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Abstract. Given a locally finite set X ⊆ R
d and an integer k ≥ 0, we con-

sider the function wk : Delk(X) → R on the dual of the order-k Voronoi
tessellation, whose sublevel sets generalize the notion of alpha shapes
from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory
IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett
114:76–83, 2014). While this function is not necessarily generalized dis-
crete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and
Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies sim-
ilar properties so that its increments can be meaningfully classified into
critical and non-critical steps. This result extends to the case of weighted
points and sheds light on k-fold covers with balls in Euclidean space.

Keywords. Discrete Morse theory, Order-k Voronoi tessellations, Hyper-
plane arrangements, Order-k Delaunay mosaics, Rhomboid tilings, Weighted
points, Power distance.

1. Introduction

Given a locally finite set X ⊆ R
d and non-negative integer k, the order-k

Voronoi tessellation decomposes R
d into closed convex domains in which the

k nearest points in X are the same [9,14]. In other words, knowing the domain
that contains a point x ∈ R

d is equivalent to knowing which k points of X are
nearest to x. This motivates the use of the tessellation as a data structure for
the k-nearest neighbor problem [3]. Similar to the ordinary (order-1) Voronoi
tessellation, the order-k Voronoi tessellation has a natural dual [1], which we
refer to as the order-k Delaunay mosaic, denoted Delk(X). Its cells represent
collections of domains with non-empty common intersection. We are interested
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in the function wk : Delk(X) → R that maps each cell to the minimum radius,
r, such that the corresponding intersection of domains contains a point at
distance at most r from each one of its k nearest neighbors. The sublevel
sets of wk generalize the notion of alpha shapes from k = 1 to orders k ≥ 1
[5,13]. Recently, the stochastic properties of wk have been studied [6] and
algorithms for computing the persistence have been presented [7]. We shed
additional light on these results by establishing that wk behaves similar to
a discrete Morse function. We hasten to mention that wk neither satisfies
the requirements of a discrete Morse function [10] nor the slightly weaker
requirements of a generalized discrete Morse function [11]. Nevertheless, we
can classify the increments in the sublevel sets into critical and non-critical
steps with predictable impact on the homotopy type. To state the result, we
note that each cell of the order-k Delaunay mosaic is spanned by several size-k
subsets of X, and we shall determine how to characterize incremental steps of
wk in terms of such subsets. Specifically, taking any set of �+1 ≤ d+1 points
in X, there is the unique smallest sphere that passes through these points.
Assuming general position, the convex hull of these points is an �-simplex.
Some of the size-k subsets of the �+1 points defining the sphere together with
the points of X inside the sphere form cells of the Delaunay mosaic, and some
of these cells constitute the unique step of wk corresponding to this sphere;
see Sect. 2. Our main result is the following classification of the topology types
of the steps:

• We call the configuration that defines a step self-centered if the center
of the corresponding sphere is contained in the simplex spanned by the
points on the sphere. Adding the cells in the step changes the Euler
characteristic of the sublevel set, which implies that it also changes the
homotopy type, so we refer to it as a critical step of wk.

• We call the configuration altruistic if the center of the corresponding
sphere is not contained in the simplex spanned by the points on the
sphere. Adding the cells in the step preserves the homotopy type, so we
refer to it as a non-critical step of wk.

With minor adjustments, this classification extends to the case in which the
points have real weights and the squared Euclidean distance is replaced by the
power distance. This is most transparent when we view the Voronoi tessella-
tions in R

d as projections of the levels in a hyperplane arrangement in R
d+1;

see e.g. [8]. Correspondingly, we view the Delaunay mosaics as horizontal slices
of a rhomboid tiling in R

d+1; see [7] for the construction in the unweighted
case, which readily extends to points with weights.

Outline Section 2 introduces background on weighted Voronoi tessellations and
hyperplane arrangements, their dual Delaunay mosaics and rhomboid tilings,
and discrete Morse functions. Section 3 gives the proof of the main result, thus
extending the framework of discrete Morse theory to include squared radius
functions on order-k Delaunay mosaics. Section 4 concludes the paper.
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2. Background

It will be useful to see Voronoi tessellations as levels in hyperplane arrange-
ments and Delaunay mosaics as slices of rhomboid tilings. We note that the
different terminology for the tilings, mosaics and tessellations has roots in
the different origins of the established terms, and we take advantage of it to
simplify the distinction between the studied objects. In general, all these three
notions refer to cell complexes whose cells are (possibly unbounded) convex
polyhedra. To avoid redundancies, we explain everything for the more general,
weighted case.

