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Abstract: We present the foundation for a holographic dictionary with depth perception.

The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-

invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contribu-

tions to the OPE from a single conformal family. In holographic theories, we show that

the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along

geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied

example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation

in the area of a minimal surface. Thus, our operators pave the way for generalizing the

Ryu-Takayanagi relation to other bulk fields.

Although the OPE blocks are non-local operators in the CFT, they admit a simple

geometric description as fields in kinematic space — the space of pairs of CFT points. We

develop the tools for constructing local bulk operators in terms of these non-local objects.

The OPE blocks also allow for conceptually clean and technically simple derivations of

many results known in the literature, including linearized Einstein’s equations and the

relation between conformal blocks and geodesic Witten diagrams.
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1 Introduction

This paper proposes a natural operator basis for conformal field theories, one that is partic-

ularly keen-sighted when used to view bulk physics in the AdS/CFT correspondence [1]. We

show these operators are both a powerful tool for performing calculations in AdS/CFT, and

also suggestive of the right organizational structure for understanding gravitational physics.

To begin, let us ask: what properties would characterize a natural set of holographic

CFT variables and their duals?

• In the bulk, we should demand diffeomorphism invariance. This seems to elimi-

nate local quantities in favor of extended objects that reach out to the asymptotic

boundary [2–4].

• On the CFT side, we should require a nice transformation law under conformal

symmetry. This will also ensure a corresponding covariance under AdS isometries.

• Our variables should have an aesthetic appeal on both sides, even without reference

to holography.

A prototypical example of such natural variables is encapsulated by the Ryu-

Takayanagi proposal [5, 6]. In AdS, minimal surfaces are simple, diffeomorphism invariant,

extended objects which reach out to the asymptotic boundary. On the CFT side, they

find a compelling interpretation in terms of entanglement entropies, whose UV divergences

transform covariantly under conformal symmetries. These properties allowed the RT pro-

posal to revolutionize our understanding of holographic duality.

The present paper takes seriously the lesson from Ryu-Takayanagi and organizes the

AdS/CFT operator dictionary according to similar guidelines. In the CFT, we propose the

right quantity is an “OPE block,” a well-known class of simple, but non-local, operators

that are singled out by conformal symmetry. We show that these OPE blocks are holo-

graphically dual to bulk operators smeared along geodesics. This duality can be understood

as an operator generalization of the Ryu-Takayanagi proposal.

To reach this conclusion, the first step is the observation that scale must be a key

ingredient on the CFT side; without it, we will never probe the bulk. This automatically

disqualifies local operators in the CFT. The simplest way to proceed is to consider CFT

bi-locals, pairs of operator insertions whose separation coordinatizes the scale direction.

Observing the bulk from two boundary viewpoints at a time will give us the benefit of

stereoscopic vision: it will provide a sense of depth.1 Indeed, pairs of CFT points select

natural, diffeomorphism invariant, extended bulk objects — geodesics.

We are next led to ask: how should we organize CFT bi-locals? The obvious answer

is the operator product expansion (OPE). The kinematics of conformal invariance picks

out a preferred basis of operators for the OPE, which we call “OPE blocks.”2 While

1Some readers may be quick to interject (correctly) that CFT bi-locals do not seem sufficiently non-local

to probe the infrared bulk geometry in any meaningful sense. Such an astute reader is asked to be patient.
2Now patience’s reward: unlike the bi-local operator itself, the OPE block is not well-localized at any

one (or two) boundary points.
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these are already well-known objects in the study of CFT, we will show that they also

appear naturally in the study of entanglement. The modular Hamiltonian [7] is precisely

an OPE block. Most importantly for our argument, we show that the OPE block conformal

kinematics can be equivalently written as a Klein-Gordon equation in the space of CFT

bi-locals, what we call kinematic space [8–10] (see [11] for the same observation restricted

to the modular Hamiltonian and higher-spin charges).

The appearance of kinematic space facilitates our derivation of the bulk dual of an

OPE block: the kinematic space of CFT bi-locals is simultaneously the space of bulk

geodesics. We will show that operators smeared over bulk geodesics obey the same equa-

tions of motion, constraints, and boundary conditions in kinematic space as do the OPE

blocks. OPE blocks and geodesic operators can thus be understood as the same local

kinematic operators.

In AdS>3 the bulk story becomes even richer because two time-like separated boundary

points select a homogeneous codimension-2 surface rather than a geodesic. In an effort to

minimize distractions, we will postpone a discussion of the higher-dimensional story until

section 6 and focus in most of the paper on AdS3, where our results are easiest to state.

Our formalism unifies and contextualizes many important results, which were previ-

ously reported in the literature under diverse contexts. This includes:

• a new construction for local bulk operators [12–19];

• a novel look at the modular Hamiltonian [7];

• the origin of geodesic Witten diagrams and their use in computing conformal

blocks [20–22];

• and a re-derivation of Einstein’s equations from entanglement (along the lines of [23–

25]), whose details we largely leave to a forthcoming publication [26].

We devote section 4 to local bulk operators and section 5 to the remaining applications.

In summary, our paper introduces a new entry to the holographic dictionary. On the

CFT side, in section 2 we define “OPE blocks,” a natural operator basis suggested by the

operator product expansion. We explain in section 3 that their holographic duals are bulk

operators integrated along geodesics. After discussing the applications of our dictionary,

the paper closes with a summary of the story in higher dimensions (section 6), a Discussion

section and three appendices, where we collect useful technicalities.

During this project we learned that another group — de Boer, Haehl, Heller and Myers

— have been working on an overlapping set of ideas. Their paper on the subject will appear

shortly [27].

1.1 The kinematic space of AdS3

The stage on which our story unfolds is the kinematic space of AdS3, which we presently

discuss. This is more than a review of [9], because that work was only concerned with

geodesics living on a static slice of AdS3. In this paper, where we make extensive use of

conformal symmetry, restricting to a time slice would be unnecessarily limiting.

– 3 –
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Kinematic SpaceCFT2 AdS3

Figure 1. Kinematic space for AdS3 has the dS2 × dS2 metric of eq. (1.6). It is both the space of

causal diamonds in CFT2 and the space of space-like geodesics in AdS3. To account for comple-

mentary causal diamonds (such as the two shown in the left panel) which are associated with the

same geodesic (the right panel), we work with the space of oriented geodesics. The middle panel

shows the two images of the same bulk geodesic that differ in orientation.

We define kinematic space to be the space of ordered pairs of CFT points. We will

see, however, that kinematic space for AdS3/CFT2 can also be thought of as the space of

any of the following objects:

• Causal diamonds ⋄12 in the CFT

• Pairs of time-like separated points that live on the remaining corners of ⋄12

• Oriented AdS3 geodesics γ12, which asymptote to boundary points x1 and x2

Thinking of this kinematic space as comprising pairs of CFT points suggests natural

coordinates on it: x1, x2 ∈ CFT. In the AdS3/CFT2 correspondence, we are therefore

looking at a four-dimensional space. When x1 and x2 are space-like separated, they are

connected by a unique geodesic in AdS3. This case ought to be distinguished from timelike

separated x1 and x2, which are not endpoints of any bulk geodesic. The convenience

of CFT2 is that this distinction is immaterial: two time-like separated points instead

define a causal diamond, whose spacelike separated corners again select a bulk geodesic.

Thus, the kinematic space is really a space of boundary causal diamonds, each of which

is canonically related to a unique spacelike geodesic in AdS3 (see figure 1).3 In higher

dimensions, however, pairs of spacelike and timelike separated points give rise to genuinely

distinct spaces and must be treated separately. Between now and section 5 we largely

ignore this subtlety, postponing an account of higher-dimensional spaces to section 6.

Metric Conformal symmetry picks out a unique metric for this kinematic space. To

see this, consider the distance between two neighboring kinematic elements, (x1, x2) and

(x1 + dx1, x2 + dx2):

ds2 = fµν (x1, x2) dx
µ
1dx

ν
2 , (1.1)

3Note that a geodesic maps not to one but to two complementary causal diamonds. For this reason, it

is often convenient to define kinematic space as comprising oriented geodesics, which do pick out a unique

diamond.
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No cross-terms dxµ1dx
ν
1 or dxµ2dx

ν
2 appear because no invariant cross-ratio can be formed

from the coordinates of three boundary points; we must move both x1 and x2 to ob-

tain a nonzero distance. Now note that a conformal map (x1, x2) → (x′1, x
′
2) transforms

fµν (x1, x2) as

fµν (x1, x2)→
dx′α1
dxµ1

dx′β2
dxν2

fαβ
(
x′1, x

′
2

)
. (1.2)

This is the transformation rule for a vacuum two-point function of spin-1 CFT quasipri-

maries with scaling dimension ∆ = 1. The standard result for the two-point function is

〈Oµ (x1)Oν (x2)〉 ∝
Iµν (x1 − x2)

|x1 − x2|
2∆

, (1.3)

where the matrix Iµν is fixed by symmetry to be [28]:

Iµν(x) ≡ ηµν − 2
xµxν
x2

. (1.4)

In the end, the metric on kinematic space becomes:

ds2 = 4
Iµν (x1 − x2)

|x1 − x2|
2 dxµ1dx

ν
2 , (1.5)

where we have chosen the overall coefficient for later convenience. Because this derivation

does not use any facts specific to CFT2, we will be able to re-use metric (1.5) in section 6

where we discuss kinematic spaces of higher-dimensional anti-de Sitter geometries.

Coordinates and factorization Note that the coordinates xµ1 and xν2 in metric (1.5)

form two light-like pairs, so the signature of the AdS3 kinematic space is (2, 2).4 This

fact is independent of how we choose xµ1 and xν2 within the CFT: the spatial coordinate of

x1 matches up with the spatial coordinate of x2 to form one pair of light-like coordinates

on the kinematic space while the temporal coordinates of x1 and x2 form the other light-

like pair. Yet one chart for x1 and x2 is more convenient than others: the coordinates

z1 = t1 + x1, z̄1 = t1 − x1 (respectively z2, z̄2) that are light-like in the CFT.

Substituting these in (1.5) gives:

ds2 =
1

2

[
dz1dz2(
z1−z2

2

)2 +
dz̄1dz̄2(
z̄1−z̄2

2

)2

]
=

1

2

[
ds2z + ds2z̄

]
. (1.6)

We find a sum of two two-dimensional de Sitter metrics, which correspond individually

to left-movers and right-movers in the CFT.5 Of course, this decomposition reflects the

factorization of the two-dimensional conformal symmetry.

We may re-cast each de Sitter component of (1.6) in more familiar, “co-moving” coor-

dinates

ℓ =
z1 − z2

2
and z =

z1 + z2
2

(1.7)

4It will be (d, d) for AdSd+1; see section 6.
5Since we have used flat space CFT coordinates, this metric describes kinematic space for a Poincaré

patch of AdS and covers only half the kinematic space of global AdS.
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¯̀`

z z̄

(z, z̄)
¯̀

`

Figure 2. The coordinates (1.7) of kinematic space represent the center position and the half-width

of the causal diamond in the left-moving light-like coordinate; analogous relations define z̄ and ℓ̄.

and likewise for the right-movers; see figure 2. Thus, ℓ is half the left-moving separation

between x1 and x2 while z is their average left-moving location. This coordinate change

brings eq. (1.6) to the form:

ds2 =
1

2

[
−dℓ2 + dz2

ℓ2
+
−dℓ̄2 + dz̄2

ℓ̄2

]
(1.8)

We can restrict to an H
2 slice of AdS3 by setting ℓ = ℓ̄, z = z̄; this reveals the single dS2

kinematic space discussed in [8, 9].

Causal structure How can we understand the causal structure of each de Sitter com-

ponent? For definiteness, let us focus on the z (left-moving) de Sitter space. Consider two

causal diamonds with left-moving coordinates (z1, z2) and (w1, w2). We temporarily ignore

the right-moving sizes of the causal diamonds, effectively working with their projections

onto the left-moving axis. When (z1, z2) ⊂ (w1, w2) as intervals on the real line, (z1, z2)

causally precedes (w1, w2) in the left-moving de Sitter component. If neither interval con-

tains the other, the two intervals are not causally related.

