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This paper provides a step-by-step guide for the morphological analysis of corolla

and the decomposition of corolla shape variation into its symmetric and asymmetric

components. The shape and symmetric organisation of corolla are key traits

in the developmental and evolutionary biology of flowering plants. The various

spatial layout of petals can exhibit bilateral symmetry, rotational symmetry or more

complex combination of symmetry types. Here, I describe a general landmark-

based geometric morphometric framework for the full statistical shape analysis of

corolla and exemplify its use with four fully worked out case studies including

tissue treatment, imaging, landmark data collection, file formatting, and statistical

analyses: (i) bilateral symmetry (Fedia graciliflora), (ii) two perpendicular axes of bilateral

symmetry (Erysimum mediohispanicum), (iii) rotational symmetry (Vinca minor), and

(iv) combined bilateral and rotational symmetry (Trillium undulatum). The necessary

tools for such analyses are not implemented in standard morphometric software and

they are therefore provided here as functions running in the R environment. Principal

Component Analysis is used to separate symmetric and asymmetric components

of variation, respectively, quantifying variation among and within individuals. For

bilaterally symmetric flowers, only one component of left–right asymmetric variation

is extracted, while flowers with more complex symmetric layout have components of

asymmetric variation associated with each symmetry operator implied (e.g., left–right

asymmetry and adaxial–abaxial asymmetry). Fundamental information on the genetic,

developmental, and environmental determinants of shape variation can be inferred

from this decomposition (e.g., directional asymmetry, fluctuating asymmetry) and further

exploited to document patterns of canalization, developmental stability, developmental

modularity and morphological integration. Even if symmetry and asymmetry are not

the primary interest of a study on corolla shape variation, statistical and anatomical

arguments support the use of the framework advocated. This didactic protocol will help

both morphometricians and non-morphometricians to further understand the role of

symmetry in the development, variation and adaptive evolution of flowers.

Keywords: flowers, zygomorphy, disymmetry, actinomorphy, asymmetry, Procrustes fit, geometric

morphometrics, Principal Component Analysis
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INTRODUCTION

Symmetry has long been recognised as a key feature of the
anatomical organisation and shape layout of the corolla of
flowers. It is involved in numerous facets of the adaptive
evolution of flowers, from plant–pollinator interaction, shifts
from outcrossing to selfing, to plasticity, and response to biotic
and abiotic stresses (Endress, 2001; Rodríguez et al., 2004;
Sargent, 2004; Shipunov and Bateman, 2005; Bateman and
Rudall, 2006; Gómez et al., 2006; Busch and Zachgo, 2007;
Nattero et al., 2010; Frey and Bukoski, 2014; Vujić et al., 2015;
Wang P. et al., 2015; Carleial et al., 2017; Sauquet et al., 2017;
Spencer and Kim, 2018). Developmental genetic studies have
started to unravel the origins of floral symmetry and identified
specific genes known to play a role in the establishment of
symmetry in corolla shape and related structures (Almeida
et al., 1997; Luo et al., 1999; Citerne et al., 2010; Berger et al.,
2017; Spencer and Kim, 2018). For instance, repeated gene
duplication events are responsible for the complex ontogenetic
patterning of the capitulum inflorescence, a structure thought
to play a major role in the evolutionary diversification of
angiosperms (Asteraceae and Dipsacaceae, Dipsacales) (Carlson
et al., 2011; Berger et al., 2016). In such systems, flowers are tightly
arranged according to an overall spiral symmetry (Fibonacci
sequence) while the flowers themselves have symmetries varying
from bilateral symmetry (zygomorphy), left–right asymmetry, to
rotational symmetry depending on their position relative to the
centre of the capitulum (e.g., Carlson et al., 2011; Berger et al.,
2016).

Despite the ubiquity of floral symmetry and its widely
acknowledged role in the evolutionary dynamics of flowers,
very few studies have supplied quantitative characterisations of
floral shapes and of their patterns of symmetric organisation.
This mainly results from the still limited use of morphometric
approaches in ecological and developmental studies of floral
variation and also from the lack of user-friendly software for the
statistical analysis of complex symmetry in biological shapes.

Geometric morphometrics is a collection of approaches that
provide a mathematical description of biological forms according
to geometric definitions of their size and shape. It is demonstrated
below how these approaches can be used to precisely study
corolla shape and dissect its pattern of symmetric organisation
(Herrera, 1993; Gómez et al., 2006; Frey et al., 2007; Savriama
et al., 2012; Hernández-Ramírez and Aké-Castillo, 2014; Wang
C.N. et al., 2015; Radović et al., 2017; Strelin et al., 2018; Tucić
et al., 2018). A recent landmark-based geometric morphometric
framework for the complete analysis of any type of symmetry
in 2D or 3D has been proposed to address in greater detail the
biological significance of floral symmetry (Savriama et al., 2012).
This general approach is able to unambiguously separate different
components of variation as variation among flowers (symmetric
component) and variation within flowers (asymmetric variation,
that is the variation among the different parts composing the
flower).

Here, I provide complete and detailed step-by-step protocols
for the morphometric analysis of corolla shape variation, from
the data acquisition to the statistical shape analysis of symmetry

and asymmetry in corolla shape. All the morphometric treatment
is done with freely available software (TPS Dig2, ImageJ,
R). I illustrate these methods with four fully worked out
examples based on previously published data as well as simulated
data: bilateral symmetry (zygomorphy) in Fedia graciliflora
(Valerianaceae), two perpendicular axes of bilateral symmetry
(bi- or disymmetry) in the crucifer Erysimum mediohispanicum
(Brassicaceae), rotational symmetry only in the pinwheel Vinca
minor (Apocynaceae), and bilateral symmetry combined with
rotational symmetry in Trillium undulatum (Melanthiaceae).
The mathematical background underlying this morphometric
framework is also briefly reviewed and three R functions are
provided to address the lack of available software and make the
framework accessible and applicable to any instance of corolla
shape organisation.

BACKGROUND

Geometric Morphometric Methods
In this paper, I focus on landmark-based geometric
morphometric methods (GMMs) to analyse shape and size
of flowers. Landmarks are Cartesian coordinates of points in 2D
or 3D that can be localised precisely and without ambiguity on
a structure and from one specimen to another. For instance, the
points at the intersection between primary and secondary veins
or at the connexions between these veins and the petal boundary
are suitable landmarks in flowers (Gómez et al., 2006; Gómez
and Perfectti, 2010; Savriama et al., 2012). Some landmarks
are clearly defined on a structure and are named Type I (e.g.,
intersection between veins), others that are more ambiguous
and usually describe maxima of curvature are called Type II
(e.g., petal lobe), and those that are geometric constructions
generated from lines or else are labelled Type III (Slice et al.,
1996; Bookstein, 1997). Other data points named semilandmarks
require a specific mathematical treatment and are free to slide to
capture the geometry of curves and surfaces where landmarks
cannot be identified such as on smooth objects (Bookstein,
1997; Gunz et al., 2005; Gunz and Mitteroecker, 2013). In this
study, I only focus on landmarks to simplify the workflow. Note
that the methods explained in this paper are also applicable to
semilandmarks.

Once landmark configurations have been acquired on sets of
digital images or on 3D objects, a Generalised Procrustes Analysis
(GPA) is performed on landmark configurations and consists in
minimising the sum of squared distances between corresponding
landmarks to extract shape data by removing the extraneous
information of size, location and orientation. A mean shape
configuration (consensus) is calculated and variation around this
mean can be decomposed into components of morphological
variation. Shape spaces are curved and a projection onto a tangent
space with the consensus as the point of tangency is used to create
a shape tangent space (similarly to the projection of the earth onto
a 2D map). In this shape tangent space, conventional Euclidean
statistical methods are viable, such as Principal Component
Analysis (PCA). Centroid size, the most common and explicit
measure of size in geometric morphometrics, is computed as the
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square root of the sum of the squared distances of all landmarks
from their centroid (Rohlf and Slice, 1990; Goodall, 1991; Slice
et al., 1996; Dryden and Mardia, 1998).

Visualisation and Quantification of
Morphological Variation With Principal
Component Analysis
Principal Component Analysis is a well-established method
routinely used to visualise the general patterns of morphological
variation in multidimensional data obtained with GMMs. PCA
is the eigenanalysis of the covariance matrix of the Procrustes
coordinates obtained after GPA of the original landmark
coordinates. A linear combination of an eigenvector of the
covariance matrix or sum of squares and cross products matrix
from the original variables is calculated and produces principal
components (PCs). The eigenvalues associated with each PC
represent their variance. The PCs that are produced are a set of
fewer and uncorrelated linear combinations of the variables from
the original larger dataset. Thus, PCA reduces the dimensionality
of a dataset and allows for an easier graphical representation of
multivariate data. The first PC always explains the maximum
possible variance, the second PC always explains the maximum
possible variance after PC1, and so on for the following PCs
(Jolliffe, 2002; Abdi and Williams, 2010).

Geometric Morphometrics of Symmetry
Flowers and many other botanical systems often exhibit
symmetric patterning in the organisation of their anatomical
parts (Figure 1). A general approach for organisms with any
type of symmetry has been designed (Savriama and Klingenberg,
2011). In this section, I present a brief, but technical overview of
this framework which means that the reader unfamiliar with the
concept of symmetry rooted in amathematical context might find
it rather difficult to follow. Instead, the reader could directly go
to the Section “Protocols for Imaging and Collecting Landmark
Data on Flowers” for imaging protocols and data acquisition, and
select the case study of interest among the examples presented in
the Section “Dataset Preparation and Statistical Shape Analysis
of Bilateral Symmetry (Zygomorphy), Two Perpendicular Axes
of Symmetry (Bi- or Disymmetry), Rotational Symmetry Only,
and Bilateral Symmetry Combined With Rotational Symmetry
(Actinomorphy) in Flowers.”

Definition of Symmetry

The symmetry of an object is defined as its invariance to
one or more geometric transformations applied to it. These
particular transformations are called symmetry transformations
and together define the symmetry of the object (Weyl, 1952;
Rosen, 1975; Flurry, 1980; Martin, 2012; Armstrong, 2013;
Conway et al., 2016). For example, reflection about a flower’s
mirror axis (or plane) is the symmetry transformation that leaves
the flower invariant and characterises bilateral symmetry in the
snapdragon Antirrhinum majus or F. graciliflora (Figure 1A).
E. mediohispanicum flowers are symmetric regarding two
perpendicular axes of bilateral symmetry, a vertical left–right
axis and a horizontal one that separates a superior compartment

FIGURE 1 | Examples of symmetry in flowers. (A) Fedia graciliflora with

reflection symmetry (zygomorphy). (B) The crucifer Erysimum

mediohispanicum with two perpendicular axes of reflection symmetry (dashed

lines; bi- or disymmetry). Credit: photograph courtesy of J. M. Gómez,

Universidad de Granada, Spain. (C) Vinca minor showing rotational symmetry

of order 5 only. Symmetry groups are indicated according to the Schoenflies

notation as well as the relevant symmetry operators in each case (σ: reflection

line or plane of bilateral symmetry; σv: vertical reflection line or plane of

bilateral symmetry). Credit: photograph by Beentree, distributed under a

Creative Commons Attribution-Share Alike 3.0 Unported licence.