Hyperplane arrangements Let X be a locally finite set of points with real
weights in R

d, and let J be the corresponding index set. The power distance
of a point x ∈ R

d from a weighted point (xj , wj) ∈ X ⊆ R
d × R is πj(x) =

‖x − xj‖2 − wj . For I ⊆ J , the corresponding (weighted) Voronoi domain is
the set of points that satisfy πi(x) ≤ πj(x) for all i ∈ I and j ∈ J \ I. For each
non-negative integer k, the (weighted) order-k Voronoi tessellation, denoted
Vork(X), is the collection of Voronoi domains for sets I that satisfy |I| = k.
Setting wj = 0 for all indices j, we get the unweighted situation as a special
case.

To illuminate the structure of the order-k Voronoi tessellation, let �, fj : Rd →
R be defined by mapping x ∈ R

d to �(x) = 1
2‖x‖2 and to fj(x) = 〈x, xj〉 −

1
2 [‖xj‖2−wj ]. The graph of � is a paraboloid in R

d+1, and the graph of fj is the
hyperplane that touches the shifted paraboloid defined by �+ 1

2wj in the point
(xj ,�(xj)+ 1

2wj). We refer to the collection of hyperplanes as the arrangement
of X. Let now S = S(x,w) be the (d−1)-dimensional sphere with center x ∈ R

d

and squared radius w ∈ R. For w > 0 this is an ordinary sphere, for w = 0
it is a point, and for w < 0 it is what we call an imaginary sphere. There
are different ways of visualizing the latter concept, but singularly important
in this paper is that its squared radius is negative, giving the correct power
distance if plugged into the formula given above. In either case, S partitions
the index set into three subsets:

In(S) = {j ∈ J | πj(x) < w}, (1)

On(S) = {j ∈ J | πj(x) = w}, (2)

Out(S) = {j ∈ J | πj(x) > w}. (3)

In the unweighted case, when wj = 0 for all indices j, the three sets correspond
to the points inside, on, and outside the sphere. In the weighted case, the
condition in (2) can be rewritten as ‖x − xj‖2 = w+wj , which we geometrically
interpret as having two spheres, S(x,w) and S(xj , wj), that intersect at a right
angle. It is easy to see that i ∈ In(S),On(S),Out(S) iff fj(x) − 1

2 [‖x‖2 − w] =
1
2 [wj + w − ‖x − xj‖2] is positive, zero, negative or, equivalently, iff the point
y(x) = (x, 1

2 [‖x‖2 − w]) in R
d+1 lies below, on, above the graph of fj . This

motivates us to consider the decomposition of Rd+1 defined by the hyperplanes.
For each partition of J into three sets, we consider the corresponding partition
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of the set of the hyperplanes in R
d+1, and define the corresponding cell to

consist of points that at the same time are on or under the hyperplanes in the
first set, on the hyperplanes in the second set, and on or above the hyperplanes
in the third set. Important for us is the case when the three-partition is defined
by a fixed sphere S. Then the corresponding cell consists of points (x, z) ∈ R

d+1

that satisfy z ≤ fj(x) if j ∈ In(S), z = fj(x) if j ∈ On(S), and z ≥ fj(x)
if j ∈ Out(S). Assuming general position, this cell has dimension d − p =
d + 1 − |On(S)|. We refer to the (d − p)-dimensional cells as (d − p)-cells and
to the (d + 1)-cells as chambers. We write Arr(X) for the set of all cells. The
sphere defines a chamber if On(S) = ∅, and in this case we call k = |In(S)|
the depth of the chamber, because there are precisely k hyperplanes above it.
The relation between the chambers and the Voronoi domains should be clear.

Proposition 2.1. (Chambers and Domains [8]) Let X be a locally finite set of
points with real weights in R

d. For every non-negative integer k, there is a bi-
jection between the domains of Vork(X) and the chambers at depth k of Arr(X)
such that every Voronoi domain is the vertical projection of its corresponding
chamber to R

d. �

Rhomboid tiling To dualize the Voronoi tessellations, we generalize the con-
struction of [1] to the unweighted case. Specifically, we map every domain of
Vork(X) to the sum of the corresponding k points, for the moment ignoring
the weights. For every non-empty common intersection of domains, we col-
lect the images of the domains that contain this intersection, and we add the
convex hull of these points as a cell to the dual, which we refer to as the order-
k Delaunay mosaic of X, denoted Delk(X). Note that this definition is not
coordinate invariant, but it can be made so by substituting the average for
the sum, which is just a rescaling. We refrain from doing this to simplify the
notation.

