent
22 Il Inverted tile loop

dence edge crossing their boundaries. 23 inv_Ib = upr_Ib - INV_TILE_SI ZE;
24 inv_ub = ub_F1 + INV_TILE_SIZE; // for nultiple stencil functions
/1 F1, F2, ... it is max(ub_F1,ub_F2,...)

25
Multiple Spatial Dimensions: In the proof of correctness, so far 28 for (i1 = :g;a'bi Ji < inv_ubi @i += UPRTILE_SIZE + INV_TILE_SIZE) (

we have focused on the case of a single spatial dimension. Fer for (t = tt; t < min(tt+TT_SIZE,T); t+4) {

multi-dimensional stencils, as explained in Sec. 3, tiles may have HIeUbTF = 11+ UM LE ST - et

different characteristics along the different spatial dimensions. Fgr for e e e e Lt e b FL, wbFL): ie9)
example, with two spatial dimensions and nested split tiling, thefe ) {1 1D stencil function code

are four possibilities: Upright-Upright, Upright-Inverted, Inverted-ss }

Upright, Inverted-Inverted. With hybrid split tiling, one or moress | ;'

spatial dimensions may be tiled using standard parallel tiles (using
the slopeB computed for the right boundary in that dimension by
the back-slicing analysis). The proof of validity of execution in the ~ Figure 14: lllustration of structure of generated code for 1D case

multi-dimensional case is a consequence of the fact that the loop

bounds along each spatial dimension are independent of iterators Algorithm 15 is the overall algorithm to perform DLT and split-

of other spatial dimensions. Consider, for example, a stencil with tiling on a program that can be expressed in SDSL. It is a more
three spatial dimensioris j, andk, where standard tiling is used  detailed version of the overview algorithm shown earlier.

alongk, and split tiling along, andj. Let a particular tile be up- FunctionsGet XXX retrieve properties of the SDSL program re-
rightalongi, and inverted along. At some time step, the setofall  qujred for code generation (e.g., name of arrays, number of dimen
instances of a stateme®&; will necessarily correspond to a cross  gjons, etc.). FunctionG&enCopyXXXLoop copies the data from the
product of ranges along the three spatial extents: [kl:ku,jl:ju,iliiu]. - original layout to the DLT layout. Functiovect or i ze generates
The instances of any statemegyf that & depends upon, can be 5 sequence of vector intrinsics call (SSE or AVX in our experi-
expressed ai&l + é'ﬁ cku+ 66 NIEE 6’L Dju+ 6{1 Jl+8) tiu+9y]. ments) to compute the same arithmetic operation as the correspond-
We can prove that all such dependences are satisfied by proving thatng statement in the stencil function, using SIMD vectors. Func-
the extents along each dimension are satisfied. For upright or in-tion ChangeBoundsToDLT adapts/creates the loop structure scan-
verted tiles along any dimension, we have proved that the required ning the dimension-lifted data arrays. FunctidgnMaskedXXX
extents will be covered by the generated slopes/offsets. For a stan-use SIMD masked write operations to cope with vectors in the gen-
dard tiled dimension too, the dependences will be satisfied: on the erated code where one of the vector slot (necessarily the first or
lower side, the instances will either lie in the same tile or in an ear- last slot only) contains ghost data. The reader may refer to [12] for




I nput
P: Stencil program
Lwec: Integer length of a vector (in elenents)
Qut put
Psyit: C code for Split-tiled, DLT version of the input
SDSL program

Psit < Copy(P)

/1 Convert arrays to DLT.

A + GetArrays(Pit)

ltime < Get Ti meLoop( Pxit)

foreach array ain A do
dims «+ Get Di nensi ons( a, Pxit)
leopyin <= GenCopy! nLoop(a, dims, Lyec)
leopyout <= GenCopyQut Loop( @, dims, Lyec)
ltime. Pr epend( lcopyin)
Itime~ Appe”d( |cupyoul)

end do

/1 Vectorize statements.

S « Cet Statement s( Pgit)

foreach statement sin S do
Sec ¢ Vectorize(s Lye)
lenc < Get Encl osi ngLoop( Svec, Psit)
ChangeBoundsToDLT( lenc)
start ¢+ GenMaskedWiteStart Stnt (Sec, Lvec)
lsart < GenMaskedSt art Loop( SS&Y, lenc)
Ienc~ Pr epend( |§an)
9 < GenMaskedW i t eEndSt nt ( Syec, Lyec)
lend < GenMaskedEndLoop( S, lenc)
lenc. Append(lend)

end do

/1 Backslice original code.

