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[iZ757:3 Amendments from Version 1

This version of the workflow contains a number of improvements based on the referees’ comments. We have re-compiled
the workflow using the latest packages from Bioconductor release 3.4, and stated more explicitly the dependence on
these package versions. We have added a reference to the Bioconductor workflow page, which provides user-friendly
instructions for installation and execution of the workflow. We have also moved cell cycle classification before gene
filtering as this provides more precise cell cycle phase classifications. Some minor rewording and elaborations have also
been performed in various parts of the article.

See referee reports

Introduction

Single-cell RNA sequencing (scRNA-seq) is widely used to measure the genome-wide expression profile of individual
cells. From each cell, mRNA is isolated and reverse transcribed to cDNA for high-throughput sequencing (Stegle
et al., 2015). This can be done using microfluidics platforms like the Fluidigm C1 (Pollen er al., 2014), protocols
based on microtiter plates like Smart-seq2 (Picelli er al., 2014), or droplet-based technologies like inDrop (Klein
et al., 2015; Macosko et al., 2015). The number of reads mapped to each gene is then used to quantify its expression
in each cell. Alternatively, unique molecular identifiers (UMIs) can be used to directly measure the number of transcript
molecules for each gene (Islam er al., 2014). Count data are analyzed to detect highly variable genes (HVGs) that
drive heterogeneity across cells in a population, to find correlations between genes and cellular phenotypes, or to
identify new subpopulations via dimensionality reduction and clustering. This provides biological insights at a
single-cell resolution that cannot be achieved with conventional bulk RNA sequencing of cell populations.

Strategies for scRNA-seq data analysis differ markedly from those for bulk RNA-seq. One technical reason is that
scRNA-seq data are much noisier than bulk data (Brennecke er al., 2013; Marinov ef al., 2014). Reliable capture (i.e.,
conversion) of transcripts into cDNA for sequencing is difficult with the low quantity of RNA in a single cell. This
increases the frequency of drop-out events where none of the transcripts for a gene are captured. Dedicated steps are
required to deal with this noise during analysis, especially during quality control. In addition, sScRNA-seq data can be
used to study cell-to-cell heterogeneity, e.g., to identify new cell subtypes, to characterize differentiation processes, to
assign cells into their cell cycle phases, or to identify HVGs driving variability across the population (Fan er al., 2016;
Trapnell er al., 2014; Vallejos er al., 2015). This is simply not possible with bulk data, meaning that custom methods
are required to perform these analyses.

This article describes a computational workflow for basic analysis of scRNA-seq data, using software packages from
the open-source Bioconductor project (release 3.4) (Huber er al., 2015). Starting from a count matrix, this workflow
contains the steps required for quality control to remove problematic cells; normalization of cell-specific biases, with
and without spike-ins; cell cycle phase classification from gene expression data; data exploration to identify putative
subpopulations; and finally, HVG and marker gene identification to prioritize interesting genes. The application of
different steps in the workflow will be demonstrated on several public sScRNA-seq datasets involving haematopoietic
stem cells, brain-derived cells, T-helper cells and mouse embryonic stem cells, generated with a range of experimental
protocols and platforms (Buettner e al., 2015; Kolodziejczyk ef al., 2015; Wilson et al., 2015; Zeisel et al., 2015). The
aim is to provide a variety of modular usage examples that can be applied to construct custom analysis pipelines.

Analysis of haematopoietic stem cells

Overview

To introduce most of the concepts of scRNA-seq data analysis, we use a relatively simple dataset from a study of
haematopoietic stem cells (HSCs) (Wilson ez al., 2015). Single mouse HSCs were isolated into microtiter plates
and libraries were prepared for 96 cells using the Smart-seq2 protocol. A constant amount of spike-in RNA from
the External RNA Controls Consortium (ERCC) was also added to each cell’s lysate prior to library preparation.
High-throughput sequencing was performed and the expression of each gene was quantified by counting the total
number of reads mapped to its exonic regions. Similarly, the quantity of each spike-in transcript was measured by
counting the number of reads mapped to the spike-in reference sequences. Counts for all genes/transcripts in each
cell were obtained from the NCBI Gene Expression Omnibus (GEO) as a supplementary file under the accession
number GSE61533 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61533).

For simplicity, we forego a description of the read processing steps required to generate the count matrix, i.e., read
alignment and counting into features. These steps have been described in some detail elsewhere (Chen er al., 2016;
Love et al., 2015), and are largely the same for bulk and single-cell data. The only additional consideration is that
the spike-in information must be included in the pipeline. Typically, spike-in sequences can be included as additional
FASTA files during genome index building prior to alignment, while genomic intervals for both spike-in transcripts

Page 3 of 71


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61533

F1000Research 2016, 5:2122 Last updated: 18 JUL 2022

and endogenous genes can be concatenated into a single GTF file prior to counting. For users favouring an R-based
approach to read alignment and counting, we suggest using the methods in the Rsubread package (Liao et al., 2013;
Liao et al., 2014). Alternatively, rapid quantification of expression with alignment-free methods such as kallisto (Bray
et al., 2016) or Salmon (Patro et al., 2015) can be performed using the functions runKallisto and runSalmon in
the scater package.

Count loading

The first task is to load the count matrix into memory. In this case, some work is required to retrieve the data from the
Gzip-compressed Excel format. Each row of the matrix represents an endogenous gene or a spike-in transcript, and
each column represents a single HSC. For convenience, the counts for spike-in transcripts and endogenous genes are
stored in a SCESet object from the scarer package (McCarthy er al., 2016).

library(R.utils)

gunzip ("GSE61533 HTSEQ count results.xls.gz", remove=FALSE, overwrite=TRUE)

library (gdata)

all.counts <- read.xls('GSE61533 HTSEQ count results.xls', sheet=1, header=TRUE, row.names=1)
library (scater)

sce <- newSCESet (countData=all.counts)

dim(sce)

## Features Samples
#4 38498 96

We identify the rows corresponding to ERCC spike-ins and mitochondrial genes. For this dataset, this information can
be easily extracted from the row names. In general, though, identifying mitochondrial genes from standard identifiers
like Ensembl requires extra annotation (this will be discussed later in more detail).

is.spike <- grepl (""ERCC", rownames (sce))
is.mito <- grepl (""mt-", rownames (sce))

For each cell, we calculate quality control metrics such as the total number of counts or the proportion of counts in
mitochondrial genes or spike-in transcripts. These are stored in the pData of the SCESet for future reference.

sce <- calculateQCMetrics(sce, feature controls=list (ERCC=is.spike, Mt=is.mito))
head (colnames (pData (sce)))

## [1] "total counts" "logl0 total counts" "filter on total counts"
## [4] "total features" "loglO total features" "filter on total features"

We need to explicitly indicate that the ERCC set is, in fact, a spike-in set. This is necessary as spike-ins require special
treatment in some downstream steps such as variance estimation and normalization. We do this by supplying the name
of the spike-in set to isSpike.

library(scran)
isSpike(sce) <- "ERCC"

Quality control on the cells

Low-quality cells need to be removed to ensure that technical effects do not distort downstream analysis results. Two
common measures of cell quality are the library size and the number of expressed features in each library. The library
size is defined as the total sum of counts across all features, i.e., genes and spike-in transcripts. Cells with relatively
small library sizes are considered to be of low quality as the RNA has not been efficiently captured (i.e., converted
into cDNA and amplified) during library preparation. The number of expressed features in each cell is defined as the
number of features with non-zero counts for that cell. Any cell with very few expressed genes is likely to be of poor
quality as the diverse transcript population has not been successfully captured. The distributions of both of these
metrics are shown in Figure 1.
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Figure 1. Histograms of library sizes (left) and number of expressed genes (right) for all cells in the HSC
dataset.

par (mfrow=c(1,2))

hist (sce$total counts/le6, xlab="Library sizes (millions)", main="",
breaks=20, col="grey80", ylab="Number of cells")
hist (sce$total features, xlab="Number of expressed genes", main="",

breaks=20, col="grey80", ylab="Number of cells")

Picking a threshold for these metrics is not straightforward as their absolute values depend on the protocol and
biological system. For example, sequencing to greater depth will lead to more reads, regardless of the quality of the
cells. To obtain an adaptive threshold, we assume that most of the dataset consists of high-quality cells. We remove
cells with log-library sizes that are more than 3 median absolute deviations (MADs) below the median log-library size.
(A log-transformation improves resolution at small values, especially when the MAD of the raw values is comparable
to or greater than the median.) We also remove cells where the log-transformed number of expressed genes is 3 MADs
below the median.

libsize.drop <- isOutlier (sceStotal counts, nmads=3, type="lower", log=TRUE)
feature.drop <- isOutlier(sceStotal features, nmads=3, type="lower", log=TRUE)

Another measure of quality is the proportion of reads mapped to genes in the mitochondrial genome. High proportions
are indicative of poor-quality cells (Ilicic er al., 2016; Islam er al., 2014), possibly because of increased apoptosis
and/or loss of cytoplasmic RNA from lysed cells. Similar reasoning applies to the proportion of reads mapped to
spike-in transcripts. The quantity of spike-in RNA added to each cell should be constant, which means that the
proportion should increase upon loss of endogenous RNA in low-quality cells. The distributions of mitochondrial and
spike-in proportions across all cells are shown in Figure 2.

par (mfrow=c(1,2))

hist (sce$pct counts feature controls Mt, xlab="Mitochondrial proportion (%)",
ylab="Number of cells", breaks=20, main="", col="grey80")

hist (sce$pct counts feature controls ERCC, xlab="ERCC proportion (%)",

ylab="Number of cells", breaks=20, main="", col="grey80")

Again, the ideal threshold for these proportions depends on the cell type and the experimental protocol. Cells with
more mitochondria or more mitochondrial activity may naturally have larger mitochondrial proportions. Similarly,
cells with more endogenous RNA or that are assayed with protocols using less spike-in RNA will have lower spike-in
proportions. If we assume that most cells in the dataset are of high quality, then the threshold can be set to remove any
large outliers from the distribution of proportions. We use the MAD-based definition of outliers to remove putative
low-quality cells from the dataset.
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Figure 2. Histogram of the proportion of reads mapped to mitochondrial genes (left) or spike-in transcripts (right)
across all cells in the HSC dataset.

mito.drop <- isOutlier (sce$pct counts feature controls Mt, nmads=3, type="higher'")
spike.drop <- isOutlier (sce$pct counts feature controls ERCC, nmads=3, type="higher'")

Subsetting by column will retain only the high-quality cells that pass each filter described above. We examine the
number of cells removed by each filter as well as the total number of retained cells. Removal of a substantial proportion
of cells (> 10%) may be indicative of an overall issue with data quality. It may also reflect genuine biology in extreme
cases (e.g., low numbers of expressed genes in erythrocytes) for which the filters described here are inappropriate.

sce <- scel[,! (libsize.drop | feature.drop | mito.drop | spike.drop)]
data.frame (ByLibSize=sum(libsize.drop), ByFeature=sum(feature.drop),
ByMito=sum(mito.drop), BySpike=sum(spike.drop), Remaining=ncol (sce))

#4 ByLibSize ByFeature ByMito BySpike Remaining
## Samples 2 2 6 3 86

An alternative approach to quality control is to perform a principal components analysis (PCA) based on the quality
metrics for each cell, e.g., the total number of reads, the total number of features and the proportion of mitochondrial
or spike-in reads. Outliers on a PCA plot may be indicative of low-quality cells that have aberrant technical proper-
ties compared to the (presumed) majority of high-quality cells. In Figure 3, no obvious outliers are present, which is
consistent with the removal of suspect cells in the preceding quality control steps.

fontsize <- theme (axis.text=element text(size=12), axis.title=element text (size=16))
plotPCA(sce, pca data input="pdata") + fontsize

Methods like PCA-based outlier detection and support vector machines can provide more power to distinguish
low-quality cells from high-quality counterparts (Ilicic er al., 2016). This is because they are able to detect subtle
patterns across many quality metrics simultaneously. However, this comes at some cost to interpretability, as the reason
for removing a given cell may not always be obvious. Thus, for this workflow, we will use the simple approach whereby
each quality metric is considered separately. Users interested in the more sophisticated approaches are referred to the
scater and cellity packages.

Classification of cell cycle phase

We use the prediction method described by Scialdone er al. (2015) to classify cells into cell cycle phases based on
the gene expression data. Using a training dataset, the sign of the difference in expression between two genes was
computed for each pair of genes. Pairs with changes in the sign across cell cycle phases were chosen as markers. Cells
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Figure 3. PCA plot for cells in the HSC dataset, constructed using quality metrics. The first and second components
are shown on each axis, along with the percentage of total variance explained by each component. Bars represent the
coordinates of the cells on each axis.

in a test dataset can then be classified into the appropriate phase, based on whether the observed sign for each marker
pair is consistent with one phase or another. This approach is implemented in the cyclone function using a pre-
trained set of marker pairs for mouse data. The result of phase assignment for each cell in the HSC dataset is shown in
Figure 4. (Some additional work is necessary to match the gene symbols in the data to the Ensembl annotation in the
pre-trained marker set.)

mm.pairs <- readRDS (system.file("exdata", "mouse cycle markers.rds", package="scran'"))
library(org.Mm.eg.db)

anno <- select(org.Mm.eg.db, keys=rownames (sce), keytype="SYMBOL", column="ENSEMBL")
ensembl <- anno$ENSEMBL[match (rownames (sce), anno$SYMBOL) ]

assignments <- cyclone(sce, mm.pairs, gene.names=ensembl)

plot (assignments$score$Gl, assignments$score$G2M, xlab="Gl score", ylab="G2/M score", pch=16)

Cells are classified as being in G1 phase if the G1 score is above 0.5 and greater than the G2/M score; in G2/M
phase if the G2/M score is above 0.5 and greater than the G1 score; and in S phase if neither score is above 0.5.
Here, the vast majority of cells are classified as being in G1 phase. We will focus on these cells in the downstream
analysis. Cells in other phases are removed to avoid potential confounding effects from cell cycle-induced differences.
Alternatively, if a non-negligible number of cells are in other phases, we can use the assigned phase as a blocking
factor in downstream analyses. This protects against cell cycle effects without discarding information.

sce <- sce[,assignmentsS$Sphases=="G1"]

Pre-trained classifiers are available in scran for human and mouse data. While the mouse classifier used here was
trained on data from embryonic stem cells, it is still accurate for other cell types (Scialdone ez al., 2015). This may be
due to the conservation of the transcriptional program associated with the cell cycle (Bertoli e al., 2013; Conboy ez al.,
2007). The pair-based method is also a non-parametric procedure that is robust to most technical differences between
datasets. However, it will be less accurate for data that are substantially different from those used in the training set,
e.g., due to the use of a different protocol. In such cases, users can construct a custom classifier from their own training
data using the sandbag function. This will also be necessary for other model organisms where pre-trained classifiers
are not available.
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Figure 4. Cell cycle phase scores from applying the pair-based classifier on the HSC dataset, where each point
represents a cell.

Filtering out low-abundance genes

Low-abundance genes are problematic as zero or near-zero counts do not contain enough information for reliable
statistical inference (Bourgon er al., 2010). In addition, the discreteness of the counts may interfere with downstream
statistical procedures, e.g., by compromising the accuracy of continuous approximations. Here, low-abundance genes
are defined as those with an average count below a filter threshold of 1. These genes are likely to be dominated by
drop-out events (Brennecke er al., 2013), which limits their usefulness in later analyses. Removal of these genes
mitigates discreteness and reduces the amount of computational work without major loss of information.
ave.counts <- rowMeans (counts(sce))
keep <- ave.counts >= 1

sum (keep)

## [1] 13965

To check whether the chosen threshold is suitable, we examine the distribution of log-means across all genes
(Figure 5). The peak represents the bulk of moderately expressed genes while the rectangular component corresponds
to lowly expressed genes. The filter threshold should cut the distribution at some point along the rectangular compo-
nent to remove the majority of low-abundance genes.

hist (loglO (ave.counts), breaks=100, main="", col="grey80",
xlab=expression (Log[l0] "average count"))
abline (v=1ogl0 (1), col="blue", lwd=2, lty=2)

We also look at the identities of the most highly expressed genes (Figure 6). This should generally be dominated by

constitutively expressed transcripts, such as those for ribosomal or mitochondrial proteins. The presence of other
classes of features may be cause for concern if they are not consistent with expected biology. For example, a top set
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Figure 5. Histogram of log-average counts for all genes in the HSC dataset. The filter threshold is represented by

the blue line.
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containing many spike-in transcripts suggests that too much spike-in RNA was added during library preparation, while
the absence of ribosomal proteins and/or the presence of their pseudogenes are indicative of suboptimal alignment.

plotQC(sce, type = "highest-expression", n=50) + fontsize

An alternative approach to gene filtering is to select genes that have non-zero counts in at least n cells. This provides
some more protection against genes with outlier expression patterns, i.e., strong expression in only one or two cells.
Such outliers are typically uninteresting as they can arise from amplification artifacts that are not replicable across
cells. (The exception is for studies involving rare cells where the outliers may be biologically relevant.) An example
of this filtering approach is shown below for n set to 10, though smaller values may be necessary to retain genes
expressed in rare cell types.

numcells <- nexprs(sce, byrow=TRUE)
alt.keep <- numcells >= 10
sum(alt.keep)

#4# [1] 11988

The relationship between the number of expressing cells and the mean is shown in Figure 7. The two statistics tend to
be well-correlated so filtering on either should give roughly similar results.

smoothScatter (1ogl0 (ave.counts), numcells, xlab=expression(Log[l0] "average count"),
ylab="Number of expressing cells")

is.ercc <- isSpike(sce, type="ERCC")

points (logl0 (ave.counts[is.ercc]), numcells[is.ercc], col="red", pch=16, cex=0.5)

In general, we prefer the mean-based filter as it tends to be less aggressive. A gene will be retained as long as it has
sufficient expression in any subset of cells. Genes expressed in fewer cells require higher levels of expression in those
cells to be retained, but this is not undesirable as it avoids selecting uninformative genes (with low expression in few
cells) that contribute little to downstream analyses, e.g., HVG detection or clustering. In contrast, the “at least n” filter
depends heavily on the choice of n. With n = 10, a gene expressed in a subset of 9 cells would be filtered out, regardless

Number of expressing cells

Log;q average count

Figure 7. Number of expressing cells against the log-mean expression for each gene in the HSC dataset. Spike-in
transcripts are highlighted in red.
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of the level of expression in those cells. This may result in the failure to detect rare subpopulations that are present at
frequencies below n. While the mean-based filter will retain more outlier-driven genes, this can be handled by choosing
methods that are robust to outliers in the downstream analyses.