We give an alternate description of these mosaics after dualizing the hyper-
plane arrangement. To this end, we write yj = (xj ,−1) ∈ R

d+1, for every
(xj , wj) ∈ X, and yI =

∑
i∈I yi, for every I ⊆ J . The (d + 1)-st coordi-

nate of yI is −|I|, and we call k = |I| the depth of the point. For every
sphere S in R

d+1 — which we recall may be a point or imaginary — we let
rho(S) = conv {yI | In(S) ⊆ I ⊆ In(S) ∪ On(S)} be the rhomboid of S. It is
anchored at the vertex with least depth, which is yIn(S), and it is spanned by
the vectors yi with i ∈ On(S). We say X is in general position if for every
collection of d + 2 − p ≥ 1 spheres S there are at most p + 1 weighted points
that belong to all d+2− p sets On(S). For such a set X, the dimension of the
rhomboid defined by a sphere S is the number of vectors that span it, which is
dim rho(S) = |On(S)|. he rhomboid tiling of X, denoted Rho(X), is the collec-
tion of all rhomboids defined by spheres in R

d+1; see Fig. 1. As argued for the
unweighted case in [7], Rho(X) is a polytopal complex in R

d+1, which means
its cells are convex polytopes with disjoint interiors such that the boundary of
every polytope is the union of other polytopes in the complex [15]. Indeed, we
claim the following properties:
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Figure 1 The rhomboid tiling of five weighted points on the
real line. The weights are the squared radii of the colored half-
circles. The horizontal line at depth k intersects the tiling in
the order-k Delaunay mosaic of the points. Since D has much
smaller weight than its two neighbors, it is not part of the
order-1 mosaic. Nonetheless, D participates in all mosaics of
order higher than one

Proposition 2.2. (Rhomboid Tiling) Let X be a locally finite set of points with
real weights in general position in R

d. Then

1. Rho(X) is dual to Arr(X);
2. Rho(X) is a polytopal complex of rhomboids;
3. the horizontal slice at integer depth k ≥ 0 is the order-k Delaunay mosaic

of X.

We refer to the proof of the corresponding result for unweighted points in [7]
and note that it readily generalizes to the weighted case. We explain Property
1 of Proposition 2.2 because it is repeatedly used. The duality is established
by a bijection ρ �→ ρ∗ in which ρ is a (p+1)-dimensional rhomboid in Rho(X)
and ρ∗ is a (d−p)-cell in Arr(X) such that ρ ⊆ � iff �∗ ⊆ ρ∗. The points inside,
on, and outside the sphere that defines ρ correspond to the hyperplanes above,
containing, under the cell ρ∗. Note also that the vertical partial order of the
cells in the arrangement agrees with the same order on the rhomboids in the
tiling.

Discrete Morse theory Next we assign to each rhomboid in the tiling a real
value. Before doing so, we give a few definitions. Let K be a polytopal complex.
Its Hasse diagram is a directed graph whose nodes are the cells in K and whose
arcs are the pairs of cells σ ⊆ τ with dim τ = dim σ +1. A function f : K → R

is monotonic if f(σ) ≤ f(τ) whenever σ ⊆ τ . The level set for a value w ∈ R is
the set of cells f−1(w) ⊆ K. It is a set of nodes in the Hasse diagram. A step
of f is a maximal subset of a level set whose induced subgraph in the Hasse
diagram is connected. We note that the steps of f partition K. An interval of
K is given by cells σ ⊆ υ and consists of all faces of υ that share σ as a face,
denoted [σ, υ] = {τ ∈ K | σ ⊆ τ ⊆ υ}. We call σ the lower bound and υ the
upper bound of [σ, υ]. The interval is singular if σ = υ. A monotonic function
f : K → R is generalized discrete Morse if every step is an interval; see [11].
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For comparison, f is discrete Morse if every step is an interval of size 1 or 2;
see [10] but note that the original definition is in-essentially more general by
allowing f(σ) > f(τ) for pairs σ ⊆ τ in a step.