(D) The painted trillium Trillium undulatum that shows reflection symmetry

combined with rotational symmetry of order 3 or actinomorphy (the axis of

rotation is shown by the black dot at the centre of the flower and the angle of

rotation is represented by the curved arrow). Credit: photograph by Nicholas

A. Tonelli, distributed under a cc-by-2.0 licence.

(adaxial) from a lower one (abaxial) (Figure 1B), while others
only possess rotational symmetry (Figure 1C) or show a
combination of reflection and rotational symmetry (Figure 1D).

Types of Symmetry in Flowers

Bilateral symmetry is the simplest type of symmetry in biological
systems and for this reason it has been extensively studied notably
in animal groups (Leamy, 1984; Palmer and Strobeck, 1986;
Møller and Swaddle, 1997; Klingenberg and McIntyre, 1998;
Polak, 2003; Hallgrimsson et al., 2015). However, the diversity
of symmetry types in plants is much greater. The organisation
of petals in flowers can exhibit rotational symmetry only (e.g.,
Vinca minor, Figure 1C), combinations of reflection symmetry
with rotational symmetry, and scaling symmetry also called spiral
or helical symmetry in structures that approximate Fibonacci
numbers (i.e., phyllotaxis, e.g., Scabiosa columbaria and Knautia
arvensis, Dipsacales) (Backlund and Donoghue, 1996). These
primary types of symmetry are often combined in flowers and
produce more complex types of symmetry in two or three
dimensions (e.g., Trillium undulatum, Figure 1D).

Each type of symmetry is related to a set (in the mathematics
sense) of symmetry transformations. For instance, bilateral
symmetry is defined by a set of two symmetry transformations:
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FIGURE 2 | The concept of symmetry group in mathematics. (A) F. graciliflora flowers are symmetric with respect to a set of two symmetry transformations: the

identity (i.e., the transformation that does nothing) and reflection about a vertical axis. This set defines the symmetry group of Fedia that is bilateral symmetry or

zygomorphy. (B) E. mediohispanicum flowers are symmetric regarding two perpendicular axes of symmetry and to a set of four symmetry transformations: the

identity, reflection about the vertical left–right axis, reflection about the horizontal adaxial–abaxial axis, and rotation by 180◦. These symmetry transformations are

mutually equivalent when combined with each other.

reflection about the mirror axis and the identity. The identity is
the symmetry transformation that does nothing and is defined
as such since it is a key element in the mathematical concept
of symmetry (Rosen, 1975; Flurry, 1980). For instance, applying
two successive reflections about the same mirror axis or rotations
by 360◦ are also equivalent to applying no transformation at
all (Figure 2A). The set of all symmetry transformations of an
object defines a mathematical group named the symmetry group
of the object (Martin, 2012; Armstrong, 2013; Conway et al.,
2016). The framework of group theory have been applied for
the study of symmetry. While some symmetry groups are finite
with a countable number of symmetry transformations, others

are infinite since they comprise symmetry transformations that
are coupled with translations (Rosen, 1975; Flurry, 1980). For
example, the symmetry group of E. mediohispanicum is finite
since it contains the identity, a reflection about the vertical left–
right axis, a reflection about the horizontal adaxial–abaxial axis,
and two successive reflections about the two perpendicular axes
of bilateral (or reflection) symmetry also equivalent to rotation by
180◦ (Figure 2B).

The Schoenflies notation, which I will use throughout this
study, is commonly used to define types of symmetry in
crystallography (Burzlaff and Zimmermann, 2006). Most types
of symmetry found in flowers are described by the following
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symmetry elements: Cn for n-fold rotation axis and σ for
reflection about an axis or plane:

- n-fold rotation axis (Cn): A flower is symmetric relative
to rotation about an axis by a specific angle (or/and
multiples of it) so that the initial and final positions of the
flower petals are indistinguishable. For example, V. minor
is symmetric by rotation of 72◦, but it is also symmetric
if the same rotation is applied twice (144◦), three times
(216◦), four times (288◦) and five times (360◦) (Figure 1C).
Consequently, this flower has a fivefold rotation axis noted
C5 according to the Schoenflies system.

- reflection axis or plane (σ): A flower is symmetric under
reflection about an axis (or plane) if the two sides are
mirror images of each other relative to this axis. Reflection
about a vertical axis is denoted C1v and reflection across an
horizontal axis is denoted C1h.

According to this notation, the symmetry group of bilateral
symmetry (zygomorphy) in F. graciliflora is C1v, bi- or
disymmetry in E. mediohispanicum is C2v, rotational symmetry
only in V. minor is C5, and combination of reflection and
rotational symmetry in T. undulatum is C3v [see Table 1 in
Savriama and Klingenberg (2011) for a complete enumeration
of finite symmetry groups]. In geometric morphometrics, two
approaches have been distinguished for the study of symmetric
structures: matching symmetry and object symmetry.

Flowers With Symmetric, but Physically

Disconnected Petals (Matching Symmetry)

Matching symmetry refers to the case where a complete structure
is composed of a suite of k repeated units physically disconnected
and arranged according to a set of symmetry transformations.
For instance, the left and right petals of Tropaeolum speciosum
(Tropaeolaceae) show bilateral matching symmetry with respect
to reflection about the axis (or plane) of the flower, other
examples of matching symmetry can be found in the Mexican
primrose-willow (Ludwigia octovalvis, Onagraceae), the kerria
(Kerria japonica, Rosaceae) or “Pride of De Kaap” (Bauhinia
galpinii, Fabaceae) (Lindley, 1836; Raven, 1977; Rix, 2010; Azani
et al., 2017).

The shape analysis of matching symmetry proceeds as follows:
First, a separate configuration of landmarks is considered for each
repeated unit. Then, one of the configurations of landmarks is
selected as a reference and all the others are matched onto it by
using the transformations of the symmetry group. For instance,
all left petals of T. speciosum can be reflected to match their
right counterparts by simply multiplying one of their landmark
coordinates (e.g., x) by −1. Finally, a GPA superimposes all
configurations and produces a mean shape (consensus). It is
important to note that for flowers with rotational symmetry
only, there is no need to manually transform the configurations
before the GPA. Indeed, the relabelling is only required since
the transformation needed to match the copies of the original
configuration, that is the rotation, is already incorporated in the
GPA. In other words, copies relabelled according to rotation will
automatically be rotated to ensure label correspondence during
the superimposition procedure included in the GPA (Figure 3A).

A component of symmetric variation that represents the
variation among individuals is computed by calculating the
differences among the averages of all repeated parts for
all individuals. Several components of asymmetry might
occur depending on the order of symmetry under study.
A separate configuration of landmarks is used for each side,
which means that separate values of centroid sizes can be
calculated per repeated part and consequently a component
of symmetric variation and asymmetry can be calculated for
size as well (Klingenberg and McIntyre, 1998; Mardia et al.,
2000; Klingenberg et al., 2002; Savriama and Klingenberg,
2011). Matching symmetry is suitable for the analysis of any
type of symmetry even with infinite symmetry group such as
translational (a constant shift of body parts along an axis, such
as the arrangement of leaves along the shoot of plants), spiral
or helicoidal symmetry (rotational symmetry combined with
translational symmetry in which the architecture/growth of the
organism follows a constant or increasing deviation from a centre
or axis of rotation, such as in many Asteraceae) (Savriama and
Klingenberg, 2011).

Flowers With Symmetric, but Physically Connected

Petals (Object Symmetry)

Object symmetry describes the case of a symmetric structure
for which the symmetry operators (centre, axis, or plane)
belong to the structure itself and partition it into k physically
connected compartments. The snapdragon A. majus is an
example of bilateral object symmetry in which the plane of
bilateral symmetry passes through the middle of the entire
flower separating it into left and right connected halves. The
analysis of structures with object symmetry takes into account
the variation between connected parts as in matching symmetry,
with additional informationmade available about the way the two
halves are physically connected to each other (Mardia et al., 2000;
Klingenberg et al., 2002; Savriama and Klingenberg, 2011).

For the analysis of object symmetry, a unique configuration
of landmarks is considered for the entire structure, and then n
copies of this configuration are created, where n is the number of
transformations included in the symmetry group of the structure
(Figure 3B). An appropriate relabelling of landmarks is necessary
for each transformed copy and simply consists in mutually
swapping the labels of the landmarks that are images of each
other with respect to a given symmetry transformation, and this
does not affect the landmarks that are placed onto the symmetry
operators since they will be mapped onto themselves. A reflection
combined with a number of rotations corresponding to the
highest order of rotational symmetry is sufficient to generate
the required number of symmetry transformations in any finite
symmetry group. The full dataset is superimposed by a GPA and
the resulting consensus is symmetric since all transformed and
appropriately relabelled configurations have been included. Since
there is a unique configuration for the whole structure and due to
constraints imposed by the Procrustes fit, there is no asymmetry
in size as opposed to matching symmetry. Note that object
symmetry is only applicable to structures with a finite symmetry
group since it requires a full enumeration of the symmetry
transformations and is therefore not applicable to structures
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FIGURE 3 | Matching and object symmetry for shape analysis of flowers with

any type of symmetry. (A) Analysis of a flower with matching symmetry. First,

the whole flower is divided into individual repeated parts or modules that

generate the symmetry. Second, an individual configuration of landmarks is

considered for each repeated part. A configuration is selected as a reference

and reflections are applied to the rest of the images as needed so that all

subsequently digitised configurations from the transformed pictures match the

orientation of the chosen reference. Note that rotations are not needed here

since the GPA automatically carries this step during the superimposition

procedure. Finally, all individual configurations are superimposed

simultaneously in a single GPA. (B) Analysis of a flower with object symmetry.

First, an original configuration of landmarks is digitised for the whole flower.

Second, n copies of this original configuration are generated and each of

them is transformed according to one of the symmetry transformations in the

symmetry group of the flower (here, n = 4). Finally, all original configurations

and their transformed relabelled copies are superimposed simultaneously in a

single GPA. The resulting mean shape (consensus) is

symmetric.

with translational symmetry. For instance, the symmetry group
of A. majus flowers contains two symmetry transformations:
reflection about the left–right axis, and the identity. Therefore,
two transformed copies are included in this dataset: the identity
(i.e., the original configuration of landmarks) and a reflected copy
of this original configuration. The reflected copy can be easily
obtained by multiplying one of its landmark coordinates (e.g., x)
by −1.

A component of symmetric variation that corresponds
to the variation among individuals is calculated as the
difference among averages of all original and their transformed
relabelled copies. As in complex matching symmetry, multiple

components of asymmetry can occur that can be calculated
as the difference between the original configuration and the
transformed relabelled copies with respect to a given symmetry
operator. For instance, in E. mediohispanicum flowers a
component of asymmetry can be quantified between the adaxial
and abaxial units by calculating the difference between the
original configuration and the reflected relabelled copy about
the adaxial–abaxial axis, but also between left and right petals
by calculating the difference between the original configuration
and its reflected relabelled copy about the vertical left–right axis,
and across diagonally opposed petals by calculating the difference
between the original configuration and the copy generated by two
successive reflections about both axes (also equivalent to a rotated
copy by 180◦).

Flowers with object symmetry have a special mathematical

property

The treatment of landmarks for flowers with object symmetry
has particularities such as a structuration of the total shape
tangent space into separate and orthogonal, but complementary
subspaces of shape variation, and this has important implications
for statistical tests (Kent and Mardia, 2001; Klingenberg et al.,
2002; Kolamunnage and Kent, 2003, 2005; Savriama and
Klingenberg, 2011). For instance, flowers with bilateral object
symmetry such as the snapdragon A. majus have two subspaces
of shape variation, a subspace of completely symmetric shape
variation and a subspace of totally asymmetric shape changes.
Multiple subspaces can occur with more complex types of
symmetry.