Thus, we apply the mean-based filter to the data by subsetting the SCESet object as shown below. This removes all
rows corresponding to endogenous genes or spike-in transcripts with abundances below the specified threshold.

sce <- scelkeep,]

Normalization of cell-specific biases

Using the deconvolution method to deal with zero counts. Read counts are subject to differences in capture efficiency
and sequencing depth between cells (Stegle er al., 2015). Normalization is required to eliminate these cell-specific
biases prior to downstream quantitative analyses. This is often done by assuming that most genes are not differentially
expressed (DE) between cells. Any systematic difference in count size across the non-DE majority of genes between
two cells is assumed to represent bias and is removed by scaling. More specifically, “size factors” are calculated that
represent the extent to which counts should be scaled in each library.

Size factors can be computed with several different approaches, e.g., using the estimateSizeFactorsFromMatrix
function in the DESeq2 package (Anders & Huber, 2010; Love ef al., 2014), or with the calcNormFactors func-
tion (Robinson & Oshlack, 2010) in the edgeR package. However, single-cell data can be problematic for these bulk
data-based methods due to the dominance of low and zero counts. To overcome this, we pool counts from many
cells to increase the count size for accurate size factor estimation (Lun ez al., 2016). Pool-based size factors are then
“deconvolved” into cell-based factors for cell-specific normalization.

sce <- computeSumFactors (sce, sizes=c (20, 40, 60, 80))
summary (sizeFactors (sce))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4161 0.8055 0.9434 1.0000 1.1890 1.8410

In this case, the size factors are tightly correlated with the library sizes for all cells (Figure 8). This suggests that the
systematic differences between cells are primarily driven by differences in capture efficiency or sequencing depth. Any

25 3.0

2.0
o
&P
o

Library size (millions)
1.5
Q

1.0

| | |
0.5 1.0 1.5

Size factor

Figure 8. Size factors from deconvolution, plotted against library sizes for all cells in the HSC dataset. Axes are
shown on a log-scale.
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DE between cells would yield a non-linear trend between the total count and size factor, and/or increased scatter around
the trend. This does not occur here as strong DE is unlikely to exist within a homogeneous population of cells.

plot (sizeFactors (sce), sceS$total counts/le6, log="xy",
ylab="Library size (millions)", xlab="Size factor")

Computing separate size factors for spike-in transcripts. Size factors computed from the counts for endogenous
genes are usually not appropriate for normalizing the counts for spike-in transcripts. Consider an experiment without
library quantification, i.e., the amount of cDNA from each library is not equalized prior to pooling and multiplexed
sequencing. Here, cells containing more RNA have greater counts for endogenous genes and thus larger size factors to
scale down those counts. However, the same amount of spike-in RNA is added to each cell during library preparation.
This means that the counts for spike-in transcripts are not subject to the effects of RNA content. Attempting to normalize
the spike-in counts with the gene-based size factors will lead to over-normalization and incorrect quantification of
expression. Similar reasoning applies in cases where library quantification is performed. For a constant total amount
of cDNA, any increases in endogenous RNA content will suppress the coverage of spike-in transcripts. As a result, the

bias in the spike-in counts will be opposite to that captured by the gene-based size factor.

To ensure normalization is performed correctly, we compute a separate set of size factors for the spike-in set. For each
cell, the spike-in-specific size factor is defined as the total count across all transcripts in the spike-in set. This assumes
that none of the spike-in transcripts are differentially expressed, which is reasonable given that the same amount and
composition of spike-in RNA should have been added to each cell. (See below for a more detailed discussion on
spike-in normalization.) These size factors are stored in a separate field of the SCESet object by setting general.
use=FALSE in computeSpikeFactors. This ensures that they will only be used with the spike-in transcripts but
not the endogenous genes.

sce <- computeSpikeFactors(sce, type="ERCC", general.use=FALSE)

Applying the size factors to normalize gene expression. The count data are used to compute normalized log-
expression values for use in downstream analyses. Each value is defined as the log-ratio of each count to the size fac-
tor for the corresponding cell, after adding a prior count of 1 to avoid undefined values at zero counts. Division by the
size factor ensures that any cell-specific biases are removed. If spike-in-specific size factors are present in sce,
they will be automatically applied to normalize the spike-in transcripts separately from the endogenous genes.

sce <- normalize (sce)

The log-transformation provides some measure of variance stabilization (Law er al., 2014), so that high-abundance
genes with large variances do not dominate downstream analyses. The computed values are stored as an exprs matrix
in addition to the other assay elements.

Checking for important technical factors

We check whether there are technical factors that contribute substantially to the heterogeneity of gene expression. If so,
the factor may need to be regressed out to ensure that it does not inflate the variances or introduce spurious correlations.
For this dataset, the simple experimental design means that there are no plate or batch effects to examine. Instead, we
use the (log-transformed) total count for the spike-in transcripts as a proxy for the relative bias in each sample. This
bias is purely technical in origin, given that the same amount of spike-in RNA should have been added to each cell.
Thus, any association of gene expression with this factor is not biologically interesting and should be removed.

For each gene, we calculate the percentage of the variance of the expression values that is explained by the
spike-in totals (Figure 9). The percentages are generally small (1-3%), indicating that the expression profiles of most
genes are not strongly associated with this factor. This result is consistent with successful removal of cell-specific
biases by scaling normalization. Thus, the spike-in total does not need to be explicitly modelled in our downstream
analyses.

plotExplanatoryVariables (sce, variables=c("counts feature controls ERCC",
"loglO counts feature controls ERCC")) + fontsize

Note that the use of the spike-in total as an accurate proxy for the relative technical bias assumes that no library
quantification is performed. Otherwise, the coverage of the spike-in transcripts would be dependent on the total amount
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Figure 9. Density plot of the percentage of variance explained by the (log-transformed) total spike-in counts
across all genes in the HSC dataset. For each gene, the percentage of the variance of the normalized log-expression
values across cells that is explained by each factor is calculated. Each curve corresponds to one factor and represents
the distribution of percentages across all genes.

of endogenous RNA in each cell. (Specifically, if the same amount of cDNA is used for sequencing per cell, any
increase in the amount of endogenous RNA will suppress the coverage of the spike-in transcripts.) This means that
the spike-in totals could be confounded with genuine biological effects associated with changes in RNA content.

Identifying HVGs from the normalized log-expression

We identify HVGs to focus on the genes that are driving heterogeneity across the population of cells. This requires
estimation of the variance in expression for each gene, followed by decomposition of the variance into biological and
technical components. HVGs are then identified as those genes with the largest biological components. This avoids
prioritizing genes that are highly variable due to technical factors such as sampling noise during RNA capture and
library preparation.

Ideally, the technical component would be estimated by fitting a mean-variance trend to the spike-in transcripts using
the trendVar function. Recall that the same set of spike-ins was added in the same quantity to each cell. This means
that the spike-in transcripts should exhibit no biological variability, i.e., any variance in their counts should be technical
in origin. Given the mean abundance of a gene, the fitted value of the trend can be used as an estimate of the technical
component for that gene. The biological component of the variance can then be calculated by subtracting the technical
component from the total variance of each gene with the decomposeVar function.

In practice, this strategy is compromised by the small number of spike-in transcripts, the uneven distribution of their
abundances and (for low numbers of cells) the imprecision of their variance estimates. This makes it difficult to
accurately fit a complex mean-dependent trend to the spike-in variances. An alternative approach is to fit the trend
to the variance estimates of the endogenous genes, using the use.spikes=FALSE setting as shown below. This
assumes that the majority of genes are not variably expressed, such that the technical component dominates the
total variance for those genes. The fitted value of the trend is then used as an estimate of the technical component.
Obviously, this is the only approach that can be used if no spike-ins were added in the experiment.

var.fit <- trendVar(sce, trend="loess", use.spikes=FALSE, span=0.2)
var.out <- decomposeVar (sce, var.fit)

Page 13 of 71



F1000Research 2016, 5:2122 Last updated: 18 JUL 2022

We assess the suitability of the trend fitted to the endogenous variances by examining whether it is consistent with the
spike-in variances (Figure 10). The trend passes through or close to most of the spike-in variances, indicating that our
assumption (that most genes have low levels of biological variability) is valid. This strategy exploits the large number
of endogenous genes to obtain a stable trend, with the spike-in transcripts used as diagnostic features rather than in
the trend fitting itself. However, if our assumption did not hold, we would instead fit the trend directly to the spike-in
variances with the default use . spikes=TRUE. This sacrifices stability to reduce systematic errors in the estimate
of the biological component for each gene. (In such cases, tinkering with the trend fitting parameters may yield a
more stable curve — see ?trendVar for more details.)

plot (var.out$Smean, var.out$total, pch=16, cex=0.6, xlab="Mean log-expression'",
ylab="Variance of log-expression")

o <- order (var.outSmean)

lines (var.outSmean[o], var.outS$Stech[o], col="dodgerblue", lwd=2)

cur.spike <- isSpike (sce)

points (var.out$mean[cur.spike], var.outS$total[cur.spike], col="red", pch=16)

HVGs are defined as genes with biological components that are significantly greater than zero at a false discovery
rate (FDR) of 5%. These genes are interesting as they drive differences in the expression profiles between cells, and
should be prioritized for further investigation. In addition, we only consider a gene to be a HVG if it has a biologi-
cal component greater than or equal to 0.5. For transformed expression values on the log, scale, this means that the
average difference in true expression between any two cells will be at least 2-fold. (This reasoning assumes that
the true log-expression values are Normally distributed with variance of 0.5. The root-mean-square of the difference
between two values is treated as the average log,-fold change between cells and is equal to unity.) We rank the results
by the biological component to focus on genes with larger biological variability.

hvg.out <- var.out[which(var.out$SFDR <= 0.05 & var.out$bio >= 0.5),]
hvg.out <- hvg.out[order (hvg.out$bio, decreasing=TRUE), ]
nrow (hvg.out)
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Figure 10. Variance of normalized log-expression values for each gene in the HSC dataset, plotted against the
mean log-expression. The blue line represents the mean-dependent trend fitted to the variances of the endogenous
genes. Variance estimates for spike-in transcripts are highlighted in red.
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#4# [1] 193

write.table(file="hsc hvg.tsv", hvg.out, sep="\t", quote=FALSE, col.names=NA)
head (hvg.out)

#4# mean total bio tech p.value FDR
## Fos 6.412282 20.167804 12.287746 7.880058 3.609804e-13 2.283693e-10
## Rgsl 5.214003 20.271925 9.430165 10.841761 3.065697e-06 5.019808e-04
## Duspl 6.693026 16.074489 9.044983 7.029506 3.066936e-10 1.156266e-07
## H2-Aa 4.294426 19.390442 7.496497 11.893945 2.736909e-04 2.333494e-02
## Ppplrlb5a 6.545438 14.964370 7.460786 7.503584 2.308822e-07 4.943721e-05
## Ctla2a 8.654347 9.471605 7.368337 2.103268 4.574748e-38 9.095906e-35

We recommend checking the distribution of expression values for the top HVGs to ensure that the variance estimate is
not being dominated by one or two outlier cells (Figure 11).

plotExpression (sce, rownames (hvg.out) [1:10]) + fontsize

There are many other strategies for defining HVGs, e.g., by using the coefficient of variation (Brennecke er al., 2013;
Kim er al., 2015; Kolodziejezyk et al., 2015), with the dispersion parameter in the negative binomial distribution
(McCarthy er al., 2012), or as a proportion of total variability (Vallejos er al., 2015). Some of these methods are
available in scran — for example, see DM or technicalCV2 for calculations based on the coefficient of variation.
Here, we use the variance of the log-expression values because the log-transformation protects against genes with
strong expression in only one or two cells. This ensures that the set of top HVGs is not dominated by genes with
(mostly uninteresting) outlier expression patterns.

Identifying correlated gene pairs with Spearman’s rho

Another useful procedure is to identify the HVGs that are highly correlated with one another. This distin-
guishes between HVGs caused by random noise and those involved in driving systematic differences between
subpopulations. Correlations between genes are quantified by computing Spearman’s rho, which accommodates non-
linear relationships in the expression values. Gene pairs with significantly large positive or negative values of rho are

-
o

Expression (exprs)

w

Figure 11. Violin plots of normalized log-expression values for the top 10 HVGs in the HSC dataset. Each point
represents the log-expression value in a single cell.
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identified using the correlatePairs function. We only apply this function to the set of HVGs, because these genes
have large biological components and are more likely to exhibit strong correlations driven by biology. In contrast,
calculating correlations for all possible gene pairs would require too much computational time and increase the
severity of the multiple testing correction. It may also prioritize uninteresting genes that have strong correlations but
low variance, e.g., tightly co-regulated house-keeping genes.

set.seed (100)
var.cor <- correlatePairs(sce,

subset.row=rownames (hvg.out) )

write.table(file="hsc cor.tsv", var.cor, sep="\t", quote=FALSE, row.names=FALSE)
head (var.cor)

## genel gene?2 rho p.value FDR

#4# 1 mt-Nd2 mt-Rnrl 0.6037110 1.999998e-06 0.005293709

## 2 Egrl Jun 0.5218295 1.999998e-06 0.005293709

## 3 Pdia6 Hspab 0.5119852 1.999998e-06 0.005293709

## 4 Fos Egrl 0.5035263 1.999998e-06 0.005293709

## 5 Ppplrlba Zfp36 0.4975862 1.999998e-06 0.005293709

## 6 Hnrpdl mt-Nd2 0.4963688 1.999998e-06 0.005293709

The significance of each correlation is determined using a permutation test. For each pair of genes, the null hypothesis
is that the expression profiles of two genes are independent. Shuffling the profiles and recalculating the correlation
yields a null distribution that is used to obtain a p-value for each observed correlation value (Phipson & Smyth, 2010).
Correction for multiple testing across many gene pairs is performed by controlling the FDR at 5%. Correlated gene
pairs can be directly used for experimental validation with orthogonal techniques (e.g., fluorescence-activated cell
sorting, immunohistochemistry or RNA fluorescence in situ hybridization) to verify that these expression patterns are
genuinely present across the cell population.

sig.cor <- var.cor$FDR <= 0.05
summary (sig.cor)

## Mode FALSE TRUE NA’s
## logical 18485 43 0

Larger sets of correlated genes are assembled by treating genes as nodes in a graph and each pair of genes with
significantly large correlations as an edge. In particular, an undirected graph is constructed using methods in the
RBGL package. Highly connected subgraphs are then identified and defined as gene sets. This provides a convenient
summary of the pairwise correlations between genes.

library (RBGL)

g <- ftM2graphNEL (cbind(var.cor$genel, var.cor$gene?) [sig.cor,],
W=NULL, V=NULL, edgemode="undirected")

cl <- highlyConnSG(g) $clusters

cl <- clorder (lengths(cl), decreasing=TRUE) ]

head(cl)

## [[1]1]

## [1] "Egrl" "Fos"
i

## [[2]]

## [1] "mt-Nd2" "Sh3bgrl" "mt-Rnrl"
##

## [[3]1]

## [1] "Hspdl"
i

## [[4]]

## [1] "Sgstml"™ "Phgdh" "Cct3"
##

"pr36" "Ter2"

"Pik3ipl" "Srm"
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## [[5]]

## [1] "Morf4l2" "Impdh2" "Ncl"
##

## [[6]]

## [1] "Hsdl7bl2"™ "Srsf7"

Significant correlations provide evidence for substructure in the dataset, i.e., subpopulations of cells with systematic
differences in their expression profiles. The number of significantly correlated HVG pairs represents the strength of
the substructure. If many pairs were significant, this would indicate that the subpopulations were clearly defined and
distinct from one another. For this particular dataset, a relatively low number of HVGs exhibit significant correlations.
This suggests that any substructure in the data will be modest, which is expected given that rigorous selection was
performed to obtain a homogeneous population of HSCs (Wilson et al., 2015).

Using correlated HVGs for further data exploration

We visualize the expression profiles of the correlated HVGs with a heatmap (Figure 12). All expression values are
mean-centred for each gene to highlight the relative differences in expression between cells. If any subpopulations were
present, they would manifest as rectangular “blocks” in the heatmap, corresponding to sets of genes that are systemati-
cally up- or down-regulated in specific groups of cells. This is not observed in Figure 12, consistent with the lack of
strong substructure. There may be a subpopulation of Fos and Jun-negative cells, but it is poorly defined given the small
numbers of cells and genes involved.

chosen <- unique (c(var.cor$genel([sig.cor], var.cor$Sgene2[sig.cor]))

norm.exprs <- exprs(sce) [chosen,,drop=FALSE]

heat.vals <- norm.exprs - rowMeans (norm.exprs)

library(gplots)

heat.out <- heatmap.2 (heat.vals, col=bluered, symbreak=TRUE, trace='none', cexRow=0.6)

We also apply dimensionality reduction techniques to visualize the relationships between cells. This is done by
constructing a PCA plot from the normalized log-expression values of the correlated HVGs (Figure 13). Cells with
similar expression profiles should be located close together in the plot, while dissimilar cells should be far apart.
We only use the correlated HVGs in plotPCA because any substructure should be most pronounced in the
expression profiles of these genes. Even so, no clear separation of cells into distinct subpopulations is observed.
plotPCA(sce, exprs values="exprs", colour by="total features",

feature set=chosen) + fontsize

On a related note, we only show the first two components that contribute most to the variance in Figure 13.
Additional components can be visualized by increasing the ncomponents argument in plotPCA to construct
pairwise plots. The percentage of variance explained by each component can also be obtained by running plot PCA
with return_ SCESet=TRUE, and then calling reducedDimension on the returned object. This information
may be useful for selecting high-variance components (possibly corresponding to interesting underlying factors) for
further examination.

