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Abstract

We present and derive a new stick-breaking
construction of the beta process. The con-
struction is closely related to a special case of
the stick-breaking construction of the Dirich-
let process (Sethuraman, 1994) applied to the
beta distribution. We derive an inference
procedure that relies on Monte Carlo integra-
tion to reduce the number of parameters to
be inferred, and present results on synthetic
data, the MNIST handwritten digits data set
and a time-evolving gene expression data set.

1. Introduction

The Dirichlet process (Ferguson, 1973) is a power-
ful Bayesian nonparametric prior for mixture models.
There are two principle methods for drawing from this
infinite-dimensional prior: (i) the Chinese restaurant
process (Blackwell & MacQueen, 1973), in which sam-
ples are drawn from a marginalized Dirichlet process
and implicitly construct the prior; and (ii) the stick-
breaking process (Sethuraman, 1994), which is a fully
Bayesian construction of the Dirichlet process.

Similarly, the beta process (Hjort, 1990) is receiving
significant use recently as a nonparametric prior for la-
tent factor models (Ghahramani et al., 2007; Thibaux
& Jordan, 2007). This infinite-dimensional prior can
be drawn via marginalization using the Indian buf-
fet process (Griffiths & Ghahramani, 2005), where
samples again construct the prior. However, unlike
the Dirichlet process, the fully Bayesian stick-breaking
construction of the beta process has yet to be derived
(though related methods exist, reviewed in Section 2).
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To review, a Dirichlet process, G, can be con-
structed according to the following stick-breaking pro-
cess (Sethuraman, 1994; Ishwaran & James, 2001),

G =

∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi

Vi
iid∼ Beta(1, α)

θi
iid∼ G0 (1)

This stick-breaking process is so-called because pro-
portions, Vi, are sequentially broken from the remain-
ing length,

∏i−1
j=1(1− Vj), of a unit-length stick. This

produces a probability (or weight), Vi
∏i−1
j=1(1 − Vj),

that can be visually represented as one of an infinite
number of contiguous sections cut out of a unit-length
stick. As i increases, these weights stochastically de-
crease, since smaller and smaller fractions of the stick
remain, and so only a small number of the infinite
number of weights have appreciable value. By con-
struction, these weights occur first, which allows for
practical implementation of this prior.

The contribution of this paper is the derivation of a
stick-breaking construction of the beta process. We
use a little-known property of the constructive defini-
tion in (Sethuraman, 1994), which is equally applicable
to the beta distribution – a two-dimensional Dirichlet
distribution. The construction presented here will be
seen to result from an infinite collection of these stick-
breaking constructions of the beta distribution.

The paper is organized as follows. In Section 2, we re-
view the beta process, the stick-breaking construction
of the beta distribution, as well as related work in this
area. In Section 3, we present the stick-breaking con-
struction of the beta process and its derivation. We de-
rive an inference procedure for the construction in Sec-
tion 4 and present experimental results on synthetic,
MNIST digits and gene expression data in Section 5.



A Stick-Breaking Construction of the Beta Process

2. The Beta Process

Let H0 be a continuous measure on the space (Θ,B)
and let H0(Θ) = γ. Also, let α be a positive scalar
and define the process HK as follows,

HK =

K∑
k=1

πkδθk

πk
iid∼ Beta

(αγ
K
,α(1− γ

K
)
)

θk
iid∼ 1

γ
H0 (2)

then as K → ∞, HK → H and H is a beta process,
which we denote H ∼ BP(αH0).

We avoid a complete measure-theoretic definition,
since the stick-breaking construction to be presented
is derived in reference to the limit of (2). That H is
a beta process can be shown in the following way: In-
tegrating out π(K) = (π1, . . . , πK)T ∈ (0, 1)K , letting
K →∞ and sampling from this marginal distribution
produces the two-parameter extension of the Indian
buffet process discussed in (Thibaux & Jordan, 2007),
which is shown to have the beta process as its under-
lying de Finetti mixing distribution.

Before deriving the stick-breaking construction of the
beta process, we review a property of the beta distri-
bution that will be central to the construction. We
also review related work to distinguish the presented
construction from other constructions in the literature.