A PCA applied on a dataset that contains all original and
transformed relabelled copies effectively and easily separates
symmetric and asymmetric components into distinct subspaces
of shape variation. Given that each category of shape variation
can be identified, it is straightforward to sum up the percentages
of variance for each class of shape change and determine for how
much they account relative to the total shape variation.

For flowers with rotations of order beyond 2 (by 180◦),
the PCA produces pairs of PCs with equal eigenvalues. This
means there is no unique solution for the orientation of
the pairs of eigenvectors associated with the eigenvalues.
Consequently, shape changes expressed in this plane can
correspond to a combination of different types of symmetry
(e.g., absence of symmetry and bilateral symmetry; Savriama and
Klingenberg, 2011) whose their respective shape patterns might
not be recognisable. To overcome this difficulty, Savriama and
Klingenberg (2011) recommended rotating the PCs of these pairs
so that the overall mean and the mean score of all unrotated
copies coincides with one of the PCs of the given pair. As a result,
the shape changes related to these pairs of PCs become apparent.

Interesting complexity and further structuring in the data arise
for flowers with rotational symmetry that is specifically related to
their order of rotation (further technical details are covered in
Savriama and Klingenberg, 2011):

– If the order of rotation is a prime number (e.g., 3 or 5),
the shape tangent space is decomposed into only two kinds
of orthogonal subspaces: one subspace of symmetric shape
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changes relative to the rotations and one subspace of totally
asymmetric shape changes. This is the case for pinwheels
such as V. minor.

– If the order of rotation is not a prime number (i.e., 6),
there are several subspaces of symmetric shape changes
with respect to rotations, which orders correspond to each
prime factor of the original order of rotation (e.g., 2 and 3
for an order of rotation of 6). This is the case of the ‘Kleim’s
Hardy’ variety of Gardenia jasminoides (Rubiaceae).

– If the symmetry group contains both reflection and
rotations, the shape tangent space is decomposed into
various subspaces as a consequence of the combinations
between the reflection and rotations. This is the case of
T. undulatum.

Analyses of flowers with object symmetry leads to complex

structures in PCA scatterplots

With object symmetry, when one PC is plotted against another
one, the resulting scatterplot shows a distribution of individuals
which itself can exhibit asymmetric or symmetric patterns. This
is due to the copies generated from the original dataset according
to the symmetry group of the flower under study. For instance,
in the case of bilateral object symmetry individual PCs can
show shape changes that are either symmetric or asymmetric.
If two PCs both represent shape changes that are symmetric
with respect to the symmetry axis, this means that the variation
displayed is inter-individual variation and that original and
reflected relabelled copies have the same position on this 2D
scatterplot (identical PC scores for this pair of PCs); therefore the
scatterplot of PC scores will be totally asymmetric.

Principal components associated with non-symmetric shape
changes imply that the projection of the data in the 2D
plane defined by these PCs reflects in fact the symmetry
transformations applied to the copies of the original dataset. For
instance, PCs representing totally asymmetric shape changes for
a dataset describing flowers with threefold rotational symmetry
(i.e., by 120◦) will show PC scores that actually represent the
original dataset and its transformed copies. Consequently, these
3 replicates will be oriented following a rotational symmetry
by 120◦ layout. Conversely, if PCs have shape changes that are
related to the transformations included in the symmetry group
of flower that has rotational symmetry, then the showcased
variation will be inter-individual variation and the 2D scatterplot
of PC scores will be asymmetric. These phenomena extend to
more intricate types of symmetry and in these cases scatterplots
of PC scores can exhibit more complex symmetric patterns (Kent
and Mardia, 2001; Kolamunnage and Kent, 2003; Kolamunnage
and Kent, 2005; Savriama et al., 2010; case study 3 and 4).

What if Floral Shape Exhibits Combination of Flowers

That Are Symmetric, but Themselves Arranged

According to Another Symmetric Pattern (Both

Matching and Object Symmetry)?

In many clades, flowers often possess petals or other parts that
have bilateral object symmetry and are themselves arranged
according to more complex symmetric patterns. In Dipsacales
(e.g., Scabiosa columbaria, Knautia arvensis), flowers are tightly

assembled together into a structure called the capitulum and have
symmetries ranging from zygomorphy, left–right asymmetry,
to rotational symmetry, but are themselves arranged according
to spiral symmetry that follows a Fibonacci sequence (e.g.,
Carlson et al., 2011; Berger et al., 2016). In the European orchids
(Dactylorhiza), flowers within a single inflorescence are often
arranged according to symmetric patterns (Bateman and Rudall,
2006). In this case, the user can decide that the repeated unit of
interest is the symmetry of the flower, which will be symmetrised
first (object symmetry), while the higher order of symmetry
found in the arrangement of flowers according to complex
matching symmetry is automatically taken into account in the
rotation step incorporated in the GPA. This approach has been
recently used to study translational fluctuating asymmetry and
developmental costs in modular organisation of centipedes. In
this case study, the bilateral object symmetry of each segment
along the body axis was first taken into account and the
translational matching symmetry was automatically treated when
all symmetrised segments were superimposed during a single
GPA (Savriama et al., 2016, 2017).

Within a flower, one can also consider that the petal is the
repeated unit of interest and if it has bilateral object symmetry,
then each petal can be first symmetrised before superimposing
all of them in a single GPA. This was recently applied to
dissect the sources of variation due to phenotypic plasticity and
fluctuating asymmetry in Iris pumila (Iridaceae) (Tucić et al.,
2018). A general approach for organisms with such composite
types of symmetry arranged according to a hierarchical fashion
has been recently designed (Savriama and Gerber, 2018).

PROTOCOLS FOR IMAGING AND
COLLECTING LANDMARK DATA ON
FLOWERS

Imaging Procedures
For flowers that cannot be removed from the plant and are
relatively flat, high definition photographs should be taken from
standardised positions according to a front view and a side view
such that petals appear coplanar in either of these views (Gómez
et al., 2006). All pictures should be taken with a scale next to the
specimen and at the same distance from the camera.

For flowers that can be taken off the plant, the procedure
consists in removing the flower while preserving its stem and
discarding all visible organs that could mask the corolla (e.g.,
stamen and carpel). Prior to imaging, flowers should be placed at
a fixed position by mounting them using an appropriate support
(e.g., the wells of a PCR plate) and placing their petals facing
up (Figure 4A). Afterward, pictures can be taken from a camera
mounted on a dissecting microscope depending on the size of
flowers.

Some flowers might not show their venation system and this
renders landmark acquisition more difficult or nearly impossible.
To circumvent this issue, one can use food colourant (e.g., blue
dye) that will be absorbed via the vascular system contained
in the stem of the flower and subsequently spread all over
the corolla, ultimately revealing the network of veins. As an
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FIGURE 4 | Revealing non-visible veins in corolla of flowers. (A) Wild-type of F. graciliflora flower mounted on a petri dish. (B) The absorption of a coloured liquid by

the flower reveals its vascular system. As an example, the venation system of F. graciliflora is entirely revealed after the flower had spent several hours absorbing a

solution made of blue dye. (C) F. graciliflora flowers that are relatively flat can be immersed into a solution of 70% ethanol to effectively destroy the cells responsible

for pigmentation and reveal their venation network in high detail. Scale bar = 2 mm. (D,E) Clarity of pictures taken from non-2D flowers (Scabiosa columbaria,

Dipsacaceae) can be improved via z-stacking or focus stacking that combines a set of pictures acquired at different focal points of the flower. (F) These images are

subsequently compiled into a single and neat picture. All visible organs that could mask the corolla (e.g., stamen and carpel) should be discarded prior to any

imaging. Scale bar = 5 mm.

example, the venation system of Fedia is entirely revealed after
the flower had spent several hours absorbing a solution made of
blue dye (Figure 4B). A more radical alternative is to immerse
flowers in a solution of 70% ethanol to effectively destroy the
cells responsible for pigmentation subsequently fully revealing
their network of veins. This approach gives the clearest results
and the treatment will unambiguously highlight the veins. This
is an extremely efficient and fast way to perfectly accent the
details of a venation network in flowers (Figure 4C). Several
flowers can be treated at once by first mounting them on a
support (e.g., PCR plate) that is itself immersed in a pool
made of 70% ethanol, with the whole system being placed
inside a sealed container to limit the evaporation of the
solution.

For flowers that are almost but not quite 2D flat structures
taking a single picture does not prove to be sufficient since parts
of the corolla will be out of focus thereby producing blurry
images. To improve the clarity of pictures taken from such
flowers, one can use z-stacking or focus stacking that treats a
set of pictures acquired at different focal points of the flower
and subsequently compiles them into a single and neat image
(Figures 4D–F).

All pictures should be taken with the same settings (e.g.,
cameramodel, resolution, objective, distance from the specimen).
If all pictures are taken with the same settings, there is no need to
have a ruler on each of them, but only in one of them, which will
be considered for all pictures at once.

Measurement Error
Measurement error can occur when data are acquired for
example on low resolution photographs or when pictures are
taken in a non-standardised manner (Bailey and Byrnes, 1990;
Arnqvist and Martensson, 1998; Fruciano, 2016). The overall
measurement error in shape analysis is traditionally dissected
relative to “Imaging” (i.e., differences in pictures of the same
flower) and “Digitising” (i.e., differences in landmarking the same
picture of a flower) in an Analysis of Variance (ANOVA) for size
(centroid size) and shape (Procrustes coordinates) (Klingenberg
and McIntyre, 1998; Klingenberg et al., 2002; Savriama and
Klingenberg, 2011).

A one-way Procrustes ANOVA design can be used to test
for measurement error directly against the biological signal of
interest that is the variation among flowers. For flowers with
matching symmetry, this design is readily applicable to the
full dataset since the different components of shape changes
(symmetric and asymmetric) belong to the same shape space.
For studies of object symmetry, each component of shape change
(symmetric and asymmetric) belong to separate shape spaces and
each of them has different shape dimensions. Consequently, the
user has to carefully determine the correct shape dimensions
for each shape space in this particular context (Goodall, 1991;
Klingenberg et al., 2002; Savriama and Klingenberg, 2011), and
an easier alternative is to run the analysis using the original
configurations only [see the Section “Case Study 1: Bilateral
Object Symmetry in F. graciliflora (Symmetry Group C1v)].
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Image Preparation Prior to Landmarking
Several software exist for landmark acquisition such as ImageJ
(Schneider et al., 2012) or the function ‘digitize2d()’ in the
‘geomorph’ R package (Adams and Otárola-Castillo, 2013). Here,
I use the popular ‘tps’ suite of software to collect and organise files
for landmark data collection since it is the simplest solution for
users non-familiar with other alternatives, especially the ones that
require programming (Rohlf, 2015). The two software needed
are ‘tpsUtil’ and ‘tpsDig2’ (Rohlf, 2015). These software run on
Windows only, but work perfectly well on Mac computers via
an appropriate emulator (e.g., Parallels, WineBottler). Prior to
digitising, images should be transformed depending on whether
or not the flower has either matching symmetry or object
symmetry as explained in the following sections.