The same rules apply to the right-moving de Sitter component. In the end, the causal

structure of the AdS3 kinematic space contains several distinct options, which are illus-

trated in figure 3. Unlike a generic space of (2, 2) signature, these options are well-defined

because the kinematic space decomposes into two independent components. It is useful

conceptually to combine these two causal structures into an overarching structure, where

(z1, z2) precedes (w1, w2) if and only if the corresponding causal diamonds satisfy ⋄z ⊂ ⋄w.

2 OPE blocks

2.1 OPE kinematics

In conformal field theories, quasiprimaries Oi (0) and their descendants ∂µ∂ν · · ·Oi (0) form

a complete basis of operators. Any operator in the theory can be expanded in this basis

as long as other operator insertions are sufficiently far away.

– 6 –
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z z

A

C B

Figure 3. When the left-moving projection of one diamond contains the left-moving projection

of another, they are time-like separated in the z (left-moving) factor of kinematic space; similar

relations apply in the z̄ (right-moving) component. This leads to several possible causal relations

between two intervals, e.g. the big blue causal diamond is in the z-future of diamonds A and C

and in the z̄-future of diamonds B and C. In the overarching causal structure, the blue diamond is

preceded by C, but not related to A or B.

Consider a product of two separated scalar operators Oi (x)Oj (0) with conformal

weights ∆i and ∆j . Expanding it in a local basis centered at 0 gives6

Oi (x)Oj (0) =
∑

k

Cijk |x|
∆k−∆i−∆j

(
1 + b1 x

µ∂µ + b2 x
µxν∂µ∂ν + . . .

)
Ok (0) , (2.1)

where the sum ranges over quasiprimaries with definite scaling dimensions ∆k. The con-

stants Cijk are the only theory-dependent, dynamical parameters in this expression; they

are the OPE coefficients. Importantly, the coefficients bn depend only on the dimensions

∆i,∆j ,∆k and are determined entirely by the kinematics of conformal symmetry [29].

We wish to absorb the series of descendants appearing in every element of the sum (2.1)

in the definition of a new operator Bijk (x1, x2):

Oi (x1)Oj (x2) = |x1 − x2|
−∆i−∆j

∑

k

CijkB
ij
k (x1, x2) , (2.2)

where we have now generalized to arbitrary operator locations x1 and x2.
7 We will call

the operators Bijk (x1, x2) OPE blocks because they are the building blocks of the operator

product expansion.

OPE blocks are non-local operators in the CFT, but they have a functional dependence

on pairs of CFT points. For this reason, it is natural to think of them as fields on kinematic

6Conventionally, we expand in the operator basis at the location of the second operator (0 above), but

generally any point can be used as long as it is sufficiently far from any other operator insertion.
7Formally, the OPE does not produce an operator, but a class of operators that act equivalently in a

suitable space of states. For some readers, this may sound similar to the story of bulk operators and error

correction [30]. Later, we will choose particularly useful representatives of this class.

– 7 –
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space. We will often refer to OPE blocks as bi-locals to emphasize their dependence on

pairs of CFT locations, though the reader should bear in mind the above caveat in this

terminology.

Transformation properties of OPE blocks We now turn our attention to the repre-

sentation theory of the OPE blocks Bijk (x1, x2). Recall that under a conformal transfor-

mation x→ x′, a spin-0 local operator transforms as

Oi (x)→ Ω
(
x′
)∆
Oi

(
x′
)
, (2.3)

where the position-dependent rescaling Ω is:

Ω
(
x′
)

= det

(
∂x′µ

∂xν

)
. (2.4)

Moreover, the proper distance between two CFT points transforms as:

(x1 − x2)
2 =

(x′1 − x
′
2)

2

Ω (x′1) Ω (x′2)
. (2.5)

Combining these well-known facts, we can readily derive the transformation properties of

the OPE block:

Bijk (x1, x2)→

(
Ω (x′1)

Ω (x′2)

)(∆i−∆j)/2

Bijk
(
x′1, x

′
2

)
. (2.6)

Specializing to the case ∆i = ∆j , the OPE block transforms simply as

Bk (x1, x2)→ Bk
(
x′1, x

′
2

)
, (2.7)

where we drop the dependence on the external operator dimensions to reduce clutter.

This simplification of notation is further justified since, as we will see shortly, the form

of OPE blocks is in fact insensitive to the external weights when ∆i = ∆j .
8 We have

already suggested that the bi-local operator Bk(x1, x2) is a natural kinematic space object.

The transformation law (2.7) means that we should identify it with a scalar field. This

observation will give us a lot of mileage in the upcoming sections.

In the case of products of local scalar operators with unequal weights (∆i 6= ∆j) OPE

blocks also turn out to be scalar fields in kinematic space. The only difference is that

the kinematic scalar Bijk (x1, x2) is charged under a decompactified global U(1) symmetry,

which is related to special conformal transformations.

2.2 OPE blocks as kinematic space fields

Our next goal is to prove that OPE blocks obey the Klein-Gordon equation in kinematic

space. To do so, we need one additional property of Bk(x, y): that they are eigenoperators

of the conformal Casimir. We will then recognize that the Casimir eigenvalue equation is

the Klein-Gordon equation in metric (1.8).

8In general, the scalar OPE blocks in fact depend only on ∆i −∆j .

– 8 –
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Let L0,±1 and L̄0,±1 be the standard generators of the global conformal group SO (2, 2).

Their algebra is represented on conformal fields Ok (x) by appropriate differential operators

L(k)AB via [LAB,Ok (x)] = L(k)ABOk (x).

Irreducible representations of the conformal group are classified by their eigenvalues

under the Casimir operator:9

L2 = LABL
AB ≡

(
−2L2

0 + L1L−1 + L−1L1

)
+
(
L→ L̄

)
. (2.8)

In particular, all descendants of a quasiprimary operator Ok live in the same eigenspace as

operator (2.8) and satisfy the same eigenvalue equation:

[
L2, ∂µ1

. . . ∂µpOk (x)
]

= L(k)ABL
AB
(k) ∂µ1

. . . ∂µpOk(x) = Ck ∂µ1
. . . ∂µpOk (x) (2.9)

The eigenvalue is:

Ck = −∆k (∆k − d)− ℓk (ℓk + d− 2) , (2.10)

where ∆k and ℓk denote the scaling dimension and spin of the quasiprimary Ok, and where

d = 2 here.

Every OPE block is a linear combination of a single quasiprimary operator and its de-

scendants. Therefore, the operator Bk(x, y) is also an eigenvector of the conformal Casimir

and obeys: [
L2,Bk (x1, x2)

]
= Ck Bk (x1, x2) = L2(B)Bk (x1, x2) (2.11)

In the second equality, we again represent the Casimir as some differential operator L2(B),

which now acts on x1 and x2. To identify that representation, recall that Bk(x1, x2) trans-

forms as a scalar function of both arguments; see eq. (2.7). Therefore the appropriate

representation can be built from two local field representations with ∆ = 0:

L2(B) =
(
L(0,x1) + L(0,x2)

)2
=
(
L(0,x1)AB + L(0,x2)AB

) (
LAB
(0,x1)

+ LAB
(0,x2)

)
(2.12)

Expressing x1 in light-like coordinates z1 and z̄1, the representation L(0,x1)0,±1 of L0,±1

takes the form:

L(0,x1)0 = −z1 ∂z1 and L(0,x1)1 = −iz21 ∂z1 and L(0,x2)−1 = i∂z1 , (2.13)

with similar formulas for the right-movers and for x2. Using eqs. (2.13) and (2.8), we

therefore obtain:

L2(B) = 2
[
�dS2 + �dS2

]
= 2

[
ℓ2
(
−∂2ℓ + ∂2z

)
+ ℓ̄2

(
−∂2ℓ̄ + ∂2z̄

)]
(2.14)

This is the Laplacian in metric (1.8). On the right, we traded the coordinates z1 and z2 for

ℓ and z, which were defined in eq. (1.7). The appearance of the kinematic space Laplacian

comes from the fact that kinematic space is a homogeneous space of the conformal group;

see appendix A for details.

9Note that this convention for the Casimir differs by a factor of two from the usual 2D CFT convention;

this is useful for generalizing to higher dimensions.

– 9 –
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z1 z2 z̄2z̄1

(z1, z̄1)

(z2, z̄2)

Figure 4. Causality in each de Sitter component of kinematic space means that the OPE block

at (z1, z̄1, z2, z̄2) depends only on the initial data between z1 and z2 in the first component and

between z̄1 and z̄2 in the second component. These loci span the CFT causal diamond with corners

at x1 and x2.

If L2(B) is the Laplacian then eq. (2.11) is the Klein-Gordon equation:

2
(
�dS2 + �dS2

)
Bk (x1, x2) = CkBk (x1, x2) (2.15)

The mass-squared term is the constant Ck defined in eq. (2.10). It is negative, so Bk (x1, x2)

is a tachyon in kinematic space. We will see shortly, however, that this does not lead to

inconsistencies.

In fact, the two-dimensional conformal group has another quadratic Casimir operator

which characterizes the spin of a representation:

S =
(
−2L2

0 + L1L−1 + L−1L1

)
−
(
L→ L̄

)
= 2ℓ(∆− 1) (2.16)

As is easy to guess, its representation as a differential operator on bi-locals is

2
(
�dS2 −�dS2

)
. This gives us another differential equation obeyed by Bk(x1, x2):

2
(
�dS2 −�dS2

)
Bk (x1, x2) = 2ℓ (∆− 1)Bk(x1, x2). (2.17)

Eqs. (2.15) and (2.17) are the two kinematic “equations of motion” for the OPE block.

Note that eq. (2.17) decouples the “time-evolution” of the OPE block in the left-moving

and right-moving sectors. In other words, finding the OPE block requires solving two

1+1-dimensional problems rather than a single 2+2-dimensional problem. To select the

right solution, we must supplant the Klein-Gordon equations with appropriate boundary

conditions.

2.3 Smeared representation of OPE blocks

We will have a well-defined Cauchy problem if we specify a set of initial conditions on

each de Sitter component of kinematic space. In coordinates (1.7), the asymptotic past is

reached when we send ℓ, ℓ̄ to 0. In this limit x1 and x2, the two CFT locations parametrizing

Bk (x1, x2), approach one another and the bi-local reduces to a local operator! Because the

coefficients of descendants are suppressed by higher powers of |x1 − x2|, the correct initial

condition comes from the leading-order contribution to eq. (2.1),

lim
x2→x1

Bk (x1, x2) = (z1 − z2)
hk (z̄1 − z̄2)

h̄k Ok (x1) , (2.18)
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O1(x1) O2(x2)

Ok

Figure 5. A product of scalar CFT2 operators inserted at x1 and x2 can be expanded in terms of

OPE blocks, which consist of primary operators smeared over the causal diamond ⋄12.

where Ok(x) is the quasi-primary that labels the OPE block. In this expression, we used

the standard left/right-moving conformal weights: hk = 1
2 (∆k + ℓk) and h̄k = 1

2 (∆k − ℓk).

All that remains is to write down a kinematic boundary-to-bulk propagator. The

decoupling of the left and right-movers means that it will be a product of two respective

propagators. This gives the following schematic form of the OPE block:

Bk (x1, x2) =

∫
dwGk (w; z1, z2)

∫
dw̄ Ḡk (w̄; z̄1, z̄2)Ok (w, w̄) (2.19)

If we choose Gk(w; z1, z2) to be the advanced propagator, the solution will respect causality

in kinematic space. This choice means that Gk(w; z1, z2) = 0 unless z1 < w < z2, so that

the w-integral in eq. (2.19) extends from z1 to z2; see figure 4. Taking into account the

analogous limits for the w̄-integral, we conclude that the integrals in eq. (2.19) cover ⋄12, the

causal diamond defined by x1 and x2. Most importantly, the choice of advanced propagator

allows us to impose the boundary conditions (2.18): as x2 approaches x1, the diamond ⋄12
(and hence the support of the advanced propagator) covers a small neighborhood of x1,

and the resultant block is localized at that point. The explicit form of the advanced

propagator is:

Gk(w; z1, z2) ∝

(
(w − z1)(z2 − w)

z2 − z1

)hk−1

. (2.20)

Collecting these facts and fixing the normalization from eq. (2.18), we find the smeared

form of the OPE block:

Bk (x1, x2) =
Γ (2hk) Γ(2h̄k)

Γ(hk)2 Γ(h̄k)2

∫

⋄12

dw dw̄

(
(w − z1)(z2 − w)

z2 − z1

)hk−1

×

(
(w̄ − z̄1)(z̄2 − w̄)

z̄2 − z̄1

)̄hk−1

Ok (w, w̄) (2.21)

In this way, the product of scalar operators Oi (x1)Oj (x2) can be expanded in terms of

quasiprimary operators that are smeared over the causal diamond ⋄12; see figure 5.