We are interested in the case in which K = Rho(X) and f is the squared radius
function, which we now define. Recall that each rhomboid ρ ∈ Rho(X) has a
dual cell ρ∗ ∈ Arr(X). For each point y = (x, z) ∈ ρ∗, we set w(y) = ‖x‖2−2z,
and we define the squared radius function, w : Rho(X) → R, by mapping ρ
to w(ρ) = miny∈ρ∗ w(y). To develop a geometric intuition for this function,
we sweep the hyperplane arrangement from top to bottom with a paraboloid.
Specifically, for t ∈ R, the paraboloid is the graph of � − 1

2 t. Then w(ρ)
is the minimum t ∈ R such that the corresponding paraboloid has a non-
empty intersection with ρ∗. Assuming general position, the sequence in which
the paraboloid encounters the cells in Arr(X) follows a few simple rules. For
example, when the paraboloid encounters a vertex in Arr(X), then it has
already encountered 2d+1 − 1 of the chambers incident to the vertex, and it
touches the unique last incident chamber for the first time, as well as all faces
of this chamber that share the vertex. More generally, when the paraboloid
touches the intersection of p + 1 hyperplanes for the first time, this happens
at an interior point of a (d−p)-cell contained in this intersection. At the same
time the paraboloid touches a unique chamber together with all faces of this
chamber that share the (d − p)-cell as a common face. We therefore have the
following result.

Proposition 2.3. (Squared Radius Function) Let X be a locally finite set of
points with real weights in general position in R

d. Then w : Rho(X) → R is a
generalized discrete Morse function. Furthermore, every step of w has a vertex
as a lower bound, and there is only one singular interval, namely the vertex at
the origin, which corresponds to the empty index set.

The same claim restricted to the unweighted case can be found in [7]. Its proof
extends with obvious modifications to the proof in the weighted case, which
we therefore omit. This proposition says that the paraboloid always enters
a chamber together with a subset of its faces while sweeping, thus defining
a shelling of Arr(X) (see [4]). This chamber corresponds to the vertex of a
rhomboid and the faces of the chamber correspond to the faces of the rhomboid
that share this vertex. As we will see shortly, the vertex is not necessarily the
lowest vertex of the rhomboid. Note that w is rather special because it has a
limited collection of interval types. This is best seen by constructing Rho(X)
one step at a time. After starting with the vertex at the origin, each step glues
a new rhomboid of dimension at least 1 together with all missing faces to the
complex. Such a step preserves the homotopy type, which implies that every
non-empty sublevel set of w is contractible.

Horizontal integer slices Let Pk be the horizontal hyperplane at integer depth
k in R

d+1. By Proposition 2.2, the intersection of Pk with Rho(X) gives
the (weighted) order-k Delaunay mosaic. We aim at associating each cell in
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Delk(X) with the rhomboid in Rho(X) such that the cell is the intersec-
tion of Pk with the rhomboid, but there is an ambiguity for the vertices of
Delk(X), which belong to several intersections. We will associate them to the
vertices of Rho(X), but to avoid special cases, we formulate the definitions
for the rhomboids without their boundary. Note that the (relative) interiors
of the rhomboids partition the union of the rhomboids. Accordingly, each cell
σ ∈ Delk(X) is the closure of the intersection of Pk with the interior of a
unique rhomboid ρ = ρ(σ). Writing p = dimσ, we have dim ρ(σ) = p + 1 if
p ≥ 1, and dim ρ(σ) = 0 if p = 0. Similarly, we get the squared radius function
of Delk(X) from that of Rho(X): wk(σ) = w(ρ(σ)). We are interested in the
partition of Delk(X) into the steps of wk. To this end, let σ and τ be two cells
in Delk(X) and note that σ ⊆ τ iff ρ(σ) ⊆ ρ(τ). It follows that each step of
wk is the horizontal slice of a step of w.

Letting ρ ∈ Rho(X), we write top(ρ) and btm(ρ) for the vertices with mini-
mum and maximum depth, and we write last(ρ) for the vertex with maximum
value of w. Proposition 2.3 implies that λ = last(ρ) for every interval [λ, ρ]
of w : Rho(X) → R. For some rhomboids, we have last(ρ) = btm(ρ), but not
necessarily for all. Depending on the shape of the rhomboid, λ can indeed be
any vertex of ρ other than top(ρ). We formally state this as a lemma:

Lemma 2.4. (Last not Top Vertex) Let X be a locally finite set of points with
real weights in general position in R

d. Then λ = top(ρ) for every non-singular
interval [λ, ρ] of w.