2.1. A Construction of the Beta Distribution

The constructive definition of a Dirichlet prior de-
rived in (Sethuraman, 1994) applies to more than the
infinite-dimensional Dirichlet process. In fact, it is
applicable to Dirichlet priors of any dimension, of
which the beta distribution can be viewed as a spe-
cial, two-dimensional case.1 Focusing on this special
case, Sethuraman showed that one can sample

π ∼ Beta(a, b) (3)

according to the following stick-breaking construction,

π =

∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)I(Yi = 1)

Vi
iid∼ Beta(1, a+ b)

Yi
iid∼ Bernoulli

(
a

a+ b

)
(4)

where I(·) denotes the indicator function.

1We thank Jayaram Sethuraman for his valuable corre-
spondence regarding his constructive definition.

In this construction, weights are drawn according to
the standard stick-breaking construction of the DP
(Ishwaran & James, 2001), as well as their respective
locations, which are independent of the weights and
iid among themselves. The major difference is that
the set of locations is finite, 0 or 1, which results in
more than one term being active in the summation.

Space restrictions prohibit an explicit proof of this con-
struction here, but we note that Sethuraman implicitly
proves this in the following way: Using notation from
(Sethuraman, 1994), let the space, X = {0, 1}, and the
prior measure, α, be α(1) = a, α(0) = b, and therefore
α(X ) = a+ b. Carrying out the proof in (Sethuraman,
1994) for this particular space and measure yields (4).
We note that this α is different from that in (2).

2.2. Related Work

There are three related constructions in the machine
learning literature, each of which differs significantly
from that presented here. The first construction, pro-
posed by (Teh et al., 2007), is presented specifically
for the Indian buffet process (IBP) prior. The gener-
ative process from which the IBP and this construc-
tion are derived replaces the beta distribution in (2)
with Beta( αK , 1). This small change greatly facilitates
this construction, since the parameter 1 in Beta( αK , 1)
allows for a necessary simplification of the beta dis-
tribution. This construction does not extend to the
two-parameter generalization of the IBP (Ghahramani
et al., 2007), which is equivalent in the infinite limit
to the marginalized representation in (2).

A second method for drawing directly from the beta
process prior has been presented in (Thibaux & Jor-
dan, 2007), and more recently in (Teh & Görür, 2009)
as a special case of a more general power-law repre-
sentation of the IBP. In this representation, no stick-
breaking takes place of the form in (1), but rather
the weight for each location is simply beta-distributed,
as opposed to the usual function of multiple beta-
distributed random variables. The derivation relies
heavily upon connecting the marginalized process to
the fully Bayesian representation, which does not fac-
tor into the similar derivation for the DP (Sethuraman,
1994). This of course does not detract from the result,
which appears to have a simpler inference procedure
than that presented here.

A third representation presented in (Teh & Görür,
2009) based on the inverse Lévy method (Wolpert &
Ickstadt, 1998) exists in theory only and does not sim-
plify to an analytic stick-breaking form. See (Damien
et al., 1996; Lee & Kim, 2004) for two approximate
methods for sampling from the beta process.
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3. A Stick-Breaking Construction of
the Beta Process

We now define and briefly discuss the stick-breaking
construction of the beta process, followed by its deriva-
tion. Let α and H0 be defined as in (2). If H is con-
structed according to the following process,

H =

∞∑
i=1

Ci∑
j=1

V
(i)
ij

i−1∏
`=1

(1− V (`)
ij )δθij

Ci
iid∼ Poisson(γ)

V
(`)
ij

iid∼ Beta(1, α)

θij
iid∼ 1

γ
H0 (5)

then H ∼ BP(αH0).

Since the first row of (5) may be unclear at first sight,
we expand it for the first few values of i below,

H =

C1∑
j=1

V
(1)
1,j δθ1,j +

C2∑
j=1

V
(2)
2,j (1− V (1)

2,j )δθ2,j +

C3∑
j=1

V
(3)
3,j (1− V (2)

3,j )(1− V (1)
3,j )δθ3,j + · · · (6)

For each value of i, which we refer to as a “round,”
there are Ci atoms, where Ci is itself random and
drawn from Poisson(γ). Therefore, every atom is de-
fined by two subscripts, (i, j). The mass associated
with each atom in round i is equal to the ith break
from an atom-specific stick, where the stick-breaking
weights follow a Beta(1, α) stick-breaking process (as
in (1)). Superscripts are used to index the i random
variables that construct the weight on atom θij . Since
the number of breaks from the unit-length stick prior
to obtaining a weight increases with each level in (6),
the weights stochastically decrease as i increases, in a
similar manner as in the stick-breaking construction of
the Dirichlet process (1).