Image Preparation for Flowers With Matching

Symmetry

In the case of flowers with matching symmetry, it is best to
include separate pictures of each repeated unit together in a
unique folder. If at least two pictures of each module have been
taken, measurement error due to mounting can be appraised.
To do so, each picture is duplicated and landmarks should be
acquired twice for each of these two copies to assess measurement
error due to digitising. For instance, for flowers with bilateral
matching symmetry the pictures can be named as follows:

Ind001_R_a1b1
Ind001_R_a1b2
Ind001_R_a2b1
Ind001_R_a2b2
Ind001_L_a1b1
Ind001_L_a1b2
Ind001_L_a2b1
Ind001_L_a2b2

With ‘Ind001’ denotes the specimen, ‘L’ or ‘R’ is the repeated
unit (Left or Right in the case of bilateral symmetry), ‘a’ refers to
the image and ‘1’ or ‘2’ represents the session, ‘b’ stands for the
digitising and ‘1’ or ‘2’ refers to the session. Prior to digitising,
choose a picture of one of the repeated unit as a reference and
flip/rotate all pictures so that they have the same orientation as
the one chosen as a reference. This reduces risks to inflate the
level of artefactual directional asymmetry that could be caused by
the experimenter’s handedness.

Image Preparation for Flowers With Object

Symmetry

For flowers with object symmetry, unique pictures of the full
corolla are included in the same folder. If two separate pictures
of the same flower have been taken, measurement error due
to mounting can be quantified. Each picture is duplicated
and two series of landmarks should be acquired for each of
these two copies to assess measurement error due to digitising.
Consequently, the files should be named as follows:

Ind001_a1b1
Ind001_a1b2
Ind001_a2b1

Ind001_a2b2

Reading from left to right, with ‘Ind001’ denotes the specimen,
‘a’ is the image and ‘1’ or ‘2’ is the repeat for a given imaging
session, ‘b’ is the digitising and ‘1’ or ‘2’ refers to the repeat.
A unique configuration of landmarks encompasses the repeated
units of the full flower together as opposed to analyses with
matching symmetry.

Landmarking With tpsDig2
In this section, I use Fedia graciliflora flowers which possess
an instance of bilateral object symmetry (zygomorphy) as an
example to describe the procedure for landmarking with ‘tpsDig2’
(see the Section “Image Preparation for Flowers With Object
Symmetry” for preliminary image preparation).

∗First, use ‘tpsUtil’ to generate a file template as follows:

(1) Operations: “Build tps file from image”
(2) Input directory: click on “Input” and choose the folder that

contains the pictures. Click on the first picture in the folder,
then click “Open.” This brings you back to ‘tpsUtil.’

(3) Click on “Output” and choose the folder that contains the
pictures. Type the desired file name in the “File name” tab
followed by the extension ‘.TPS.’ For instance, the file can
be named as “FediaProjecta1b1.TPS,” which will contain all
landmark coordinates digitised for pictures taken during
the first session. Click on Save. This brings you back to
‘tpsUtil.’

(4) Click on ‘Setup.’ This opens a new window in ‘tpsUtil’ in
which all the available images can be selected/unselected.

(5) Once the user is satisfied with the list of images to be
digitised, the ‘.TPS’ file can be created by clicking on
“Create.” A preview of the file to be created also appears.
Click “Close” to complete the procedure. Cheque the newly
created ‘.TPS’ file by simply opening it with any text editor.
One can make any change to this file using a text editor
and such modifications will be recognised and taken into
account when read back again in ‘tpsDig2.’ Repeat the whole
procedure to create the other files corresponding to the
different digitising sessions such as “FediaProjecta1b2.TPS,”

“FediaProjecta2b1.TPS,” and “FediaProjecta2b2.TPS.”

∗Second, Add a scale factor.
Prior to imaging, a scale should be placed next to each specimen
and should appear on each photograph. If pictures have been
taken using the same settings, one can apply the same scale factor
to all of them. If the latter has been defined at the beginning of the
digitising session, ‘tpsDig2’ automatically carries the same scale
factor to all pictures.

(1) Open a picture containing a scale. Set up the factor that
converts pixels in the desired units. In the tool bar, click
on “Image Edit Tools,” select the “Measure” tab. In the
“Scale factor” section, select the appropriate reference and
unit. Then, click “set scale.” Digitise the starting and ending
points of the graduation of the scale in the picture that
define a given length in pixels corresponding to the unit
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FIGURE 5 | Workflow for shape analysis of bilateral object symmetry in F. graciliflora (case study 1). (A) First, an original configuration is considered, then a reflected

copy is generated and relabelled with the landmarks that are mirror images of each other with respect to the axis (or plane) of symmetry are mutually swapped

(paired landmarks) while the ones that lie on the symmetry axis are mapped onto themselves (unpaired landmarks). A Generalised Procrustes Analysis is applied to

this doubled dataset to extract shape data (Procrustes coordinates) by removing extraneous information of size, location and orientation via a least-squares criterion.

The mean shape (consensus) is symmetric. (B) MorphoJ’s implementation of bilateral object symmetry automatically separates a component of symmetric variation

(i.e., variation among flowers) from the asymmetry (i.e., variation within flowers or between left and right sides of flowers). Consequently, separate PCAs are run on

the covariance matrix of the Procrustes coordinates for each component to quantify and display their patterns of shape changes, but do not indicate how much

these PCs account for the total amount of shape variation. For each component, percentages of variance for which the PCs account are reported and the first 2 PCs

and displayed. The outline drawings of flowers show shape changes associated with each PC from the overall average shape (dotted outline and open circles) for

PC1 and PC2 scores of +0.1 (solid black outline with gray background and solid black circles). Note that these outline drawings are an interpolated form of display

from the real landmarks based on the thin-plate spline method that makes it easier to visualise shape changes. This means that the interpretable information is from

the positions of the landmarks, not from the outline drawings. (C) A PCA applied on the same superimposed already doubled dataset obtained via function ‘C1v’

unambiguously separates these components of shape variation and indicates how much their associated PCs account for the total variance. The first two PCs of

each component are displayed. The outline drawings are generated as in (B).

determined earlier. For instance, choose “1 millimetre” and
click “Ok” to record this conversion factor. Alternatively,
there is an option in ‘tpsUtil’ to define a scale factor after all
pictures have been taken. To add this scale factor afterward,
open the ‘.TPS’ file with ‘tpsUtil’ and use “add variable.”
Simply enter “scale=” in “variables” and the value of the
scale in the value tab. This conversion factor will be applied
to all specimens listed in the ‘.TPS’ file.

∗Third, digitising landmarks with ‘tpsDig2.’
Before starting digitising landmarks, the user needs to define
an appropriate configuration (in 2D or 3D) that can be

localised precisely and without ambiguity on structures and easily
reproducible across specimens (e.g., intersection of veins). Others
that are less precise, but still relevant in some cases can be placed
at the maxima of curvature (e.g., petal lobe). The configuration
of landmarks should provide a decent coverage of the whole
flower and be well defined enough to efficiently capture the
overall morphology of the flower. For instance, the configuration
chosen for F. graciliflora uses landmarks placed at maxima of
curvature of petals to describe the external overall differences
among petals, but also other landmarks can be found inside the
flower at intersection between veins to pick even more internally
intricate patterns of variation (Figure 5A). A rule of thumb states
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that the total number of landmarks should be less than half or a
third of the number of individuals (respectively, in 2D and 3D) to
carry out appropriate analyses. For instance, if the user decides to
collect 15 landmarks in 2D, then a little more than 30 individuals
will be needed, otherwise there will be fewer individuals than
variables and this could lead to statistical problems. It is crucial
that all landmarks from each picture are digitised following the
same order, otherwise this will lead to a spurious superimposition
during the Procrustes fit (GPA).

(1) Open the “FediaProjecta1b1.TPS” file template previously
created in ‘tpsUtil.’ Select ‘File, Input source’ and choose
“FediaProjecta1b1.TPS.” ‘tpsDig2’ displays the first image
contained in the folder that is listed/associated with the
.TPS file template previously created and allows the user
to navigate through the rest of them. Select ‘Options’ and
activate “mouse wheel zooms” to speed up and facilitate the
digitising procedure.

(2) Start digitising landmarks by clicking on the tool bar
“Digitise landmarks,” the pointer of the mouse will take
the appearance of a target symbol and use mouse left
click to digitise landmarks. Landmarks can be edited (e.g.,
shifted and deleted) at any time by opening a menu with
mouse right click. At the bottom of the window is displayed
information related to the specimen ID, scale, etc. Once a
specimen is digitised, simply click on the arrow pointing
toward the right in the menu bar to go to the next one.
There is a possibility to use a “template mode” that copies
a given configuration of landmarks across all pictures.
This is convenient if the biological variation among
pictures is subtle so that it causes minimum landmark
adjustment across specimens (see ‘tpsDig2’ documentation
for further information about this procedure).When saving
the file, choose “save data,” name the file as a ‘.TPS’
file and click “save,” this brings you back to ‘tpsDig2’
and select “overwrite” to save the current version of
the data.

∗Fourth, compile all .TPS files into a single one

The ‘.TPS’ files containing landmark coordinates from all imaging
and digitising sessions need to be compiled into a single file.
In ‘tpsUtil,’ select “Append files” to produce a compiled file
and name it “FediaProjectCompiled.TPS.” Then, this file needs
to be converted as an “.nts” file that will be later imported
in MorphoJ for further analyses. In ‘tpsUtil,’ select “convert
tps/nts coordinates file.” Select the ‘.TPS’ file that needs to be
converted in “Input” (“FediaProjectCompiled.TPS”) and then
select “Output” and give a name to the ‘.nts’ file that needs
to be created (“FediaProjectCompiled.NTS”). Click “Create.” In
“options,” tick “use scale factor” to convert the pixel coordinates
into standard units of measurements via the scale factor that
has been previously defined. In “No. dimensions,” select 2D
landmarks. In “NTS and CSV labels” select “Image name.” There
will be a preview at the bottom of the window that specifies the
file to be created with the number of specimens and number
of landmarks. Click “Create.” The newly created “.nts” file has
the coordinates scaled and carries information about the labels

defined for each picture. Thereafter, these labels can be read
in MorphoJ or any related morphometric software to create
classifiers or factors (e.g., population, weight, length, etc.) for
further analyses.

Throughout this study, I will use MorphoJ for all analyses
(Klingenberg, 2011). All procedures can also be carried out
with the ‘tps’ suite of software, as well as other morphometrics-
based R (R Core Team, 2018) packages such as ‘geomorph,’
‘shapes,’ ‘Morpho,’ and ‘Momocs’ (Dryden and Dryden, 2012;
Adams and Otárola-Castillo, 2013; Bonhomme et al., 2014;
Schlager, 2017). MorphoJ is preferred to R packages or
other software since it is probably the easiest standalone
software to use. In addition, the graphical user interface is
simple and clear and one can quickly run several analyses
and generate fully customised graphs that can be exported
as images or vectorised figures. Analyses of bilateral object
symmetry are fully implemented, but not for more complex
types of symmetry that are often found in flowers. Beyond
bilateral symmetry, other solutions are needed and the R
platform is suitable for this task. This is why I opt to
operate data treatment for complex symmetry in R and use
MorphoJ to analyse and visualise patterns of morphological
variation.