Formula (2.21) can also be derived in a different way related to the shadow operator

formalism. In that language, the OPE block becomes:

Bijk (x1, x2) ∝

∫
ddz |x1 − x2|

∆i+∆j

〈
Oi (x1)Oj (x2) Õk µν... (z)

〉
Oµν...

k (z) (2.22)

We explain the shadow operator method, which is better suited to higher-dimensional

generalizations, in appendix B.
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3 Geodesic operators

We discussed OPE blocks in the hope that they form an ideal holographic operator basis

— as we characterized them in the introduction. To realize this hope, OPE blocks must

have a natural bulk interpretation. The fact that OPE blocks live in kinematic space —

the space of bulk geodesics — suggests a guess for their holographic dual. This guess is

the X-ray transform, an integral of an (operator-valued) function along a geodesic. In the

holographic context, the X-ray transform has appeared e.g. in [31].

In this section, we confirm that the correspondence between OPE blocks and geodesic

operators is correct.

3.1 A brief introduction to X-ray transforms

Integral geometry supplies us with canonical maps from local functions defined on a man-

ifold M to functions on the space of totally geodesic submanifolds of dimension k [32, 33].

These maps, obtained by integrating the function over a submanifold, are known in general

as Radon transforms. For M = AdSd+1, we will be particularly interested in the cases of

k = 1 and k = d − 1, which correspond to geodesics and codimension-2 minimal surfaces,

respectively.

For now, as we discuss AdS3, there is only one transform to consider: the geodesic

Radon transform or X-ray transform. Thus, consider the interpretation of kinematic space

K(M) as the space of boundary-anchored spacelike geodesics in M . Given a function

f : M → R, we can define its X-ray transform Rf : K (M)→ R as

Rf (γ) =

∫

γ
ds f (x) . (3.1)

In other words, Rf (γ) is the integral of f over the geodesic γ, weighted by its proper length.

An important property of the X-ray transform — which we will exploit in this paper

— is that it is known to be invertible when M is either hyperbolic space or flat space of

any dimension.10 Given only knowledge of Rf we can recover the function f on the entire

manifold M by using an appropriate inversion formula. We discuss this inversion formula

in more detail in section 4.

3.2 Kinematic operators from bulk fields

In AdS/CFT, the bulk theory is described at low energies by an effective field theory. The

relevant degrees of freedom are the propagating excitations of a corresponding field, which

can be locally created by field operators such as φ (x) for a spin-0 particle.

Let us consider the case of a free scalar in AdSd+1 with mass m2. Its propagation is

described by the Klein-Gordon equation:

(
�AdS −m

2
)
φ (x) = 0. (3.2)

10More generally, there are inversion formulas for Radon transforms on the totally geodesic submanifolds

of arbitrary dimension [32–34].

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
9

Since we are interested in the bulk operator φ which creates quantum states of finite

norm, only the regular, normalizable solutions of (3.2) describe the relevant field modes.

Moreover, according to the standard AdS/CFT dictionary [35], the operator φ is dual

to a single-trace primary CFT operator of spin ℓ = 0 whose weight m2 = ∆ (∆− d) is

determined by the conformal Casimir (2.10). In the extrapolate version of the dictionary,

the two operators are related by

φ (z → 0, x) ∼ z∆O∆ (x) (3.3)

in the absence of sources.

Using our knowledge of the X-ray transform introduced in the previous section, we can

map the local operator basis φ(x) to operators φ̃ (γ) = Rφ (γ) on kinematic space.

Intertwinement of the Laplacian A natural question to ask is whether the equation of

motion satisfied by a field φ in AdS implies an equation of motion for its X-ray transform φ̃.

In fact, we will see that this is the case. The equation of motion for the geodesic integral of

a field follows from the intertwining property of the X-ray transform: the kinematic space

Laplacian acting on the X-ray transform of f(x) is equal to the X-ray transform of the

AdS Laplacian acting on f(x).

We will now prove this property in the simplest way available. The key fact is that a

shift of the function f by some isometry of AdS, can be compensated for by a corresponding

shift of the function Rf .

Consider the X-ray transform Rf (γ) of some function f (x) and let g ∈ SO (2, 2) be

an isometry of AdS3.
11 This group element acts on the manifolds AdS3 and K (AdS3) in

the obvious way. Consider now the function f ′ (x) = f
(
g−1 · x

)
, which is just a shifted

version of f . We can evaluate the X-ray transform of f ′ by a shift of the integration path:

Rf ′ (γ) =

∫

γ
f
(
g−1 · x

)
ds

=

∫

g·γ
f (x) ds = Rf (g · γ) (3.4)

Hence, the shift of f can be compensated for by a corresponding shift in Rf ; see figure 6.

Now, let g be a group element near the identity. Then, we can write

f ′ (x) =
(

1− ωABL
(x)
AB

)
f (x)

Rf (g · γ) =
(

1 + ωABL
(γ)
AB

)
f (γ) (3.5)

where L
(x)
AB, L

(γ)
AB are the AdS3 and kinematic space scalar field representations of so (2, 2),

respectively, and ωAB parametrize the choice of g.

Using the equality Rf ′ (γ) = Rf(g ·γ), we find that the differential operators L
(x)
AB and

L
(γ)
AB intertwine under the X-ray transform:

L
(γ)
ABRf = −RL

(x)
ABf. (3.6)

11Though phrased in terms of AdS3, this proof is valid for any dimension of AdS and indeed for any pair

of homogeneous spaces.

– 13 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
9

f(g−1
· x)f(x)

Rf(γ) Rf(g · γ)

Figure 6. A shift in the field configuration by an AdS isometry can be compensated by a cor-

responding shift in the X-ray transform. This allows us to derive an intertwining relation (3.6)

between differential operators acting on AdS and kinematic space fields.

Figure 7. The X-ray transform of a function on AdS3 obeys a constraint equation. Given access

only to geodesics living on a given H2 slice of AdS3, the X-ray transform can be inverted on that

slice. Thus, we only need access to the unboosted geodesics to recover an entire function on AdS.

In this sense, the information in the boosted geodesics is redundantly encoded.

Applying this relationship twice, we can construct the Casimir operator L(x)2Rf =

RL(γ)2f . Since the Casimir operators L(x)2 and L(γ)2 are represented by the Laplace

operators −�AdS3 and �K = 2
(
�dS2 + �dS2

)
respectively (see appendix A), we find the

intertwining property of the Laplacian:

2
(
�dS2 + �dS2

)
Rf = −R�AdSf. (3.7)

In other words, the AdS Laplacian intertwines with the kinematic space Laplacian.

Consequently, the X-ray transform φ̃ = Rφ of a free scalar field φ of mass m2 defines

a free field of mass −m2 propagating on the kinematic geometry:

(
�AdS −m

2
)
φ (x) = 0 =⇒

(
2
(
�dS2 + �dS2

)
+m2

)
φ̃ (γ) = 0. (3.8)

By referring to eq. (2.15), we see that this is precisely the same equation as is obeyed by

the CFT dual of φ̃ (γ) —the OPE block B∆ of the primary associated with φ(x).

Constraint equations The AdS3 scalar field φ is a function of 3 spacetime coordinates.

In mapping this field to kinematic space via the X-ray transform, we obtained a function of

4 coordinates that parametrize the boundary locations of the geodesic endpoints. In other

words, the X-ray transform introduces redundancies : the geodesic integrals of a function

on AdS3 are an over-complete encoding of the said function (see figure 7).
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Spacelike 
Cauchy surface

Timelike 
Cauchy surface

Figure 8. The X-ray transform takes the non-standard bulk reconstruction problem and trans-

forms it to a more standard Cauchy problem. In particular, while the Cauchy data for the AdS3

reconstruction problem is given on a timelike surface, the corresponding data in kinematic space is

on a spacelike surface.

An equivalent statement is that not every function on the 4-dimensional kinematic

space can be understood as the X-ray transform of a function on AdS3. One, therefore,

needs to identify a set of constraint equations that restrict kinematic functions φ̃(γ) to the

“physical subspace” of consistent X-ray transforms. These extra equations ought to come

from identities satisfied by our map to the space of geodesics.

The existence of non-trivial identities of X-ray transforms is a well-known fact in the

mathematical literature and they were originally derived by Fritz John [36] in the study of

line integrals of functions in flat space. For AdS3, we only have one equation which reads:

2
(
�dS2 −�dS2

)
Rf = 0 (3.9)

Eq. (3.9) is, of course, identical to (2.17). That equation is satisfied by the OPE block of the

dual CFT operator O∆ as a dictated by the second quadratic Casimir S of SO(2,2).12 The

intertwining relation (3.6) guarantees that the differential representation of S annihilates

the X-ray transform. It can also be verified explicitly using the AdS3 representation of the

group generators from e.g. [37].

As in the CFT discussion of section 2, the constraint equation can be combined

with (3.8) to completely decouple the propagation of the geodesic operator on the two

de Sitter components of kinematic space. This fact guarantees that the initial value prob-

lem for our system of differential equations is well posed.

3.3 A gauge-invariant holographic dictionary

The X-ray transform maps local field operators on AdS3 to geodesic operators. The de-

scription of the latter as a local propagating excitation on kinematic space with equations

of motion (3.8) and (3.9) will now allow us to connect geodesic bulk operators with OPE

blocks on the boundary. In doing so, we take the first step towards a diffeomorphism in-

variant dictionary for AdS/CFT, valid at leading order in N . This will be one of the main

results of this paper.

12Since we are here considering a scalar field, O∆ has ℓ = 0.
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x1

x2

⊃

Figure 9. The OPE block is represented on the boundary by a smeared diamond operator, and in

the bulk (for low-dimension single-trace operators) by a geodesic operator.

Both X-ray transforms of bulk fields and OPE blocks are defined via the same set

of differential equations. Thus, proving they are equivalent operators amounts to merely

verifying they also obey the same initial conditions. The asymptotic past of kinematic

space, which we choose as a Cauchy surface for our initial value problem, is approached in

the coincident limit of the bi-local: x2 → x1 (see figure 8). As we have already discussed

in section 2, OPE blocks in this limit behave like:

Bk(x1, x2) →
x2→x1

|x2 − x1|
∆kOk(x1) (3.10)

The boundary conditions for the X-ray transform are equally straightforward to derive.

The geodesics anchored at the two boundary points defining the bi-local are contained in

a neighborhood of the asymptotic boundary that can be made arbitrarily small as we send

x2 → x1. In this limit, the bulk field asymptotes to its dual primary operator in the CFT

as in eq. (3.3). Using the extrapolate dictionary we find that:

φ̃(x1, x2) →
x2→x1

∫
ds z∆Ok(x1)

∣∣∣
γ

=
Γ
(
∆
2

)2

2Γ(∆)
|x2 − x1|

∆k Ok(x, x̄) (3.11)

We conclude that the OPE blocks in the CFT are dual to integrals of bulk local operators

along geodesics; see figure 9. Both objects behave as local excitations propagating in

kinematic space:

c∆ Bk(x1, x2) = φ̃k(γ12) =

∫

γ12

ds φ (x) . (3.12)

where c∆ = Γ
(
∆
2

)2
/2Γ(∆). This completes the derivation of our gauge-invariant

dictionary.

Thus far, we have treated the bulk field as freely propagating in AdS. This assumption

is correct at leading order in 1/N . However, bulk interactions will modify this dictionary

at subleading orders. We comment on this briefly in the Discussion, saving a detailed

analysis for a future publication. Nevertheless, even at leading order in 1/N , the OPE

block/geodesic operator equivalence wields considerable power. It reveals new insights to

a number of holographic applications, to which we now turn.
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4 Construction of bulk local operators

Thus far we have explored bulk physics using non-local and diffeomorphism-invariant

probes. Nevertheless, we would still like to understand the emergence of local effective

field theory in the gravitational background.