Since the expectation of the mass on the kth atom
drawn overall does not simplify to a compact and
transparent form, we omit its presentation here. How-
ever, we note the following relationship between α and
γ in the construction. As α decreases, weights de-
cay more rapidly as i increases, since smaller fractions
of each unit-length stick remains prior to obtaining a
weight. As α increases, the weights decay more grad-
ually over several rounds. The expected weight on an
atom in round i is equal to α(i−1)/(1 +α)i. The num-
ber of atoms in each round is controlled by γ.

3.1. Derivation of the Construction

Starting with (2), we now show how Sethuraman’s con-
structive definition of the beta distribution can be used
to derive that the infinite limit of (2) has (5) as an
alternate representation that is equal in distribution.
We begin by observing that, according to (4), each πk
value can be drawn as follows,

πk =

∞∑
l=1

V̂kl

l−1∏
m=1

(1− V̂km)I(Ŷkl = 1)

V̂kl
iid∼ Beta(1, α)

Ŷkl
iid∼ Bernoulli

( γ
K

)
(7)

where the marker ˆ is introduced because V will later
be re-indexed values of V̂ . We also make the observa-
tion that, if the sum is instead taken to K ′, and we
then let K ′ → ∞, then this truncated representation
converges to (7).

This suggests the following procedure for constructing
the limit of the vector π(K) in (2). We define the

matrices V̂ ∈ (0, 1)K×K and Ŷ ∈ {0, 1}K×K , where

V̂kl
iid∼ Beta(1, α)

Ŷkl
iid∼ Bernoulli

( γ
K

)
(8)

for k = 1, . . . ,K and l = 1, . . . ,K. The K-truncated
weight, πk, is then constructed “horizontally” by look-
ing at the kth row of V̂ and Ŷ , and where we define
that the error of the truncation is assigned to 1 − πk
(i.e., Yk,l′ := 0 for the extension l′ > K.)

It can be seen from the matrix definitions in (8) and
the underlying function of these two matrices, defined
for each row as a K-truncated version of (7), that in
the limit as K → ∞, this representation converges to
the infinite beta process when viewed vertically, and to
a construction of the individual beta-distributed ran-
dom variables when viewed horizontally, each of which
occur simultaneously.

Before using these two matrices to derive (5), we de-
rive a probability that will be used in the infinite limit.
For a given column, i, of (8), we calculate the proba-
bility that, for a particular row, k, there is at least one
Ŷ = 1 in the set {Ŷk,1, . . . , Ŷk,i−1}, in other words, the

probability that
∑i−1
i′=1

Ŷki′ > 0. This value is

P

(
i−1∑
i′=1

Ŷki′ > 0|γ,K

)
= 1− (1− γ

K
)i−1 (9)

In the limit as K →∞, this can be shown to converge
to zero for all fixed values of i.
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As with the Dirichlet process, the problem with draw-
ing each πk explicitly in the limit of (2) is that there
are an infinite number of them, and any given πk is
equal to zero with probability one. With the represen-
tation in (8), this problem appears to have doubled,
since there are now an infinite number of random vari-
ables to sample in two dimensions, rather than one.
However, this is only true when viewed horizontally.
When viewed vertically, drawing the values of interest
becomes manageable.

First, we observe that, in (8), we only care about the
set of indices {(k, l) : Ŷkl = 1}, since these are the
locations which indicate that mass is to be added to
their respective πk values. Therefore, we seek to by-
pass the drawing of all indices for which Ŷ = 0, and
directly draw those indices for which Ŷ = 1.