Another widely used approach is the #-stochastic neighbour embedding (+~-SNE) method (Van der Maaten & Hinton,
2008). +-SNE tends to work better than PCA for separating cells in more diverse populations. This is because the
former can directly capture non-linear relationships in high-dimensional space, whereas the latter must represent them
(suboptimally) as linear components. However, this improvement comes at the cost of more computational effort and
complexity. In particular, +-SNE is a stochastic method, so users should run the algorithm several times to ensure that
the results are representative, and then set a seed to ensure that the chosen results are reproducible. It is also advisable
to test different settings of the “perplexity” parameter as this will affect the distribution of points in the low-dimensional
space. This is demonstrated below in Figure 14, though no consistent substructure is observed in all plots.

set.seed (100)

out5 <- plotTSNE (sce, exprs values="exprs", perplexity=5, colour by="total features",
feature set=chosen) + fontsize + ggtitle("Perplexity = 5")

outl0 <- plotTSNE (sce, exprs values="exprs'", perplexity=10, colour by="total features",
feature set=chosen) + fontsize + ggtitle("Perplexity = 10")

out20 <- plotTSNE (sce, exprs values="exprs", perplexity=20, colour by="total features",
feature set=chosen) + fontsize + ggtitle("Perplexity = 20")

multiplot (out5, outl0, out20, cols=3)
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Figure 12. Heatmap of mean-centred normalized log-expression values for correlated HVGs in the HSC dataset.
Dendrograms are formed by hierarchical clustering on the Euclidean distances between genes (row) or cells (column).
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Figure 13. PCA plot constructed from normalized log-expression values of correlated HVGs, where each point
represents a cell in the HSC dataset. First and second components are shown, along with the percentage of variance
explained. Bars represent the coordinates of the cells on each axis. Each cell is coloured according to its total number
of expressed features.
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Figure 14. t-SNE plots constructed from normalized log-expression values of correlated HVGs, using a range of
perplexity values. In each plot, each point represents a cell in the HSC dataset. Bars represent the coordinates of the
cells on each axis. Each cell is coloured according to its total number of expressed features.

There are many other dimensionality reduction techniques that we do not consider here but could also be used,
e.g., multidimensional scaling, diffusion maps. These have their own advantages and disadvantages — for exam-
ple, diffusion maps (see plotDiffusionMap) place cells along a continuous trajectory and are suited for
visualizing graduated processes like differentiation (Angerer er al., 2016). For each visualization method, additional
cell-specific information can be incorporated into the colour, size or shape of each point. Here, cells are coloured by
the total number of expressed features to demonstrate that this metric does not drive any systematic differences across
the population. The selectorPlot function from scran can also be used to interactively select groups of cells in
two-dimensional space. This facilitates data exploration as visually identified subpopulations can be directly selected for
further examination.

Finally, putative subpopulations can be computationally defined by cutting the dendrogram in heat.
out$colDendrogram with cutree to form clusters. We do not attempt this here as the substructure is too weak
for reliable clustering. In fact, users should generally treat clustering results with some caution. If the differences
between cells are subtle, the assignment of cells into clusters may not be robust. Moreover, different algorithms can
yield substantially different clusters by focusing on different aspects of the data. Experimental validation of the clusters
is critical to ensure that the putative subpopulations actually exist.

Additional comments

Once the basic analysis is completed, it is often useful to save the SCESet object to file with the saveRDS function.
The object can then be easily restored into new R sessions using the readRDS function. This allows further work to
be conducted without having to repeat all of the processing steps described above.

saveRDS (file="hsc data.rds", sce)

A variety of methods are available to perform more complex analyses on the processed expression data. For example,
cells can be ordered in pseudotime (e.g., for progress along a differentiation pathway) with monocle (Trapnell et al.,
2014) or TSCAN (Ji & Ji, 2016); cell-state hierarchies can be characterized with the sincell package (Julia er al., 2015);
and oscillatory behaviour can be identified using Oscope (Leng et al., 2015). HVGs can be used in gene set enrichment
analyses to identify biological pathways and processes with heterogeneous activity, using packages designed for bulk
data like 7opGO or with dedicated single-cell methods like scde (Fan er al., 2016). Full descriptions of these analyses
are outside the scope of this workflow, so interested users are advised to consult the relevant documentation.
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Analysis of cell types in the brain

Overview

We proceed to a more heterogeneous dataset from a study of cell types in the mouse brain (Zeisel er al., 2015).
This contains approximately 3000 cells of varying types such as oligodendrocytes, microglia and neurons. Individual
cells were isolated using the Fluidigm C1 microfluidics system and library preparation was performed on each cell
using a UMI-based protocol. After sequencing, expression was quantified by counting the number of UMIs mapped
to each gene. Count data for all endogenous genes, mitochondrial genes and spike-in transcripts were obtained from
http://linnarssonlab.org/cortex.

Count loading

The count data are distributed across several files, so some work is necessary to consolidate them into a single matrix.
We define a simple utility function for loading data in from each file. (We stress that this function is only relevant to
the current dataset, and should not be used for other datasets. This kind of effort is generally not required if all of the
counts are in a single file and separated from the metadata.)

readFormat <- function (infile) {
# First column is empty.
metadata <- read.delim(infile, stringsAsFactors=FALSE, header=FALSE, nrow=10) [,-1]
rownames (metadata) <- metadatal,1]
metadata <- metadatal,-1]
metadata <- as.data.frame (t (metadata))
# First column after row names is some useless filler.
counts <- read.delim(infile, stringsAsFactors=FALSE, header=FALSE, row.names=1,skip=11)[,-1]
counts <- as.matrix (counts)
return (list (metadata=metadata, counts=counts))

Using this function, we read in the counts for the endogenous genes, ERCC spike-ins and mitochondrial genes.

endo.data <- readFormat ("expression mRNA 17-Aug-2014.txt")
spike.data <- readFormat ("expression spikes 17-Aug-2014.txt")
mito.data <- readFormat ("expression mito 17-Aug-2014.txt")

We also need to rearrange the columns for the mitochondrial data, as the order is not consistent with the other files.

m <- match(endo.dataSmetadata$cell id, mito.dataSmetadataS$cell id)
mito.data$Smetadata <- mito.data$metadata[m, ]
mito.data$Scounts <- mito.dataScounts[,m]

The counts are then combined into a single matrix for constructing a SCESet object. For convenience, metadata for
all cells are stored in the same object for later access.

all.counts <- rbind(endo.data$Scounts, mito.dataScounts, spike.dataS$counts)
metadata <- AnnotatedDataFrame (endo.data$metadata)

sce <- newSCESet (countData=all.counts, phenoData=metadata)

dim(sce)

## Features Samples
## 20063 3005

We also add annotation identifying rows that correspond to each class of features.

nrows <- c(nrow(endo.data$counts), nrow(mito.data$counts), nrow(spike.data$counts))
is.spike <- rep(c(FALSE, FALSE, TRUE), nrows)
is.mito <- rep(c(FALSE, TRUE, FALSE), nrows)
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Quality control on the cells
The original authors of the study have already removed low-quality cells prior to data publication. Nonetheless, we
compute some quality control metrics to check whether the remaining cells are satisfactory.

sce <- calculateQCMetrics (sce, feature controls=list (Spike=is.spike, Mt=is.mito))
isSpike (sce) <- "Spike"

We examine the distribution of library sizes and numbers of expressed genes across cells (Figure 15).

par (mfrow=c(1,2))

hist (sce$total counts/le3, xlab="Library sizes (thousands)", main="",
breaks=20, col="grey80", ylab="Number of cells")

hist (sce$total features, xlab="Number of expressed genes", main="",
breaks=20, col="grey80", ylab="Number of cells")

We also examine the distribution of the proportions of UMIs assigned to mitochondrial genes or spike-in transcripts
(Figure 16). The spike-in proportions here are more variable than in the HSC dataset. This may reflect a greater
variability in the total amount of endogenous RNA per cell when many cell types are present.

par (mfrow=c(1,2))

hist (sce$pct counts feature controls Mt, xlab="Mitochondrial proportion (%)",
ylab="Number of cells", breaks=20, main="", col="grey80")

hist (sce$pct counts feature controls Spike, xlab="ERCC proportion (%)",
ylab="Number of cells", breaks=20, main="", col="grey80")

We remove small outliers in Figure 15 and large outliers in Figure 16, using a MAD-based threshold as previously
described.

libsize.drop <- isOutlier (sce$total counts, nmads=3, type="lower", log=TRUE)
feature.drop <- isOutlier (sceStotal features, nmads=3, type="lower", log=TRUE)
mito.drop <- isOutlier(sce$pct counts feature controls Mt, nmads=3, type="higher")
spike.drop <- isOutlier (sce$pct counts feature controls Spike, nmads=3, type="higher")
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Figure 15. Histograms of library sizes (left) and number of expressed genes (right) for all cells in the brain
dataset.
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Figure 16. Histogram of the proportion of UMIs assigned to mitochondrial genes (left) or spike-in transcripts
(right) across all cells in the brain dataset.

Removal of low-quality cells is then performed by combining the filters for all of the metrics. The vast majority of cells
are retained, which suggests that the original quality control procedures were generally adequate.

sce <- scel,! (libsize.drop | feature.drop | spike.drop | mito.drop) ]
data.frame (ByLibSize=sum(libsize.drop), ByFeature=sum(feature.drop),
ByMito=sum (mito.drop), BySpike=sum(spike.drop), Remaining=ncol (sce))

## ByLibSize ByFeature ByMito BySpike Remaining
## Samples 8 3 87 8 2902

Cell cycle classification

Application of cyclone to the brain dataset suggests that most of the cells are in G1 phase (Figure 17). However,
the intepretation of this result requires some caution due to the differences between the test and training datasets. The
classifier was trained on C1 SMARTer data (Scialdone ef al., 2015) and accounts for the biases in that protocol. The
brain dataset uses UMI counts, which has an entirely different set of biases, e.g., 3’-end coverage only, no length
bias, no amplification noise. These new biases (and the absence of expected biases) may interfere with accurate
classification of some cells.

anno <- select(org.Mm.eg.db, keys=rownames (sce), keytype="SYMBOL", column="ENSEMBL")
ensembl <- anno$ENSEMBL [match (rownames (sce), anno$SYMBOL) ]

assignments <- cyclone(sce, mm.pairs, gene.names=ensembl)

plot (assignments$score$Gl, assignments$score$G2M, xlab="Gl score'", ylab="G2/M score", pch=16)

An additional complication is that many neuronal cell types are expected to lie in the GO resting phase, which is
distinct from the other phases of the cell cycle (Coller er al., 2006). Application of cyclone to these cells
may be suboptimal if each cell must be assigned into one of the G1, S or G2/Mphases. To avoid problems from
misclassification, we will not perform any processing of this dataset by cell cycle phase. This is unlikely to be
problematic for this analysis, as the cell cycle effect will be relatively subtle compared to the obvious differences
between cell types in a diverse population. Thus, the former is unlikely to distort the conclusions regarding the latter.

Removing uninteresting genes

Low-abundance genes are removed by applying a simple mean-based filter. We use a lower threshold for UMI counts
compared to that used for read counts. This is because the number of transcript molecules will always be lower than the
number of reads generated from such molecules. While some information and power will be lost due to the decrease in
the size of the counts, this is mitigated by a concomitant reduction in the variability of the counts. Specifically, the use
of UMISs eliminates technical noise due to amplification biases (Islam ez al., 2014).
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Figure 17. Cell cycle phase scores from applying the pair-based classifier on the brain dataset, where each point
represents a cell.

ave.counts <- rowMeans (counts(sce))
keep <- rowMeans (counts(sce)) >= 0.2

Figure 18 suggests that our choice of threshold is appropriate. The filter removes the bulk of lowly expressed genes
while preserving the peak of moderately expressed genes.
hist(loglO (ave.counts), breaks=100, main="", col="grey",
xlab=expression (Log[l0] "average count"))
abline (v=10gl0(0.2), col="blue", lwd=2, lty=2)

The mean-based filter is applied to the dataset by subsetting sce as previously described. Despite the reduced
threshold, the number of retained genes is lower than that in the HSC dataset, simply because the library sizes are
much smaller with UMI counts.

sce <- scelkeep, ]
nrow (sce)

## Features
#4# 8939

Some datasets also contain strong heterogeneity in mitochondrial RNA content, possibly due to differences in
mitochondrial copy number or activity between cell types. This heterogeneity will cause mitochondrial genes to
dominate the top set of results, e.g., for identification of correlated HVGs. However, these genes are largely
uninteresting given that most studies focus on nuclear regulation. As such, we filter them out prior to further analysis.
Other candidates for removal include pseudogenes or ribosome-associated genes, which might not be relevant for
characterising cell types but can still interfere with the interpretation of the results.

sce <- sce[!fData (sce) $is_feature_control_Mt, ]

Normalization of cell-specific biases
Normalization of cell-specific biases is performed using the deconvolution method in the computeSumFactors
function. Here, we cluster similar cells together and normalize the cells in each cluster using the deconvolution method.
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Figure 18. Histogram of log-average counts for all genes in the brain dataset. The filter threshold is represented by
the blue line.

This improves normalization accuracy by reducing the number of DE genes between cells in the same cluster. Scaling
is then performed to ensure that size factors of cells in different clusters are comparable.

clusters <- quickCluster (sce)
sce <- computeSumFactors (sce, cluster=clusters)

Compared to the HSC analysis, more scatter is observed around the trend between the total count and size factor
for each cell (Figure 19). This is consistent with an increased amount of DE between cells of different types, which
compromises the accuracy of library size normalization (Robinson & Oshlack, 2010). In contrast, the size factors are
estimated based on median ratios and are more robust to the presence of DE between cells.

plot (sizeFactors (sce), sceStotal counts/le3, log="xy",
ylab="Library size (thousands)", xlab="Size factor")

We also compute size factors specific to the spike-in set, as previously described.
sce <- computeSpikeFactors(sce, type="Spike", general.use=FALSE)

Finally, normalized log-expression values are computed for each endogenous gene or spike-in transcript using the
appropriate size factors.

sce <- normalize (sce)

Checking for important technical factors

Larger experiments contain more technical factors that need to be investigated. In this dataset, factors include the sex
of the animal from which the cells were extracted, the age of the animal, the tissue of origin for each cell, and the total
spike-in count in each cell. Figure 20 shows that the tissue of origin explains a substantial proportion of the variance
for a subset of genes. This is probably because each tissue contains a different composition of cell types, leading to
systematic differences in gene expression between tissues. The other factors explain only a small proportion of the
variance for most genes and do not need to be incorporated into our downstream analyses.
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Figure 19. Size factors from deconvolution, plotted against library sizes for all cells in the brain dataset. Axes are
shown on a log-scale.

plotExplanatoryVariables (sce, variables=c("counts feature controls Spike",
"logl0 counts feature controls Spike", "sex", "tissue", "age")) + fontsize

Nonetheless, we demonstrate how to account for uninteresting technical factors by using sex as an example. We set
up a design matrix with the sex of the animal as the explanatory factor for each cell. This ensures that any sex-specific
changes in expression will be modelled in our downstream analyses. We do not block on the tissue of origin, despite
the fact that it explains more of the variance than sex in Figure 20. This is because the tissue factor is likely to be
associated with genuine differences between cell types, so including it in the model might regress out interesting
biological effects.

design <- model.matrix ("sce$sex)

Other relevant factors include the chip or plate on which the cells were processed and the batch in which the libraries
were sequenced. Blocking on these factors may be necessary to account for batch effects that are often observed in
scRNA-seq data (Hicks ef al., 2015; Tung er al., 2016).

Identifying correlated HVGs

We identify HVGs that may be involved in driving population heterogeneity. This is done by fitting a trend to the
technical variances for the spike-in transcripts. We then compute the biological component of the variance for each
endogenous gene by subtracting the fitted value of the trend from the total variance.

var.fit <- trendVar(sce, trend="loess", design=design, span=0.4)
var.out <- decomposeVar (sce, var.fit)

Figure 21 suggests that the trend is fitted accurately to the technical variances. Errors in fitting are negligible due to the
precision of the variance estimates in a large dataset containing thousands of cells. The technical and total variances
are also much smaller than those in the HSC dataset. This is due to the use of UMIs which reduces the noise caused by
variable PCR amplification. Furthermore, the spike-in trend is consistently lower than the variances of the endogenous
genes. This reflects the heterogeneity in gene expression across cells of different types. It also means the previous
strategy of fitting a trend to the endogenous variances would not be appropriate here (or necessary, given the quality
of the spike-in trend).