Indeed, the chamber in Arr(X) that is dual to top(ρ) lies above ρ∗. Since ρ is
an upper bound, the point at which the paraboloid first touches ρ∗ during the
sweep is an interior point. Hence, top(ρ)∗ has a lower value of w and therefore
does not belong to the interval.

3. Topology of a step

This section proves our main result: that critical and non-critical steps of wk

can be distinguished by whether last(ρ) is equal to or different from btm(ρ),
with ρ the smallest rhomboid in Rho(X) that contains the corresponding step
of w. The addition of a critical step changes the homotopy type of the sublevel
set and the addition of a non-critical step preserves it. We begin with an
enumeration of the types.

Step types By Proposition 2.3, every step of w : Rho(X) → R is an interval
[λ, ρ] in which ρ is the maximum rhomboid that satisfies λ = last(ρ). The
interval consists of all faces of ρ that share λ. Assuming dim ρ = p + 1 ≥ 0,
the rhomboid has vertices at p + 2 depth values, and letting k be the depth
value of btm(ρ), these values are k − g for 0 ≤ g ≤ p + 1. By Lemma 2.4,
λ can assume only p + 1 of these depth values. If λ = btm(ρ), then Pk−g

has a non-empty intersection with the interior of at least one rhomboid in the
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Figure 2 A 3-rhomboid ρ with dashed silhouette separat-
ing the (gray) faces that share λ from the (transparent) other
faces. Each slice is blue and shown together with the corre-
sponding subgraph of the Hasse diagram of the Delaunay mo-
saic of the corresponding order. Left: the self-centered configu-
rations whose corresponding critical steps consist of a triangle
without its boundary, a triangle with its edges but without
vertices, and a vertex. Middle and right: the altruistic con-
figurations whose corresponding non-critical steps consist in
both cases of a triangle with one edge, and a triangle with
two edges and the shared vertex

interval for 1 ≤ g ≤ p, and if λ = btm(ρ), then there is one more, namely for
0 ≤ g ≤ p. In total, we count p2+p+1 possible types of slices; see Fig. 2 for an
illustration of the types for p = 2. Some of these types are symmetric. We refer
to the p + 1 slices in case λ = btm(ρ) as self-centered and the p2 other slices
as altruistic. The terminology is motivated by the fact that last(ρ) = btm(ρ)
iff the convex hull of the points whose indices are in On(S) contain the center
of S. There is an ambivalent case, when the center lies on the boundary of the
convex hull, but this can be prevented by slightly strengthening the general
position assumption to forbid this situation.

Topology type Letting A ⊆ Rho(X) be a step of w, we write Pk ∩A ⊆ Delk(X)
for the corresponding step of wk. The Euler characteristic of A is χ(A) =∑

ρ∈A(−1)dim ρ. Since A is necessarily an interval, its Euler characteristic van-
ishes, unless A = {0}, in which case it is 1. The Euler characteristic of the slice
is χ(Pk ∩ A) =

∑
τ∈Pk∩A(−1)dim τ , which may or may not be zero. We write

|A| for the union of interiors of the rhomboids in A, and Pk ∩|A| for its slice at
depth k. Let H

p ⊆ R
p be the set of points with non-negative first coordinate,

and note that χ(Hp) = 0 for all p ≥ 1. Two topological spaces have the same
topology type if there is a homeomorphism between them, and in this case
they have the same Euler characteristic. For example, the half-open interval,
[0, 1), has the same topology type as H

1, which we denote as [0, 1) ≈ H
1. We

represent [0, 1) by an edge together with one of its endpoints, so the Euler
characteristic, which is the alternating sum of cells vanishes. We will see that
every altruistic configuration has the topology type of Hp, for some value of p,
while every self-centered configuration has non-zero Euler characteristic.
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Figure 3 Three self-centered configurations in R
3. From left

to right: a tetrahedron without boundary faces, an octahedron
with four of its triangles but no other faces, and a tetrahedron
with all of its faces except for the vertices

Theorem 3.1. (Topology of a Step) Let X be a locally finite set of points with
real weights in general position in R

d, let A = [λ, ρ] be a step of w, set p+1 =
dim ρ, write k for the depth of btm(ρ), and recall that Pk−g ∩ A is a step of
wk−g.