DATASET PREPARATION AND
STATISTICAL SHAPE ANALYSIS OF
BILATERAL SYMMETRY
(ZYGOMORPHY), TWO
PERPENDICULAR AXES OF SYMMETRY
(BI- OR DISYMMETRY), ROTATIONAL
SYMMETRY ONLY, AND BILATERAL
SYMMETRY COMBINED WITH
ROTATIONAL SYMMETRY
(ACTINOMORPHY) IN FLOWERS

Case Study 1: Bilateral Object Symmetry
in F. graciliflora (Symmetry Group C1v)
Data

I use wild-type flowers of F. graciliflora Fisch. and Meyer
(Valerianaceae) as a case study (for details about rearing
protocols, see Berger et al., 2017). F. graciliflora are fairly
flat flowers with no visible veins, thus prior to any picture
being taken they were immersed in a solution of 70% ethanol
to reveal their venation system (Figure 4C). After the veins
have been revealed, 30 flowers were photographed at the
same magnification with a Lumenara camera (Model Infinity2-
1C-ACS) mounted to a Zeiss Stemi-2000-C stereomicroscope.
For each photograph, a configuration of 21 landmarks was
acquired in two dimensions (Figure 5A) using tpsDig2 version
2.17. These landmarks are at the points of intersection
between primary and secondary veins (Landmarks Type I)
or at the maximum of curvature on the external outline
of the flower (Landmarks Type II). Each picture was taken
twice and each configuration of landmarks was digitised
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twice to test for measurement error due to imaging and
digitising.

Bilateral Object Symmetry Analysis With MorphoJ

Fedia graciliflora flowers show a clear example of bilateral object
symmetry also termed zygomorphy with the vertical axis of
symmetry separating the dorsal petals and running through
the ventral petal (described by landmarks 2, 7, 11, 13, and 19;
Figure 5A).

Load the “FediaProjectCompiled.NTS” file in MorphoJ via
“File – New Project,” name the project, then select “File-Create
New Dataset.” This prompts a window to open in which the
user selects the dimensionality of the data (select “2 dimensions”)
and whether or not the data contains object symmetry (select
“yes”), name the dataset (“FediaProjectCompiled.NTS”), and
select the file type “NTSYSpc,” the name of the selected file
appears in the field “File.” Click “Create Dataset.” The dataset
is created and automatically contains all original configurations
of landmarks with their reflected and appropriately relabelled
copies. Create classifiers in the menu “Preliminaries” and choose
“Extract new classifier from ID strings.” A new window appears
in which a name for a new classifier can be entered. Create
three classifiers for “Individual,” “Imaging,” and “Digitising” by
entering a name for each of them. Then, the user needs to select
the string of characters that corresponds to the length of a given
classifier from the original identifier. For instance, the classifier
for “Individual” that needs to be extracted from the identifier
“Fedia01a1b1.jpg” should only comprise characters between the
first and seventh digit which corresponds to “Fedia01.” This
classifier for “Individual” can be extracted by entering “1” in
the field for the first character and “7” in the field for the
last character (reading from left to right). Follow the same
procedure, by entering “8” and “9” to create the classifier
“Imaging,” and “10” and “11” to define the classifier “Digitising.”
Alternatively, one can also import already predefined classifiers
created outside of MorphoJ as a separate file (see the MorphoJ
on-line documentation for further details).

At this stage it is recommended to cheque for possible outliers
before going into further analyses. Click “Preliminaries” and
select “Find outliers.” This opens a tab in which the list of
configurations is available and one can see the deviations of
each configuration from the consensus. This is a quick way
to identify aberrant configurations in the dataset. Outliers are
often produced as a consequence of high measurement error
or mislabelling of landmarks. After the search for outliers
is completed and the data have been fixed, they can be
superimposed by a GPA. To do so, click “Preliminaries”
and select “New Procrustes Fit.” This prompts a window
asking how the data should be presented. Select the default
choice “align by principal axes” and click “Perform Procrustes
fit.” A new tab appears representing the coordinates for the
consensus (large blue dots) and the deviation around it that
is symbolised by the superimposed configurations (small blue
dots). At this point, MorphoJ has automatically separated the
component of symmetric variation from the component of
asymmetry and one can run analyses such as PCA on either
component.

The components of symmetric variation and
asymmetry can be exported by clicking on the dataset
containing the superimposed Procrustes coordinates
(“FediaProjectCompiled.NTS”), and by selecting “File” in
the menu, then “Export Dataset.” The user is able to save the
raw coordinates, the centroid sizes, and the superimposed
coordinates for the symmetric component and asymmetry.
This is useful if one wants to analyse these data with a different
software.

PCA of bilateral object symmetry

To visualise the patterns of shape changes for each component,
select “Preliminaries” and select “Generate Covariance Matrix,”
the dataset which contains the superimposed Procrustes
coordinates should be already selected, thereafter the user has the
choice to select either the symmetric component or asymmetry.
Select both components and click “Execute” without ticking
the box “Pooled within-group covariances.” This generates the
corresponding covariance matrices for each component and their
patterns of variation are visualised via PCA by selecting “PCA” in
the “Variation” menu. This creates a “Graphics” tab with three
subtabs: “PC shape changes” that gives the patterns of shape
variation for every PC (a right click on this tab gives access to
several graphical options – Select “Change the Type of Graph”
and choose “Warped Outline Drawing”), “Eigenvalues” (amount
of variance explained by each PC) and “PC scores” (visualisation
of individuals in the shape space). A “Results” tab is also produced
that reports the results from the PCA (i.e., eigenvalues and PC
coefficients).

Allometry

To test for allometry (i.e., influence of size on shape), a
multivariate regression of the Procrustes coordinates onto
centroid size is used by clicking on the original data set, then
selecting “Regression” in the “Variation” menu (Klingenberg,
1996, 2016; Monteiro, 1999). In both left and right parts of the
“Datasets” field, select the dataset “FediaProjectCompiled.NTS,”
then in the left part of the field “Datamatrices” select, for instance,
the symmetric component “FediaProjectCompiled.NTS,
symmetric component” and “FediaProjectCompiled.NTS,
centroid size” in the right part of this field. In the field
“Variables,” the user has the symmetric component in the left
part and can choose between “Centroid Size” or “Log Centroid
Size” in the right part. Tick the box “Perform permutation test”
and select the number of rounds (e.g., 10,000). The option
“Pooled regression within subgroups” is not needed here. Repeat
the same procedure for the asymmetry if needed.

Measurement error

Select “File-Create New Dataset,” select “2 dimensions”
and for object symmetry (select “no”), name the dataset
(“FediaOriginal”), and select the file type “NTSYSpc,” the name
of the selected file appears in the field “File.” Click “Create
Dataset.” The dataset is created and contains all original
configurations of landmarks only. Click on the newly generated
dataset “FediaOriginal” then select “Variation” and go to
“Procrustes ANOVA.” This will prompt a new window in which
you can name the analysis and enter the main effects for your
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design that correspond to the classifiers previously created.
Enter the classifier corresponding to “Individual,” Error 1 is the
“Imaging” classifier and Error 2 is the “Digitising” classifier. Click
“Execute.” This will create a results tab and covariance matrices
for each effect in the project tree. Select all the covariance
matrices (hold shift + left click). Go to the “Variation” menu and
select “PCA” and run a PCA on each of the previously selected
covariance matrices to visualise the corresponding patterns of
shape changes for each effect.

Results From MorphoJ

PCA

There was a significant effect of size on shape for the symmetric
(P-value < 0.0001), but not for the asymmetric component (P-
value = 0.22). The regression of shape on centroid size accounted
only for 7.61% and 1.16 % of total shape variation, respectively.
Since allometry was very subtle for the component of symmetric
variation, one can decide whether or not further analyses need to
be carried on the residual component of the regression of shape
on centroid size (Klingenberg, 1996, 2016; Monteiro, 1999).

The PCA on the symmetric component of shape variation
reveals that adaxial petals show major displacements away from
the axis of symmetry for PC1 (35.97% of variance), while PC2
exhibits reduction of adaxial petals and enlargement of abaxial
ones (23.57% of variance). The PCA for the asymmetry suggests
that all petals tend to bend in the overall same direction toward
the right indicated by PC1 (60.45% of variance), adaxial petals
do not exhibit much variation whereas abaxial petals show a
preferential shift toward the right as opposed to the ventral petal
as seen in PC2 (13.31% of variance) (Figure 5B).

Note that MorphoJ automatically separates the component
of symmetric variation from the component of asymmetry,
which means that when one runs a PCA on either component
one cannot quantify how much variance is represented by
these components with respect to the total amount of shape
variation. Alternatively, a dataset already containing all original
configurations and their reflected relabelled copies can be
prepared outside of MorphoJ by using the R function ‘C1v’
(i.e., named after the Schoenflies notation of bilateral symmetry).
A GPA of this imported dataset followed by a PCA will allow
the user to determine how much variance is represented by
the symmetric and asymmetric components with respect to the

total amount of shape variation (see the Section “Bilateral Object
Symmetry Analysis With R Using Function ‘C1v’).

Measurement error

The ANOVAs for centroid size and shape both reveal that the
“Individual” main effect is highly significant (P < 0.0001), which
means that the variation among flowers greatly exceeds the
measurement error due to “Imaging” and “Digitising” (Table 1).
The F-ratio for this effect indicates that the variation among
flowers is almost 220 and 40 times larger than the measurement
error due to imaging, respectively, for size and shape. The
“Imaging” error term is significant (P < 0.001), which means
that the imaging error is larger than the error due to digitising
(nearly three times and twice larger according to the F-ratio for
this effect, respectively, for size and shape). These results suggest
that the biological variation at the population level largely exceeds
all sources of measurement error due to imaging and digitising in
my sample (Table 1).

Bilateral Object Symmetry Analysis With R Using

Function ‘C1v’

As previouslymentioned,MorphoJ does not give access to the full
dataset made of all original configurations with their transformed
and relabelled copies (see the Section “PCA”). Consequently,
the user can carry out analyses on either the symmetric or
asymmetric component of variation, but cannot quantify how
much these components account for the total amount of shape
variation. The solution is to import a prepared dataset that
already contains the original configurations with the reflected
relabelled copies. Here, I use the R function ‘C1v’ which applies
bilateral object symmetry to a dataset containing all original
configurations (Figure 5A and Supplementary Material). This
function needs to be loaded in R prior to its use and must
be applied to a two column matrix for 2D landmarks and a
three column matrix for 3D landmarks containing the landmark
coordinates only and that are arranged according to this
sequence, respectively, x1, y1, x2, y2,. . . , xn, yn and x1, y1,
z1, x2, y2, z2,. . . , xn, yn, zn. In addition, a “coFed.txt” file or
object containing the relabelling information of landmarks for
the reflected copy only needs to be created by the user so that
it appropriately swaps the labels of the corresponding landmarks
in the reflected copy (see “reflected relabelled copy” in Figure 5A,
and “coFed.txt” file in SupplementaryMaterial) and loaded in R.

TABLE 1 | ANOVAs for measurement error for size and shape for case study 1: F. graciliflora.

Procrustes ANOVA

Effect SS MS df F P

Flower (variation among flowers) 0.81969197 0.0007438221 1102 40.68 <0.0001

Imaging (error due to taking images) 0.02084678 0.0000182866 1140 1.91 <0.0001

Digitising (error due to digitising landmarks) 0.02186079 0.0000095881 2280

Centroid size ANOVA

Flower (variation among flowers) 97.586684 3.365058 29 220.16 <0.0001

Imaging (error due to taking images) 0.458534 0.015284 30 2.80 0.0004

Digitising (error due to digitising landmarks) 0.328056 0.005468 60

SS, sum of squares; MS, mean square; Df, degrees of freedom; F, F-value; P, P-value.