Page 25 of 71



F1000Research 2016, 5:2122 Last updated: 18 JUL 2022

0.9+

age

0.6+

ssue
counts_feature_controls_Splke

log10_counts_teature_controls_Spike

SeX

0.3+

s

n‘f- 5
" r

0.0 #

Density
——

0001 001 01 1 10 100
% variance explained (log10-scale)

Figure 20. Density plot of the percentage of variance explained by each factor across all genes in the brain
dataset. For each gene, the percentage of the variance of the normalized log-expression values that is explained by
the (log-transformed) total spike-in counts, the sex or age of the mouse, or the tissue of origin is calculated. Each curve
corresponds to one factor and represents the distribution of percentages across all genes.
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Figure 21. Variance of normalized log-expression values for each gene in the brain dataset, plotted against the

mean log-expression. The red line represents the mean-dependent trend in the technical variance of the spike-in
transcripts (also highlighted as red points).
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plot (var.out$mean, var.out$total, pch=16, cex=0.6, xlab="Mean log-expression'",
vlab="Variance of log-expression")

points (var.fit$mean, var.fit$Svar, col="red", pch=16)

o <- order (var.out$mean)

lines (var.out$mean[o], var.out$tech[o], col="red", lwd=2)

HVGs are identified as genes with large positive biological components. These are saved to file for future reference.
Note that some of the p-values are reported as zero due to numerical imprecision.

hvg.out <- var.out[which (var.out$FDR <= 0.05 & var.out$bio >= 0.5),]
hvg.out <- hvg.out[order (hvg.out$bio, decreasing=TRUE), ]
nrow (hvg.out)

## [1] 1755

write.table(file="brain hvg.tsv", hvg.out, sep="\t", quote=FALSE, col.names=NA)
head (hvg.out)

## mean total bio tech p.value FDR
## Plpl 4.045420 16.949056 16.681804 0.2672513 0 0
## Trf 2.427692 11.317924 10.745370 0.5725539 0 0
## Mal 2.454213 10.427362 9.860428 0.5669333 0 0
## Apod 2.044163 8.973862 8.319578 0.6542837 0 0
## Mog 1.974681 8.472565 7.803619 0.6689461 0 0
## Mbp 2.324417 7.853273 7.259729 0.5935431 0 0

Again, we check the distribution of expression values for the top 10 HVGs to ensure that they are not being driven by
outliers (Figure 22). Some tweaking of the plotExpression parameters is necessary to visualize a large number
of cells.

plotExpression(sce, rownames (hvg.out)[1:10], alpha=0.05, jitter="jitter") + fontsize

To identify genes involved in defining subpopulations, the set of HVGs is tested for significant pairwise correla-
tions. Given the size of the set, we only use the top 500 HVGs to reduce computational work. Here, the number of
significantly correlated pairs is much higher than in the HSC dataset, indicating that strong substructure is present.
These results are also saved to file for use in designing validation experiments.

set.seed(100)
var.cor <- correlatePairs(sce, design=design, subset.row=rownames (hvg.out) [1:500])
write.table(file="brain cor.tsv", var.cor, sep="\t", quote=FALSE, row.names=FALSE)
head (var.cor)

#4 genel gene2 rho p.value FDR
## 1 Meg3 Snhgll 0.8542706 1.999998e-06 2.611414e-06
## 2 Snap25 Stmn2 0.8023813 1.999998e-06 2.611414e-06
## 3 Ppp3ca Prkcb 0.7977351 1.999998e-06 2.611414e-06
## 4 Atplbl Rtnl 0.7959162 1.999998e-06 2.611414e-06
## 5 Stmn3 Stmn2 0.7958141 1.999998e-06 2.611414e-06
## 6 Snap25 Ndrg4 0.7938286 1.999998e-06 2.611414e-06

sig.cor <- var.cor$SFDR <= 0.05
sum(sig.cor)

## [1] 111798
Further data exploration with the correlated HVGs
We first remove the sex effect using the removeBatchEffect function from the /imma package (Ritchie er al.,

2015). This ensures that any sex-specific differences will not dominate the visualization of the expression profiles.
In this manner, we maintain consistency with the use of design in the previous steps. (However, if an analysis
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Figure 22. Violin plots of normalized log-expression values for the top 10 HVGs in the brain dataset. For each gene,
each point represents the log-expression value for an individual cell.

method can accept a design matrix, blocking on nuisance factors in the design matrix is preferable to manipulating
the expression values with removeBatchEffect. This is because the latter does not account for the loss of
residual degrees of freedom, nor the uncertainty of estimation of the blocking factor terms.) We store these
sex-corrected expression values in the norm_exprs field of the SCESet object for later use.

library(limma)

adj.exprs <- exprs(sce)

adj.exprs <- removeBatchEffect (adj.exprs, batch=sce$sex)
norm exprs(sce) <- adj.exprs

We perform dimensionality reduction on the correlated HVGs to check if there is any substructure. Cells separate
into clear clusters in the #-SNE plot (Figure 23), corresponding to distinct subpopulations. This is consistent with the
presence of multiple cell types in the diverse brain population.

chosen <- unique (c(var.corS$genel[sig.cor], var.corS$Sgene2[sig.cor]))

top.hvg <- rownames (hvg.out) [1]

tsnel <- plotTSNE (sce, exprs values="norm exprs'", colour by=top.hvg,
perplexity=10, rand seed=100, feature set=chosen) + fontsize

tsne2 <- plotTSNE (sce, exprs values="norm exprs", colour by="Mog",
perplexity=10, rand seed=100, feature set=chosen) + fontsize

multiplot (tsnel, tsne2, cols=2)

The PCA plot is less effective at separating cells into many different clusters (Figure 24). This is because the first two
principal components are driven by strong differences between specific subpopulations, which reduces the resolution of
more subtle differences between some of the other subpopulations. Nonetheless, some substructure is still visible.
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pcal <- plotPCA(sce, exprs values="norm exprs", colour by=top.hvg) + fontsize
pca2 <- plotPCA(sce, exprs values="norm exprs", colour by="Mog") + fontsize
multiplot (pcal, pca2, cols=2)

For both methods, we colour each cell based on the expression of a particular gene. This is a useful strategy for
visualizing changes in expression across the lower-dimensional space. It can also be used to characterise each cluster
if the selected genes are known markers for particular cell types. For example, Mog can be used to identify clusters
corresponding to oligodendrocytes.

Clustering cells into putative subpopulations

The normalized and sex-adjusted log-expression values for correlated HVGs are used to cluster cells into putative
subpopulations. Specifically, we perform hierarchical clustering on the Euclidean distances between cells, using
Ward’s criterion to minimize the total variance within each cluster. This yields a dendrogram that groups together
cells with similar expression patterns across the chosen genes. An alternative approach is to cluster on a matrix of
distances derived from correlations (e.g., as in quickCluster). This is more robust to noise and normalization
errors, but is also less sensitive to subtle changes in the expression profiles.
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Figure 23. t-SNE plots constructed from the normalized and corrected log-expression values of correlated HVGs
for cells in the brain dataset. Each point represents a cell and is coloured according to its expression of the top HVG
(left) or Mog (right).
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Figure 24. PCA plots constructed from the normalized and corrected log-expression values of correlated HVGs
for cells in the brain dataset. Each point represents a cell and is coloured according to its expression of the top HVG
(left) or Mog (right).
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chosen.exprs <- norm exprs(sce) [chosen, ]
my.dist <- dist (t(chosen.exprs))
my.tree <- hclust (my.dist, method="ward.D2")

Clusters are explicitly defined by applying a dynamic tree cut (Langfelder er al., 2008) to the dendrogram. This
exploits the shape of the branches in the dendrogram to refine the cluster definitions, and is more appropriate than
cutree for complex dendrograms. Greater control of the empirical clusters can be obtained by manually specifying
cutHeight in cutreeDynamic.

library (dynamicTreeCut)
my.clusters <- unname (cutreeDynamic (my.tree, distM=as.matrix(my.dist), verbose=0))

Figure 25 contains a clear block-like pattern, representing systematic differences between clusters of cells with
distinct expression profiles. This is consistent with the presence of well-defined subpopulations that were previously
observed in the dimensionality reduction plots.

heat.vals <- chosen.exprs - rowMeans (chosen.exprs)

clust.col <- rainbow (max (my.clusters))

heatmap.2 (heat.vals, col=bluered, symbreak=TRUE, trace='none', cexRow=0.3,
ColSideColors=clust.col[my.clusters], Colv=as.dendrogram(my.tree))

This heatmap can be stored at a greater resolution for detailed inspection later.

pdf ("brain heat.pdf", width=20, height=40)

heatmap.2 (heat.vals, col=bluered, symbreak=TRUE, trace='none', cexRow=0.3,
ColSideColors=clust.col[my.clusters], Colv=as.dendrogram(my.tree))

dev.off ()

Detecting marker genes between subpopulations

Once putative subpopulations are identified, we can identify marker genes for specific subpopulations of interest.
This is done by identifying genes that are consistently DE in one subpopulation compared to the others. DE testing
can be performed using a number of packages, but for this workflow, we will use the edgeR package (Robinson er al.,
2010). First, we set up a design matrix specifying which cells belong to each cluster. Each cluster* coefficient
represents the average log-expression of all cells in the corresponding cluster. We also block on uninteresting factors
such as sex.

cluster <- factor (my.clusters)
de.design <- model.matrix ("0 + cluster + sce$sex)
head(colnames (de.design))

## [1] "clusterl" "cluster2" "cluster3" "cluster4" "clusterb5" "clusteroc"

We set up a DGEList object for entry into the edgeR analysis. This new object contains all relevant information
from the original SCESet object, including the counts and (library size-adjusted) size factors.

library (edgeR)
y <- convertTo (sce, type="edgeR")

edgeR uses negative binomial (NB) distributions to model the read/UMI counts for each sample. We estimate the NB
dispersion parameter that quantifies the biological variability in expression across cells in the same cluster. Large
dispersion estimates above 0.5 are often observed in scRNA-seq data due to technical noise, in contrast to bulk data
where values of 0.05-0.2 are more typical. We then use the design matrix to fit a NB GLM to the counts for each gene
(McCarthy et al., 2012).

y <- estimateDisp(y, de.design)
fit <- glmFit(y, de.design)

summary (yStagwise.dispersion)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04733 0.35370 0.64530 1.28600 1.32400 102.40000
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Figure 25. Heatmap of mean-centred normalized and corrected log-expression values for correlated HVGs in the
brain dataset. Dendrograms are formed by hierarchical clustering on the Euclidean distances between genes (row) or
cells (column). Column colours represent the cluster to which each cell is assigned after a dynamic tree cut.

We assume that one of the clusters corresponds to our subpopulation of interest. Each gene is tested for DE between
the chosen cluster and every other cluster in the dataset. We demonstrate this below for cluster 1, though the same
process can be applied to any other cluster by changing chosen.clust.

result.logFC <- result.PValue <- list()
chosen. clust <- which(levels (cluster)=="1") # character, as 'cluster' is a factor.
for (clust in seq len(nlevels(cluster))) {
if (clust==chosen.clust) { next }
contrast <- numeric (ncol (de.design))
contrast[chosen.clust] <- 1
contrast[clust] <- -1
res <- glmLRT (fit, contrast=contrast)
con.name <- pasteO('vs.', levels(cluster) [clust])
result.logFC[[con.name]] <- res$table$logFC
result.PValue[ [con.name]] <- resStableS$PValue

Potential marker genes are identified by taking the top set of DE genes from each pairwise comparison between
clusters. We arrange the results into a single output table that allows a marker set to be easily defined for a
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user-specified size of the top set. For example, to construct a marker set from the top 10 genes of each comparison, one
would filter marker. set to retain rows with Top less than or equal to 10.

collected.ranks <- lapply(result.PValue, rank, ties="first'")

min.rank <- do.call (pmin, collected.ranks)

marker.set <- data.frame (Top=min.rank, Gene=rownames (y),
logFC=do.call (cbind, result.logFC), stringsAsFactors=FALSE)

marker.set <- marker.set[order (marker.set$Top), ]

head (marker.set, 10)

## Top Gene logFC.vs.2 1logFC.vs.3 logFC.vs.4 logFC.vs.5 logFC.vs.6 logFC.vs.7
## 26 1 Gm9846 -2.69173561 -0.89238306 -4.2332332 -1.0222698 -0.5414615 -2.5287437
## 223 1 Slc32al 0.09461874 -0.04485368 0.1585265 -4.5682143 -1.4174543 -0.2546009
## 297 1 Cspg5 -1.30778951 -2.54296437 -1.5771899 -1.9881673 -1.4086953 -5.0830952
## 298 1 Sytl 2.78822084 -0.25850578 1.4804092 -0.8895181 0.3458730 1.8327007
## 862 1 Mef2c -1.08816401 -4.45879597 -2.9639706 -2.7639706 -2.9780931 -0.8413323
## 2563 1 Scd2 -4.45332845 -0.26021806 -1.0034850 0.1048065 -2.7348760 -3.4221061
## 260 2 Rcan2 -3.22472364 -3.05410260 -2.1732655 -4.5132580 -2.6087020 -0.9949232
## 309 2 Ndrg4 3.83886951 -0.34125245 2.6623976 -0.9701018 0.3516469 2.8775459
## 763 2 Clu -1.59785766 -2.42881333 -2.7317868 -1.9346444 -0.8799791 -6.1547824
## 963 2 Ncald -2.87305577 -4.43604787 -2.1004299 -4.5752214 -3.5526851 -1.5981341

We save the list of candidate marker genes for further examination. We also examine their expression profiles to verify
that the DE signature is robust. Figure 26 indicates that most of the top markers have strong and consistent up- or
downregulation in cells of cluster 1 compared to some or all of the other clusters. Thus, cells from the subpopula-
tion of interest can be identified as those that express the upregulated markers and do not express the downregulated
markers.

write.table (marker.set, file="brain marker 1.tsv", sep="\t", quote=FALSE, col.names=NA)

top.markers <- marker.setS$Gene[marker.set$Top <= 10]

top.exprs <- norm exprs(sce) [top.markers,,drop=FALSE]

heat.vals <- top.exprs - rowMeans (top.exprs)

heatmap.2 (heat.vals, col=bluered, symbreak=TRUE, trace='none', cexRow=0.6,
ColSideColors=clust.col[my.clusters], Colv=as.dendrogram(my.tree), dendrogram='none')

legend ("bottomleft", col=clust.col, legend=sort (unique (my.clusters)), pch=16)

Many of the markers in Figure 26 are not uniquely up- or downregulated in the chosen cluster. Testing for unique DE
tends to be too stringent as it overlooks important genes that are expressed in two or more clusters. For example, in a
mixed population of CD4*-only, CD8*-only, double-positive and double-negative T cells, neither Cd4 or Cd8 would be
detected as subpopulation-specific markers because each gene is expressed in two subpopulations. With our approach,
both of these genes will be picked up as candidate markers as they will be DE between at least one pair of subpopula-
tions. A combination of markers can then be chosen to characterize a subpopulation, which is more flexible than trying
to find uniquely DE genes.

It must be stressed that the p-values computed here cannot be interpreted as measures of significance. This is because
the clusters have been empirically identified from the data. edgeR does not account for the uncertainty and stochasticity
in clustering, which means that the p-values are much lower than they should be. As such, these p-values should only
be used for ranking candidate markers for follow-up studies. However, this is not a concern in other analyses where
the groups are pre-defined. For such analyses, the FDR-adjusted p-value can be directly used to define significant
genes for each DE comparison, though some care may be required to deal with plate effects (Hicks er al., 2015;
Tung et al., 2016).
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Figure 26. Heatmap of mean-centred normalized and corrected log-expression values for the top set of markers
for cluster 1 in the brain dataset. Column colours represent the cluster to which each cell is assigned, as indicated
by the legend.
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Additional comments

Having completed the basic analysis, we save the SCESet object with its associated data to file. This is especially
important here as the brain dataset is quite large. If further analyses are to be performed, it would be inconvenient to
have to repeat all of the pre-processing steps described above.

saveRDS (file="brain data.rds", sce)

Alternative parameter settings and strategies

Normalizing based on spike-in coverage

Scaling normalization strategies for scRNA-seq data can be broadly divided into two classes. The first class assumes
that there exists a subset of genes that are not DE between samples, as previously described. The second class uses
the fact that the same amount of spike-in RNA was added to each cell. Differences in the coverage of the spike-in
transcripts can only be due to cell-specific biases, e.g., in capture efficiency or sequencing depth. Scaling normalization
is then applied to equalize spike-in coverage across cells.

The choice between these two normalization strategies depends on the biology of the cells and the features of
interest. If the majority of genes are expected to be DE and there is no reliable house-keeping set, spike-in
normalization may be the only option for removing cell-specific biases. Spike-in normalization should also be used if
differences in the total RNA content of individual cells are of interest. In any particular cell, an increase in the amount
of endogenous RNA will not increase spike-in coverage (with or without library quantification). Thus, the former
will not be represented as part of the bias in the latter, which means that the effects of total RNA content on expres-
sion will not be removed upon scaling. With non-DE normalization, an increase in RNA content will systematically
increase the expression of all genes in the non-DE subset, such that it will be treated as bias and removed.
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We demonstrate the use of spike-in normalization on a dataset involving different cell types — namely, mouse
embryonic stem cells (mESCs) and mouse embryonic fibroblasts (MEFs) (Islam e al., 2011). The count table was
obtained from NCBI GEO as a supplementary file under the accession GSE29087 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE29087). We load the counts into R and specify the rows corresponding to spike-in transcripts.
The negative control wells do not contain any cells and are useful for quality control but need to be removed prior to
downstream analysis.

counts <- read.table("GSE29087 L139 expression tab.txt.gz", colClasses=c(list("character",
NULL, NULL, NULL, NULL, NULL, NULL), rep("integer", 96)), skip=6, sep='\t', row.names=1)

sce <- newSCESet (countData=counts)

sce$grouping <- rep(c("mESC", "MEF", "Neg"), c (48, 44, 4))

sce <- sce[,sce$grouping!="Neg"] # Removing negative control wells.

sce <- calculateQCMetrics(sce, feature controls=list (spike=grep ("SPIKE", rownames (counts))))

isSpike(sce) <- "spike"

We then apply the computeSpikeFactors method to estimate size factors for all cells. This method computes the
total count over all spike-in transcripts in each cell, and calculates size factors to equalize the total spike-in count across
cells. Here, we set general .use=TRUE as we intend to apply the spike-in factors to all counts.

sce <- computeSpikeFactors(sce, general.use=TRUE)

Applying normalize will use the spike-in-based size factors to compute normalized log-expression values. Unlike in
the previous analyses, we do not have to set separate size factors for the spike-in transcripts. This is because the relevant
factors are already being used for all genes and spike-in transcripts when general . use=TRUE. (The exception is if
the experiment uses multiple spike-in sets that behave differently and need to be normalized separately.)

sce <- normalize (sce)

For comparison, we also compute the deconvolution size factors and plot them against the spike-in factors. We
observe a negative correlation between the two sets of values (Figure 27). This is because MEFs contain more endog-
enous RNA, which reduces the relative spike-in coverage in each library (thereby decreasing the spike-in size factors)
but increases the coverage of endogenous genes (thus increasing the deconvolution size factors). If the spike-in size
factors were applied to the counts, the expression values in MEFs would be scaled up while expression in mESCs
would be scaled down. However, the opposite would occur if deconvolution size factors were used.

colours <- c(mESC="red", MEF="grey")

deconv.sf <- computeSumFactors (sce, sf.out=TRUE, cluster=sce$grouping, sizes=1:4*10)

plot (sizeFactors(sce), deconv.sf, col=colours[sce$grouping], pch=16, log="xy",
xlab="Size factor (spike-in)", ylab="Size factor (deconvolution)")

legend("bottomleft", col=colours, legend=names (colours), pch=16)

Whether or not total RNA content is relevant — and thus, the choice of normalization strategy — depends on the
biological hypothesis. In the HSC and brain analyses, variability in total RNA across the population was treated as
noise and removed by non-DE normalization. This may not always be appropriate if total RNA is associated with a
biological difference of interest. For example, Islam er al. (2011) observe a 5-fold difference in total RNA between
mESCs and MEFs. Similarly, the total RNA in a cell changes across phases of the cell cycle (Buettner e al., 2015).
Spike-in normalization will preserve these differences in total RNA content such that the corresponding biological
groups can be easily resolved in downstream analyses.