To do this, we use a property of the binomial distribu-
tion. For any column, i, of Ŷ , the number of nonzero
locations,

∑K
k=1 Ŷki, has the Binomial(K, γK ) distribu-

tion. Also, it is well-known that

Poisson(γ) = lim
K→∞

Binomial
(
K,

γ

K

)
(10)

Therefore, in the limit as K → ∞, the sum of each
column (as well as row) of Ŷ produces a random vari-
able with a Poisson(γ) distribution. This suggests the
procedure of first drawing the number of nonzero loca-
tions for each column, followed by their corresponding
indices.

Returning to (8), given the number of nonzero loca-

tions in column i,
∑K
k=1 Ŷki ∼ Binomial(K, γK ), find-

ing the indices of these locations then becomes a pro-
cess of sampling uniformly from {1, . . . ,K} without
replacement. Moreover, since there is a one-to-one
correspondence between these indices and the atoms,

θ1, . . . , θK
iid∼ 1

γH0, which they index, this is equiva-

lent to selecting from the set of atoms, {θ1, . . . , θK},
uniformly without replacement.

A third more conceptual process, which will aid the
derivation, is as follows: Sample the

∑K
k=1 Ŷki nonzero

indices for column i one at a time. After an index, k′,
is obtained, check {Ŷk′,1, . . . , Ŷk′,i−1} to see whether
this index has already been drawn. If it has, add the
corresponding mass, Vk′i

∏i−1
l=1(1 − Vk′l), to the tally

for πk′ . If it has not, draw a new atom, θk′ ∼ 1
γH0,

and associate the mass with this atom.

The derivation concludes by observing the behavior of
this last process as K →∞. We first reiterate that, in
the limit as K →∞, the count of nonzero locations for
each column is independent and identically distributed
as Poisson(γ). Therefore, for i = 1, 2, . . . , we can draw

these numbers, Ci :=
∑∞
k=1 Ŷki, as

Ci
iid∼ Poisson(γ) (11)

We next need to sample index values uniformly from
the positive integers, N. However, we recall from (9)
that for all fixed values of i, the probability that the
drawn index will have previously seen a one is equal
to zero. Therefore, using the conceptual process de-
fined above, we can bypass sampling the index value
and directly sample the atom which it indexes. Also,
we note that the “without replacement” constraint no
longer factors.

The final step is simply a matter of re-indexing. Let
the function σi(j) map the input j ∈ {1, . . . , Ci} to the
index of the jth nonzero element drawn in column i,
as discussed above. Then the re-indexed random vari-
ables V

(i)
ij := V̂σi(j),i and V

(`)
ij := V̂σi(j),`, where ` < i.

We similarly re-index θσi(j) as θij := θσi(j), letting the
double and single subscripts remove ambiguity, and
hence no ˆ marker is used. The addition of a sub-
script/superscript in the two cases above arises from
ordering the nonzero locations for each column of (8),
i.e., the original index values for the selected rows of
each column are being mapped to 1, 2, . . . separately
for each column in a many-to-one manner. The result
of this re-indexing is the process given in (5).

4. Inference for the Stick-Breaking
Construction

For inference, we integrate out all stick-breaking ran-
dom variables, V , using Monte Carlo integration
(Gamerman & Lopes, 2006), which significantly re-
duces the number of random variables to be learned.
As a second aid for inference, we introduce the latent
round-indicator variable,

dk := 1 +

∞∑
i=1

I

 i∑
j=1

Cj < k

 (12)

The equality dk = i indicates that the kth atom drawn
overall occurred in round i. Note that, given {dk}∞k=1,
we can reconstruct {Ci}∞i=1. Given these latent indi-
cators, the generative process is rewritten as,

H | {dk}∞k=1 =

∞∑
k=1

Vk,dk

dk−1∏
j=1

(1− Vkj)δθk

Vkj
iid∼ Beta(1, α)

θk
iid∼ 1

γ
H0 (13)

where, for clarity in what follows, we’ve avoided intro-
ducing a third marker (e.g., Ṽ ) after this re-indexing.
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Data is generated iid from H via a Bernoulli process
and take the form of infinite-dimensional binary vec-
tors, zn ∈ {0, 1}∞, where

znk ∼ Bernoulli

(
Vk,dk

∏dk−1

j=1
(1− Vkj)

)
(14)

The sufficient statistics calculated from {zn}Nn=1 are
the counts along each dimension, k,

m1k =

N∑
n=1

I(znk = 1), m0k =

N∑
n=1

I(znk = 0) (15)

4.1. Inference for dk

With each iteration, we sample the sequence {dk}Kk=1

without using future values from the previous itera-
tion; the value of K is random and equals the number
of nonzero m1k. The probability that the kth atom
was observed in round i is proportional to

p
(
dk = i|{dl}k−1l=1 , {znk}

N
n=1, α, γ

)
∝ (16)

p({znk}Nn=1|dk = i, α)p(dk = i|{dl}k−1l=1 , γ)

Below, we discuss the likelihood and prior terms, fol-
lowed by an approximation to the posterior.