| nput I
I: Atinme tile loop with enpty nested split-tile |oops inside

Psic: Stencil programwith DLT perforned and backslicing

results inserted

d: Integer representing current loop depth (1 innernost)
Qut put

I: with split-tile |oop bodies generated

if d == 1 then

lorig — Get Ori gi nal LoopBody( Peit)

/'l Generate upright tile body

lupr <= Get Upri ght Ti | eLoop(l)

CopyTi meAndSpaceLoops( Pit, lupr, 1)

RenmoveMaskedW i t eLoops(lypr)

Adj ust Ti meAndSpacelLoopBounds( lupr, Psit)

liv < GetlnvertedTileLoop(l)

(Ifut ybnaryy .|, Genl nvert edFul | BadryTi | eCondi ti on()
|/ Generate inverted full tile body

CopyTi meAndSpaceLoops( Pxit, Iif,;'/”, 1)

RenmoveMaskedW i t eLoops( Iifnlj”)

Adj ust Ti mneAndSpaceLoopBounds( Iifr;‘,”, Psait)

/| Generate inverted boundarg tile body
CopyTi meAndSpaceLoops ( Py, 1297, 2)
Adj ust Ti meAndSpaceLoopBounds (12197, Py
Tri mvaskedW i t eLoops( 17797)
else
lupr <= Get Upri ght Ti | eLoop(l)
GenTi | eBodi es( lypr, Paait, d — 1)
liv < GetlnvertedTileLoop(l)
GenTi | eBodi eS( liny, Psit, d—1)

(%) <« conputeC fsetSlopes(P) end if
AddBacksl i ceResul t s( P, X)
/1 Create nested split-tile |oops
Iy < CreateTinmeTil eLoop() H . ; . f
o« Get SpaceD rrens: onCount ( Pu) Figure 16: Algorithm GenTileBodies
GenNest edSpl it Ti | eLoops(lyt, d)
GenTi | eBodi es(lit, P, d) | nput
Repl aceTi meLoop( I, Pit) I: Loop to add nested upright and inverted tile |oops to
d: Integer representing current |oop depth (1 innernost)
Cut put
Figure 15: LayoutTransformAndSpIitTiIe I: with nested upright and inverted tile |oops added
if d == 1 then

lupr <= 1. AddUpri ght Ti | eLoop()
liny < 1. AddI nvertedTil eLoop()

more details. Functior@nNest edSpl i t Ti | eLoops andGenTi | e- el

Bodi es are describeq below. _ ) . lupr + |. AddUpri ght Ti | eLoop()
Algorithm 16 provides detail for the code generation of split- GenNest edSpl i t Ti | eLoops(lypr, d—2)
tiled code, in the context of a program on which DLT has been liny < 1. Addl nvertedTi | eLoop()
performed first. We remark that in order for the code generation enﬁeirf‘NesmdSp' 1TileLoops(lin, d—1)
of themasked writes required by DLT to be correct, we impose
a constraint relating the size of the innermost dimension to the tile
sizes: Figure 17: Algorithm GenNestedSplitTileLoops

|dinnermost|  Mod (upr_tile size+inv_tile size) =0

Adding this constraint greatly simplifies the code generation, avoid- stead of a split-tiled loop. Algorithm 16 requires a change to the
! 9 9 y Simp gene ’ - _Adj ust Ti mreAndSpaceLoopBounds() procedure to correctly tra-
ing the need to handle complex corner cases at the tile boundaries;

This limitation is not a problem in practice, since padding can be verse the standard tile dimension.
used to comply with this constraint.

FunctionGenl nvert edFul | BndryTi | eCondi ti on generates a 6. EXPERIMENTAL EVALUATION
conditional to determine whether to execute a full inverted tile oran  The effectiveness of the both nested split-tiling and hybrid split-
boundary inverted tile that includes two loop nests for the start and tiling applied in conjunction with the dimension-lifting transforma-
end boundaries of DLT codes. Functiédj ust Ti meAndSpace- tion was experimentally evaluated on several hardware platforms
LoopBounds alters the loop boundaries of the loops copied from the using a variety of stencil kernels. We compare performance to the
original code to tile loop boundaries using the results of backslic- diamond-tiling system used by Pluto [2], the cache-oblivious tiling
ing. FunctionTri mvaskedW i t eLoops removes the masked write  system used by Pochoir [18], and the Intel C Compiler v13.0.
loops at the start and end of the inverted boundary tile loops, leav- .
ing the masked writes between them. 6.1 EXpe”mental Setup