1. If last(ρ) = btm(ρ), then χ(Pk−g ∩ A) = 0 for 0 ≤ g ≤ p.
2. If last(ρ) = btm(ρ), then Pk−g ∩|A| ≈ H

p and therefore χ(Pk−g ∩ A) = 0
for 1 ≤ g ≤ p.

All other horizontal integer slices of A are empty.

Proof. We first consider the self-centered configurations, when λ = last(ρ) =
btm(ρ). For g = 0, the hyperplane Pk−g contains λ and avoids the interiors
of all other rhomboids in A = [λ, ρ]. The Euler characteristic of this slice
is one and therefore non-zero, as claimed. For 1 ≤ g ≤ p, Pk−g has non-
empty intersections with the interiors of the rhomboids of dimension larger
than g and empty intersections with the interiors of all other rhomboids in the
interval; see the left panel of Fig. 2 for the three cases that occur for p = 2,
and see Fig. 3 for three of the four cases that occur for p = 3. Therefore,
χ(Pk−g ∩ A) =

∑p+1
q=g+1(−1)q

(
p+1

q

)
, in which the binomial coefficient is the

number of q-dimensional faces of a (p + 1)-dimensional rhomboid that share
a common vertex, namely λ. This sum evaluates to (−1)g+1

(
p
g

)
, which is non-

zero, as claimed.

We second consider the altruistic configurations, when λ = btm(ρ). Let λ′ be
the vertex of ρ opposite to λ, and project ρ orthogonally to the hyperplane
normal to λ′ − λ. The projection is a p-dimensional convex polytope. Call the
preimage of its (relative) boundary the silhouette of ρ, and note that it is
a (p − 1)-dimensional topological sphere that contains all vertices of ρ other
than λ and λ′; see Fig. 2. None of the rhomboids in the silhouette belong to
A = [λ, ρ]. In fact, the silhouette separates the boundary rhomboids of ρ that
are in this interval from the boundary rhomboids that are not in the interval.
Since btm(ρ) and top(ρ) belong to the silhouette, Pk and Pk−(p+1) both have
empty intersection with the interiors of all rhomboids in [λ, ρ], as claimed.
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Figure 4 The 9 altruistic configurations in R
3. Compared to

btm(ρ) at depth k, the vertex λ = last(ρ) has depth k − 3,
k −2, and k −1 in the top, middle, and bottom row. Similarly,
the slice is at depth k − 3, k − 2, and k − 1 in the left, middle,
and right column

We thus assume 1 ≤ g ≤ p for the remainder of this proof. At depth k − g, the
horizontal hyperplane intersects ρ in a convex polytope of dimension p, and it
intersects the boundary of ρ on both sides of the silhouette. To go from one side
to the other along the boundary of ρ intersected with Pk−g, we have to cross
the intersection of Pk−g with the silhouette, which we will prove is a topological
(p− 2)-sphere. We conclude that an open (p− 1)-ball of the boundary belongs
to Pk−g ∩ |A|, and the complementary closed (p − 1)-ball does not belong to
Pk−g ∩|A|. It follows that the slice of the interval has the topology type of Hp,
as claimed. The middle and right panels of Fig. 2 illustrate the four altruistic
configurations for p = 2, and Fig. 4 illustrates the nine altruistic configurations
for p = 3. Reading the eight outer cases in a circle around the center case, we
note that each is symmetric to the diagonally opposite type. In other words,
there are really only five altruistic types for p = 3.

We return to the intersection of Pk−g with the silhouette and the claim that
this intersection is a topological sphere of dimension p − 2. For p = 1, ρ is a
convex quadrangle, its silhouette consists of two vertices, top(ρ) and btm(ρ),
and Pk−1 passes through the other two vertices thus intersecting the silhouette
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in the empty set—the (−1)-sphere—as claimed. Assuming p ≥ 2, we denote
the silhouette by S, we recall that it is a (p−1)-sphere, and we write e : S → R

for the depth function on the silhouette. Its extreme values are e(top(ρ)) =
k − (p + 1) and e(btm(ρ)) = k, and Pk−g ∩ S = e−1(k − g). To prove that
this level set is a (p − 2)-sphere, it suffices to show that e has only two critical
points, namely the minimum at top(ρ) and the maximum at btm(ρ). The case
p = 2 is easy. Here we have a 3-rhomboid whose silhouette is a hexagon.
The difference between the depths of the endpoints of any edge is 1. We thus
need three edges to go from btm(ρ) at depth k to top(ρ) at depth k − 3 and
another three edges to go back. It follows that Pk−g meets the silhouette in
two points—a 0-sphere—as claimed.