4.1.1. Likelihood Term

The integral to be solved for integrating out the ran-
dom variables {Vkj}ij=1 is

p({znk}Nn=1|dk = i, α) = (17)∫
(0,1)i

f({Vkj}i1)m1k{1−f({Vkj}i1)}m0kp({Vkj}i1|α) d~V

where f(·) is the stick-breaking function used in (14).
Though this integral can be analytically solved for in-
teger values of m0k via the binomial expansion, we
have found that the resulting sum of terms leads to
computational precision issues for even small sample
sizes. Therefore, we use Monte Carlo methods to ap-
proximate this integral.

For s = 1, . . . , S samples, {V (s)
kj }ij=1, drawn iid from

Beta(1, α), we calculate

p({znk}Nn=1|dk = i, α) ≈ (18)

1

S

S∑
s=1

f({V (s)
kj }

i
j=1)m1k{1− f({V (s)

kj }
i
j=1)}m0k

This approximation allows for the use of natural loga-
rithms in calculating the posterior, which was not pos-
sible with the analytic solution. Also, to reduce com-
putations, we note that at most two random variables
need to be drawn to perform the above stick-breaking,
one random variable for the proportion and one for the
error; this is detailed in the appendix.

4.1.2. Prior Term

The prior for the sequence of indicators d1, d2, . . .
is the equivalent sequential process for sampling
C1, C2, . . . , where Ci =

∑∞
k=1 I(dk = i) ∼ Poisson(γ).

Let #dk−1
=
∑k−1
j=1 I(dj = dk−1) and let Pγ(·) denote

the Poisson distribution with parameter γ. Then it
can be shown that

p(dk = dk−1|γ,#dk−1
) =

Pγ(C > #dk−1
)

Pγ(C ≥ #dk−1
)

(19)

Also, for h = 1, 2, . . . , the probability

p(dk = dk−1 + h|γ,#dk−1
) = (20)(

1−
Pγ(C > #dk−1

)

Pγ(C ≥ #dk−1
)

)
Pγ(C > 0)Pγ(C = 0)h−1

Since dk 6< dk−1, these two terms complete the prior.

4.1.3. Posterior of dk

For the posterior, the normalizing constant requires
integration over h = 0, 1, 2, . . . , which is not possi-
ble given the proposed sampling method. We there-
fore propose incrementing h until the resulting trun-
cated probability of the largest value of h falls below a
threshold (e.g., 10−6). We have found that the proba-
bilities tend to decrease rapidly for h > 1.

4.2. Inference for γ

Given d1, d2, . . . , the values C1, C2, . . . can be recon-
structed and a posterior for γ can be obtained using
a conjugate gamma prior. Since the value of dK may
not be the last in the sequence composing CdK , this
value can be “completed” by sampling from the prior,
which can additionally serve as proposal factors.

4.3. Inference for α

Using (18), we again integrate out all stick-breaking
random variables to calculate the posterior of α,

p(α|{zn}N1 , {dk}K1 ) ∝
K∏
k=1

p({znk}N1 |α, {dk}K1 )p(α)

Since this is not possible for the positive, real-valued
α, we approximate this posterior by discretizing the
space. Specifically, using the value of α from the previ-
ous iteration, αprev, we perform Monte Carlo integra-
tion at the points {αprev + t∆α}Tt=−T , ensuring that
αprev − T∆α > 0. We use an improper, uniform prior
for α, with the resulting probability therefore being
the normalized likelihood over the discrete set of se-
lected points. As with sampling dk, we again extend
the limits beyond αprev±T∆α, checking that the tails
of the resulting probability fall below a threshold.
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4.4. Inference for p(znk = 1|α, dk, Zprev)