Frontiers in Plant Science | www.frontiersin.org 13 October 2018 | Volume 9 | Article 1433

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Savriama Morphometrics Guide for Floral Symmetry

In this case, this ‘coFed’ element should be generated as a single
column. ‘C1v’ generates copies of all original configurations of
landmarks and add them right after the matrix containing the
original ones, then these copies are reflected with an appropriate
relabelling of the landmarks indicated by the ‘coFed’ matrix
producing a new doubled dataset with the first column containing
the new identifiers as follows:

Ind001_a1b1_ori_Cn00
Ind001_a1b2_ori_Cn00
Ind001_a2b1_ori_Cn00
Ind001_a2b2_ori_Cn00
Ind001_a1b1_ref_Cn00
Ind001_a1b2_ref_Cn00
Ind001_a2b1_ref_Cn00
Ind001_a2b2_ref_Cn00

Reading from left to right, where ‘Ind001’ denotes the specimen,
‘a’ is the image and ‘1’ or ‘2’ is the repeat for a given imaging
session, ‘b’ is the digitising and ‘1’ or ‘2’ refers to the repeat,
‘ori_Cn00’ denotes “reflection not applied (“ori”) and rotation
not applied (“Cn00”) and therefore represents the original
configuration only, ‘ref_Cn00’ denotes “reflected relabelled copy
and no rotation applied” that is the reflected relabelled copy about
the vertical left–right axis only.

The procedure to import and analyse this doubled dataset
“RefRelabFedia.txt” in MorphoJ is the same as described in the
Section “Bilateral Object Symmetry Analysis With MorphoJ”
except that the user has to specify that there is no object symmetry
in the data while importing them and the “text” file format
must be selected. Thereafter, a GPA is performed on this dataset
containing all original and reflected relabelled copies. A PCA
on the total covariance matrix yields PCs either with symmetric
or asymmetric shape changes. One can visually identify them
by looking at their associated shape changes and subsequently
group them according to specific categories of shape variation or
inspecting specific patterns exhibited in the values and signs of
the PC scores (see the Sections “Flowers With Object Symmetry
Have a Special Mathematical Property” and “Analyses of Flowers
With Object Symmetry Leads to Complex Structures in PCA
Scatterplots” for details).

If one is only interested in carrying out analyses on the
component of symmetric variation (i.e., variation among flowers)
and wants to discard the asymmetry, one can calculate it
by simply clicking on “Preliminaries” and selecting “Average
Observations By,” then pick the appropriate dataset, select
“Average by” and choose the classifiers corresponding to
“Individual” or equivalent, with “all Data types” remaining
selected. Click “execute.” This creates a new dataset with the
same name as the original dataset with the extension “averaged”
added to it. To visualise the patterns of morphological variation
associated with this component, simply select this newly created
dataset and go to “Preliminaries” then “Generate Covariance
Matrix,” then go to “Variation” and choose “PCA.” See the Section
“PCA of Bilateral Object Symmetry” for details regarding the
output of this analysis. Measurement error due to imaging and

digitising can be assessed via the procedure described in the
Section “Measurement Error.”

Results From R Using Function ‘C1v’

The PCA of the doubled dataset generated by the ‘C1v’ function
yields 38 PCs. These PCs belong to two distinct categories of
shape variation each containing 19 PCs. The number of PCs
associated with either category of shape change is equally divided
between these two classes for bilateral object symmetry due to
geometric constraints imposed by the GPA (Mardia et al., 2000;
Klingenberg et al., 2002). As an example, two PCs of each class of
shape variation are shown (Figure 5C).

The first category of shape variation includes PCs that describe
entirely asymmetric shape changes with respect to reflection
about the left–right axis. For instance, PC1 exhibits shape changes
with all petals bending toward either the left or right side, and
PC9 shows opposite shifts of the left and right abaxial petals while
the adaxial petals show much less variation in comparison. The
19 PCs of this category of shape variation represent 49.04% of the
total variance.

The second category of shape variation includes PCs that
describe fully symmetric shape changes with respect to reflection
about the vertical left–right axis (i.e., zygomorphy). For instance,
PC2 represents shape changes describing petal movements away
from the vertical axis of symmetry while the ventral petal shows
more subtle variation (in the positive direction), as opposed to
PC5 that shows shape variation associated to a reduction of the
overall size of the abaxial petals, by contrast to the adaxial petals,
and an elongation of the ventral petal (in the positive direction).
The 19 PCs of this category of shape variation represent 50.96% of
the total variance. Recently, the non-model F. graciliflora flowers
was used in a study combining geometric morphometrics and
Virus Induced Gene Silencing (VIGS) to quantify the phenotypic
effects of knocking down a single CYC2 paralog, FgCYC2A, as
well as the reporter gene, FgANS in symmetry of flowers (Berger
et al., 2017). For a full step-by-step guide regarding all analyses
carried in this case study, see Supplementary Material.

Case Study 2: Decomposition of Corolla
Shape Variation in E. mediohispanicum

Flowers With Two Axes of Bilateral
Symmetry (Bi-or Disymmetry), Equivalent
to Reflection and Rotation of Order 2 (by
180◦) (Symmetry Group C2v)
Data

The dataset was used in previous publications and for which
32 landmarks were digitised per flower, either at the points of
intersection of primary and secondary veins with the petal margin
or at the base of petals (for details, see Gómez et al., 2006;
Savriama et al., 2012). Single digital photographs of 193 flowers
from a unique wild population were taken.

Methods and Analyses

Because this flower as well as many other botanical systems
possess complex symmetry (two perpendicular axes), this case
study raises the issue on how one should analyse such structures.
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For instance, one can simply analyse bilateral object symmetry
with respect to the centre of the flower (Figure 6A), or either
axis of symmetry (Figures 6B,C), or only rotational object
symmetry (Figures 6D,E), or both reflection and rotational
object symmetry (Figure 6F). In this example, I already know
that E. mediohispanicum flowers exhibit a wide range of
different types of symmetry within a single wild population:
bi- or disymmetry (symmetric with respect to any axis of
symmetry), zygomorphy (symmetric regarding the left–right
symmetry axis, but asymmetric about the adaxial–abaxial
symmetry axis), actinomorphy (asymmetric to any axis of
symmetry, but symmetric according to two successive reflections
across both axes or equivalently to rotations by 180◦), and
left–right asymmetry (symmetric regarding the adaxial–abaxial
symmetry axis, but asymmetric about the left–right symmetry
axis) (Figure 6G). Therefore, object symmetry applied for the
analysis of these flowers should take into account their complete
symmetry group.

In this example, four transformed relabelled copies are needed
per configuration: the original configuration (i.e., identity), a
reflected copy about the vertical left–right axis, a reflected copy
about the horizontal adaxial–abaxial axis, and a copy generated
by two successive reflections about both axes (equivalent to a
rotated copy by 180◦) (Figure 6H).

First, the file “ErysimumRawData.TPS” is imported in R
using the function ‘readland.tps’ and converted into a regular
2D data matrix with the function ‘two.d.array’ (both from
the ‘geomorph’ package). Then, the “coEryLR.txt” file or object
containing information about the relabelling of landmarks for
reflection about the vertical left–right axis is imported. The
reflected relabelled copies about the vertical left–right axis are
generated first using the function ‘C1v,’ then the “coEryAdAb.txt”
file or object containing information about the relabelling of
landmarks for reflection about the horizontal adaxial–abaxial axis
is imported. The reflected relabelled copies about the horizontal
adaxial–abaxial axis as well as the transformed relabelled copies
following two successive reflections (equivalent to rotation by
180◦) are generated using the function ‘C1v’ a second time on the
data previously generated by the first round. The newly produced
dataset has the first column containing the new identifiers as
follows:

001_ori_ori
001_ref_ori
001_ori_ref
001_ref_ref

Reading from left to right, where ‘001’ denotes the specimen,
‘ori_ori’ denotes “original and reflection not applied” and
therefore represents the original configuration only, ‘ref_ori’
denotes “reflected relabelled copy” that is the reflected relabelled
copy about the vertical left–right axis only, ‘ori_ref ’ stands for
“reflected relabelled copy” that is the reflected relabelled copy
about the horizontal adaxial–abaxial axis only, and ‘ref_ref ’
represents “reflected relabelled copy about both perpendicular
axes or equivalently as rotation of order 2 (by 180◦).”

Given that two successive reflections about these
perpendicular axes are equivalent to rotation by 180◦, an
alternative solution also exists to generate the required
transformed relabelled copies using the “coEry.txt” file. In
this case, the reflected relabelled copies are generated first using
the function ‘C1v,’ then these copies are further duplicated
with an appropriate relabelling of landmarks according to each
successive rotation using function ‘Cn’ (i.e., named after the
symmetry group of rotational symmetry in Schoenflies notation)
in a new dataset with the first column containing the new
identifiers as follows:

001_ori_Cn00
001_ref_Cn00
001_ori_Cn01
001_ref_Cn01

Reading from left to right, where ‘001’ denotes the specimen,
‘ori_Cn00’ denotes “reflection not applied (“ori”) and rotation
not applied (“Cn00”) and therefore represents the original
configuration only, ‘ref_Cn00’ denotes “reflected relabelled copy
and no rotation applied” that is the reflected relabelled copy about
the vertical left–right axis only, ‘ori_Cn01’ stands for “reflection
not applied, but rotation applied (by 180◦)” that is the rotated
relabelled copy only, ‘ref_Cn01’ represents “reflected relabelled
copy and rotation applied (by 180◦) that is the reflected relabelled
copy about the horizontal left–right axis.”

In both solutions presented above, the procedure to import
and analyse either “EryRefRefRelab.txt” or “EryRefRotRelab.txt,”
which already contains all original and their transformed
relabelled copies, in MorphoJ is the same as described in the
Section “Bilateral Object Symmetry Analysis With R Using
Function ‘C1v’.” A single GPA on this dataset is carried in
MorphoJ. A PCA separates out the different components of
symmetric and asymmetric variations in the data. These different
components can be isolated and grouped together into the same
categories that account for the same shape changes [see the
Section “Flowers With Symmetric, but Physically Connected
Petals (Object Symmetry)”].

Results

Here is a summary of the results that were already published in
Savriama et al. (2012). The PCA of the full dataset yields 60 PCs.
These PCs can be unambiguously allocated to four categories
of shape variation, with each of them containing 15 PCs (the
number of PCs associated with either class of shape change
is equally divided among them in this particular case). As an
example, the first two PCs of each class of shape variation are
shown in Figure 6I.