In section 3 we began our study of geodesic operators by starting with the real space

geometry and integrating local operators along geodesics, exactly akin to how X-rays probe

a density function in space. Inverting this process to determine the original local function

is a well-studied problem (one necessary, for example, to display an intelligible CAT-scan

image). In this section, we will import these imaging techniques to reconstruct local opera-

tors. While the techniques we are discussing are quite general, we will focus on the example

of a scalar field living in AdS3 using the inverse X-ray transform on two-dimensional hy-

perbolic space.

We begin by discussing the inverse X-ray transform in hyperbolic space and then invert

the transform for the analogous operator problem. The representation of the geodesic

operators we use as input are exactly the OPE blocks of the CFT2. The inversion formula

gives a CFT representation for a local bulk operator at a point, which is defined invariantly

on the boundary as the intersection locus of a family of geodesics.13 We find that this

representation of the bulk operator is exactly equivalent to the HKLL prescription [12–18]:

the geodesic operators deconstruct the HKLL representation into contributions of separate

causal diamonds.

An immediate computational and conceptual advantage of our prescription is the ele-

gant way for alternating between the global AdS and Poincaré AdS reconstruction formulas

of [16], on which we comment in section 4.3. Rindler reconstruction is not as straightfor-

ward in the integral geometric language but we hope to report on it soon.

4.1 Inverse X-ray transform

There are known inversion formulae for Radon transforms over arbitrary-dimension, totally

geodesic submanifolds in Hd [34]. Here, we will only mention the inversion of the X-ray

transform in M = H2, since it is the geometry of a time slice of AdS3, our primary example.

The inversion formula for the original function f at point x is given by:

f(x) = −
1

π

∫ ∞

0

dp

sinh p

d

dp

(
average
d(x,γ)=p

Rf (γ)

)
. (4.1)

This formula asks us to average Rf (γ) over all geodesics at a given proper distance

d(x, γ) = p from the point x (figure 10) and then integrate over all distances. Thus,

it requires us to integrate over all geodesics on the hyperbolic slice.

13Such a collection of geodesics, called a point-curve in [9], will not define a point in an arbitrary back-

ground. It is a difficult problem to determine which families of geodesics intersect at a single point in a

given geometry. An alternative — but not easier — way to specify a point involves its distances from all

geodesics.
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d(x, γ)

Figure 10. When inverting the X-ray transform at a point x, we use the average of the transform

over geodesics γ at a fixed distance d(x, γ).

A simple exercise on X-ray transforms To get our feet wet with the X-ray transform,

let us use (4.1) to invert the transform for a particularly simple function: f (x) = 1. If we

set f (x) = 1 in eq. (3.1), we find that Rf is given simply by

Rf (γ) =

∫

γ
ds = ℓ (γ) , (4.2)

where ℓ (γ) denotes the length of the geodesic γ. This length is of course infinite, but we

can obtain a cut-off geodesic length instead by setting f (x) = θ (ρuv − d (x, x0)), which

imposes a radial cutoff ρuv about some center point x0. Doing this for ρuv ≫ 1, we have

ℓcutoff (γ) = log
(
sin2 α

)
+ 2ρuv (4.3)

where α is the opening angle of the geodesic with respect to the center x0. Now the

evaluation of (4.1) for x = x0 is straightforward since

average
d(x0,γ)=p

Rf (γ) = ℓ (α) , (4.4)

where we use p = sinh−1 cotα. Then, we have

R−1Rf(x0) =
1

π

∫ π/2

0

dα

cotα

d

dα
log
(
sin2 α

)
= 1 (4.5)

as expected. Note that allowing the cutoff ρuv to vary with angle does not change this

result, so we can accommodate points x 6= x0 by an equivalent change in cutoff.

4.2 Global AdS reconstruction

We now present the holographic construction for a local scalar AdS3 field φ with mass

m2 = ∆(∆ − 2) in global coordinates. We use coordinates (ρ, θ, t), in which the metric

takes the form (we set LAdS = 1):

ds2 = − cosh ρ2 dt2 + dρ2 + sinh ρ2 dθ2 . (4.6)

Recall that the complete kinematic space of AdS3 contains a redundant description

of the functions living in the geometry, with different geodesic integrals related by John’s
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α

θc

α

θc

Figure 11. We parameterize the kinematic space for H2 by the opening angle α and midpoint θc
of the geodesic.

Figure 12. (a) A bulk local operator is recovered from an integral over bulk geodesic operators.

(b) The boundary representation is a corresponding integral over diamond-smeared operators. The

result is a smeared representation of the bulk local operator that is supported on a time-interval

of the cylinder tiled by these diamonds. (c) For each geodesic, we chose the causal diamond that

subtends less than half the circle. The domain of integration is the lower-half of the kinematic space

for the hyperbolic plane. A few corresponding examples are shown in each panel.

equations. It is convenient to consider a totally geodesic spacelike slice of AdS3, which has

the geometry of two-dimensional hyperbolic space. The set of X-ray transforms restricted

to geodesics on this spatial slice are sufficient to reconstruct functions on the same slice.

We now determine a local operator φ(x) using the inversion formula for H2,

φ(x) = −
1

π

∫ ∞

0

dp

sinh p

d

dp

(
average
d(x,γ)=p

φ̃(γ)

)
, (4.7)

where φ̃(γ) is the integral of φ(x) over the geodesic γ. Because our procedure is manifestly

invariant under conformal transformations, we need only reconstruct φ(ρ, θ, t) at the origin

of AdS3 (ρ = 0) and at time t = 0. The operator at different points can be constructed

by appropriate application of bulk isometries. As mentioned above, the inversion formula

identifies a bulk point in a gauge-invariant way: by the distance of all geodesics to the point.

We will parameterize geodesics in global coordinates by the location of their center θc
and their boundary opening angle α; see figure 11. Adapted to this coordinate choice, the
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inversion formula becomes:

φ(ρ = 0) =
1

2π2

∫ 2π

0
dθc

∫ π/2

0
dα tanα

d

dα
φ̃(α, θc) . (4.8)

We can now use the CFT representation of the X-ray transform of a local bulk operator

found in eq. (3.12), φ̃(α, θc) = cR∆B∆(α, θc) with cR∆ = Γ
(
∆
2

)2
/2Γ(∆), to re-express the

bulk local field in terms of boundary operators. The OPE block (2.21) for the family

h = h̄ = ∆/2 at t1 = t2 = 0 can be rewritten in global coordinates as

B∆(α, θc) = cB∆

∫

⋄
dθdt

(
2

(cos t− cos (θ − θc + α)) (cos t− cos (θ − θc − α))

1− cos (2α)

)∆

2
−1

O∆(t, θ)

(4.9)

with cB∆ = 2

(
Γ(∆)

Γ(∆

2 )
2

)2

. Substituting this formula into eq. (4.8), we can reverse the order

of integration so that we integrate over the geodesic parameters in the inversion formula

while leaving the boundary spatial coordinates from the OPE block unintegrated. Having

done so, eq. (4.8) takes the form (see also figure 12)

φ(ρ = 0) =

∫ π/2

−π/2
dt

∫ 2π

0
dθK∆(t) O∆(t, θ) , (4.10)

where the smearing function K∆(t) is given by the integral expression:

K∆ (τ) =
cR∆c

B
∆

2π2

∫ π/2

|τ |
dα tanα

×
d

dα

∫ α−|τ |

−(α−|τ |)
dφ

[
2

(cos τ − cos (φ+ α)) (cos τ − cos (φ− α))

1− cos (2α)

]∆/2−1

(4.11)

The integral is divergent when evaluated at the upper limit of integration. This divergence

is of UV nature in the bulk: the set of geodesics with half-width α = π
2 are precisely the

AdS diameters which intersect at the origin ρ = 0, and they determine the point we are

reconstructing. We can regulate this divergence by cutting off the integral at α = π
2 − ǫ

and take the limit ǫ → 0 at the end. We will see that the bulk operator is insensitive to

the regulator.

The regularized smearing function is computed to be

K∆(t) =
2∆−2 (∆− 1)

π2
(cos t)∆−2 (log cos t− log ǫ− ψ(∆− 1)− γ) , (4.12)

where ψ(n) is the digamma function. The divergent term appears worrisome, but, inserted

into the integral with O∆(t, θ), the constant terms in the brackets give vanishing contribu-

tion as their Fourier expansion has no overlap with the operator. They can thus be safely

discarded.14 We conclude that the inversion formula determines a boundary smearing

14This is exactly analogous to the procedure originally carried out by HKLL to derive smearing functions

for bulk operators [16].
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Figure 13. In the global AdS3 geometry, there are two choices of boundary causal diamond corre-

sponding to a given spacelike geodesic. These correspond to the two orientations of the geodesic, or

equivalently the ordering of the boundary endpoints. The geodesic operator then has two different

representations as a smeared boundary operator.

Figure 14. (a) We choose the orientation for the geodesic so that the enclosed region does not

contain a specified bulk point. (b) The boundary representation is a corresponding integral over

the region spacelike-separated from the bulk point. (c) The point identifies half of kinematic space

as our domain of integration. The boundary of this region is precisely the ‘point-curve’ of [9]: the

geodesics that intersect at the point.

function for the bulk operator given by:

K∆(t) =
2∆−2 (∆− 1)

π2
(cos t)∆−2 log cos t . (4.13)

The region of integration is depicted in figure 12. This is the same smeared representation

of a bulk operator at the center of AdS3 as that found by HKLL [16].

4.3 Different smearings

There is one subtle puzzle with our derivation: the smearing function we generated had

spacelike support from the centre of AdS3 because we integrated over the complete set of

geodesics. If we were to choose a different point, we would still integrate over the same set

of geodesics, and our smearing function would then have spacelike support from the center,

not from the chosen point. This makes it hard to see how our formula will transform under

symmetries to remain the same as that found by HKLL.
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Figure 15. If we wish to obtain the Poincaré representation of a bulk operator, we can make

use of the redundancy in the representation of the geodesic operators used to construct it. To do

so, choose for each geodesic the boundary diamond representation that is contained in the desired

patch.

The resolution to this puzzle is that there was an implicit choice in the OPE blocks that

we used. The inversion formula requires an integral over the space of geodesics, without

orientation, but our OPE blocks contain an orientation (the choice of one causal diamond

or its complement — see figure 13). We must integrate over all geodesics, but we are free

to choose which half of kinematic space we want. To obtain the spacelike Green’s function,

we choose each causal diamond so that the region enclosed by it and the geodesic do not

contain the specified bulk point (see figure 14). In result, we obtain an integral supported

on the boundary region that is spacelike separated from the identified bulk point. This is

precisely what would have happened had we used conformal transformations to move the

point at the center of AdS.

A nice feature of our procedure is that the Poincaré smearing function appears as

just another choice of orientation for our OPE blocks. Specifically, the Poincaré smearing

function arises from the choice of OPE block orientations in which none of the causal

diamonds contains a fixed boundary point; see figure 15.

Other extensions Our reconstruction of local operators can be extended both to higher

dimensions (see section 6) and to interacting fields. We will sketch how to include interac-

tions in the Discussion, leaving a more complete treatment to future work.

5 Further applications

5.1 Vacuum modular hamiltonian

We begin the discussion of applications of our “kinematic dictionary” by considering an ex-

ample of special interest: the OPE block built out of the CFT stress tensor. We again focus

our attention on CFT2; the extension to higher dimensions requires the extra machinery

presented in section 6 and we discuss it there.

The stress tensor in two-dimensional CFTs has two independent components of dimen-

sion ∆ = 2. They are conventionally defined as T (z) = −2πTzz (z) and similarly for T̄ (z̄),
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with spin ℓ = 2 and ℓ = −2, respectively. Recalling the smeared representation (2.21) of

OPE blocks we can construct two kinematic fields:

BT (x1, x2) = 6

∫ z2

z1

dw
(z2 − w) (w − z1)

z2 − z1
T (w) (5.1)

BT̄ (x1, x2) = 6

∫ z̄2

z̄1

dw̄
(z̄2 − w̄) (w̄ − z̄1)

z̄2 − z̄1
T̄ (w̄) .