In latent factor models, (Griffiths & Ghahramani,
2005), the vectors {zn}Nn=1 are to be learned with the
rest of the model parameters. To calculate the pos-
terior of a given binary indicator therefore requires a
prior, which we calculate as follows

p(znk = 1|α, dk, Zprev) (21)

=

∫
(0,1)dk

p(znk = 1|~V )p(~V |α, dk, Zprev) d~V

=

∫
(0,1)dk

p(znk = 1|~V )p(Zprev|~V )p(~V |α, dk) d~V∫
(0,1)dk

p(Zprev|~V )p(~V |α, dk) d~V

We again perform Monte Carlo integration (18), where
the numerator increments the count m1k of the denom-
inator by one. For computational speed, we treat the
previous latent indicators, Zprev, as a block (Ishwaran
& James, 2001), allowing this probability to remain
fixed when sampling the new matrix, Z.

5. Experiments

We present experimental results on three data sets:
(i) A synthetic data set; (ii) the MNIST handwritten
digits data set (digits 3, 5 and 8); and (iii) a time-
evolving gene expression data set.

5.1. Synthetic Data

For the synthetic problem, we investigate the ability of
the inference procedure in Section 4 to learn the under-
lying α and γ used in generating H. We use the rep-
resentation in (2) to generate π(K) for K = 100,000.
This provides a sample of π(K) that approximates the
infinite beta process well for smaller values of α and γ.
We then sample {zn}1000n=1 from a Bernoulli process and
remove all dimensions, k, for which m1k = 0. Since
the weights in (13) are stochastically decreasing as k
increases, while the representation in (2) is exchange-
able in k, we reorder the dimensions of {zn}1000n=1 so that
m1,1 ≥ m1,2 ≥ . . . . The binary vectors are treated as
observed for this problem.

We present results in Figure 1 for 5,500 trials, where
αtrue ∼ Uniform(1, 10) and γtrue ∼ Uniform(1, 10).
We see that the inferred αout and γout values center
on the true αtrue and γtrue, but increase in variance
as these values increase. We believe that this is due
in part to the reordering of the dimensions, which are
not strictly decreasing in (5), though some reordering
is necessary because of the nature of the two priors.
We choose to generate data from (2) rather than (5)
because it provides some added empirical evidence as
to the correctness of the stick-breaking construction.

Figure 1. Synthetic results for learning α and γ. For each
trial of 150 iterations, 10 samples were collected and aver-
aged over the last 50 iterations. The step size ∆α = 0.1.
(a) Inferred γ vs true γ (b) Inferred α vs true α (c) A plane,
shown as an image, fit using least squares that shows the `1
distance of the inferred (αout, γout) to the true (αtrue, γtrue).

5.2. MNIST Handwritten Digits

We consider the digits 3, 5 and 8 using 1000 obser-
vations for each digit and projecting into 50 dimen-
sions using PCA. We model the resulting digits matrix,
X ∈ R50×3000, with a latent factor model (Griffiths &
Ghahramani, 2005; Paisley & Carin, 2009),

X = Φ(W ◦ Z) + E (22)

where the columns of Z are samples from a Bernoulli
process, and the elements of Φ and W are iid Gaussian.
The symbol ◦ indicates element-wise multiplication.
We infer all variance parameters using inverse-gamma
priors, and integrate out the weights, wn, when sam-
pling zn. Gibbs sampling is performed for all param-
eters, except for the variance parameters, where we
perform variational inference (Bishop, 2006). We have
found that the “inflation” of the variance parameters
that results from the variational expectation leads to
faster mixing for the latent factor model.

Figure 2 displays the inference results for an initial-
ization of K = 200. The top-left figure shows the
number of factors as a function of 10,000 Gibbs iter-
ations, and the top-right figure shows the histogram
of these values after 1000 burn-in iterations. For
Monte Carlo integration, we use S = 100,000 sam-
ples from the stick-breaking prior for sampling dk and
p(znk = 1|α, dk, Zprev), and S = 10,000 samples for
sampling α, since learning the parameter α requires
significantly more overall samples. The average time
per iteration was approximately 18 seconds, though
this value increases when K increases and vice-versa.
In the bottom two rows of Figure 2, we show four ex-
ample factor loadings (columns of Φ), as well as the
probability of its being used by a 3, 5 and 8.
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Figure 2. Results for MNIST digits 3, 5 and 8. Top left:
The number of factors as a function of iteration number.
Top right: A histogram of the number of factors after 1000
burn-in iterations. Middle row: Several example learned
factors. Bottom row: The probability of a digit possessing
the factor directly above.