Blocking on the cell cycle phase

Cell cycle phase is usually uninteresting in studies focusing on other aspects of biology. However, the effects of cell
cycle on the expression profile can mask other effects and interfere with the interpretation of the results. This cannot
be avoided by simply removing cell cycle marker genes, as the cell cycle can affect a substantial number of other
transcripts (Buettner er al., 2015). Rather, more sophisticated strategies are required, one of which is demon-
strated below using data from a study of T Helper 2 (T,2) cells (Mahata ef al., 2014). Buettner et al. (2015) have
already applied quality control and normalized the data, so we can use them directly as log-expression values
(accessible as Supplementary Data 1 of https://dx.doi.org/10.1038/nbt.3102).
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library (openxlsx)

incoming <- read.xlsx("nbt.3102-S7.xlsx", sheet=1, rowNames=TRUE)

incoming <- incoming[, !duplicated(colnames (incoming))] # Remove duplicated genes.
sce <- newSCESet (exprsData=t (incoming), logged=TRUE)

We empirically identify the cell cycle phase using the pair-based classifier in cyclone. The majority of cells in
Figure 28 seem to lie in G1 phase, with small numbers of cells in the other phases.

anno <- select (org.Mm.eg.db, keys=rownames (sce), keytype="SYMBOL", column="ENSEMBL")
ensembl <- anno$ENSEMBL [match (rownames (sce), anno$SYMBOL) ]

assignments <- cyclone(sce, mm.pairs, gene.names=ensembl, assay="exprs")

plot (assignmentsS$score$Gl, assignmentsS$Sscore$G2M, xlab="G1 score", ylab="G2/M score", pch=16)

We can block directly on the phase scores in downstream analyses. This is more graduated than using a strict
assignment of each cell to a specific phase, as the magnitude of the score considers the uncertainty of the assignment.
The phase covariates in the design matrix will absorb any phase-related effects on expression such that they will not
affect estimation of the effects of other experimental factors. Users should also ensure that the phase score is not
confounded with other factors of interest. For example, model fitting is not possible if all cells in one experimental
condition are in one phase, and all cells in another condition are in a different phase.

design <- model.matrix (* Gl + G2M, assignmentsS$Sscore)
fit.block <- trendVar (sce, use.spikes=NA, trend="loess", design=design)
dec.block <- decomposeVar (sce, fit.block)

For analyses that do not use design matrices, we remove the cell cycle effect directly from the expression values
using removeBatchEffect. The result of this procedure is visualized with some PCA plots in Figure 29. Before
removal, the distribution of cells along the first two principal components is strongly associated with their G1 and
G2/M scores. This is no longer the case after removal, which suggests that the cell cycle effect has been mitigated.
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# Finding HVGs without blocking on phase score.

fit <- trendVar (sce, use.spikes=NA, trend="loess")

dec <- decomposeVar (sce, fit)

top.hvgs <- which(dec$FDR <= 0.05 & dec$bio >= 0.5)

sce$Glscore <- assignments$scores$Gl

sce$G2Mscore <- assignments$score$G2M

out <- plotPCA(sce, feature set=top.hvgs, colour by="Glscore", size by="G2Mscore") +
fontsize + ggtitle("Before removal")

# Using HVGs after blocking on the phase score.

top.hvgs2 <- which(dec.block$FDR <= 0.05 & dec.block$bio >= 0.5)

norm exprs (sce) <- removeBatchEffect (exprs(sce), covariates=assignments$score[,c("G1l", "G2M")]

out2 <- plotPCA(sce, exprs values="norm exprs", feature set=top.hvgs2, colour by="Glscore",
size by="G2Mscore") + fontsize + ggtitle("After removal")

multiplot (out, out2, cols=2)

As an aside, this dataset contains cells at various stages of differentiation (Mahata er al., 2014). This is an ideal
use case for diffusion maps which perform dimensionality reduction along a continuous process. In Figure 30, cells
are arranged along a trajectory in the low-dimensional space. The first diffusion component is likely to correspond to
T, 2 differentiation, given that a key regulator Gata3 (Zhu et al., 2006) changes in expression from left to right.

plotDiffusionMap (sce, exprs values="norm exprs'", colour by="Gata3") + fontsize

Extracting annotation from Ensembil identifiers

Feature-counting tools typically report genes in terms of standard identifiers from Ensembl or Entrez. These
identifiers are used as they are unambiguous and highly stable. However, they are difficult to interpret compared
to the gene symbols which are more commonly used in the literature. We can easily convert from one to the other
using annotation packages like org. Mm.eg.db. This is demonstrated below for Ensembl identifiers in a mESC dataset
(Kolodziejezyk et al., 2015) obtained from http://www.ebi.ac.uk/teichmann-srv/espresso. The select call extracts
the specified data from the annotation object, and the match call ensures that the first gene symbol is used if multiple
symbols correspond to a single Ensembl identifier.
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incoming <- read.table("counttable es.csv", header=TRUE, row.names=1l)

my.ids <- rownames (incoming)

anno <- select (org.Mm.eg.db, keys=my.ids, keytype="ENSEMBL", column="SYMBOL")
anno <- anno[match (my.ids, anno$ENSEMBL), ]

head (anno)

#4 ENSEMBL SYMBOL
## 1 ENSMUSG0O0000000001 Gnai3
## 2 ENSMUSG00000000003 Pbsn
#4# 3 ENSMUSGO0000000028 Cdc45
## 4 ENSMUSG00000000031 H19
## 5 ENSMUSGO0000000037 Scml2
## 6 ENSMUSGO0000000049 Apoh

To identify which rows correspond to mitochondrial genes, we need to use extra annotation describing the genomic
location of each gene. For Ensembl, this involves using the 7xDb. Mmusculus. UCSC.mm10.ensGene package.

library (TxDb.Mmusculus.UCSC.mm1l0.ensGene)

location <- select (TxDb.Mmusculus.UCSC.mml0.ensGene, keys=my.ids,
column="CDSCHROM", keytype="GENEID")

location <- location[match(my.ids, location$GENEID), ]

is.mito <- location$SCDSCHROM == "chrM" & !is.na(location$CDSCHROM)

sum(is.mito)

## [1] 13
Identification of rows that correspond to spike-in transcripts is much easier, given that the ERCC spike-ins were used.

is.spike <- grepl ("7ERCC", my.ids)
sum(is.spike)

## [1] 92

All of this information can be consolidated into a SCESet object for further manipulation. Alternatively, annotation
from BioMart resources can be directly added to the object using the getBMFeatureAnnos function from scater.

anno <- anno[,-1,drop=FALSE]

rownames (anno) <- my.ids

sce <- newSCESet (countData=incoming, featureData=AnnotatedDataFrame (anno))
sce <- calculateQCMetrics(sce, feature controls=list (ERCC=is.spike))
isSpike(sce) <- "ERCC"

We filter out rows that do not correspond to endogenous genes or spike-in transcripts. This will remove rows
containing mapping statistics such as the number of unaligned or unassigned reads, which would be misleading if
treated as gene expression values. The object is then ready for downstream analyses as previously described.

sce <- scel[grepl ("ENSMUS", rownames (sce)) | isSpike(sce),]
dim(sce)

## Features Samples
## 38653 704

Conclusions

This workflow provides a step-by-step guide for performing basic analyses of single-cell RNA-seq data in R. It
provides instructions for a number of low-level steps such as quality control, normalization, cell cycle phase

Page 38 of 71


http://bioconductor.org/packages/TxDb.Mmusculus.UCSC.mm10.ensGene
http://bioconductor.org/packages/release/bioc/html/scater.html

F1000Research 2016, 5:2122 Last updated: 18 JUL 2022

assignment, data exploration, HVG and marker gene detection, and clustering. This is done with a number of
different datasets to provide a range of usage examples. The workflow is modular so individual steps can be substituted
with alternative methods according to user preferences. In addition, the processed data can be easily used for higher-
level analyses with other Bioconductor packages. We anticipate that this workflow will assist readers in assembling
analyses of their own scRNA-seq data.

Software availability
All software packages used in this workflow are publicly available from the Comprehensive R Archive Network
(https://cran.r-project.org) or the Bioconductor project (http://bioconductor.org). The specific version numbers of the
packages used are shown below, along with the version of the R installation. Version numbers of all Bioconductor pack-
ages correspond to release version 3.4 of the Bioconductor project. Users can install all required packages and execute
the workflow by following the instructions at https://www.bioconductor.org/help/workflows/simpleSingleCell. The
workflow takes less than an hour to run on a desktop computer with 8 GB of memory.

sessionInfo ()

## R version 3.3.1 Patched (2016-10-17 r71532)

## Platform: x86 64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 14.04.5 LTS

##

## locale:

## [1] LC_CTYPE:eD_GB.UTF—8 LC_NUMERIC=C LC_TIME:en_GB.UTF—8
## [4] LC COLLATE=en GB.UTF-8 LC_MONETARY=en GB.UTF-8 LC_MESSAGES=en GB.UTF-8
## [7) LC_PAPER=en GB.UTF-8 LC NAME=C LC_ADDRESS=C

## [10] LC_TELEPHONE=C LC_MEASUREMENT=en GB.UTF-8 LC IDENTIFICATION=C
##

## attached base packages:

## [1] stats4 parallel stats graphics grDevices utils datasets methods Dbase
i

## other attached packages:

## [1] TxDb.Mmusculus.UCSC.mml0.ensGene 3.4.0 GenomicFeatures 1.26.0

## [3] GenomicRanges 1.26.0 GenomeInfoDb 1.10.0

## [5] openxlsx 3.0.0 edgeR 3.16.0

## [7] dynamicTreeCut 1.63-1 limma 3.30.0

## [9] gplots 3.0.1 RBGL 1.50.0

## [11] graph 1.52.0 org.Mm.eg.db 3.4.0

## [13] AnnotationDbi 1.36.0 IRanges 2.8.0

## [15] S4Vectors_0.12.0 scran 1.2.0

## [17] scater 1.2.0 ggplot2 2.1.0

## [19] Biobase 2.34.0 BiocGenerics 0.20.0

## [21] gdata 2.17.0 R.utils 2.4.0

## [23] R.oco 1.20.0 R.methodsS3 1.7.1

## [25] destiny 2.0.0 mvoutlier 2.0.6

## [27] sgeostat 1.0-27 Rtsne 0.11

## [29] BiocParallel 1.8.0 knitr 1.14

## [31] BiocStyle 2.2.0

i

## loaded via a namespace (and not attached):

## [1] Hmisc 3.17-4 RcppEigen 0.3.2.9.0 plyr 1.8.4

#4 [4] igraph 1.0.1 sp 1.2-3 shinydashboard 0.5.3
## [7] splines_3.3.1 digest 0.6.10 htmltools 0.3.5
## [10] viridis 0.3.4 magrittr 1.5 cluster 2.0.5

## [13] Biostrings 2.42.0 matrixStats 0.51.0 xts 0.9-7

## [16] colorspace 1.2-7 rrcov 1.4-3 dplyr 0.5.0

## [19] RCurl 1.95-4.8 tximport 1.2.0 Imed 1.1-12

## [22] survival 2.39-5 zoo 1.7-13 gtable 0.2.0

## [25] XVector 0.14.0 zlibbioc_1.20.0 MatrixModels 0.4-1
## [28] car 2.1-3 kernlab 0.9-25 prabclus_2.2-6
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## [31] DEoptimR 1.0-6 SparseM 1.72 VIM 4.6.0

## [34] scales 0.4.0 mvtnorm 1.0-5 DBI 0.5-1

## [37] GGally 1.2.0 Rcpp 0.12.7 sROC_0.1-2

## [40] xtable 1.8-2 laeken 0.4.6 foreign 0.8-67

## [43] proxy 0.4-16 mclust 5.2 Formula 1.2-1

## [46] ved 1.4-3 FNN 1.1 RColorBrewer 1.1-2
## [49] fpc_2.1-10 acepack 1.3-3.3 modeltools 0.2-21
## [52] reshape 0.8.5 XML _3.98-1.4 flexmix 2.3-13

## [55] nnet 7.3-12 locfit 1.5-9.1 labeling 0.3

## [58] reshape2 1.4.1 munsell 0.4.3 tools 3.3.1

## [61] RSQLite 1.0.0 pls_2.5-0 evaluate 0.10

## [64] stringr 1.1.0 cvTools 0.3.2 robustbase 0.92-6
## [67] caTools 1.17.1 nlme 3.1-128 mime 0.5

## [70] quantreg 5.29 formatR 1.4 biomaRt 2.30.0

## [73] pbkrtest 0.4-6 beeswarm 0.2.3 el071 _1.6-7

## [76] statmod 1.4.26 smoother 1.1 tibble 1.2

## [79] robCompositions 2.0.2 pcaPP_1.9-61 stringi 1.1.2

## [82] lattice 0.20-34 trimcluster 0.1-2 Matrix 1.2-7.1

## [85] nloptr_ 1.0.4 Imtest 0.9-34 data.table 1.9.6
## [88] bitops 1.0-6 rtracklayer 1.34.0 httpuv 1.3.3

## [91] R6_2.2.0 latticeExtra 0.6-28 KernSmooth 2.23-15
## [94] gridExtra 2.2.1 vipor 0.4.4 boot 1.3-18

## [97] MASS 7.3-45 gtools 3.5.0 assertthat 0.1

## [100] SummarizedExperiment 1.4.0 chron_ 2.3-47 rhdf5 2.18.0

## [103] rjson 0.2.15 GenomicAlignments 1.10.0 Rsamtools 1.26.0
## [106] diptest_0.75-7 mgcv_1.8-15 grid 3.3.1

## [109] rpart 4.1-10 class_7.3-14 minga 1.2.4

## [112] TTR 0.23-1 scatterplot3d 0.3-37 shiny 0.14.1

## [115] ggbeeswarm 0.5.0
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Authors have satisfactorily addressed most of my questions and comments. However, I still have
two main concerns (see follow up on Questions 12/13 and 19) and other minor comments.

Follow up on Q12/Q13:

Dimensionality reduction approaches like PCA are exploratory techniques suitable to be used at
early stages of the analysis. Of course they may be affected by increasing levels of noise, but still
have proved valuable to uncover the underlying structure of high-dimensional transcriptional data
without feature selection steps. The potential benefit of a particular feature selection approach
preceding them is something that can -and should- be checked by the user by comparing the
results obtained before and after the filtering steps. There is no reason to overlook the
"unfiltered" results, as ignoring them a priori could neglect important factors.

While restricting the analysis to correlated HVGs can enhance the signal of the most prominent
differences (e.g. main subgroups or trends), the approach risks to filter out important genes for
the identification of e.g. small subpopulations of cells and/or further heterogeneity within a given
group, which are main motivations of many single-cell studies. The following code illustrates that
the assessment of correlated genes used here (correlatePairs function) presents drawbacks (e.g.
correlation results are sensitive to the relative size of the different subpopulations of cells and to
random noise). Restricting the analysis to correlated HVGs could eventually limit the ability to
capture the structure of the data and, in opinion of this referee, the general recommendation to
the reader should be to apply the filter after checking that no obvious things are missed

The example shows 3 subpopulations of cells determined by 2 markers (gene 1 and 2) (a common
case, for instance, in immunology): -/-, +/- and -/+ . In the example, another two genes are tightly
associated with the previous markers (gene 3 and 4, respectively). By themselves, gene 3 and 4
would determine as well the 3 populations. Two scenarios are illustrated. First 3 subpopulations of
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equal size, and second 3 populations of uneven size, with a subpopulation of cells of small size
> set.seed(100)
# Scenario A: 3 subpopulations of equal size

> Size1<-333
> Size2<-333
> Size3<-333
> myvar=1
>
> NEG_NEG<-
cbind(rnorm(Size1,100,myvar),rnorm(Size1,100,myvar),rnorm(Size1,100,myvar),rnorm(Size1,100,myvar))
> POS_NEG<-
cbind(rnorm(Size2,200,myvar),rnorm(Size2,100,myvar),rnorm(Size2,200,myvar),rnorm(Size2,100,myvar))
> NEG_POS<-
cbind(rnorm(Size3,100,myvar),rnorm(Size3,200,myvar),rnorm(Size3,100,myvar),rnorm(Size3,200,myvar))
>
> M<-as.matrix(rbind(NEG_NEG,POS_NEG,NEG_PQOS))
> var.cor <- correlatePairs(t(M))
>
> subset(var.cor,FDR <= 0.05)

genel gene2 rho p.value FDR

1 1 3 0.6770746 1.999998e-06 1.999998e-06
2 2 4 0.6680684 1.999998e-06 1.999998e-06
3 3 4-0.3477739 1.999998e-06 1.999998e-06
4 2 3-0.34774321.999998e-06 1.999998e-06
5 1 4-0.3462825 1.999998e-06 1.999998e-06
6 1 2-0.3168503 1.999998e-06 1.999998e-06
> dim(M)

[11999 4

> M2 <- cbind(M, matrix(rnorm((Size1+Size2+Size3)*1000), ncol=1000)) # Adding uncorrelated
noise
> dim(M2)
[1] 999 1004
> PCM<-prcomp(M2)
> plot(PCM$x[,1],PCM$x[,2], pch=16)
> cor(M,method="spearman")

[1] [.2] [.3] [4]
[1,] 1.0000000 -0.3168503 0.6770746 -0.3462825
[2,1-0.3168503 1.0000000 -0.3477432 0.6680684
[3,] 0.6770746 -0.3477432 1.0000000 -0.3477739
[4,]-0.3462825 0.6680684 -0.3477739 1.0000000
> cor(PCM$x[,11,M)