The argument for p > 2 is different. Recall that e is a continuous function on a
(p−1)-sphere, this sphere is decomposed into (p−1)-rhomboids, and e is affine
on each of these rhomboids. If e has a critical point (in piecewise-linear sense)
in addition to the minimum at top(ρ) and the maximum at btm(ρ), then it
also has a saddle, and this saddle must be a vertex of some of the rhomboids.
To contradict the existence of a saddle, note that the (p − 1)-rhomboids meet
in groups of p at a common vertex. Let ν be such a shared vertex and cut
each incident (p − 1)-rhomboid with the (p − 2)-dimensional plane that passes
through the vertices adjacent to ν. We thus get p (p − 1)-simplices, which can
be seen are the facets of a p-simplex. It follows that ν can be a minimum,
a maximum, or a regular point, but it cannot be a saddle of e. Hence, every
horizontal slice at depth strictly between k − (p + 1) and k is a (p − 2)-sphere,
as required. �

Consequences Our main technical result is Theorem 3.1, which we now turn
into a statement about the filtration of order-k Delaunay mosaics. Let w0 <
w1 < . . . be the sorted values of wk and write K� = w−1

k [−∞, w�] ⊆ Delk(X)
for every � ≥ 0. Assuming X is in general position, the difference between any
two contiguous mosaics is a collection of steps, and by slightly strengthening
the notion of general position, we may assume that each difference is a single
step: A� = K� \K�−1. For example, all vertices of the order-1 Delaunay mosaic
of unweighted points share the function value, 0, and we can perturb the set
by assigning small weights. While it is not necessary, we simplify the following
statement by using this stronger notion of general position.

Corollary 3.2. (Filtration of Order-k Delaunay Mosaics) Let X be a locally
finite set of points with real weights in general position in R

d, and let 0 ≤ k
and 0 ≤ u ≤ v be integers.

1. If exactly one of the steps Au, Au+1, . . . , Av of wk is critical, then Ku and
Kv have different Euler characteristics and therefore different homotopy
types.

2. If Au, Au+1, . . . , Av are all non-critical steps of wk, then Ku and Kv have
the same homotopy type.
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This corollary of Theorem 3.1 is a direct extension of a theorem about discrete
Morse functions in [10]. Other results in this theory can be similarly extended.

4. Discussion

The main result of this paper is a topological characterization of the incre-
mental steps of the squared radius function on the order-k Delaunay mosaic
of a locally finite set of possibly weighted points in Euclidean space. With
this insight, we gain a topological interpretation of the probabilistic analysis
of this function for a stationary Poisson point process [6]. While the critical
steps do not determine the topology of the sublevel sets, they provide bounds
on the ranks of their homology groups. In contrast to the order-1 case studied
in [2], the squared radius function in the order-k case is neither discrete Morse
nor generalized discrete Morse [10,11]. Since the function nevertheless behaves
similar to a Morse function, it may be considered a geometrically motivated
further extension of the framework; see also [12, Chapter 11] for algebraically
motivated extensions of discrete Morse theory.

In conclusion, we mention that our result requires the given points be in general
position. While this assumption does not imply that the Delaunay mosaics
are simplicial, it simplifies the analysis by guaranteeing that the dual of the
corresponding hyperplane arrangement is a complex of rhomboids. It would be
interesting to generalize the theory to locally finite sets that are not necessarily
in general position.

Funding Open access funding provided by Institute of Science and Technology
(IST Austria).

Declarations
Conflict of interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 112 (2021) A step in the Delaunay mosaic of order k Page 13 of 14 15

References

[1] Aurenhammer, F.: A new duality result concerning Voronoi diagrams. Discrete
Comput. Geom. 5, 243–254 (1990)

[2] Bauer, U., Edelsbrunner, H.: The Morse theory of Čech and Delaunay complexes.
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