5.3. Time-Evolving Gene Expression Data

We next apply the model discussed in Section 5.2 on
data from a viral challenge study (Zaas et al., 2009).
In this study, a cohort of 17 healthy volunteers were
experimentally infected with the influenza A virus at
varying dosages. Blood was taken at intervals between
-4 and 120 hours from infection and gene expression
values were extracted. Of the 17 patients, 9 ultimately
became symptomatic (i.e., became ill), and the goal
of the study was to detect this in the gene expression
values prior to the initial showing of symptoms. There
were a total of 16 time points and 267 gene expression
extractions, each including expression values for 12,023
genes. Therefore, the data matrix X ∈ R267×12023.

In Figure 3, we show results for 4000 iterations; each
iteration took an average of 2.18 minutes. The top row
shows the number of factors as a function of iteration,
with 100 initial factors, and histograms of the overall
number factors, and the number of factors per obser-
vation. In the remaining rows, we show four discrim-
inative factor loading vectors, with the statistics from
the 267 values displayed as a function of time. We
note that the expression values begin to increase for
the symptomatic patients prior to the onset of symp-
toms around the 45th hour. We list the top genes for
each factor, as determined by the magnitude of values
in W for that factor. In addition, the top three genes
in terms of the magnitude of the four-dimensional vec-
tor comprising these factors are RSAD2, IFI27 and
IFI44L; the genes listed here have a significant overlap
with those in the literature (Zaas et al., 2009).

Figure 3. Results for time-evolving gene expression data.
Top row: (left) Number of factors per iteration (middle)
Histogram of the total number of factors after 1000 burn-in
iterations (right) Histogram of the number of factors used
per observation. Rows 2-5: Discriminative factors and the
names of the most important genes associated with each
factor (as determined by weight).

As motivated in (Griffiths & Ghahramani, 2005), the
values in Z are an alternative to hard clustering, and
in this case are useful for group selection. For exam-
ple, sparse linear classifiers for the model y = Xβ + ε,
such as the RVM (Bishop, 2006), are prone to select
single correlated genes from X for prediction, setting
the others to zero. In (West, 2003), latent factor mod-
els were motivated as a dimensionality reduction step
prior to learning the classifier y = Φβ̂ + ε2, where the
loading matrix replaces X and unlabeled data are in-
ferred transductively. In this case, discriminative fac-
tors selected by the model represent groups of genes
associated with that factor, as indicated by Z.
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6. Conclusion

We have presented a new stick-breaking construction
of the beta process. The derivation relies heavily upon
the constructive definition of the beta distribution, a
special case of (Sethuraman, 1994), which has been ex-
clusively used in its infinite form in the machine learn-
ing community. We presented an inference algorithm
that uses Monte Carlo integration to eliminate several
random variables. Results were presented on synthetic
data, the MNIST handwritten digits 3, 5 and 8, and
time-evolving gene expression data.

As a final comment, we note that the limit of the
representation in (2) reduces to the original IBP when
α = 1. Therefore, the stick-breaking process in (5)
should be equal in distribution to the process in (Teh
et al., 2007) for this parametrization. The proof of
this equality is an interesting question for future work.
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7. Appendix

Following i−1 breaks from a Beta(1, α) stick-breaking
process, the remaining length of the unit-length stick
is εi =

∏i−1
j=1(1 − Vj). Let Sj := − ln(1 − Vj). Then,

since it can be shown that Sj ∼ Exponential(α), and

therefore
∑i−1
j=1 Sj ∼ Gamma(i− 1, α), the value of εi

can be calculated using only one random variable,

εi = e−Ti

Ti ∼ Gamma(i− 1, α)

Therefore, to draw Vi
∏i−1
j=1(1 − Vj) = εiVi, one can

sample Vi ∼ Beta(1, α) and εi as above.