Note that since T (w) has no dependence on w̄, the w̄ integral and its associated normal-

ization factor cancel out in BT , and similarly for BT̄ .

In our conventions, the stress tensor couples to a CFT scalar O with OPE coefficients

COOT = COOT̄ = ∆O

c . Hence, the stress tensor OPE blocks appear in the O (x1)O (x2)

operator product in the symmetric combination BT + BT̄ . This sum of blocks can be

simplified and brought to a suggestive form. The energy density can be written as

T00 (z, z̄) = −
1

2π

(
T (z) + T̄ (z̄)

)
, (5.2)

Now, in the simple case where x1 and x2 lie on the same time slice, we have

BT + BT̄ = −12π

∫ x2

x1

dx
(x2 − x) (x− x1)

x2 − x1
T00 (x) (5.3)

where T00 is integrated along the interval that connects the two points. The result for

arbitrary x1, x2 can be obtained by applying a boost.

Apart from a normalization mismatch, the stress tensor block is identical to the mod-

ular Hamiltonian for the vacuum state [7]:

BT + BT̄ = −6Hmod. (5.4)

Indeed, this result implies that the modular Hamiltonian appears in the OPE of any two

CFT scalars of equal dimension:

O (x1)O (x2) =
1

|x1 − x2|
2∆

(
1−

6

c
∆OHmod + . . .

)
. (5.5)

Let us apply this to the twist operators σ†n, σn of dimension ∆ = c
12

(
n− 1

n

)
, which are

used in the replica trick computation of the entanglement entropy [38]. Their OPE takes

the form

σ†n (x1)σn (x2) =
1

|x1 − x2|
c
6(n− 1

n)
(1− (n− 1)Hmod + . . .) , (5.6)

where we drop terms of order (n− 1)2 and additional operator contributions. This result

was previously noted by [7]. Hence, the appearance of the modular Hamiltonian in the

OPE is no accident; the surprise is that it appears so generally.

We will now exploit the fact that the modular Hamiltonian is an OPE block. This

implies that Hmod is a field on kinematic space obeying a Klein-Gordon equation (2.15):

(
2
(
�dS2 + �dS2

)
+ 4
)
Hmod = 0 (5.7)
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This equation can be combined with the conservation of energy ∂z̄T (z) = 0 = ∂zT̄ (z̄) to

obtain yet another equation for Hmod, which becomes the Klein-Gordon equation on a

single de Sitter space: (
�

d̃S2
+ 2
)
Hmod = 0. (5.8)

This d̃S2 is the “diagonal” de Sitter geometry, which is picked out from the full dS2 × dS2

kinematic space by restricting metric (1.6) to z1 = z̄1, z2 = z̄2. In other words, it is the

kinematic space for the pairs of points on a constant time-slice. Given the entanglement

first law δS = 〈Hmod〉, eqs. (5.7) and (5.8) are entanglement equations of motion.

The same conclusion could be readily reached by observing the form of the modular

Hamiltonian directly. From the perspective of a given time, e.g. t = 0, T00(x, 0) is a primary

of the corresponding 1-dimensional conformal subgroup with weight ∆ = 2. Moreover, we

can follow again the procedure explained in section 2 and translate the one-dimensional

Casimir equation to the Klein-Gordon equation on the kinematic space of a time-slice. This

observation was made recently in [11]. Our key insight is that this object appears as the

OPE contribution of the stress tensor family, and its apparent propagation in kinematic

space constitutes a special case of a general property of OPE blocks.

Our observation that the stress tensor block equals the vacuum Modular Hamiltonian

will be further developed in [26]. It will enable us to approach the first law of entanglement

entropy from a new perspective and clarify its connection to the bulk linearized Einstein’s

equations in the holographic setting, by re-deriving them in a simpler way. Indeed, we will

find that just as scalar equation of motion intertwine with certain kinematic space equations

motion, so do Einstein’s equations intertwine with entanglement equations of motion.

5.2 Conformal blocks

The identification of OPE blocks with scalar fields in kinematic space provides an elegant

geometric description of a fundamental object in the study of CFT correlation functions:

the conformal block. In view of our kinematic dictionary, this description further allows

us to identify the corresponding structure in the holographic dual. Thus, we now turn our

attention to CFT four-point functions.

Consider a CFT four-point function 〈O1O2O3O4〉 and make the simplifying assumption

that ∆1 = ∆2 = ∆ and ∆3 = ∆4 = ∆′. Following standard CFT procedure, one can

define projection operators P∆k
that project any CFT state to states of the ∆k irreducible

representation. Using the fact that
∑

k

P∆k
= 1, (5.9)

we decompose the four-point function into “conformal partial waves”:

〈O1O2O3O4〉 =
∑

k

C12kCk34Wk|1234 (xi) . (5.10)

Here Cijk are the OPE coefficients and the partial waves are defined by:

Wk|1234 (xi) =
1

C12kCk34
〈O1O2P∆k

O3O4〉 (5.11)
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O1

O2

O3

O4

=

Figure 16. Global conformal blocks can be computed equivalently as kinematic space propagators

or geodesic Witten diagrams.

A given conformal partial wave is the contribution to the four-point function from a spe-

cific conformal family of intermediate states. The conformal block gk (u, v) is defined by

convention as

Wk|1234 (xi) =
gk|1234 (u, v)

x2∆12 x
2∆′

34

, (5.12)

where xij = xi − xj . The variables u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

are the conformally invariant

cross-ratios. Using the transformation properties of Wk|1234, it is straightforward to verify

that gk|1234 is indeed conformally invariant.

We can express the partial wave (5.11) in the language of kinematic space. To

do so, recall the definition of OPE blocks as the constituents of the OPE expansion of

local operators:

Oi (x1)Oj (x2) = |x1 − x2|
−∆i−∆j

∑

k

Cijk B
ij
k (x1, x2) (5.13)

By expanding the O1O2 and O3O4 products in (5.11) according to (5.13) and comparing

with the conformal block expression (5.12), we find that individual conformal blocks become

propagators in kinematic space:

gk|1234 (u, v) = 〈0|Bk (x1, x2)Bk (x3, x4) |0〉 . (5.14)

A subtle issue in our interpretation of conformal blocks as “kinematic propagators”

arises from the mixed signature of kinematic space, which allows for the construction of

various inequivalent propagators. Therefore, one needs to be specific about the choice of

propagator consistent with the CFT computation of Lorentzian conformal blocks. The

correct answer is obtained by demanding that the propagator have the asymptotic fall-off

implied by the OPE block boundary conditions. In effect, the kinematic propagator inherits

the singularity structure of conformal blocks. This makes an interesting connection with

the signature and discrete symmetries of kinematic space, manifesting its elliptic de Sitter

structure [39, 40]. We discuss these issues in appendix C.

Conformal blocks in holography The simple representation of conformal blocks as

propagators in kinematic space makes it straightforward to identify the corresponding

structure in the AdS dual of a holographic CFT.
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Referring to the kinematic dictionary (3.12), the expression for the conformal

block (5.14) can be re-written as a correlation function of geodesic integrals of the cor-

responding bulk field φk. This yields

gk|1234 (u, v) =
1

c2∆k

〈φ̃(γx1x2
)φ̃(γx3x4

)〉 =
1

c2∆k

∫

γx1x2

ds

∫

γx3x4

ds′ Gbb(~r(s), ~r′(s
′);mk) ,

(5.15)

where Gbb(~r1, ~r2;mk) denotes the bulk-to-bulk AdS propagator for the field dual to the

quasi-primary of the ∆k conformal family. It is worth noting that in using the dictio-

nary (3.12) to make contact with the bulk field theory, we implicitly assumed that the

family ∆k is a family of single-trace operators whose AdS duals are local fields at low

energies. For multi-trace conformal blocks, there is no corresponding bulk local field and

eq. (5.15) is merely a mathematical identity.

The holographic representation of conformal blocks was recently studied in detail

in [20–22]. The authors recognized that individual conformal partial waves are repre-

sented in AdS by “geodesic Witten diagrams”; see figure 16. These are similar to the

standard Witten diagrams in the bulk, with the difference that the interaction vertices

are integrated over geodesics that connect the boundary insertions. As an example, for

the simple four-point function (5.10) considered in this section, the corresponding partial

waves (5.11) are according to [21] equal to:

Wk|1234(xi) =
gk|1234(u, v)

|x12|4∆|x34|4∆
′

=
1

c2∆k

∫
ds

∫
ds′ G∂b(x1, ~r(s);m∆)G∂b(x2, ~r(s);m∆)×

×Gbb(~r(s), ~r(s
′);mk)G∂b(x3, ~r(s

′);m∆′)G∂b(x4, ~r(s);m∆′). (5.16)

If we extract the ∆k conformal block from this expression, we recover eq. (5.15), which was

derived from an application of our dictionary.

6 Higher dimensions

The essential elements of our AdS3/CFT2 arguments remain valid when we go to higher

dimensions. There are, however, a number of subtleties, which arise primarily because the

conformal group SO(d, 2) does not factorize like SO(2, 2) does. The best way to understand

these subtleties is to examine the relevant kinematic spaces.

6.1 Higher-dimensional kinematic spaces

Right away we come to a fork, because the CFT2 kinematic space can be lifted to higher

dimensions in two distinct ways. We saw in section 1.1 that each element of the CFT2

kinematic space labeled one object in the following categories:

• pairs (x1, x2) of space-like separated points in CFT2

• causal diamonds ⋄12
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Kinematic Space

Kg

Boundary Bulk

x1 x2

x1

x2

γ12

σ12

Ks

Figure 17. The kinematic spaces.

• pairs of time-like separated points that live on the remaining corners of ⋄12

• bulk geodesics γ12 in AdS3, which asymptote to x1 and x2 on the boundary

Above two boundary dimensions, these concepts depart from one another. A pair of space-

like separated points does not define a causal diamond and, consequently, does not select a

pair of time-like separated points. To study OPE blocks that arise from products of local

operators Oi(x1) and Oj(x2), we must therefore distinguish the cases when x1 and x2 are

space-like versus time-like separated:

Pairs of space-like separated points (x1, x2) in CFTd. We will denote this space

Kg. In the presence of a holographic dual, this is also the space of space-like geodesics γ12
in AdSd+1, which end at x1 and x2 on the boundary.

Pairs of time-like separated points in CFTd. We will denote this space Ks, but for

simplicity we do not introduce a new notation for the pair of points (x1, x2). The causal

cones of x1 and x2 in the CFT intersect on (d − 2)-dimensional spheres, which bound

(d − 1)-dimensional balls. Thus, we may also think of Ks as the space of causal domains

(domains of dependence) of regular (d − 1)-dimensional balls in CFTd. In a holographic

dual, elements of Ks label Ryu-Takayanagi surfaces for boundary balls, denoted σ12, which

are completely homogeneous minimal surfaces in AdSd+1.

The two types of kinematic space are illustrated in figure 17. Both inherit a coordinate

system from the coordinates of x1 and x2 and are therefore 2d-dimensional. Because the

argument leading to eq. (1.5) did not use any tools specific to two-dimensional CFTs, it

carries over to the present case. Thus, both Kg and Ks have a unique metric, which is
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consistent with conformal symmetry:

ds2 = 4

(
ηµν − 2

(x1 − x2)µ(x1 − x2)ν
(x1 − x2)2

)
dxµ1dx

ν
2

|x1 − x2|
2 (6.1)

This metric contains d pairs of light-like coordinates corresponding to individual movements

of x1 and x2, so its signature is (d, d).

6.2 The Radon transform

In section 3 we considered the X-ray transform on AdS3, which takes a function f on AdS3

to a function Rf on kinematic space. In higher dimensions more types of bulk surfaces are

available so we can define a wider variety of transforms.