We conclude by presenting the algorithm for generating split- Hardware: Experiments were performed on three hardware plat-
tiled loop nests shown in Algorithm 17. Hybrid split-tiling code forms with DVFS features disabled on all of therAMD Phe-
generation requires minimal changes to Algorithms 16 and 17. Al- nomIl X6 1100T (K10 micro-architecture) is a 6-core x86-64 chip,
gorithm 17 requires a conditional to check if it is generating code clocked at 3.3GHz; single-precision peak performance of 26.4/lo
for the outermost loop. If so, a standard tile loop is generated in- core (158.4 GFlop/s aggregate); double-precision peak perfagnan



of 13.2 GFlop/s/core (79.2 GFlop/s aggregateiel Core i7-920

(Nehalem micro-architecture) is a quad-core x86-64 chip running sol B icc |
at 2.66 GHz; single-precision peak performance of 21.28 GFlop/s/- X1 pochoir
core (85.12 GFlop/s aggregate); double-precision peak perfaenan — pluto
of 10.64 GFlop/s/core (42.56 GFlop/s aggregatiel Core i7- nest-split {
2600K (Sandy Bridge micro-architecture) is a quad-core core x86- A hyb-split

64 chip running at 3.4 GHz; single-precision peak performance
of 54.4 GFlop/s/core (217.6 GFlop/s aggregate); double-precision
peak performance of 27.2 GFlop/s/core (108.8 GFlop/s aggregate).
Programs were compiled using the Intel C Compiler v13.0 with
the -3 -ipo -xHost’ optimization flags was used for split-tiled,
Pluto, and Pochoir codes on all machines. Auto-parallelization and
auto-vectorization was enabled for ICC results with thpat al | el
-@8 -ipo -xHost’ optimization flags and appropriate vectoriza-
tion pragmas.

GFlop/s

ATIIITITILILL LTI LI UL LA L LA A LR ARRARANY

rrsrrssrrssrsssrsssrsssrsssrsssrssi
ATIIIIIIL LI LI LA AL

ASAIIIIILLILLLLLLLAALAAAAARANY

AR RNy

BN vrrsrsssrssssssssss.
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Benchmarks: The following stencil codes were used (with the o3 w = T 8 9 =T = ~ =
names used to refer to them in parentheses): Jacobi 1D (jac-1d- 5% X % T 3z I 2 3 R =
9] Q %) o e © o) Q kel [v] 9]
o, < (o} < o - ® Q w (o} <

3), Jacobi 2D (jac-2d-5), Jacobi 3D (jac-3d-7); Laplacian, @aid
and Poisson 2D; FDTD 2D [16]; Heat 1D/2D/3D distributed with
Pochoir [18].

All array dimensions were set to be significantly larger than last

(a) Single-precision

level cache on all micro-architectures. For all stencils, the foot- 35 -

print of each array was set to 244.14MB for single precision and g 'pC:choir
488.28MB for double precision; this was achieved using 1D arrays 30r pluto ||
with 64x 107 scalar elements, 2D arrays with 860glements, and nest-split
3D arrays with 408 elements. The number of time steps was set to 25t BZZ2 hyb-split |]

100 for all benchmarks.

Tile sizes were autotuned for Pluto with diamond tiling, as well
as for our split-tiling work. The autotuning was done over a sam-
pling of the set of tile size combinations that respect the various
constraints (i.e., multiple of vector length) of each framework. Au-
totuning runs were performed for a maximum of 4 hours per SIMD
unit / benchmark combination (how to speed up tile size autotun-
ing, for instance using acceleration/search heuristics is beyond the
scope of this paper, we simply tested all tile sizes in our subset).
For split-tiled codes all threads (one thread per core) were assigned
to the outermost parallel loop using OpenMP parallel for pragmas.

GFlop/s

AT IO IIIIIIIIIIIIIIIIIIIIIIIIES
IO IEIIIIIIIIIIIIIIIIIIIIIIID)

ASTIIIIIII LTI LT LU LA LARARAASAY
AMA11111111LLLLLLLLLL AL LA LA AR AR

‘
7|
7|
7|
Y
Y
Y
7|
7|
7|
7|
7|
7|
7|
7|
7|
7|
Y
Y
Y
Yl
7|
7|
7|
7|
7|
7|
7
7|

rorssrsssrss

IapI-Zdi ==
jac-2d-9
pois-2d
fdtd-2d
jac-3d-7
heat-3d

jac-1d-3
heat-1d

jac-2d-5
heat-2d
grad-2d

6.2 Experimental Results

Absolute performance for single and double precision experi-
ments across all platforms and codes are given in Figures 18-20. Figure 18: AMD Phenom Il X6 SSE2 Performance