[1] 21 [3] [.4]
[1,] 0.8655852 -0.8660004 0.8659075 -0.8663694
> cor(PCM$x[,2],M)

L1 L2 [31 [LA4]
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[1,10.5005309 0.4998326 0.4999728 0.4991926

# Scenario B: 3 subpopulations of uneven size

> Size1<-800
> Size2<-185
> Size3<-15
> myvar=.1

> NEG_NEG<-
cbind(rnorm(Size1,100,myvar),rnorm(Size1,100,myvar),rnorm(Size1,100,myvar),rnorm(Size1,100,myvar))
> POS_NEG<-
cbind(rnorm(Size2,200,myvar),rnorm(Size2,100,myvar),rnorm(Size2,200,myvar),rnorm(Size2,100,myvar))
> NEG_POS«<-
cbind(rnorm(Size3,100,myvar),rnorm(Size3,200,myvar),rnorm(Size3,100,myvar),rnorm(Size3,200,myvar))
> M<-as.matrix(rbind(NEG_NEG,POS_NEG,NEG_POS))
> var.cor <- correlatePairs(t(M))
> subset(var.cor,FDR <= 0.05)

genel gene2 rho p.value FDR
1 1 30.4423758 1.999998e-06 1.199999e-05

> dim(M)
[111000 4
> M2 <- cbind(M, matrix(rnorm((Size1+Size2+Size3)*1000), ncol=1000)) # Adding uncorrelated
noise
> dim(M2)
[1]1 1000 1004
> PCM<-prcomp(M2)
> plot(PCM$x[,1]1,PCM$x[,2], pch=16)
> cor(M,method="spearman")

[1] [.2] [3] [4]
[1,] 1.00000000 -0.04622429 0.44237576 -0.02078442
[2,]1-0.04622429 1.00000000 -0.02955135 0.01551650
[3,] 0.44237576-0.02955135 1.00000000 -0.02922687
[4,]-0.02078442 0.01551650 -0.02922687 1.00000000
> cor(PCM$x[,11,M)

L1121 [31 [4]
[1,]1-0.9999771 0.06552188 -0.9999781 0.06533876
> cor(PCM$x[,2],M)

[1] [.2] [3] [4]
[1,]1-0.006496133 -0.9978253 -0.006326823 -0.9978401

In the first scenario, the correlatePairs function leads to significant results among all pair-wise
comparisons. However, in the second scenario, filtering through the correlatePairs function will
miss the association between 2-4, as well as the antagonism between (1+, 3+) versus (2+, 4+). In
both scenarios, a PCA analysis would have detected both factors and the 3 underlying
subpopulations, despite the presence of uncorrelated noise.
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Q19

The inspection of the similarity between the quickCluster results and the dendrograms is not
suggested as an indication of performance but, eventually, suitable to avoid circularity. I wonder
whether, if some groups from the quickCluster were largely equivalent to groups resulting from
the dendogram, the differentially expressed genes detected among them could just be reflecting
the different size factors applied to each group at the normalization step rather than true
biological differences in their expression levels

Minor comments:

Q5

The approach of Shalek et al. was not suggested by this referee here as an alternative way to filter
out genes. On the contrary, it was proposed as a way to retain genes that eventually could be
filtered out by the "non-zero counts in at least n cells" criteria. For instance, following such a
simple rule, a gene expressed with high levels in few cells (i.e. eventually departing from
expectations) will be treated the same way as a gene lowly expressed in few cells (following noise
expectations). As authors already warned in the text, the risk is neglecting important genes for the
identification of rare subpopulations of cells.

Q15

Heatmaps are typically used to visualize both clustering of cells and of genes. Being Spearman's
correlation the method of choice to assess correlated HVGs, and being correlated HVGs the set of
genes on which clustering of cells is represented, it seems to this referee more consistent to use
Spearman's rho as the default distance of choice to determine the ordering of genes in the plot.
As for the clustering of cells, the statement "in the context of this workflow, the differences in
clustering on correlations versus Euclidean distances would only have a minor effect" could
eventually not hold true and, in any case, can be easily checked by the user

Q18

The inspection of the distribution of the percentage of variance explained by the different PCs is
not suggested here to assist interpretation of the non-visualized components. On the contrary, it
is necessary to avoid an over-interpretation (or oversimplification) of a visualization done on the
first 2 dimensions, when additional dimensions could still gather a high % of variance relevant to
interpret the structure of the data. Literature exists on how to determine the "relevant" number of
dimensions, and hence, whether visualization on 2D is any useful.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.
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v

Diana H.P. Low
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,
Singapore

The revised manuscript has satisfactorily addressed my largest concern about the
reproducibility of the workflow by updating the code, and stating the dependence on
Bioconductor 3.4.

While I understand that this workflow is meant to work under version 3.4, it is important to
mention these information in the manuscript regardless of the time of publication, especially if
one expects that there might be casual users of R (at this point I would echo the sentiments of
Hongkai Ji regarding installation convenience). Working with development versions of R - albeit
awaiting its release at that point in time - is a slight danger in itself, unless the workflow is only
relying on packages that the authors have themselves developed. However, these are but minor
issues.

I thank the authors for creating this documentation that should provide a sufficient launchpad for

those getting into single-cell analyses. I hope the authors will continue to improve upon the
components as the field matures.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 November 2016
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© 2016 Ji H. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
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v

Hongkai Ji
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
USA

In this revised manuscript, the authors have satisfactorily answered my previous questions.
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Overall, the workflow provides a useful step-by-step instruction on how to analyze scRNA-seq
data, and it is worthwhile to be documented in the literature. The authors explained why they
hesitated to provide the whole pipeline through an R file and a graphical user interface. While
their explanations are reasonable, convenience in installation and data exploration will greatly
help many users. Therefore, I hope they could add/improve those components as they continue to
develop this workflow.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 11 November 2016

https://doi.org/10.5256/f1000research.10712.r17329

© 2016 McDavid A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

v

Andrew McDavid

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY,
USA

In the 2nd version, Lun and colleagues have updated the workflow for the 3.4 release of
Bioconductor and provided a tool to install all the needed dependencies to replicate the workflow.
This eases reproducibility and addresses my first and largest concern.

The authors have not modified the article in response to my other comments, but rather offer a
rebuttal. I acknowledge that some of the issues I raise are probably too large to be solved in a
vignette, but nonetheless potential users of this workflow should be aware of them. I reply below:

1b. Inheriting from a 'SummarizedExperiment’ not only allows storage in sparse formats, which as
indicated in rebuttal may not be terribly applicable for scRNAseq, but also allows analysis of data
that is too big to fit into memory, by storing the data on-disk in HDF5 format. Adopting
‘SummarizedExperiment’ as a container would future-proof this software in the event that data
sets do get too large to fit into memory of conventional machines. A back-of-the envelop
calculation suggests this won't be an issue until data sets are on the order of 10° cells, and require
on the order of gigabytes of memory to store. Conducting analysis on big-memory machines
might delay this issue indefinitely.

2. Although feature counting is an approach used by many studies, I do not know that it has been
shown to provide equivalent estimates to EM-based transcript quantitation (and would welcome a
reference otherwise!) Because feature counting throws away multi-mapped reads, at a minimum it
is an inefficient use (scarce, costly) data. I would not characterize it generally as "conservative,"
either, unless the reads are discarded uniformly at random from all possible transcripts, and only
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single isoforms are of interest. If uniformity doesn't hold, or multiple isoforms are present, feature
counting distorts the relative abundances of genes, and even sample-to-sample comparisons of
the same gene (e.g. Figures S1 and S4 in [1]). Additionally, modern quantitation programs do
much more than account for multi-mapping reads--they also can model biases in the sequencing
chemistry and fragment start sites, and can be faster than alignment-based procedures.23 I find
analyst inertia an unconvincing reason not to adopt them.

3. also agree that the plethora of alternate approaches is a quagmire for end-users at the
moment. Lamentably there has been very little in the way of across-method comparison, and
instead the methods have been developed around a specific data set, or two, and rarely compared
to each other. More direct head-to-head comparisons would advance the field dramatically. In the
meantime, caveat calculator.

I thank the authors for their effort in creating this tutorial. Having well-documented software and
workflows will be critical for allowing the sorts of head-to-head comparisons I mention in [3].
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In the Software tool article “A step-by-step workflow for low-level analysis of single-cell RNA-seq
data”, Lun, McCarthy and Marioni thoroughly describe a comprehensive pipeline for the low-level
analysis of single-cell RNA-seq data. The article covers important topics such as the quality control
of cells and genes, normalization of expression levels, control for technical factors and cell cycle,
detection of highly variable genes, assessment of subpopulations of cells and associated
differentially expressed genes. The workflow is illustrated in a number of datasets offering diverse
scenarios that nicely guide the reader on the different criteria that may be adopted throughout
the analysis. The manuscript is clearly presented, the quality of the code and figures is excellent
and a great effort has been done to introduce complex questions in an easily accessible manner to
a broad audience. Importantly, the authors discuss situations where it is difficult to provide a
clear-cut recipe, and the need for experimental validation is stressed. Overall I think the article is
an important contribution to the community and that it should quickly become a reference guide
in the field.

I report here a number of comments, questions and suggestions with the hope that they may
contribute to improve an already excellent article:

1. In addition to the approaches proposed by the authors to detect low quality cells, I would
suggest the readers the possibility of identifying outlier cells by performing a PCA on the
normalized gene expression matrix restricted to protein-coding genes (e.g. using biotype
annotations from Ensembl biomart). On the one hand, outlier cells will dominate the first principal
components, which will show high percentage of variances simply accounting from the separation
of the outlier from the compact cloud of “normal” cells. On the other hand, a PCA analysis could
suggest keeping a cell whose relative similarity to the rest of the cells in a low-dimensional space
seems rather normal, even if it could still have an allegedly "bad" quality metric.

2. As an additional quality control check for the cells, I would also suggest to assess whether the
sequencing depth was generally deep enough for most of the cells, by inspecting for instance the
saturation curve of the number of detected genes (or other features like the known exon-exon
junctions) as a function of the fraction of down-sampled reads.

3. Inthetextitis proposed to filter out low-abundance genes, defined as “those with an average
count below a filter threshold of 1." However, the average count is assessed before the
normalization step. Would it be more meaningful to apply this filter on the normalized counts?

4. Aprioriitis difficult to rule out the possibility that the filtering of low-abundance genes could
eventually hamper the identification of relevant genes in rare populations of cells. I would
generally suggest being rather inclusive at this stage, especially when no clustering of single-cells
has been done yet, so that it would still be possible to check whether e.g. the few cells expressing
some genes -even if at low levels- are actually forming a distinctive and biologically relevant
cluster.

5. Authors propose as an alternative approach to gene filtering, to select genes that have non-
zero counts in at least n cells. As illustrated in Figure 6, the number of cells expressing a given
gene may be modeled by its mean expression level. This was elegantly addressed in Shalek et al.
(2014) through a likelihood ratio test comparing a null model -where all cells express a genein a
lognormal fashion- with an alternate model -where a gene is not expressed in a subpopulation of
cells a (See section "Controlling for relationship between expression level and detection efficiency"
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in the supplementary material:
http://www.nature.com/nature/journal/v510/n7505/extref/nature13437-s1.pdf). Genes for which
the null model is rejected may be indicative of a subpopulation of cells not expressing the gene at
a higher fraction than the one expected from technical noise (e.g. dropout events). I would
suggest exploring such approach in order to avoid filtering out relevant genes due to a sharp
threshold on the number of cells expressing it.

6. Inthe section “Filtering out low-abundance genes"”, the sentence "This provides some more
protection against genes with outlier expression patterns, i.e., strong expression in only one or
two cells. Such outliers are typically uninteresting as they can arise from amplification artifacts
that are not replicable across cells.[...]" would be better followed by setting alt.keep <- numcells >=
2 instead of >=10

7. Itwould be interesting to complement Figure 7 and 18 with a second panel representing the
correlation between size factors from deconvolution versus spike-in-specific size factors, as done
in Figure 27. In the eventual case that a low correlation between them was found in a non-DE
scenario, would it be advisable to neglect spike-ins from the analysis?

8. As pointed by the authors, spike-in molecules have been extensively used to infer the amount
of variability in the expression levels of one gene that can be explained from technical noise (e.qg.
Brennecke et al., 2013; Grun et al., 2014; Islam et al., 2014). Ding et al. (2015) went further on the
applications of spike-in levels, by using them to explicitly remove technical noise and compute de-
noised gene expression levels (R software GRM, http://wanglab.ucsd.edu/star/GRM/). I would
suggest the readers such possibility that could largely benefit downstream analysis such as the
detection of subpopulation of cells and cell trajectories, as they would mainly rely on biological
variation. This would still be compatible with an assessment of HVG only based on biological
variation by fitting the trend to the variance estimates of the endogenous genes (after technical
denoising).

9. Authors state that the technical component estimation through the fitting of a mean-variance
trend to the spike-in transcripts “is compromised by the small number of spike-in transcripts, the
uneven distribution of their abundances and (for low numbers of cells) the imprecision of their
variance estimates”. Do the same remarks generally apply to a spike-in-specific normalization?
And if so, should spike-in normalization be considered accurate enough when applied to cases
with strong DE even if it is conceptually more appropriate than a deconvolution approach?

10. In the section “Identifying HVGs from the normalized log-expression” the authors justify their
choice of "the variance of the log-expression values because the log-transformation protects
against genes with strong expression in only one or two cells. This ensures that the set of top
HVGs is not dominated by genes with (mostly uninteresting) outlier expression patterns”.
However, the filtering of genes with such patterns has already been proposed in a previous
section, so those cases should no longer be a risk here.

11. The interpretability of the approach of "Identifying correlated gene pairs with Spearman’s
rho" is to some extent limited without a previous analysis such as PCA, ICA or MDS, transforming
the high-dimensional space into a space of independent (uncorrelated) dimensions. I would rather
favor the identification of sets of genes with a high weight on each of the retained independent
axis (i.e. driving the variance in such axes, and therefore disentangling sets of correlated genes for
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each of the orthogonal dimensions). Otherwise, the analysis could risk to be dominated by the first
component, probably neglecting other relevant hidden factors.

12. Inany case, I advise not to restrict to correlated HVGs downstream dimensionality reduction
analysis such as PCA or ICA aiming at the identification of subpopulations of cells and their gene
signatures. Such methods exploit correlation patterns (linear or non-linear) in a well-grounded
way and they do not require a feature selection step. The sentence "We only use the correlated
HVGs in plotPCA because any substructure should be most pronounced in the expression profiles
of these genes" could eventually not hold true in some instances: correlated HVGs were assessed
without considering those independent components, the relative contribution of each dimension
to the total variance, and the relative contribution of each gene to each dimension.

13. Inthe brain dataset, correlated HVGs genes were assessed considering the design <-
model.matrix(~sce$sex); correlatePairs(sce, design=design). It would be useful to further
explain here how this function accounts for the design matrix on the assessment of Spearman'’s
rho.

14. Inthe brain dataset, removeBatchEffect from limma package is used to remove the sex
effect. Then tSNE and PCA are applied on the sex-corrected expression values restricted to
correlated HVGs. Consistently, correlated HVGs were assessed considering the very same factor:
design <- model.matrix(~sce$sex); correlatePairs(sce, design=design). I would further warn the
reader and stress the necessity of that consistency between both steps.

15. For consistency with the assessment of correlations based on Spearman's rho, in the
heatmap I would recommend to assess first the dendrograms for the cells and the genes by using
also a spearman correlation: For instance:

cells.cor <- cor(expressionmatrix, method="spearman")

cells.cor.dist <- as.dist(1-samples.cor)

cells.tree <- hclust(cells.cor.dist, method='complete')

And then in heatmap.2 setting Colv=as.dendrogram(cells.tree)

And analogously with the genes for Rowv

This should be adapted in the case that a design is used as in correlatePairs(sce, design=design)
Personally I would also suggest to check how the heatmaps look by setting scale="row' in
heatmap.2 function.

16. Iwould suggest explicitly mentioning in the pipeline which approaches are based on linear
or non-linear assumptions. The workflow alternates methods from both categories, which should
be taken into account to understand their downstream consequences. For instance:

> The function plotExplanatoryVariables from scater package, with the default method=
"den5|ty", produces a density plot of R-squared values for each variable when fitted as the
only explanatory variable in a linear model.

o The function removeBatchEffect from limma package fits a linear model to the data,
including both batches and regular treatments, then removes the component due to the
batch effects.

> Then the analysis is restricted to correlated HVGs, which are assessed on spearman’s rho,
i.e. rank-based, non-linear

> tSNE is non-linear based, PCA is linear
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Clusters are defined through dynamic tree cut to the dendograms assessed by hierarchical
clustering on the Euclidean distances between cells (linear, although in a non-orthogonal
space)
17. The use of hierarchical clustering for clustering cells into putative subpopulations is based on
Euclidean distances (or correlations) assessed in a non-orthogonal space. I would rather favor an
analytical clustering directly performed in a low-dimensional orthogonal space such us those led
by PCA, ICA or MDS, in which the most-informative dimensions can be selected (e.g. through their
eigen values in PCA).

18. A PCA analysis should be accompanied by a plot representing the % of variance explained by
each principal component, so that it can be judged the number of relevant dimensions to be
retained while disregarding the rest as “noise”. It could be the case that more than 2 dimensions
are relevant to separate subpopulations in a finer detail. The inspection of eigenvalues would help
supporting that "PCA plot is less effective at separating cells into many different clusters (Figure
24). This is because the first two principal components are driven by strong differences between
specific subpopulations, which reduces the resolution of more subtle differences between some of
the other subpopulations."