The first category of shape variation includes PCs that describe
entirely symmetric shape changes with respect to reflection about
the left–right axis, the horizontal adaxial–abaxial axis, and two
successive reflections about both axes (equivalent to rotations by
180◦). For instance, PC1 exhibits shape changes describing shifts
between generally rectangular and square flowers. The 15 PCs
of this category of shape variation represent 49.23% of the total
variance.
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FIGURE 6 | What is the biological repeated unit of interest in complex floral symmetry and how one should determine it? The case of E. mediohispanicum as an

example. (A–F) Crucifers are symmetric with respect to two perpendicular axes of symmetry and several interpretations are possible concerning the identification of

floral module(s) that generate the symmetry group of interest (indicated in parentheses). (A) Rotations by 90◦ (C4). (B) Reflection about the vertical left–right axis of

(Continued)
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FIGURE 6 | Continued

either Adaxial-abaxial right or left petals (C1v ). (C) Reflection about the horizontal adaxial–abaxial axis of either adaxial left–right petals or their abaxial equivalent

(C1h). (D) Rotation by 180◦ about the centre of the flower of adaxial left–right petals or their abaxial (C2). (E) Rotation by 180◦ about the centre of the flower of

adaxial–abaxial right petals or their left counterparts (C2). (F) Reflection combined with rotations by 180◦ (C2v ). (G) The correct symmetry group was determined

according to the well-known and in depth study of natural variation occurring in this flower which exhibits a wide range of different types of symmetry and

corresponds to (F). (H,I) Workflow for shape analysis of E. mediohispanicum flowers with two perpendicular axes of bilateral symmetry or bilateral symmetry

combined with rotational symmetry of order 2 (by 180◦) (case study 2). Credit: photograph courtesy of J. M. Gómez (Universidad de Granada, Spain). (H) First, an

original configuration is considered, then all transformed relabelled copies in the symmetry group are produced either with function ‘C1v’ applied twice or after

combining functions ‘C1v’ and ‘Cn.’ A GPA is applied to this dataset. The mean shape (consensus) is symmetric. (I) A PCA unambiguously separates the four

components of shape variation and indicates how much their associated PCs account for the total variance. The first PC of each component is displayed. The outline

wireframes of flowers show shape changes associated with each PC from the overall average shape (gray outline and open circles) for PC1 scores of –0.1 and +0.1,

and for PC2 scores of –0.1 and +0.1 (solid black outline with coloured background and solid black circles). A scatterplot of the PC scores for PC1 and PC2 shows a

distribution that is symmetric under reflection only. Each point in the plot corresponds to transformed copies of a given flower’s configuration of landmarks.

The second category of shape variation includes PCs that
describe asymmetric shape changes regarding reflection
with respect to the horizontal adaxial–abaxial axis, but
symmetric according to reflection about the left–right axis
(i.e., zygomorphy). For instance, PC2 represents shape changes
describing petal movements away from the vertical axis of
symmetry for the adaxial compartment, while the opposite is
happening for the abaxial unit (in the positive direction). The 15
PCs of this category of shape variation represent 22.77% of the
total variance.

The third class of morphological variation is related to shape
changes that are asymmetric regarding the left–right axis, but
symmetric relative to the adaxial–abaxial axis. For example, PC3
exhibits shape changes with all petals bending toward either the
left or right side. The 15 PCs of this category of morphological
variation account for 18.15% of the total variance.

The fourth and last class of morphological variation contains
PCs associated with shape changes that are asymmetric regarding
either axis of bilateral symmetry, but symmetric relative to
rotations by 180◦ about the centre located at the intersection
of these axes. For instance, PC5 corresponds to shape changes
that show alternate and opposite expansions and simultaneous
reductions of petals facing each other in their diagonal
counterparts. The 15 PCs of this ensemble of morphological
changes together sum up to 9.85% of the total variance.

A scatterplot of the scores for PC1 vs. PC2 shows
a distribution that has bilateral symmetry with respect to
the horizontal axis. This is because the PC1 represents
completely symmetric shape changes while PC2 is associated
with symmetric shape changes with respect to the left–right
axis only (see the Sections “Flowers With Object Symmetry
Have a Special Mathematical Property” and “Analyses of
Flowers With Object Symmetry Leads to Complex Structures
in PCA Scatterplots”). This approach has been used to test
the hypothesis suggested by developmental genetic studies of
symmetry in plants that adaxial–abaxial asymmetry in crucifers
is more easily generated in floral development than left–right
asymmetry and should be more abundant (Savriama et al.,
2012) and examine in deeper detail the drastic morphological
changes associated with shift from outcrossing to selfing
(Carleial et al., 2017). For a full step-by-step guide regarding
all analyses carried in this case study, see Supplementary

Material.

Case Study 3: Decomposition of Corolla
Shape Variation in Vinca minor

(Apocynaceae) Flowers With Rotational
Symmetry of Order 5
(Symmetry Group C5)
Data

I analysed a simulated dataset of 11 landmarks in 2D for 30
individual pinwheel flowers with a small amount of independent
and isotropic variation around each landmark. The original
configuration of landmarks from which the data were simulated
was acquired on a single digital photograph (Figure 7A).

Methods and Analyses

In this example, five transformed relabelled copies are needed per
configuration: the original configuration (i.e., identity), a rotated
copy by 72◦ (1∗2pi/5), a rotated copy by 144◦, a rotated copy by
216◦, and a rotated copy by 288◦ (Figure 7A).

First, the file “VincaRawSimul30.txt” is imported in R using
the function ‘read.table.’ Then, the “coVin.txt” file or object
containing information about the relabelling of landmarks
for rotation is imported. This “coVin” element needs to
be created by the user so that it appropriately swaps the
labels of the corresponding landmarks in the successive copies
according to each rotation (see Figure 7A, and “coVin.txt” file
in Supplementary Material). The columns in ‘coVin’ should
contain the relabelling information regarding the successive
rotations. The rotated relabelled copies are generated using
function ‘Cn’ in a new dataset with the first column containing
the new identifiers as follows:

ind1_Cn00
ind1_Cn01
ind1_Cn02
ind1_Cn03
ind1_Cn04

Reading from left to right, where ‘ind1’ denotes the specimen,
‘Cn00’ denotes “rotation not applied or rotation by 360◦ applied”
and therefore represents the original configuration only, ‘Cn01’
stands for “rotation applied (by 72◦)” that is the rotated relabelled
copy only, ‘Cn02’ stands for “rotation applied (by 144◦)” that
is the rotated relabelled copy only, ‘Cn03’ stands for “rotation
applied (by 216◦)” that is the rotated relabelled copy only,
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FIGURE 7 | Workflow for shape analysis of the pinwheel V. minor with rotational symmetry of order 5 (by 72◦) (case study 3). (A) First, an original configuration is

considered, then all transformed relabelled copies in the symmetry group are produced with function ‘Cn.’ A GPA is applied to this dataset. The mean shape

(consensus) is symmetric. (B) A PCA unambiguously separates the two components of shape variation and indicates how much their associated PCs account for

the total variance. The first two PCs of each component was displayed. The shape changes for pairs of PCs with equal eigenvalues are totally asymmetric. The

outline soft wireframes of flowers are as in Figure 6. A scatterplot of the PC scores for the first two PCs shows a distribution that is symmetric under rotation of order

5. Each point in the plot corresponds to transformed copies of a given flower’s configuration of landmarks. Credit: photograph by Beentree, distributed under a

Creative Commons Attribution-Share Alike 3.0 Unported licence.

‘Cn04’ stands for “rotation applied (by 288◦)” that is the rotated
relabelled copy only.

The procedure to import and analyse this dataset,
which already contains all original and their transformed
relabelled copies, in MorphoJ is the same as described in the
Section “Bilateral Object Symmetry Analysis With R Using

Function ‘C1v’.” A single GPA on this dataset is carried in
MorphoJ.

Results

A PCA on the covariance matrix of the Procrustes tangent
coordinates obtained from the “VincaRawSimul30.txt” dataset

Frontiers in Plant Science | www.frontiersin.org 18 October 2018 | Volume 9 | Article 1433

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Savriama Morphometrics Guide for Floral Symmetry

yields 18 PCs. Of these PCs, many occur as pairs and each
PC of a pair, taken separately, represent shape changes that are
totally asymmetric (see the Section “Flowers With Symmetric,
but Physically Connected Petals (Object Symmetry)” for details).
There are eight pairs of them that represent 91.5% of variance.
The other two remaining PCs show shape changes that are
completely symmetric with respect to rotation of order 5 (by
72◦) accounting for 8.5% of total variance. A scatterplot of the
PC scores for the pairs of PCs with equal eigenvalues shows a
distribution of the scores that has rotational symmetry of order
5 (Figure 7B). This is because PC1 and PC2 both represent
completely asymmetric shape changes with respect to rotational
symmetry of order 5 (or by 72◦) (see the Sections “Flowers
With Object Symmetry Have a Special Mathematical Property”
and “Analyses of Flowers With Object Symmetry Leads to
Complex Structures in PCA Scatterplots”). For a full step-by-
step guide regarding all analyses carried in this case study, see
Supplementary Material.

Case Study 4: Decomposition of Corolla
Shape Variation in Trillium undulatum

(Melanthiaceae) Flowers With Reflection
and Rotational Symmetry of Order 3
(Symmetry Group C3v)
Data

I analysed a dataset that contained simulated 2D configurations
of 10 landmarks for 30 individual flowers with a small amount
of independent and isotropic variation around each landmark.
The original configuration of landmarks from which the data
were simulated was acquired on a single digital photograph
(Figure 8A).

Methods and Analyses

In this example, six transformed relabelled copies are needed:
the original configuration (i.e., identity), rotated copy by 120◦,
rotated copy by 240◦, reflected copy about the vertical left–right
axis, reflected copy about the vertical left–right axis combined
with a rotation by 120◦, and reflected copy about the vertical
left–right axis combined with a rotation by 240◦ (Figure 8A).

First, the file “TrilliumRawSimul30.txt” is imported in R using
the function ‘read.table.’ Then, the “coTri.txt” file or object
containing information about the relabelling of landmarks for
reflection and rotation is imported. This “coTri” element needs
to be created by the user so that it appropriately swaps the
labels of the corresponding landmarks in the copies according
to reflection, rotations and combination of both (see Figure 8A
and “coTri.txt” file in SupplementaryMaterial). The first column
in ‘co.Tri’ should contain the relabelling information about the
reflection and the rest of the columns include the relabelling
regarding the successive rotations. The reflected relabelled copies
are generated first using the function ‘C1v,’ then these copies
as well as the original configurations are further duplicated
and transformed relabelled according to each successive rotation
using function ‘Cn.’ The newly produced dataset has the first
column containing the new identifiers as follows:

ind1_ori_Cn00
ind1_ref_Cn00
ind1_ori_Cn01
ind1_ref_Cn01
ind1_ori_Cn02
ind1_ref_Cn02

Reading from left to right, where ‘001’ denotes the specimen,
‘ori_Cn00’ denotes “reflection not applied (“ori”) and rotation
not applied (“Cn00”) and therefore represents the original
configuration only, ‘ref_Cn00’ denotes “reflected relabelled copy
and no rotation applied” that is the reflected relabelled copy
about the vertical left–right axis only, ‘ori_Cn01’ stands for
“reflection not applied, but rotation applied (by 120◦)” that is
the rotated relabelled copy only, ‘ref_Cn01’ represents “reflected
relabelled copy and rotation applied (by 120◦), ‘ori_Cn02’
stands for “reflection not applied, but rotation applied (by
240◦)” that is the rotated relabelled copy only, ‘ref_Cn02’
represents “reflected relabelled copy and rotation applied (by
240◦).

The procedure to import and analyse this dataset, which
already contains all original and their transformed relabelled
copies, in MorphoJ is the same as described in the Section
“Bilateral Object Symmetry Analysis With R Using Function
‘C1v’.” A single GPA on this dataset is carried in MorphoJ.