If we consider the kinematic space Kg, we can define the geodesic X-ray transform

Rgf : Kg → R of a function f : AdSd+1 → R as before by integrating along geodesics:

Rgf (γ) =

∫

γ
ds f (x) . (6.2)

Along the same lines, we can consider the kinematic space Ks of codimension-2 minimal

surfaces anchored on boundary spheres. The associated transform is known as the Radon

transform, which we will denote as Rsf (σ) : Ks → R. The Radon transform of f is obtained

by integrating f over the bulk surface represented by σ, weighted by the area element:

Rsf (σ) =

∫

σ
dAf (x) . (6.3)

Both the X-ray transform and the Radon transform are known to be invertible in flat space

and hyperbolic space.

6.3 Kinematic equations of motion

As before, we would like to solve the boundary value problem for a free scalar field φ in

AdSd+1, satisfying the Klein-Gordon equation

(
�AdS −m

2
)
φ (x) = 0. (6.4)

The boundary data is specified by the AdS/CFT dictionary:

φ (z → 0, x) ∼ z∆O∆ (x) , (6.5)

where O∆ is the CFT operator corresponding to the bulk field φ. Since the boundary

data is specified on a codimension-1 surface of AdSd+1, only a single additional equation

is required to pose a meaningful boundary value problem. The Klein-Gordon equation fills

this role.

However, note that the X-ray and Radon transforms take a function of d+ 1 variables

to a function of 2d variables. The boundary data is still a function of d variables, so now

we require d equations to pose the boundary value problem. In both cases, one equation

will come from the Klein-Gordon equation by an intertwining relation. We will find that

the remaining d− 1 equations take the form of constraint equations.
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Intertwinement First, we turn our attention to the intertwining relation. In section 3,

we proved that the AdS3 Laplacian and the kinematic space Laplacian intertwine under

the X-ray transform:

�KRf = −R�AdS3f. (6.6)

Looking back, we can see that the proof also applies without modification to the X-ray and

Radon transforms in higher-dimensional AdS. Indeed, the fact that AdSd+1, Kg, and Ks

are all homogeneous spaces of the group G = SO (d, 2) implies that the Casimir operator of

G is represented by some multiple of the Laplacian on each (see appendix A). As a result,

the AdS Laplacian intertwines with the Kg and Ks Laplacians, respectively, for the X-ray

and Radon transforms:

�KgRgf = −Rg�AdSf

�KsRsf = −Rs�AdSf. (6.7)

This immediately implies that the X-ray or Radon transforms of a free scalar field propa-

gating in AdS of mass m become free scalars on their respective kinematic geometries:

(
�AdS −m

2
)
φ (x) = 0 =⇒

(
�Ks +m2

)
Rsφ (σ) = 0(

�Kg +m2
)
Rgφ (γ) = 0

(6.8)

This provides the first out of the d necessary equations.

John’s equations For the remaining d − 1 equations, we again look for an analog of

John’s equations. In section 3 we found that the difference of the two dS2 Laplacians

annihilates the X-ray transform of any scalar function on AdS3:
(
�dS2 −�dS2

)
Rf (γ) = 0. (6.9)

This equation comes from the Casimir operator S = L2
L − L

2
R, which is composed of the

Casimir operators of the two factors of SO (2, 2) = SO (2, 1)L × SO (2, 1)R.

Now note that the d-dimensional conformal group SO (d, 2) has a subgroup SO (2, 2)

corresponding to the conformal transformations fixing any AdS3 slice of AdSd+1. We would

like to consider such slices that contain two boundary points x1, x2 corresponding to an

element of kinematic space. Such a slice can be specified by two boundary vectors v1, v2
at x1. A conformal transformation can then be applied such that these vectors span a

plane containing x1 and x2. We can form Casimir operators S (v1, v2) from the two factors

of these SO (2, 2) subgroups analogous to above. These operators can be be written as

Sµν (x1, x2) v
µ
1 v

ν
2 for some collection of operators Sµν (x1, x2). Note that, since eq. (6.9) is

antisymmetric under exchange of two coordinates, Sµν must also be antisymmetric.

From our study of AdS3, we see that the operator Sµν (x1, x2) annihilates the X-ray

transform; in other words, it intertwines with the zero operator:

Sµν (x1, x2)Rgf = 0. (6.10)

Written as a differential, operator Sµν takes the form

Sµν (x1, x2) = Iαµ (x1 − x2)
∂2

∂xα1∂x
ν
2

− Iαν (x1 − x2)
∂2

∂xα1∂x
µ
2

, (6.11)
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where Iαµ (x1 − x2) is the inversion matrix (1.4). Eq. (6.11) can be checked by noting that

it reduces to (6.9) for the case of d = 2.

Eq. (6.10) is what we call the AdS John’s equation. It bears a striking resemblance to

John’s equations in flat space [36], which completely characterize the image of the scalar

X-ray transform. It is natural to conjecture that the same holds true in AdS.

Since we have shown that the operator corresponding to Sµν (x1, x2) is represented by

the zero operator on scalar AdS functions, it follows from the intertwining relation (3.6)

that Sµν (x1, x2) also annihilates the Radon transform:

Sµν (x1, x2)Rsf = 0. (6.12)

Hence, John’s equations apply both to the X-ray and the Radon transforms.

Note that, since Sµν is an antisymmetric d× d matrix, John’s equation (6.10) actually

consists of d (d− 1) /2 separate equations. We expect that, as in flat space, only d − 1 of

these equations are independent, and that they completely characterize the range of the

X-ray and Radon transforms.

Boundary conditions To pose the boundary value problem for the X-ray and Radon

transforms, we must again specify boundary conditions. These can be obtained as before

by considering a geodesic or surface near the boundary of kinematic space and applying

the AdS/CFT dictionary (6.5).

The boundary conditions for the X-ray transform are as before:

Rgφ (γ12) →
x2→x1

(∫

γ12

ds z∆
)
O (x1) = cg∆ |x1 − x2|

∆O (x1) ; cg∆ =
Γ
(
∆
2

)2

2Γ (∆)
(6.13)

For the Radon transform, the boundary conditions are

Rsφ (σ12) →
x2→x1

(∫

σ12

dA z∆
)
O (x1) = cs∆ |x1 − x2|

∆O (x1) ; cs∆ =
π

d−1

2 Γ
(
∆−d+2

2

)

2∆Γ
(
∆+1
2

) .

(6.14)

These boundary conditions, together with the Klein-Gordon equation and John’s equations,

determine the X-ray and Radon transforms.

6.4 Bilocals and surface operators

We will now relate these geodesic and surface operators to higher dimensional OPE blocks.

Recalling section 2, the discussion of the OPE expansion in CFT2 applies equally well in

higher dimensions. Scalar OPE blocks in higher-dimensions also obey the Casimir equation

and John’s equations, with the boundary conditions:

Bk (x1, x2) →
x2→x1

|x1 − x2|
∆k Ok (x1) . (6.15)

By matching this data to our bulk calculations, we conclude that the higher-dimensional

OPE blocks are the CFT representations of geodesic and surface operators:

Bk (x1, x2) =





1

cg∆

∫

γ12

dsφk (x1, x2) spacelike

1

cs∆

∫

σ12

dAφk (x1, x2) timelike

(6.16)
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=
X

k

X

k

φk
or

O1(x1)

O2(x2)

Ok
⊃

Σ (x1, x2)

Figure 18. OPE blocks and surface operators are equal, and both have a CFT representation as

an operator smeared over a causal domain. OPE blocks appear in the expansion of a bilocal of

timelike-separated operators, as well as in the expansion of surface operators.

In the timelike-separated case, it may be more useful to think of these blocks as being the

contribution of a conformal family, not to local operators inserted at timelike-separated

points (x1, x2), but to a surface operator Σ(x1, x2) localized on the intersection of the

light-cones of the points x1, x2. Let us elaborate on this now.

Surface operator OPE Just as a bilocal operator can be expanded in terms of a local

operator basis using the state-operator correspondence, so too can a surface operator. The

surface operator expansion is particularly relevant, as spherical twist operators are used to

calculate Renyi entropies in higher dimensions [41].

We will consider a scalar surface operator Σ(x1, x2) localized on a boundary d − 2-

sphere defined by the two points. We can expand such a surface operator in terms of

surface OPE blocks:

Σ (x1, x2) = 〈Σ (x1, x2)〉
∑

i

ci B
s
i (x1, x2) . (6.17)

Here the ci are constant coefficients that depend on the choice of operator Σ. The surface

blocks Bsi contain contributions from an entire conformal family. The overall prefactor

〈Σ (x1, x2)〉 is the vacuum expectation value of the surface operator, which is assumed to

be nonzero.

Because the transformation of Σ(x1, x2) has been completely absorbed into the pref-

actor, the surface OPE blocks transform as kinematic space scalars under global conformal

transformations:

Bsi (x1, x2)→ B
s
i

(
x′1, x

′
2

)
. (6.18)

Then the logic of section 2 tells us that the surface OPE blocks Bsi obey the same Casimir

and John’s equations as the bilocal OPE blocks Bi. By normalizing the coefficients ci
appropriately, we can match the boundary conditions of the surface and bilocal OPE blocks.

They must then be related by analytic continuation:

Bsi (x1, x2)→ Bi (x1, x2) . (6.19)

We have thus learned that codimension-2 CFT surface operators can be expanded in terms

of the same OPE blocks as timelike-separated bilocals; see figure 18.
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6.5 Smearing representations

Next, we would like to solve the boundary value problem for the higher-dimension

OPE blocks and X-ray/Radon transforms to find a smearing representation analogous

to eq. (2.21).

Causal structure First, we must study the causal structure of the higher-dimensional

kinematic spaces Kg and Ks. For the case of AdS3, the causal structure allowed us to

formulate the Cauchy problem in a more standard way, since the causal past of kinematic

space was a spacelike Cauchy surface on which the boundary data was specified.

It turns out that Kg and Ks possess very different causal structures. To see this, it is

useful to write the metric (6.1) in “center of mass” coordinates χµ =
xµ
1+xµ

2

2 and ℓµ =
xµ
1−xµ

2

2 :

ds2 =
Iµν (ℓ)

|ℓ|2
(dχµdχν − dℓµdℓν) . (6.20)

For Ks, ℓ is a timelike vector and Iµν (2ℓ) has all positive eigenvalues. Hence, for fixed

ℓ, changes in χ are all spacelike. In particular, the ℓ = 0 surface on which the boundary

data is specified is a spacelike surface of dimension d; even the timelike direction on the

boundary of AdS is seen as spacelike in kinematic space. There is also a causal structure

in Ks coming from the containment relation of boundary causal diamonds and the ℓ = 0

surface sits at the asymptotic past in this structure. Hence, the Radon transform converts

a non-standard Cauchy problem into a more usual problem like that in AdS3.

For Kg, the structure is not as clear. Here ℓ is a spacelike vector so Iµν (2ℓµ) has d− 2

positive and 2 negative eigenvalues. This means that the boundary data is not specified on

a spacelike surface and the Cauchy problem for the X-ray transform is not of a standard

type for d > 2. The solution to the Cauchy problem will therefore be highly non-unique.

We should not be surprised by this situation, though; it is analogous to the non-

uniqueness of the smearing representation of a bulk local operator. Just as a point in AdS

is contained in many different Rindler wedges, a geodesic in AdSd+1 for d > 2 is contained

in many different wedges and it may have a different representation in each. A surface

in Ks, however, forms the boundary of exactly two Rindler wedges, so there are only two

representations of the surface operator.

Solution to the Cauchy problem Now that we have understood the causal structure,

we will proceed to solve the Cauchy problem for the OPE blocks and Radon transform,

yielding a smearing representation of each. Since the OPE block and Radon transform

obey the same equations with the same boundary conditions, it is actually simplest to find

the solution using the shadow operator formalism of appendix B. The result is

Bk (x1, x2) = nk

∫

⋄
ddz

(
|y − z| |x− z|

|x1 − x2|

)∆−d

Ok (z) , (6.21)

where nk is a normalization factor that depends on ∆ and d and the region of integration

is the causal domain selected by x1 and x2.
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Figure 19. Surface Witten diagrams, and mixed surface-geodesic Witten diagrams.