19. Inthe brain analysis, three main steps are: 1) the deconvolution method is used to normalize
expression levels. Here similar cells are clustered together and cells are normalized in each
cluster. Authors state: “This improves normalization accuracy by reducing the number of DE genes
between cells in the same cluster”. Clustering is performed here with the quickCluster function
from scran package, where a distance matrix is constructed using Spearman'’s correlation on the
counts between cells. 2) A hierarchical clustering is then performed and a dynamic tree cut is used
to define clusters of cells. Then, the batch(sex)-corrected expression values of the (Spearman’s
rho) correlated HVG are used to build a dendogram assessed through hierarchical clustering on
the Euclidean distances between cells, where clusters are defined. And 3) those clusters are used
to assess DE with edgeR on the counts, normalized using the library size-adjusted size factors (if I
well understood) and including all genes (not only correlated HVG). I personally found such
procedure a bit cumbersome as it is relying on different types of expression matrices and metrics
in each of the 3 steps (see also next comment). I also wonder to what extent the initial
quickCluster results could be biasing the clusters detected downstream, and, if so, whether the
normalization step would be biasing in turn the differentially expression results. The
correspondence between the quickCluster results with the clusters from the dendograms should
at least be inspected and discussed.

20. Inline with the previous comment, in the brain analysis I wonder whether the pipeline could
somehow be simplified by 1) performing spike-in normalization (which seems possible given the
quality of the spike-in trend observed in Figure 21), 2) doing a PCA on the batch(sex)-corrected
expression values of all genes (not only correlated HVGs), and performing clustering on the
retained principal components, and 3) assessing DE with edgeR on the counts normalized using
the spike-in factors.

Minor comments

21. Some code at the beginning of the analysis to check and install all the required packages
would be welcome
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22. Everything run smoothly in our hands except for the gdata package when trying to read the
xls file. The perl command interpreter was running abnormally long and it was using a large
amount of RAM. We finally opened the xIs file in excel and converted into tab separated file, then
read it using the general read.table command.
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Aaron Lun, Cancer Research UK Cambridge Institute, Cambridge, UK

Thanks for your comments, Antonio. Our responses are as below:

1. In addition to the approaches proposed by the authors to detect low quality cells, I
would suggest the readers the possibility of identifying outlier cells by performing a PCA on
the normalized gene expression matrix restricted to protein-coding genes (e.g. using
biotype annotations from Ensembl biomart). On the one hand, outlier cells will dominate
the first principal components, which will show high percentage of variances simply
accounting from the separation of the outlier from the compact cloud of “normal” cells. On
the other hand, a PCA analysis could suggest keeping a cell whose relative similarity to the
rest of the cells in a low-dimensional space seems rather normal, even if it could still have
an allegedly "bad" quality metric.

This is certainly a valid approach, though we do not mention it here for several reasons. The
first reason is that there is an increased risk of being confounded by biological effects when
gene expression patterns are directly used, e.g. where uncommon cell types are classified
as outliers and removed. The second is that we do not want to confuse readers with a
variety of possible options - while our approach is not the only way to do it, it does work,
and thus serves its purpose in this workflow. Finally, the use of PCA-based outlier detection
has been explored in some detail by Ilicic et al. (2016), which we have already mentioned in
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the text.

2. As an additional quality control check for the cells, I would also suggest to assess
whether the sequencing depth was generally deep enough for most of the cells, by
inspecting for instance the saturation curve of the number of detected genes (or other
features like the known exon-exon junctions) as a function of the fraction of down-sampled
reads.

This is an interesting idea, though it seems to be more useful as a diagnostic for future
experiments rather than for an already existing dataset. Even if saturation is not reached, it
would not affect the data analysis provided that the existing counts were large enough. Our
diagnostics focus on the quality of the data that we currently have, rather than the potential
for improving the experiment by collecting more data.

3. In the text it is proposed to filter out low-abundance genes, defined as “those with an
average count below a filter threshold of 1." However, the average count is assessed before
the normalization step. Would it be more meaningful to apply this filter on the normalized
counts?

Unfortunately, most normalization methods (e.g. deconvolution, TMM, DESeq) perform
poorly with unfiltered data due to the poor precision of low counts. This necessitates some
degree of filtering prior to normalization. We do not think that this has a major effect on the
mean count for most genes, given that the size factors average out to unity across all cells.

4. A priori it is difficult to rule out the possibility that the filtering of low-abundance genes
could eventually hamper the identification of relevant genes in rare populations of cells. I
would generally suggest being rather inclusive at this stage, especially when no clustering
of single-cells has been done yet, so that it would still be possible to check whether e.g. the
few cells expressing some genes -even if at low levels- are actually forming a distinctive
and biologically relevant cluster.

In the context of this workflow, one of the roles of filtering is to reduce the number of genes
that need to be tested as being highly variable. This improves power by reducing the
severity of the multiple testing correction, increasing the chance that potentially informative
genes are detected as HVGs and used in downstream analyses. Thus, while relaxing the
filter may retain more genes, fewer of these genes may actually be used in the downstream
analysis. (This is more likely than not - low-abundance genes are not generally detected as
being highly variable, due to inherent limits on the scope of variability in count data.)
Indeed, in the example of few cells expressing few genes at low levels, it is difficult to see
how such genes would be detected as being significant in a HVG analysis.

5. Authors propose as an alternative approach to gene filtering, to select genes that have
non-zero counts in at least n cells. As illustrated in Figure 6, the number of cells expressing
a given gene may be modeled by its mean expression level. This was elegantly addressed in
Shalek et al. (2014) through a likelihood ratio test comparing a null model -where all cells
express a gene in a lognormal fashion- with an alternate model -where a gene is not
expressed in a subpopulation of cells a (See section "Controlling for relationship between
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expression level and detection efficiency" in the supplementary material:
http://www.nature.com/nature/journal/v510/n7505/extref/nature13437-s1.pdf). Genes for
which the null model is rejected may be indicative of a subpopulation of cells not
expressing the gene at a higher fraction than the one expected from technical noise (e.g.
dropout events). I would suggest exploring such approach in order to avoid filtering out
relevant genes due to a sharp threshold on the number of cells expressing it.

There are several arguments against using such an approach, at least during the filtering
stage. Firstly, this approach specifically selects for bimodal genes whereas it is entirely
possible that interesting genes could vary across a continuum of expression values (or, in
fact, are bimodal at two non-zero locations). The second is that the significance threshold
effectively serves the same purpose as a threshold on the percentage of expressing genes -
only less interpretable, as it depends on the vagaries and assumptions of the model.
Indeed, default thresholds for significance (e.g. 1%, 5%) may not be appropriate for filtering
and exploratory analyses. Thus, some tuning of the significance thresholds is likely to be
required, further reducing interpretability. Consequently, we feel that the approach we have
suggested is more likely to be generally useful to the wider biological community.

6. In the section “Filtering out low-abundance genes”, the sentence "This provides some
more protection against genes with outlier expression patterns, i.e., strong expression in
only one or two cells. Such outliers are typically uninteresting as they can arise from
amplification artifacts that are not replicable across cells.[...]" would be better followed by
setting alt.keep <- numcells >= 2 instead of >= 10

The "ideal" threshold depends largely on the biological context. The HSC dataset contains a
highly purified and homogeneous population. We would expect that most expressed genes
would be present in a substantial number of these cells, hence the choice of threshold.
While relaxing the filter is possible, this runs into the problems discussed above in our
response to point 4. Of course, in other situations where rare cell types are present (e.g.
olfactory neurons expressing unique receptors), relaxing the filter might be necessary to
retain biological information. We have added a comment about this in the revised
manuscript.

7. It would be interesting to complement Figure 7 and 18 with a second panel representing
the correlation between size factors from deconvolution versus spike-in-specific size
factors, as done in Figure 27. In the eventual case that a low correlation between them was
found in a non-DE scenario, would it be advisable to neglect spike-ins from the analysis?

We considered adding this, but felt that it would make this part of the workflow somewhat
difficult to follow given that we use only the deconvolution factors for normalisation of the
endogenous genes. Nevertheless, we agree that this is an important point and are glad that
the reviewer pointed out Figure 27 where we discuss this issue in some detail.

Low correlations between the spike-in and deconvolution size factors are not a cause for
concern. As we have mentioned, this is entirely possible due to differences in total mMRNA
content. In terms of normalization, the two sets of size factors simply deal with different

biases, so differences between them do not provide any indication of spike-in quality.
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8. As pointed by the authors, spike-in molecules have been extensively used to infer the
amount of variability in the expression levels of one gene that can be explained from
technical noise (e.g. Brennecke et al., 2013; Griin et al., 2014, Islam et al., 2014). Ding et al.
(2015) went further on the applications of spike-in levels, by using them to explicitly
remove technical noise and compute de-noised gene expression levels (R software GRM,
http://wanglab.ucsd.edu/star/GRM/). I would suggest the readers such possibility that
could largely benefit downstream analysis such as the detection of subpopulation of cells
and cell trajectories, as they would mainly rely on biological variation. This would still be
compatible with an assessment of HVG only based on biological variation by fitting the
trend to the variance estimates of the endogenous genes (after technical denoising).

The GRM strategy is an interesting one. However, we do not use it here because the
denoising is performed based on a curve fitted to the spike-in log-FPKMs against the known
concentrations. This is philosophically similar to spike-in-based normalization, in that it will
preserve information about total RNA content. For example, cells with more endogenous
RNA will have larger gene counts and unchanged (or smaller) spike-in counts; this results in
larger de-noised expression values compared to other cells with less total RNA. Such
behaviour may not be desirable in situations where cell size is not of interest.

9. Authors state that the technical component estimation through the fitting of a mean-
variance trend to the spike-in transcripts “is compromised by the small number of spike-in
transcripts, the uneven distribution of their abundances and (for low numbers of cells) the
imprecision of their variance estimates”. Do the same remarks generally apply to a spike-
in-specific normalization? And if so, should spike-in normalization be considered accurate
enough when applied to cases with strong DE even if it is conceptually more appropriate
than a deconvolution approach?

In general, no, the remarks do not apply for spike-in normalization. This is because spike-in
normalization computes a single size factor, using information across all spike-in
transcripts. As a result, the size factor is generally quite precise. Fitting of the mean-variance
trend is less stable because it uses information from each individual spike-in transcript. This
is subject to the issues described in the text, thus reducing the stability of the outcome.

10. In the section “Identifying HVGs from the normalized log-expression” the authors
justify their choice of "the variance of the log-expression values because the log-
transformation protects against genes with strong expression in only one or two cells. This
ensures that the set of top HVGs is not dominated by genes with (mostly uninteresting)
outlier expression patterns”. However, the filtering of genes with such patterns has
already been proposed in a previous section, so those cases should no longer be a risk here.

This depends on the type of abundance filtering that was chosen. In this workflow, we
performed filtering based on the average count, which does not explicitly protect against
strong outliers. Thus, some additional protection is needed during the downstream
analysis. If filtering was performed based on an "at least n" strategy, then outliers will be
less of an issue during HVG detection. Of course, the "at least n" filter has problems of its
own regarding an appropriate choice for "n", as we have discussed in the text and in our
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response to point 6, which is why we have not used it as the default filtering strategy.

11. The interpretability of the approach of "Identifying correlated gene pairs with
Spearman’s rho" is to some extent limited without a previous analysis such as PCA, ICA or
MDS, transforming the high-dimensional space into a space of independent (uncorrelated)
dimensions. I would rather favor the identification of sets of genes with a high weight on
each of the retained independent axis (i.e. driving the variance in such axes, and therefore
disentangling sets of correlated genes for each of the orthogonal dimensions). Otherwise,
the analysis could risk to be dominated by the first component, probably neglecting other
relevant hidden factors.

This point of calculating these correlations is to provide a simple screen for genes that are
likely to be involved in defining the substructure of the dataset. Interpretation of the cause
of these correlations can then be performed using PCA, ICA, etc. as suggested on the subset
of interesting genes. Without some pre-selection of genes (in terms of high variance or
correlation), biological and technical noise may interfere with dimensionality reduction - see
our response to point 12.

Our approach allows relevant genes to be selected in a statistically rigorous manner based
on significant correlations. In contrast, it is unclear how selection would be performed
based on the PCA weights. For example, what should be considered a "high weight", and
from how many principal components should genes be selected? The simplicity of the
calculation of significant pairwise correlations also provides a useful sanity check for
conclusions drawn from more complex downstream analyses.

Finally, if there are hidden factors, these are likely to increase the correlations and cause
rejection of the null hypothesis for the relevant genes. So, genes that are affected by these
factors will still be retained for downstream analysis and interpretation.

12. In any case, I advise not to restrict to correlated HVGs downstream dimensionality
reduction analysis such as PCA or ICA aiming at the identification of subpopulations of
cells and their gene signatures. Such methods exploit correlation patterns (linear or non-
linear) in a well-grounded way and they do not require a feature selection step. The
sentence "We only use the correlated HVGs in plotPCA because any substructure should be
most pronounced in the expression profiles of these genes" could eventually not hold true
in some instances: correlated HVGs were assessed without considering those independent
components, the relative contribution of each dimension to the total variance, and the
relative contribution of each gene to each dimension.

The aim of selecting correlated HVGs is to reduce the amount of technical and
(uncorrelated/uninteresting) biological noise in the data to be used for downstream
analyses. This improves the performance of dimensionality reduction approaches, especially
if the substructure is relatively weak. For example, with PCA, adding a large number of
uncorrelated genes will interfere with correct placement of cells along a trajectory:

par(mfrow=c(1,2))
loc <- 1:100/100 # True placement of cells
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a1 <- matrix(jitter(rep(loc, 50)), nrow=50, byrow=TRUE) # Correlated genes

X1 <- prcomp(t(at))

plot(x1$x[,1]) # Should be on the diagonal

a2 <- rbind(a1, matrix(rnorm(100000), ncol=100)) # Adding uncorrelated noise
X2 <- prcomp(t(a2))

plot(x2$x[, 1]) # Correct placing is disrupted

Similar arguments can be made for distance-based approaches like t-SNE and diffusion
maps, where the nearest neighbours become more difficult to identify correctly with
increasing noise.

Finally, the identification of correlated HVGs does not need to consider the nature of the
substructure. We only need to identify the genes that are affected by this substructure, in
one way or the other - it is the function of downstream analyses to determine what the
substructure actually represents.

13. In the brain dataset, correlated HVGs genes were assessed considering the design <-
model.matrix(~sce$sex); correlatePairs(sce, design=design). It would be useful to further
explain here how this function accounts for the design matrix on the assessment of
Spearman’s rho.

For one-way layouts, a value of rho is first computed within each group of cells. The average
across all groups (weighted by the number of cells) is then used as the final value of rho for
any given pair of genes. For more complex designs, a linear model is fitted to the log-
normalized counts, and rho is calculated using the residuals of the model fit. (While the
linear model approach also works for one-way layouts, it requires some additional
assumptions that can be avoided with a simpler group-based approach.) More details can
be found in the documentation for the correlatePairs() function.

14. In the brain dataset, removeBatchEffect from limma package is used to remove the sex
effect. Then tSNE and PCA are applied on the sex-corrected expression values restricted to
correlated HVGs. Consistently, correlated HVGs were assessed considering the very same
factor: design <- model.matrix(~sce$sex); correlatePairs(sce, design=design). I would
further warn the reader and stress the necessity of that consistency between both steps.

We have added a comment on this to the manuscript.

15. For consistency with the assessment of correlations based on Spearman's rho, in the
heatmap I would recommend to assess first the dendrograms for the cells and the genes by
using also a spearman correlation...

Our dendrograms are constructed based on the distances between cells, which is different
from the correlations between genes. Using the correlations to cluster the genes makes
more sense with respect to checking consistency, but the primary aim of our analysis is to
identify clusters of cells (potential subpopulations) rather than clusters of genes. The latter
is certainly a worthwhile analysis (e.g. to identify gene modules) but, in the context of this
workflow, the differences in clustering on correlations versus Euclidean distances would
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only have a minor effect.

16. I would suggest explicitly mentioning in the pipeline which approaches are based on
linear or non-linear assumptions. The workflow alternates methods from both categories,
which should be taken into account to understand their downstream consequences...

Obviously, each computational method makes a number of assumptions. For the sake of
readability and simplicity (especially for inexperienced readers), we have not discussed most
of these assumptions in this workflow, except for those that are critical to choosing between
methods, e.g. spike-in normalization versus deconvolution. Nonetheless, we have modified
the manuscript to elaborate on the reasons for using non-linear methods such as
Spearman's rho and t-SNE.

17. The use of hierarchical clustering for clustering cells into putative subpopulations is
based on Euclidean distances (or correlations) assessed in a non-orthogonal space. I would
rather favor an analytical clustering directly performed in a low-dimensional orthogonal
space such us those led by PCA, ICA or MDS, in which the most-informative dimensions can
be selected (e.g. through their eigen values in PCA).

There are many possible approaches to clustering, each with their own advantages and
disadvantages. For example, pre-selection of a low-dimensional space via PCA may reduce
noise during clustering, but it may also discard subtle features present in lower-ranked PCs.
Our clustering approach is simple but effective enough, which is why we have used it in this
workflow. Other methods may well do better, but a discussion of the pros and cons of
different clustering strategies is beyond the scope of this article.

18. A PCA analysis should be accompanied by a plot representing the % of variance
explained by each principal component, so that it can be judged the number of relevant
dimensions to be retained while disregarding the rest as “noise”. It could be the case that
more than 2 dimensions are relevant to separate subpopulations in a finer detail. The
inspection of eigenvalues would help supporting that "PCA plot is less effective at
separating cells into many different clusters (Figure 24). This is because the first two
principal components are driven by strong differences between specific subpopulations,
which reduces the resolution of more subtle differences between some of the other
subpopulations.”

We only use PCA for visualization, rather than selection of principal components for further
quantitative analysis in low-dimensional space. For this purpose, knowing the relative
contributions to the total variance from non-visualized components is less helpful. For
example, even if we determined that the top 10 dimensions were "relevant”, it is unclear
how this would assist visualization. Nonetheless, we now mention in the text how this
information can be generated and used.