Results

A PCA on the covariance matrix of the Procrustes tangent
coordinates obtained from the “RefRotRelabTri.txt” dataset
yields 16 PCs. Of these PCs, many occur as pairs with equal
eigenvalues (Figure 8B and see the Sections “FlowersWithObject
Symmetry Have a Special Mathematical Property” and “Analyses
of Flowers With Object Symmetry Leads to Complex Structures
in PCA Scatterplots” for details). Two PCs are associated with
shape changes that are completely symmetric (bilateral symmetry
combined with rotational symmetry of order 3 or by 120◦).
Two PCs represent shape changes that are symmetric with
respect to rotation of order 3 (or by 120◦) only. There are
12 pairs of PCs and each PC of a pair, taken separately,
appear asymmetric as it is expected for flowers with rotational
symmetry of order higher than 2. A solution to unveil the
shape changes represented by each PC belonging to a pair
with equal eigenvalues is to appropriately rotate them (see
the Section “Flowers With Object Symmetry Have a Special
Mathematical Property”). This is accomplished via the R function
‘RotatePC.’ The newly rotated PCs “RotatedEvec.txt” can be
imported for visualisation in MorphoJ and are linked with the
original dataset (Figure 8B). After being appropriately rotated,
each pair of PCs with equal eigenvalues now has one of the
PC that shows shape changes that are bilaterally symmetric
(37.4% of total variance), while the other one exhibits shape
changes that are totally asymmetric (37.4% of total variance).
The PCs with single eigenvalues either represent shape changes
with reflection and rotational symmetry of order 3 (14.0% of
total variance) or rotational symmetry of order 3 only (11.2%
of total variance). A scatterplot of the scores for the pairs
of PCs with equal eigenvalues shows a distribution that is a
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FIGURE 8 | Workflow for shape analysis of T. undulatum exhibiting bilateral symmetry combined with rotational symmetry of order 3 (by 120◦) (case study 4).

(A) First, an original configuration is considered, then all transformed relabelled copies in the symmetry group are produced with functions ‘C1v’ and ‘Cn.’ A GPA is

applied to this dataset. The mean shape (consensus) is symmetric. (B) A PCA unambiguously separates the four categories of shape variation and indicates how

much their associated PCs account for the total variance. The first PC of each category is displayed. The shape changes for pairs of PCs with equal eigenvalues that

first appear as totally asymmetric are further revealed by appropriately rotating them using function ‘RotatePC.’ The outline soft wireframes of flowers are as in

Figure 6. A scatterplot of the PC scores for the first two PCs shows a distribution that is symmetric under reflection combined with rotation of order 3. Each point in

the plot corresponds to transformed copies of a given flower’s configuration of landmarks. Credit: photograph by Nicholas A. Tonelli, distributed under a cc-by-2.0

licence.
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combination of bilateral symmetry and rotational symmetry of
order 3 (or by 120◦). This is because PC1 is associated with
shape changes that are bilaterally symmetric and PC2 represent
completely asymmetric shape changes (see the Sections “Flowers
With Object Symmetry Have a Special Mathematical Property”
and “Analyses of Flowers With Object Symmetry Leads to
Complex Structures in PCA Scatterplots”). For a full step-by-
step guide regarding all analyses carried in this case study, see
Supplementary Material.

CONCLUSION

The protocols described above provide step-by-step instructions
for the analysis of corolla shape and of its symmetries. It
unambiguously allows detecting, partitioning and quantifying
the different symmetric and asymmetric components of
morphological variation exhibited in populations of flowers,
so far mostly classified with the naked eye and typological
approaches. This set of approaches is particularly relevant for
researchers interested in flower shape variation, evolution, and
developmental biology. It is also of interest for biologists working
on (i) serial homology in leaves since plants often have repeated
organs that are arranged according to symmetric patterns, (ii)
chirality in floral organs (rotational twisted growth of structures
in a preferred direction as well as its opposite), (iii) enantiostyly
in flowers in which the style points alternatively in a preferred
direction consequently creating flowers that are mirror images of
each other.

Other methods further decompose the asymmetric variation
into fluctuating asymmetry (FA) and directional asymmetry
(DA). FA refers to small random differences among repeated
parts of individuals) that is often used as an estimate of
developmental instability (i.e., the inability of a genome to
buffer or correct for developmental perturbations) or as a tool
to infer patterns of developmental modularity and phenotypic
integration (Klingenberg, 2003). DA stands for the mean
asymmetry or population asymmetry when on average one part
or a set of parts is/are consistently more developed than the
other(s). A two-way mixed model Procrustes ANOVA has been
developed in this context (Leamy, 1984; Palmer and Strobeck,
1986; Klingenberg and McIntyre, 1998; Klingenberg et al., 2002).
This framework has been generalised for the study of any type of
symmetric structure (Savriama and Klingenberg, 2011; Savriama
et al., 2012; Savriama and Gerber, 2018), but still represents a
considerable challenge to implement due to the large diversity
and increasing complexity of designs that can be generated
according to the type of symmetry under study. Also, due
to the particular structuration of the shape tangent space for
flowers with object symmetry, Procrustes ANOVA designs pose
conceptual and statistical subtleties, as opposed to the same
approaches for flowers with matching symmetry (Savriama and
Klingenberg, 2011; Savriama and Gerber, 2018). In addition,
while the concept of ‘target phenotype’ (i.e., the phenotype
characterised by the genetic makeup of the organism and the
environmental conditions during its development) (Nijhout and
Davidowitz, 2003) is obvious for bilateral symmetry it is not

directly generalised for more complex and ambiguous types of
symmetry. Therefore, this particular approach is far beyond
the scope of this guide, while the method presented here that
uses PCA to decompose the variation according to separate
components of symmetry/asymmetry is of more general appeal
to a wider audience and has been already applied in different
botanical studies (Potapova and Hamilton, 2007; Poulíčková
et al., 2010; Savriama et al., 2010, 2012; Neustupa, 2013; Carleial
et al., 2017).

Studies combining geometric morphometrics with
developmental genetics open a wide range of new potential
applications to further understand the origins of morphological
variation in flowers and the role of symmetry/asymmetry
in the evolutionary success of angiosperms. For instance, a
newly published study coupled geometric morphometrics and
VIGS to quantify the phenotypic effects of knocking down a
single CYCLOIDEA (CYC2) paralog, FgCYC2A, as well as the
reporter gene, ANTHOCYANIDIN SYNTHASE (FgANS) in
symmetry of flowers (Berger et al., 2017). This protocol will
therefore become an essential protocol within the toolkit for
botanists.
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Miljković, D. (2015). The effects of traffic- related air pollution on the flower
morphology of Iris pumila -comparison of a polluted city area and the
unpolluted Deliblato Sands (nature reserve). Appl. Ecol. Environ. Res. 13,
405–415.

Wang, C.-N., Hsu, H.-C., Wang, C.-C., Lee, T.-K., and Kuo, Y.-F. (2015).
Quantifying floral shape variation in 3D using microcomputed tomography: a
case study of a hybrid line between actinomorphic and zygomorphic flowers.
Front. Plant Sci. 6:724. doi: 10.3389/fpls.2015.00724

Wang, P., Liao, H., Zhang, W., Yu, X., Zhang, R., Shan, H., et al. (2015). Flexibility
in the structure of spiral flowers and its underlying mechanisms. Nat. Plants
2:15188. doi: 10.1038/nplants.2015.188

Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press. doi: 10.
1515/9781400874347

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer EMC and handling Editor declared their shared affiliation.

Copyright © 2018 Savriama. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 23 October 2018 | Volume 9 | Article 1433

https://doi.org/10.1016/S0092-8674(00)81523-8
https://doi.org/10.1016/j.joen.2017.01.012
https://doi.org/10.1016/j.joen.2017.01.012
https://doi.org/10.1080/106351599260526
https://doi.org/10.1111/j.1420-9101.2010.02060.x
https://doi.org/10.5507/fot.2013.005
https://doi.org/10.1146/annurev.es.17.110186.002135
https://doi.org/10.1146/annurev.es.17.110186.002135
https://doi.org/10.1111/j.1529-8817.2007.00332.x
https://doi.org/10.1016/j.protis.2009.12.003
https://doi.org/10.2298/ABS160912086R
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/j.1467-8748.2010.01705.x
https://doi.org/10.1007/s00114-004-0537-5
https://doi.org/10.1007/s00114-004-0537-5
https://doi.org/10.1098/rspb.2003.2644
https://doi.org/10.1098/rspb.2003.2644
https://doi.org/10.1038/ncomms16047
https://doi.org/10.1101/306712
https://doi.org/10.1016/j.asd.2017.03.002
https://doi.org/10.1111/j.1469-8137.2012.04312.x
https://doi.org/10.1186/1471-2148-11-280
https://doi.org/10.1007/s00427-016-0538-3
https://doi.org/10.1007/s00427-016-0538-3
https://doi.org/10.1016/B978-0-12-810493-4.00011-0
https://doi.org/10.1016/B978-0-12-810493-4.00011-0
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1111/j.1095-8312.2005.00468.x
https://doi.org/10.1016/j.semcdb.2017.08.052
https://doi.org/10.1111/ede.12246
https://doi.org/10.1111/ede.12246
https://doi.org/10.1111/jeb.13207
https://doi.org/10.3389/fpls.2015.00724
https://doi.org/10.1038/nplants.2015.188
https://doi.org/10.1515/9781400874347
https://doi.org/10.1515/9781400874347
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry
	Introduction
	Background
	Geometric Morphometric Methods
	Visualisation and Quantification of Morphological Variation With Principal Component Analysis
	Geometric Morphometrics of Symmetry
	Definition of Symmetry
	Types of Symmetry in Flowers
	Flowers With Symmetric, but Physically Disconnected Petals (Matching Symmetry)
	Flowers With Symmetric, but Physically Connected Petals (Object Symmetry)
	Flowers with object symmetry have a special mathematical property
	Analyses of flowers with object symmetry leads to complex structures in PCA scatterplots

	What if Floral Shape Exhibits Combination of Flowers That Are Symmetric, but Themselves Arranged According to Another Symmetric Pattern (Both Matching and Object Symmetry)?


	Protocols for Imaging and Collecting Landmark Data on Flowers
	Imaging Procedures
	Measurement Error
	Image Preparation Prior to Landmarking
	Image Preparation for Flowers With Matching Symmetry
	Image Preparation for Flowers With Object Symmetry

	Landmarking With tpsDig2

	Dataset Preparation and Statistical Shape Analysis of Bilateral Symmetry (Zygomorphy), Two Perpendicular Axes of Symmetry (Bi- or Disymmetry), Rotational Symmetry Only, and Bilateral Symmetry Combined With Rotational Symmetry (Actinomorphy) in Flowers
	Case Study 1: Bilateral Object Symmetry in F. graciliflora (Symmetry Group C1v)
	Data
	Bilateral Object Symmetry Analysis With MorphoJ
	PCA of bilateral object symmetry
	Allometry
	Measurement error

	Results From MorphoJ
	PCA
	Measurement error

	Bilateral Object Symmetry Analysis With R Using Function `C1v'
	Results From R Using Function `C1v'

	Case Study 2: Decomposition of Corolla Shape Variation in E. mediohispanicum Flowers With Two Axes of Bilateral Symmetry (Bi-or Disymmetry), Equivalent to Reflection and Rotation of Order 2 (by 180) (Symmetry Group C2v)
	Data
	Methods and Analyses
	Results

	Case Study 3: Decomposition of Corolla Shape Variation in Vinca minor (Apocynaceae) Flowers With Rotational Symmetry of Order 5 (Symmetry Group C5)
	Data
	Methods and Analyses
	Results

	Case Study 4: Decomposition of Corolla Shape Variation in Trillium undulatum (Melanthiaceae) Flowers With Reflection and Rotational Symmetry of Order 3 (Symmetry Group C3v)
	Data
	Methods and Analyses
	Results


	Conclusion
	Dedication
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