We might attempt to extend the result (6.21) to the X-ray transform or spacelike OPE

block. The integrand is still fixed by conformal invariance and the resultant object still

obeys both the Casimir and John’s equations. However, it is no longer clear how to impose

the proper boundary conditions. As x1 approaches x2, we require that Bk (x1, x2) approach

a local operator. Since the causal diamond approaches a point for x2 → x1, this is easy

to do for timelike separated x1, x2. However, there is no such small region associated with

two spacelike separated points for d > 2. Hence, we fail to impose the desired boundary

conditions.15

A particular case of the surface OPE block is the modular Hamiltonian, as was shown

for CFT2 in section 5. Indeed, it can be checked that the OPE block contributions from Tµν
and its descendants can be rewritten as precisely the modular Hamiltonian. The method

for computing such tensor OPE blocks is described in appendix B.

6.6 Conformal blocks and surface Witten diagrams

The equality of OPE blocks and the X-Ray/Radon transforms gives us an AdS method

for computing conformal blocks in higher dimensions. Indeed, it is immediately clear from

the definition of the conformal block and OPE block that, for ∆1 = ∆2, ∆3 = ∆4, the

conformal block is given by

gk (u, v) = 〈Bk (x1, x2)Bk (x3, x4)〉 . (6.22)

Then, just as in section 5.2, the OPE block dictionary (6.16) shows that the higher-

dimensional conformal block for spacelike-separated points can be computed by a geodesic

Witten diagram (5.15) [21, 22].

For the case of timelike-separated endpoints, a new structure emerges. If we take

x1, x2 and x3, x4 to be pairwise timelike-separated, the conformal block becomes a surface

Witten diagram:

gk (u, v) =
1

(
cs∆
)2
∫

σ12

dd−2z

∫

σ34

dd−2z′Gbb

(
z, z′; mk

)
. (6.23)

The endpoints of the bulk-to-bulk propagator are now integrated over a surface rather

than a geodesic. Since the OPE block appears in the expansion of a surface operator, this

type of conformal block also computes a contribution to the correlation function of two

surface operators. If we take x1, x2 spacelike separated and x3, x4 timelike separated, the

analogous result is a mixed geodesic/surface Witten diagram. These options are illustrated

in figure 19.

15Note, however, that this affliction does not ruin the equality of the OPE block and the X-ray transform.
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Because surface operators can be expanded in terms of the same OPE blocks as CFT

bilocals, a correlation function of surface operators can be expanded in terms of the same

familiar conformal blocks:

〈Σi (x1, x2) Σj (x3, x4)〉 = 〈Σi (x1, x2)〉 〈Σj (x3, x4)〉
∑

k

cikcjkgk (u, v) . (6.24)

In this expression, gk (u, v) are the usual conformal blocks while cik and cjk are the coef-

ficients of the surface operator expansions.16 For the case where Σi and Σj are spherical

twist operators, this provides a conformal block expansion for the two-ball Renyi and en-

tanglement entropies. Related formulations have been explored in [43–45]. In particular,

this expansion takes the form of a surface Witten diagram described above, as was sug-

gested in [46].

7 Discussion

Like any good formulation of a theory of gravity, a holographic CFT describes the bulk via

diffeomorphism invariant, and thus inherently non-local, variables. Our goal was to initiate

a systematic construction of such variables on both sides of the duality. At the same time,

we developed the tools for recovering the familiar, local degrees of freedom.

We adopted a bottom-up approach to this problem. Starting from first principles and

working at leading order in 1/N , we identified an operator correspondence. The relevant

CFT object was the OPE block: the non-local operator appearing as the contribution of

a single conformal family to the OPE of local operators (or codimension-2 surface opera-

tors). OPE blocks were shown to be dual to integrals of the corresponding bulk fields over

geodesics (or minimal surfaces), which are also known as Radon transforms. We view this

as a stepping stone toward an operator variant of the Ryu-Takayanagi relation.

Our holographic variables, despite their non-locality, admit an elegant geometric de-

scription as scalar fields propagating in the auxiliary geometry of kinematic space, defined

as the space of CFT pairs of points or, equivalently, the space of bulk geodesics. This

structure, which follows from conformal symmetry, underlies the proof of our correspon-

dence. Its implications, however, are more consequential. Recall that kinematic space and

integral geometry emerged as essential tools for reconstructing the bulk geometry from

entanglement entropies [9, 47]. With our operator correspondence at hand, we were able

to use closely related machinery to assemble local bulk fields from geodesic probes. The

conceptual advantage of our approach over the traditional HKLL construction [12–18] lies

in its invariance under diffeomorphisms: both the smearing function and the bulk point

are defined with sole reference to the boundary.17

The best illustration of the power of the correspondence between OPE blocks and

geodesic operators is the range of results, which follow from it with almost no technical

16A similar result appeared in [42], which also studied defect operators of general codimension. This

suggests a generalization of kinematic space to include bulk surfaces of arbitrary codimension.
17It would also be interesting to compare our construction to refs. [19, 48, 49], which associate bulk

operators to cross-cap or boundary operators in the CFT.
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effort. In this paper we discussed the modular Hamiltonian and its behavior in kinematic

space [11] as well as the holographic representation of conformal blocks in terms of geodesic

Witten diagrams [21, 22]. Our upcoming work will explain how the identification of the

modular Hamiltonian with an OPE block implies linearized Einstein’s equations. We be-

lieve that even this set of examples understates the importance of geodesic operators.

Let us sketch some speculative possibilities.

7.1 Interacting dictionary

For the purposes of this paper, we limited ourselves to the discussion of free fields in the

bulk. The CFT dual to such a theory is trivial because all OPEs are fixed by the factor-

ization of correlation functions and crossing symmetry. Nevertheless, this is the behavior

of any CFT with a large N expansion at leading order in 1/N . At sub-leading orders,

the kinematic dictionary (3.12) admits corrections, which come from bulk perturbative

interactions. For a cubic vertex, for example, they read:

φ̃(γ12) = c∆BO∆
(x1, x2) +

1

N

∑

{i,j},n

aijnB[OiOj ]n
(x1, x2) +O(1/N2) , (7.1)

where [OiOj ]n are double-trace primary operators with 2n derivatives, constructed from

the single-traces Oi, Oj to which O∆ couples. The 1/N corrections appear in the form

of double-trace OPE blocks, a fact that renders the computation of the coefficients aijn
extremely efficient. This corrected operator correspondence can again be combined with

the inversion formula for the Radon transform to obtain a smeared CFT representation for

interacting bulk fields. We have confirmed that this result is in agreement with [50]. An

approach to computing 1/N corrections to local operators by exploiting the OPE appeared,

while this paper was being written, in [51].

Conceptually, the dictionary in the presence of bulk interactions is especially intriguing.

It organizes single-trace and multi-trace OPE blocks in a larger structure, the bulk geodesic

operator. This organization of blocks is curiously reminiscent of Virasoro blocks in two-

dimensional CFTs, where the multi-trace contributions are formed from the stress tensor.

In the latter, the relative coefficients are fixed by local conformal symmetry whereas for the

geodesic operator they are associated with the existence of a local perturbative holographic

dual at low energies. This suggests a novel organization of the OPE of holographic CFTs

in terms of integrals of bulk operators along geodesics. The interacting dictionary will be

the subject of an upcoming publication.

7.2 Beyond the vacuum

Though we relied heavily on conformal symmetry throughout this work, the machinery

of integral geometry suggests generalizations to states beyond the vacuum. For example,

kinematic space has proved useful for reconstructing general bulk metrics from boundary

data [9].

A particularly simple case arises in AdS3/CFT2, where a wide class of geometries can

be obtained by applying large bulk diffeomorphisms. Classic examples include the conical
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Figure 20. Geodesic operators on excited CFT2 states can be obtained by taking a quotient

both of AdS3 and of kinematic space. Winding (entwinement-type) geodesics [53] correspond to

boundary operators smeared over wrapping diamonds.

defect and the BTZ geometry, which are simple quotients of AdS3 [52]. Not surprisingly, the

corresponding kinematic spaces are also quotients of the AdS3 kinematic space, a fact that

was exploited in [10]. We can then solve for the geodesic operators just as in the vacuum.

Interestingly, winding (i.e. entwinement-type [53]) geodesic operators are represented in the

CFT by operators smeared over winding diamonds (see figure 20). Moreover, by utilizing

the tools of [54], we are able to prove the result of [22]: that the semiclassical heavy-

light Virasoro block is computed by a geodesic Witten diagram in a conical defect or BTZ

geometry. This direction will be explored in an upcoming paper.

More ambitiously, kinematic space as the space of bulk geodesics is also meaningful

in a large class of asymptotically AdS geometries in higher dimensions. It has a notion

of volume defined by the Crofton form, which in turn can be interpreted as a “density of

geodesics” [32, 55, 56]:

ω =
∂2S(x1, x2)

∂xµ1∂x
ν
2

dxµ1 ∧ dx
ν
2 (7.2)

Here S(x1, x2) is the length of a geodesic connecting boundary points x1 and x2. By

arguments analogous to the ones used in [9], one can conjecture the kinematic metric:

ds2kin =
∂2S(x1, x2)

∂xµ1∂x
ν
2

dxµ1dx
ν
2 (7.3)

When the bulk is pure AdS, this reduces to eq. (6.1). It would be interesting to use this

structure to organize CFT operators and construct duals of bulk Radon transforms in

general geometries. It may be fruitful as well to use intertwinement (3.7) as a principle to

determine the metric on kinematic space.

7.3 Entanglement and gravity

The majority of our discussion focused on operators with zero spin, but our framework is

more general. OPE blocks for operators with spin correspond to longitudinal Radon trans-

forms : integrals over geodesics or minimal surfaces of the bulk tensor field contracted with
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the tangent vector(s). A special example briefly discussed in the text is the OPE block of

the stress tensor family. We showed that this is precisely the vacuum modular Hamilto-

nian, a central object in the study of entanglement entropy. Its holographic dual is readily

provided by the Ryu-Takayanagi relation: it is the perturbation in the area of the minimal

surface or, in our language, the longitudinal Radon transform of the metric perturbation.

We will capitalize on this observation in an upcoming publication. In brief, the in-

tertwinement property of the Laplacian holds for the vector Radon transform exactly as

it does for the scalar version. Applied to the modular Hamiltonian, this fact implies the

equivalence of linearized Einstein’s equations about the AdS vacuum and the kinematic

wave equation satisfied by the modular Hamiltonian.

7.4 De Sitter holography?

A curious and noteworthy fact is the appearance of de Sitter space in the study of OPE

blocks. For CFTs in d = 2, the kinematic geometry is dS2 × dS2 and the two components

decouple entirely. But even in dimensions d > 2, the kinematic space of minimal surfaces

at a fixed boundary time has the geometry of dSd+1 (an observation made in [11], see

also [57]). The latter made its appearance in our work as the relevant kinematic space for

OPE blocks of conserved currents, since conservation could be combined with the kinematic

Klein-Gordon equation to yield a differential equation on the kinematic space of a time-slice.

Moreover, the boundary conditions imposed on us by the OPE coincide with the “future

boundary conditions” [58] introduced in the context of the dS/CFT correspondence [59]

(see appendix C).

It is, therefore, legitimate to raise the question: can OPE blocks propagating in kine-

matic space serve as the starting point for constructing QFT on de Sitter space? And what

is the relation, if any, of the kinematic space formulation for CFTs and the dS/CFT con-

jecture? The kinematic Klein-Gordon equation derived in the text can be interpreted as an

equation of motion for low energy de Sitter fields at leading order in 1/N . At sub-leading

orders, however, the non-trivial CFT n-point functions are in tension with the “free” prop-

agation implied by the Klein-Gordon equation. In result, “local” kinematic fields receive

1/N corrections in a way that is essentially identical to the procedure HKLL introduced

in the study of AdS holography. These corrections are chosen in order to restore locality

in kinematic space — at the expense of introducing local interaction vertices in the equa-

tions of motion. Preliminary results indicate that there is no fundamental obstruction to

implementing these corrections order by order in 1/N . It is worth pointing out, however,

that correcting the OPE blocks to obtain local dynamics in kinematic space does not coin-

cide with the 1/N corrections required by AdS locality, which we discussed in section 7.1.

It will be exciting to explore whether kinematic space hides interesting lessons about de

Sitter holography.
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A Homogeneous spaces

Let us understand the various kinematic spaces as homogeneous spaces. This will illuminate

why the conformal Casimir equation of section 2 is the Laplace equation in kinematic space.