19. In the brain analysis, three main steps are: 1) the deconvolution method is used to
normalize expression levels. Here similar cells are clustered together and cells are
normalized in each cluster. Authors state: “This improves normalization accuracy by
reducing the number of DE genes between cells in the same cluster”. Clustering is
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performed here with the quickCluster function from scran package, where a distance
matrix is constructed using Spearman’s correlation on the counts between cells. 2) A
hierarchical clustering is then performed and a dynamic tree cut is used to define clusters
of cells. Then, the batch(sex)-corrected expression values of the (Spearman’s rho)
correlated HVG are used to build a dendogram assessed through hierarchical clustering on
the Euclidean distances between cells, where clusters are defined. And 3) those clusters are
used to assess DE with edgeR on the counts, normalized using the library size-adjusted size
factors (if I well understood) and including all genes (not only correlated HVG). I personally
found such procedure a bit cumbersome as it is relying on different types of expression
matrices and metrics in each of the 3 steps (see also next comment). I also wonder to what
extent the initial quickCluster results could be biasing the clusters detected downstream,
and, if so, whether the normalization step would be biasing in turn the differentially
expression results. The correspondence between the quickCluster results with the clusters
from the dendograms should at least be inspected and discussed.

In terms of the choice of matrices and metrics, we have chosen approaches that we feel are
suitable for each step of the workflow. Given that each step examines a different aspect of
the data, some flexibility is inevitably required in supplying the correct input to each
method.

Regarding quickCluster, Lun et al. (2016) show that unbiased size factor estimates are still
obtained after clustering. This is because size factors computed within each cluster are
explicitly corrected to be comparable between clusters. As for the similarity between the
quickCluster results and the dendrograms, we do not believe that this provides a useful
indication of method performance. Some agreement is expected, as the two methods
should recover similar structure in the data. However, some disagreement is also expected,
as quickCluster provides a quick-and-dirty clustering to reduce the amount of DE genes
present during deconvolution, while the dendrograms are much more refined due to
feature selection. Such incongruences are not a problem for normalization - even if
quickCluster identifies the "incorrect" clusters, it is still adequate if it separates cells with
vastly different transcriptomic profiles.

20. In line with the previous comment, in the brain analysis I wonder whether the pipeline
could somehow be simplified by 1) performing spike-in normalization (which seems
possible given the quality of the spike-in trend observed in Figure 21), 2) doing a PCA on the
batch(sex)-corrected expression values of all genes (not only correlated HVGs), and
performing clustering on the retained principal components, and 3) assessing DE with
edgeR on the counts normalized using the spike-in factors.

One could certainly perform such an analysis. However, we chose to use the approach
described in the workflow, because feature selection can improve the results of
downstream analyses, as discussed in our response to point 12; and the choice of whether
or not to do spike-in normalization depends primarily on whether total RNA content is
interesting, not on the quality of the spike-ins.

21. Some code at the beginning of the analysis to check and install all the required
packages would be welcome
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We have added a link to the Bioconductor workflow page, which provides instructions for
installing all required packages and running the workflow.

22. Everything run smoothly in our hands except for the gdata package when trying to read
the xIs file. The perl command interpreter was running abnormally long and it was using a
large amount of RAM. We finally opened the xIs file in excel and converted into tab
separated file, then read it using the general read.table command.

We understand the suboptimality of dealing with Excel files in bioinformatics analysis.
Unfortunately, the authors of this study provided the count data in Excel format on NCBI
GEO. We decided to load the data directly rather than manually supplying the countsin a
simpler format. The latter would make the workflow less generalisable as it would no longer
use data from public, well-recognised sources. In our hands, loading of the Excel file usually
requires a couple of minutes and 3-4 GB of RAM.

Competing Interests: None declared.
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The pipeline described in this article seems promising. I was able to partly reproduce the results,
as well as run similar treatment on a single cell dataset of my own.

However:
o The fundamental flaws mentioned by other reviewers over a month ago, still haven't been
addressed: the pipeline requires Dev versions of R and bioconductor packages, yet makes
no mention of it anywhere in the article.

o Infact, even after installing the Bioconductor Dev versions of all required modules, it would
appear the pipeline no longer works with the latest versions (e.g. scran_1.1.10, with R 3.3.1):

> isSpike(sce) <- "ERCC"
Error in “isSpike<-("*tmp*’, value = "Spike") :

'isSpike" must be logical or NULL

etc.
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While likely easy to fix, this type of incompatibility issues undermine the entire point of the article
and perfectly illustrate the dangers of relying on development versions for this type of pipeline.
> Additionally, the example dataset used by the article, is loaded from an Excel spreadsheet,
which is generally considered extremely bad practice. It would behoove the authors of a
software walkthrough aimed at somewhat-novice bioinformaticians to encourage best
practices.

o Inthe current conditions, and until some major revision work is done, it is impossible to
properly review the pipeline and approve this article unreservedly.
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introduced inadvertently when using Excel in bioinformatics.BMC Bioinformatics. 2004; 5: 80
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 18 Oct 2016
Aaron Lun, Cancer Research UK Cambridge Institute, Cambridge, UK

Thanks for your comments, David. Regarding the incompatibility in software versions, we
have been waiting for the imminent release of the latest version of Bioconductor (3.4)
before revising the article. It seemed more prudent to wait for the latest software to
become available, rather than making stop-gap modifications to accommodate soon-to-be-
obsolete versions. We believe that this update should clear up any problems with execution
of the workflow.

We agree that Excel spreadsheets are a poor formatting choice for bioinformatics work.
Unfortunately, the processed dataset is provided in this format from NCBI GEO
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61533, see Supplementary files).
While having to tackle Excel formatting is not ideal, it is preferable to having to re-process
the entire dataset to obtain counts from the raw read sequences. Moreover, at no point do
we save into Excel - analysis results are always stored in simple tab-delimited formats, and
the R objects themselves are saved in serialized form.
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Andrew McDavid
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Lun, McCarthy and Marioni share a workflow for analysis of single cell RNAseq (scRNA-seq) data
using software they have developed. The workflow is illustrated on two data sets of varying size
and characteristic. The computational and statistical findings of the workflow are interpreted in
their experimental context. Having a well-documented protocol for the analysis of scRNA-seq is an
important contribution to the community, since it is still a wilderness in terms of methods and
processing, for better or worse.That scRNA-seq is a quickly evolving discipline--and the
implications this has for the workflow--forms the bulk of my criticism of this paper.

1a. The paper describes a currently-unreleased version of software. Other reviewers have
indicated the difficulties this poses. I trust the authors will verify the correctness of their code and
reproducibility of the analysis when their packages are finalized in Bioconductor 3.4. I also trust
that this workflow will be made available as a literate (e.g knitr) document so that readers won't
have to cut and paste from their web-browser. This reviewer was able to reproduce the figures
reported in the first data set after loading the development version of ‘scater’ (now version 1.1.14).

1b. The main software package ‘scater’ defines a 'SCESet inheriting from "ExpressionSet’, which
has been superceded by ‘SummarizedExperiment’. SummarizedExperiment is more likely to scale
to large data sets (it can store data out of core or in sparse matrix formats). In practice, this is not
such a big deal since it's relatively easy to coerce between the two object types.

2. The title of this article stipulates that it is for "low-level" analysis of RNA-seq data, but the all-
important question of how to process the data as many analysts will get them (short reads as
fasta files) is elided.

(Pseudo)-Alignment and quantification is an important, and probably overlooked step in scRNA-
seq analysis. Counting transcripts by counting overlaps with features, a la countOverlaps or htSeq
is inefficient?, since many reads (30%-80% of those that map anywhere, in this reviewer's
experience) do not align uniquely. Hence the need and value to use quantification tools that
respect the degeneracy of multimapping reads, ie, RSEM, Star, Kallisto, Sailfish, et al. A low-level
analysis thus may wish to consider remapping with an appropriate tool. Fortunately, it does
appear that ‘scater” has provisions for doing (re)-alignment with Kallisto.

3. The authors may consider referencing other extant methods that could address areas of their
workflow, especially methods that are adapted to deal with the non-normality of scRNA-seq data.
For normalization, there is scone, which tests many different normalization procedures and
optimizes over the "best" one.
For identification of highly variable genes, there is Basics2, which applies a hierarchical
Bayesian model to test for over-dispersion, as opposed to modeling departures from an
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overall mean-variance relationship.

For single cell differential expression and gene set enrichment for bimodal distributions
found in scRNA-seq, there is MAST3.

For clustering, there is clusterExperiment.

For multi-dimensional scaling on bimodal data, there is ZIFA4. All of the above, aside from
ZIFA are R/Bioconductor packages.
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Aaron Lun, Cancer Research UK Cambridge Institute, Cambridge, UK

Thanks for your comments, Andrew. Our responses are as below.

1a. The paper describes a currently-unreleased version of software. Other reviewers have
indicated the difficulties this poses. I trust the authors will verify the correctness of their
code and reproducibility of the analysis when their packages are finalized in Bioconductor
3.4. I also trust that this workflow will be made available as a literate (e.g knitr) document
so that readers won't have to cut and paste from their web-browser. This reviewer was able
to reproduce the figures reported in the first data set after loading the development
version of ‘scater’ (now version 1.1.14).

Yes, this was an oversight on our part. The revised verison will include a link to the
Bioconductor workflow page, where users can simply run a command to automatically
download the relevant data files and packages prior to running the workflow.

1b. The main software package ‘scater’ defines a "SCESet" inheriting from "ExpressionSet’,
which has been superceded by 'SummarizedExperiment'. SummarizedExperiment is more
likely to scale to large data sets (it can store data out of core or in sparse matrix formats).
In practice, this is not such a big deal since it's relatively easy to coerce between the two
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object types.

We considered the practicality of storing data in sparse matrix format. Unfortunately, most
existing tools for downstream data analysis require a full-sized matrix as input, so any gains
in memory efficiency during storage seem to be countered by the need to (repeatedly)
expand the matrix at multiple analysis steps. Moreover, a sparse matrix only improves
efficiency for raw count data where unambiguous zeroes are present; upon applying
normalization and transformation steps, this may no longer be the case, such that a full-
sized matrix will ultimately be required anyway.

2. The title of this article stipulates that it is for "low-level” analysis of RNA-seq data, but
the all-important question of how to process the data as many analysts will get them
(short reads as .fasta files) is elided. (Pseudo)-Alignment and quantification is an
important, and probably overlooked step in scRNA-seq analysis. Counting transcripts by
counting overlaps with features, a la countOverlaps or htSeq is inefficient1, since many
reads (30%-80% of those that map anywhere, in this reviewer's experience) do not align
uniquely. Hence the need and value to use quantification tools that respect the degeneracy
of multimapping reads, ie, RSEM, Star, Kallisto, Sailfish, et al. A low-level analysis thus may
wish to consider remapping with an appropriate tool. Fortunately, it does appear that
‘scater’ has provisions for doing (re)-alignment with Kallisto.

We find that conventional feature counting works quite well for read-based scRNA-seq data,
having used this approach in several recent studies (Achim et al., 2015; Kolodziejczyk et al.,
2015; Scialdone et al., 2016). While ignoring multi-mapped reads during quantification is
conservative, we feel that it does provide a greater degree of confidence in our downstream
inferences. Certainly, there may be gains in power from using tools that extract more
information from multi-mapping reads, but we do not consider this advantage to be so
pronounced that it should be standard procedure for all scRNA-seq data analyses. For UMI-
based data, there does not yet appear to be any clear "gold standard" approach for UMI
processing into counts, so we have not provided any description of that step.

In summary, we decided to start the workflow from the raw count data, rather than starting
from read sequences, as conventional approaches for quantification described elsewhere
seem to work well; to maintain some flexibility with respect to future developments in this
field; and because our workflow focuses on the steps of the analysis that are carried out in
R/Bioconductor, whereas most existing quantification tools require manual installation and
execution from the command-line.

References:
o Achim et al. (2015), Nature Biotechnology 33:503-509

o Kolodziejczyk et al. (2015), Cell Stem Cell 17(4):471-485
o Scialdone et al. (2016), Nature 535:289-293

The authors may consider referencing other extant methods that could address areas
of their workflow, especially methods that are adapted to deal with the non-normality
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of scRNA-seq data.

As you have stated, there are many alternative approaches that could be used in various
parts of the workflow. However, we feel that it is beyond the scope of this article to enter
into discussions about the relative advantages of different methods. In fact, this may
undermine the pedagogical value of the workflow by providing too many options to
inexperienced users. The methods we have described work well in a variety of situations, so
we have chosen them for use in the various analysis steps. We have added a sentence to the
discussion about the existence of alternative methods for low-level processing, and
encouraged experienced users to explore them.
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Hongkai Ji
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
USA

In this article, the authors introduce a computational workflow to perform low-level analysis of
single-cell RNA-seq (scRNA-seq) data based on R and Bioconductor. The workflow takes a read
count matrix as input, and it provides R commands for loading data, quality control, gene filtering,
data normalization (with or without spike-in controls), classifying cells based on their cell cycle
phase, identifying highly variable genes, analyzing genes' pairwise correlation, and basic data
exploration such as clustering and visualization. The workflow is demonstrated using a number of
real data examples. Overall, I think that the workflow provides a timely and very useful guide for
people who want to analyze scRNA-seq data.

This study is largely reproducible. I am able to obtain all major results in this article by running the
commands provided by the authors. I have several comments and suggestions which I hope the
authors can address in order to make their workflow more user-friendly.

1. It seems that installing the right version of R and Bioconductor is crucial for this pipeline to
work. Some commands in the workflow depend on R version 3.3.1 or higher and the developing
(devel) version of Bioconductor. The first time I tried the workflow, I encountered numerous
errors. For example,

> isSpike(sce) <- "ERCC"
Error in “isSpike<-"("*tmp*’, value = "ERCC") :
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'isSpike' must be logical or NULL

> numcells <- nexprs(sce, byrow=TRUE)
Error: could not find function "nexprs"

> sce <- computeSpikeFactors(sce, type="ERCC", general.use=FALSE)
Errorin .local(x, ...):
unused arguments (type = "ERCC", general.use = FALSE)

It turns out that I used an older version of R and Bioconductor. I then updated my R and
Bioconductor packages and still had many problems. Finally, I decided to completely remove R
and Bioconductor from my computer. I then installed R 3.3.1 and Bioconductor (devel version),
and the pipeline worked. Although I eventually fixed the problem, I feel that this trial and error
process can be frustrating for users. I therefore suggest that the authors make the
R/Bioconductor dependencies clear at the beginning of the article. It would be even better if the
authors could minimize the pipeline’s dependency on certain versions of R/Bioconductor.

2. This workflow uses a number of R and Bioconductor packages. A user may not have all
packages installed on their computer. Installing these packages one by one manually can be a
little tedious. It would be nice if the authors can provide an R script that automatically finds
missing packages on a user's computer and install them. This could improve the pipeline’s user
experience.

3. It will also be useful if the authors can provide an R file that contains all commands in the
workflow so that users only need to slightly edit their code for future datasets. It might be beyond
the scope of this article, but the authors may consider delivering the pipeline using an R shiny
graphical user interface in the future to make it accessible to users without R coding experience.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 19 Sep 2016
Aaron Lun, Cancer Research UK Cambridge Institute, Cambridge, UK

Thanks for your comments, Hongkai. Our responses to each of your points is below:
1. Yes, this was an oversight on our part. The pipeline was developed using packages
from BioC-devel, to take advantage of cutting-edge methods in each package. For
that reason, the pipeline is strictly dependent on Bioconductor release version 3.4, a
fact that we will make explicit in the next revision. We do not think that this is a major
inconvenience given that the next release of Bioconductor is less than a month away.

2. This is a good point. In fact, this article would ideally coincide with a parallel release
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on the Bioconductor workflow page, where the workflow installation machinery will
automatically install all dependencies required for the package. Unfortunately,
because this article was using packages from BioC-devel, we were unable to
coordinate its release with that on the Bioconductor workflow page (which is limited
to BioC-release packages). This will be fixed in the next revision where we will add a
reference to Bioconductor-based installation of required packages.

3. While we understand the convenience that an R script can offer, we feel that
supplying such a script would invite attempts to blindly use the code without
considering the context or caveats of the various methods. We believe that some
initial copy-pasting is a small price to pay if the user is consistently reminded of how
to properly interpret the output. Note that the Bioconductor workflow site and our
Github page provide an Rmarkdown file containing all the necessary code blocks for
easy execution of the entire workflow; if necessary, users can change the input files
to generate an analysis report similar to the article. Of course, a graphical user
interface is even more intuitive, but this is difficult to set up in a manner that is
amenable to rigorous and reproducible data analysis.
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Lun and colleagues describe a low-level analysis specific for single-cell RNA-seq experiments,
using open-source packages available on Bioconductor. This paper could potentially be a valuable
resource for those who want to carry out such analysis in R.

The steps are very descriptive, and they even include 2 different datasets presenting different
types and conditions for analysis. They have done a very thorough job in explaining the decisions
taken at each step of QC, filtering, normalization and provide some basic but important
visualization examples (clustering, heatmaps) that would help in assessing not only the quality of
the dataset technically, but also provided information on the outcome of the experiment itself.

Unfortunately I could not run some of the steps in the workflow which prevented me from
assessing the code. Some I could figure out and "fix" in the attempt to run the code, but others
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not so much.

I provide some (not exhaustive) examples below to help in the troubleshooting, and if these (and
the subsequent code relying on these outputts) could be solved, I would be happy to continue the
review further.

1. isSpike(sce) <- "ERCC" //worked with isSpike(sce) <- is.spike

2. can't find the function nexprs [I had to use numcells <- rowSums(exprs(sce)!=0)]
3. is.ercc <- isSpike(sce, type="ERCC") //worked with [is.ercc <- isSpike(sce)

4. Could not run code from the section: Identifying HVGs from the normalized log-expression
var fit <- trendVar(sce, trend="loess", use.spikes=FALSE, span=0.2)
Error in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, :
invalid 'x'

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 09 Sep 2016
Aaron Lun, Cancer Research UK Cambridge Institute, Cambridge, UK

Thanks for your comments, Diana. The code actually depends on Bioconductor version 3.4
(i.e., BioC "devel"), rather than the current Bioconductor 3.3 (i.e., BioC "release"). This allows
us to include cutting-edge features from all packages to provide a high level of functionality
in the workflow. However, some of these features are not present in the release version,
thus leading to execution failure.

The devel versions of all packages can be easily installed by setting useDevel() followed by
bioclite(), as described on the Bioconductor website. We will also modify the text to explicitly
state that Bioconductor 3.4 is required - currently, this can only be implicitly determined
from the package versions, which admittedly is not obvious to casual users.

Competing Interests: No competing interests are declared.
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