In all cases Pochoir, nested split-tiled, and hybrid split-tiled codes
are significantly faster than sequential C code auto-parallelized and
vectorized by Intel's ICC compiler. Not all benchmarks could be
optimized by Pochoir, which can only generate optimized tiled par- of hybrid split-tiling + DLT fell behind both nested split-tiling and
allel code for single statement stencil codes. Multi-statement, multi- Pluto on several benchmarks, both single and double precision.
loop stencil codes like FDTD, with three inter-related stencils up-  This performance anomaly is due to load balancing issues. DLT
dating Ex[t] using Ex[t-1] and Hz[t-1], Ey[t] using Ey[t-1] and effectively turned the dimension of the arrays involved from 8000
Hz[t-1], and Hz[t] using Hz[t-1], EX[t], and EyJt]), cannot be ex-  x 8000 float/double scalars to 80802000 float vectors and 8000
pressed in Pochoir. x 4000 double vectors. With hybrid split-tiling, tiles from the
1D Benchmarks: Having only one split-tiled dimension allowed  smaller dimension (subject to the constraints described in Sec. 3.2)
tiles to fit in cache and provided ample parallelism. High perfor- had to be distributed across threads. Smaller tiles with better load
mance was expected of these codes and was observed. Nestebalancing characteristics limited reuse, while larger tiles with sig-
split-tiling + DLT outperformed ICC, Pochoir, and Pluto on both nificant reuse were not plentiful enough to adequately distribute
1D benchmarks across all platforms. Improvement over Pochoir load across cores.
ranged from a low of 1.2% for double precision Jacobi-1D on Ne- Nested split-tiling exhibited better load balancing because only
halem to a high of 2.2 for single precision Heat-1D on Sandy tiles along the larger dimension were distributed across cores. The
Bridge. Hybrid split-tiling does not apply to 1D benchmarks as the outer dimension was large enough to allow both large tiles for sig-
inner loop is split-tiled for both fine grain vector parallelism and nificant reuse and a large quantity of tiles for load balancing. Hy-
coarse grain thread-level parallelism. brid split-tiling on quad core Intel platforms did not have any load
2D Benchmarks: Across all 2D benchmarks hybrid split-tiling  balancing issues because the smallest dimension was divisible by
outperformed ICC, Pochoir, Pluto, and nested split-tiling on both 4, allowing for the same number of tiles to be distributed across all
quad core Intel platforms. For the hexacore AMD, performance cores.

(b) Double-precision
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5,8-10,13, 15,

In Heat-3D both
[17] used time skewing and cache-size

Pluto and Pochoir are able to achieve high performance across all

platforms.

, an increasepgchoir to

precision

(b) Double-
Intel Core i7-2600K AVX Performance

It is likely that the smaller tile sizes (in KB) enable

achieve very high performance on this code.

Strzodka et al.

halving the amount of data required for a given time tile size. For oblivious parallelograms to improve the memory system pressure
a time tile size of 16 and slopes of 2 on either side, an upright tile and parallelism in stencils on CPUs. Micikevicius et al. [15] hand-

Figure 20:
used in nested and hybrid split-tiling must be at least 64 elements attuned a 3-D finite difference computation stencil and achieved an

RELATED WORK

A number of recent efforts have targeted the optimization of sten-

cil computations for multicore CPUs and GPUs [2,

Further exacerbating the problem is the fact that DLT causes tile
19].

sizes in the innermost dimension to be multiplied by vector size.
leads to split-tiling + DLT tile sizes (in KB) that are much larger
tions, targeting multi-core systems, NVidia GPUs, and Cell SPUs.

Coupled with the constraints on tile size described in Sec. 3.2 this

than similar tile sizes (size of each dimension).

o -

3D benchmarks

precision

(b) Double-

Intel Core i7-920 SSE4 Performance
3D and Jacobi

Figure 19:
The diamond tiles used by Pluto overcome this limitation by 17—

For both the Heat
of one in the time tile size leads to an upright tile size increase of

fourin each dimension. Tile sizes grow fast enough that by the time

significant gains can be achieved from data reuse, the code is boun
its base. A diamond tile with a time tile size of 16 begins at a point, order of magnitude performance increase over existing CPU imple-

expands to 32 elements at its widest and narrows to a point again.mentations on GT200-based Tesla GPUs. Datta et al. [8] developed

Pluto is able to reuse data significantly more than both Pochoir andan optimization and auto-tuning framework for stencil computa-

Pochoir and Pluto on both 3D benchmarks across all platforms.
nested and hybrid split-tiling.

While hybrid split-tiling was able to significantly reduce the pres-
sure on the memory system for 2D benchmarks, its benefit was not

seen when adding a third dimension. In 3D, both inner dimensions
are split-tiled, thus spatial tile sizes in both inner dimensions must

increase when time tile size is increased.
by memory latency and bandwidth consumption from spatial tiles

3D Benchmarks: Both hybrid and nested split-tiling fell behind
that have grown significantly larger than L1 cache.
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