As a warm-up, let us consider AdSn+1 as a homogeneous space. Its isometry group

SO (n, 2) acts transitively — in other words, there is no distinguished point in AdS. This

implies that AdS can be written as a coset space

AdSn+1 =
Isom (AdSn+1)

Stab (point ∈ AdS)
=

SO (n, 2)

SO (n, 1)
, (A.1)

where Stab (point ∈ AdS) denotes the stabilizer subgroup of a point.

Recall that a Lie group G has a distinguished bi-invariant metric given by the Cartan-

Killing form.18 With this metric, the quadratic Casimir operator CG is identified with the

Laplacian �G.

A coset space G/H also inherits a distinguished metric from G. In fact, the Laplacian

on G can be written as

�G = �G/H + �H . (A.2)

If we now consider a function on G/H, it can be lifted to a function on G that is constant

on H-orbits. Hence, it is annihilated by �H . Putting these two facts together, the Casimir

operator CG is represented on functions on G/H by the Laplacian �G/H . Applying this

result to AdSn+1, we find that the Casimir element L2 of the conformal group is identified

with the AdS Laplacian.

L2 ←→
AdS scalar

−�AdS (A.3)

where the minus sign is conventional. This fact, which was first noted by [37], implies that

the quadratic Casimir is given by C = −m2 for an AdS field obeying the wave equation

18In fact, when G is simple, it is the unique such metric. If G is only semi-simple, then there is a free

coefficient for each additional factor. For the cases of our interest, these coefficients are fixed by discrete

symmetries relating the group factors.
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(
�−m2

)
φ = 0. In other words, free AdS fields live in irreducible representations of the

global conformal group.

Now let us apply these methods to Kg, the kinematic space of geodesics in a manifold.

The kinematic space for AdSn+1 is also homogeneous; any pair of spacelike separated points

can be mapped to any other by a conformal transformation. Let us then write it as a coset

space as before:

Kg (AdSn+1) =
Isom (AdSn+1)

Stab (geodesic ∈ AdS)
=

SO (n, 2)

SO (n− 1, 1)× SO (1, 1)
. (A.4)

The stabilizer of a geodesic has two factors, the SO (n− 1, 1) corresponding to boosts

about the geodesic and the SO (1, 1) corresponding to translations along the geodesic. At

the boundary, these correspond to rotations and scalings that fix the two endpoints.

Applying the same logic as above, we find:

L2 ←→
KS scalar

�Kg . (A.5)

The relative sign with (A.3) can be checked, for instance, by comparing the distance by

which a point in AdS and a point in kinematic space are displaced under a finite time

translation.

The surface kinematic space Ks is also a homogeneous space. It too can be written as

a coset space:

Kg (AdSn+1) =
Isom (AdSn+1)

Stab (surface ∈ AdS)
=

SO (n, 2)

SO (n− 1, 1)× SO (1, 1)
. (A.6)

This again implies:

L2 ←→
KS scalar

�Ks . (A.7)

B OPE blocks from shadow operators

In this section, we will derive the result (2.21) in an additional way, related to the shadow

operator formalism of [60–64].

In (2.1), we expanded the operator product in terms of quasiprimaries Ok (x) and their

descendants ∂µ · · · ∂νOk (x) at one point. These operators form a complete basis of CFT

operators, which we may call a local basis.

Equivalently, we could consider an alternative basis of operators consisting of the

quasiprimaries Oi (x) at every point, without any descendants. We will call this the global

basis. The result (2.19) shows how to expand the product of CFT2 scalars in this basis for

the case of a scalar contribution. The two bases are related by Taylor expansion:

Oi (x) = e−ix·POi (0) eix·P

=

(
1 + xµ∂µ +

1

2
xµxν∂µ∂ν + . . .

)
Oi (0) . (B.1)
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We will now derive the result (2.19) in a different way that allows us to quickly gen-

eralize to higher dimensions and tensor OPE contributions. First, we make an ansatz for

the OPE as a smeared operator

Oi (x)Oj (y)
?
=
∑

k

Cijk

∫
ddz Fijk (x, y, z) Ok (z) , (B.2)

where Fijk (x, y, z) is a “smearing function” that should also be determined by conformal

invariance.

Let us examine how the function Fijk transforms under an arbitrary global conformal

transformation. Noting the transformation property (2.3) of the local operators and the

transformation ddz → Ω (z′)−d ddz′ of the integration measure, we find that Fijk must

transform as:

Fijk (x, y, z)→ Ω
(
x′
)∆i Ω

(
y′
)∆j Ω

(
z′
)d−∆k Fijk

(
x′, y′, z′

)
. (B.3)

This transformation rule is exactly the same as a vacuum three-point function of three

local operators, which is fixed completely by conformal invariance. Hence, Fijk must be of

the form

Fijk (x, y, z) ∝
〈
Oi (x)Oj (y) Õk (z)

〉
(B.4)

where Õk is a “fake” operator of dimension ∆̃k = d−∆k which is not necessarily present

in the theory, but used only as a formal device. These shadow operators have been studied

previously in [60–64].

Altogether, the OPE can be written as:

Oi (x)Oj (y) =
∑

k

Cijknijk

∫
ddz

〈
Oi (x)Oj (y) Õk (z)

〉
Ok (z) , (B.5)

where nijk is a normalization factor that can be fixed by taking the coincident limit. This

gives us a succinct expression for a general OPE block:

Bijk (x, y) = nijk |x− y|
∆i+∆j

∫
ddz

〈
Oi (x)Oj (y) Õk (z)

〉
Ok (z) (B.6)

Let us now compare (B.6) to the expression (2.19), which we obtained using kinematic

space methods.

Recall that the CFT scalar field 3-point function has the form:

〈Oi (x)Oj (y)Ok (z)〉 =
Cijk

|x− y|∆i+∆j−∆k |y − z|∆j+∆k−∆i |x− z|∆i+∆k−∆j
. (B.7)

If we set ∆i = ∆j above and replace Ok with the “shadow operator” of dimension ∆̃k =

d−∆k, we indeed find

|x− y|∆i+∆j

〈
Oi (x)Oj (y) Õk (z)

〉
∝

(
|x− z| |z − y|

|x− y|

)∆k−d

. (B.8)
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Thus, the smearing function obtained with the shadow formalism matches the earlier result.

We also learn from comparison with (2.19) that the shadow 3-point function can be thought

of as a bulk-to-boundary propagator in kinematic space. In this sense, the shadow operator

should be thought of as a source for the kinematic space field.

It is also immediately clear how to generalize to tensor contributions. We simply add

to the shadow operator indices that transform oppositely to those on Ok:

Bijk (x, y) = nijk |x− y|
∆i+∆j

∫
ddz

〈
Oi (x)Oj (y) Õk µν... (z)

〉
Oµν...

k (z) . (B.9)

Note that the integration region is a subtle point, as discussed in section 6.

C Propagator on dS2 × dS2 and conformal block analytics

Conformal blocks are computed by a correlation function of OPE blocks (5.14), which in

kinematic space admits the interpretation of a two-point function or a propagator. Kine-

matic space, however, is a space of mixed signature, a fact that permits the construction

of various inequivalent propagators. It is instructive to understand which choice of prop-

agator makes contact with conformal blocks. For simplicity we restrict our discussion to

the two-dimensional case, but analogous statements should hold in any dimension.

Since the CFT2 kinematic space factorizes, it suffices to understand the propagator

GK in one of the de Sitter components, e.g. the one corresponding to the right-moving null

coordinates of the bi-locals: (z1, z2). The two-point function in dS2 is a solution to the

differential equation:

(
Q2 − 1

) d2

dQ2
GK(Q) + 2Q

d

dQ
GK(Q) +m2GK(Q) = 0 (C.1)

where:

Q =
ℓ2A + ℓ2B − (zA − zB)2

2ℓAℓB
(C.2)

is the de Sitter invariant distance between the kinematic points A andB and the coordinates

used are the co-moving coordinates:

lA =
z
(A)
2 − z

(A)
1

2
(C.3)

zA =
z
(A)
2 + z

(A)
1

2
(C.4)

and similarly for point B.

In order to specify a unique solution to this equation, we have to introduce an ex-

tra condition for the propagator. This condition comes from imposing the appropriate

boundary conditions. Recalling the boundary conditions for the OPE blocks discussed in

section 2, we require that when any of the kinematic points (e.g. point A) approaches the

asymptotic boundary ℓA → 0, the propagator should fall off as

GK ∼ ℓ
h
A, (C.5)
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x1
x2

x3

x4

γ12

γ34

γ12
γ34

Figure 21. The conformal block has singularities whenever two points are lightlike-separated from

each other. This gives rise to a rich singularity structure of the kinematic space propagator, which

computes the conformal block.

where h = 1
2 +

√
1
4 −m

2. These boundary conditions are known in the dS/CFT literature

as “future boundary conditions” [65] and there exists a unique solution that obeys them:

GK(Q) =

(
2

1−Q

)h

2F1

(
h, h, 2h,

2

1−Q

)
(C.6)

This result can be directly matched with the explicit form of global conformal blocks in

two dimensions, which reads:

gk|1234 = zhk
2F1 (hk, hk, 2hk, z) . (C.7)

In this expression, z is the cross ratio constructed from the right-moving null coordinates

of the four points:

z =
z21z43
z31z42

. (C.8)

It is worth noting that this is not a causal propagator in de Sitter space. It does not

compute a scalar two-point function in any of the normalizable de Sitter α-vacua. This can

be readily understood by noticing that this propagator does not reproduce the expected

flat space singularity structure at small distances: besides the expected singularities at

null separated points, (C.7) also has antipodal singularities. This property is, however,

consistent with the elliptic character of the kinematic de Sitter space [39, 40].

Discrete symmetries of CFT2 kinematic space The full four-dimensional kinematic

space, defined as the space of pairs of points q = (xµ1 , x
µ
2 ), is symmetric under the discrete

transformation P that exchanges the two:

q → Pq ⇒ (xµ1 , x
µ
2 )→ (xµ2 , x

µ
1 ) (C.9)

Using null CFT coordinates to parametrize the boundary points xµi = (zi, z̄i), the exchange

transformation P can be expressed as the product of two operators P and P̄ which exchange

the right-moving and left-moving null coordinates of the bi-local, respectively:

P = PP̄ (C.10)

A more subtle point is that the kinematic space of CFT2 is symmetric under the in-

dividual right-moving and left-moving exchange maps, P and P̄. To see this, first recall
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that for a 2-dimensional boundary, kinematic space is the space of causal diamonds. Ex-

changing the endpoints of a diamond via an application of P , obviously leaves it invariant.

However, there exist another discrete transformation that leaves the diamond unaffected:

mapping the two space-like separated points that define it to the top and bottom tips of

the diamond. This is precisely the effect of the individual P and P̄ (see figure 21). In the

geometric picture, individual P and P̄ transformations correspond to antipodal maps on

the two independent dS2 components of kinematic space.

Singularities Conformal blocks become singular when two boundary insertions become

null separated in the CFT spacetime. More specifically, the right-moving conformal block,

which we are interested in, captures the singularities that come from right-moving null

alignments of the 4 points:

z1 = z3 or z2 = z4 ⇒ z =∞ (C.11)

z1 = z4 or z2 = z3 ⇒ z = 1 (C.12)

These singularities from the perspective of kinematic space correspond to invariant

distances Q = 1 and Q = −1, respectively. The singularity at Q = 1 appears when

the kinematic points defined by the corresponding bilocals are null separated according to

the kinematic causality explained in detail in section 1.1. This is expected since dS2 is a

Lorentzian manifold and therefore propagators have null singularities.

The Q = −1 singularity occurs when z2 = z3 or z1 = z4, which means that the

kinematic points define entirely disconnected causal patches. Recall, however, that under

a right-moving antipodal map P the bilocal (z3, z4) becomes (z4, z3). Therefore, when

Q = −1 the bilocal (z1, z2) is null separated from the antipodal point P(z3, z4). Since the

antipodal point corresponds to the same causal diamond in the CFT, the existence of the

Q = −1 singularity is dictated by the discrete symmetry of kinematic space.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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