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A Stiction Oscillator with Canards:

On Piecewise Smooth Nonuniqueness and

Its Resolution by Regularization Using

Geometric Singular Perturbation Theory∗

Elena Bossolini†

Morten Brøns†

Kristian Uldall Kristiansen†

Abstract. In mechanics, one often describes microscopic processes such as those leading to friction be-
tween relative interfaces using macroscopic variables (relative velocity, temperature, etc.)
in order to avoid models of intangible complexity. As a consequence, such macroscopic
models are frequently nonsmooth, a prominent example being the Coulomb law of friction.
In many cases, these models are perfectly adequate for engineering purposes. Formally,
however, since the Fundamental Theorem of Existence and Uniqueness does not apply to
these situations, one generally expects that these models possess forward nonuniqueness of
solutions. Consequently, numerical computations of such systems might possibly unknow-
ingly discard certain solutions. In this paper, we try to shed further light on this issue by
studying solutions of a simple friction oscillator subject to stiction friction. The stiction
law is a simple nonsmooth model of friction that is a modification of Coulomb based on
the fundamental observation that the dynamic friction force, when the mass is in motion,
is smaller than the static friction force during stick. The resulting piecewise smooth vector
field of this discontinuous model does not follow the classical Filippov convention, and the
concept of a Filippov solution cannot be used. Furthermore, some Carathéodory solutions,
i.e., absolutely continuous solutions satisfying the differential equation in a weaker sense,
are nonphysical. Therefore, we introduce the concept of stiction solutions. These are the
Carathéodory solutions that are physically relevant, i.e., the ones that follow the stiction
law. However, we find that some of the stiction solutions are forward nonunique in subre-
gions of the slip onset. We call these solutions singular, in contrast to the regular stiction
solutions that are forward unique. In order to further understanding of the nonunique
dynamics, we then introduce a general regularization of the model. This gives a singularly
perturbed problem that captures the main features of the original discontinuous problem.
Using geometric singular perturbation theory, we identify a repelling slow manifold that
separates the forward slipping from the forward sticking solutions, leading to high sen-
sitivity to the initial conditions. On this slow manifold we find canard trajectories that
have the physical interpretation of delaying the slip onset. Most interestingly, we find that
these new solutions do not correspond to stiction solutions in the piecewise-smooth limit,
and are therefore seemingly nonphysical, yet they are robust and appear generically in the
class of regularizations we consider. Finally, we show that the regularized problem has a
family of periodic orbits interacting with the canards. We observe that this family has a
saddle stability and that it connects, in the rigid body limit, the two regular, slip-stick
branches of the discontinuous problem, which are otherwise disconnected.

Key words. stiction, friction oscillator, non-Filippov, regularization, canard, slip-stick, delayed slip
onset
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1. Introduction. Friction is a tangential reaction force that appears whenever
two rough surfaces are in contact. This energy-dissipating force is desirable in car
brakes [6], it occurs at the boundaries of the Earth’s crustal plates during fault slip
[47, 68], and it causes the sound of string instruments [1, 16]. Friction may initiate
undesirable noise, like the squeaking of chalk on a blackboard or the squealing of train
wheels on tight curves [24]. It may also induce chattering vibrations, as in machine
tools [53] and in relay feedback systems [49].

The variety of the abovementioned examples underlines the importance of under-
standing the friction force, although this is far from being accomplished. For instance,
little is known on the shape of the friction law for small velocities, as it is difficult
to verify it experimentally [25, 55]. However, it is recognized that the maximal value
of the friction force at stick, that is, at zero relative velocity, is higher than at slip,
when the two surfaces are in relative motion [56]. Several models of friction exist
in the literature [50, 51, 67, 68], some of them smooth (yet singularly perturbed)
like the rate-and-state models [13, 14, 55, 57]; see [4, 39, 54] for recent mathematical
analysis of such models. Nevertheless, the simplest models are frequently only piece-
wise smooth, being discontinuous at stick, like the stiction model. Stiction defines
a maximum static friction force during stick and a lower dynamic friction force at
slip. In subsets of the discontinuity, the stiction model has solutions that are forward
nonunique. In these subsets, a numerical simulation, for example, requires a choice
of forward integration, possibly discarding solutions.

A very classical way to resolve nonuniquness that is outside the scope of discon-
tinuous differential equations (see, e.g., [58, 63]) is to perform a regularization by
replacing the ill-posed system with a “nearby,” in some appropriate sense, well-posed
system (or even a family hereof). This area of research has recently been very ac-
tive within the field of piecewise-smooth systems [27, 29, 30, 35, 36, 37, 38, 40, 45].
Here, a regularization is achieved by smoothing out the discontinuity set. The refer-
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A STICTION OSCILLATOR WITH CANARDS 871

ences [36, 40] (see also [45]) have developed a geometric approach to studying such
systems based upon a combination of an adaptation of the blowup technique [15, 41]
and geometric singular perturbation theory (GSPT) [17, 18, 31, 61]. This approach
enables a geometric matching between the area of smoothing and the region outside
using only classical hyperbolic methods of dynamical systems theory [46], and it has
proved successful in the description of many nonsmooth phenomena that are closely
related to nonuniqueness: nonsmooth bifurcations of limit cycles in a friction oscillator
(see [30, 40]) and nonclassical relaxation oscillations in cell biology and in electrical
engineering (see [29, 32, 38]).

This paper aims to unveil, through mathematical analysis, new features of the
stiction law relating to nonuniqueness; more specifically, the slip onset, i.e., when the
surfaces start to slip. The paper shows that, in certain circumstances, the slip onset is
delayed with respect to the instant that the external forces have equaled the maximum
static friction. This result, which in principle could be tested experimentally, has
physical implications that may further the understanding of phenomena related to
friction.

The paper studies these new features of the stiction law in a model of a friction
oscillator subject to stiction [59]. This is a discontinuous system, and one might
be tempted to study it using the well-developed theory of Filippov (see [12, 19]).
However, the model’s vector field is not obtained from a linear convex combination
of two adjacent equations on the discontinuity set, and for this reason we say that
our model is non-Filippov. New concepts of solutions of a discontinuous system
are introduced: singular/regular stiction solutions on the basis of the physics of the
model. Specifically, the singular stiction solutions lack forward uniqueness in certain
subregions of the slip onset. Here it is not possible to predict whether the oscillator
will slip or stick in forward time. To deal with the nonuniqueness, a regularization is
introduced [35, 60]: this gives a smooth, singularly perturbed problem that captures
the main features of the original problem. Using GSPT, we show that the lack of
uniqueness turns into a high sensitivity to the initial conditions of the regularized
system, where a repelling slow manifold separates sticking from slipping solutions.
Along this manifold, canard-like trajectories appear. These canard trajectories are
the trajectories that delay the slip onset. We show that these new solutions are
not stiction solutions and are therefore seemingly nonphysical, yet they are robust,
appearing generically in any regularization.

It is already known that the friction oscillator may exhibit chaotic [26, 44] and
periodic behavior [9, 49, 52]. The paper shows, with a numerical computation, that
there exists a family of slip-stick periodic orbits interacting with the canard solutions.
This family connects, at the rigid body limit, the two branches of slip-stick orbits
of the discontinuous problem. Furthermore, we prove that the orbits of this family
are highly unstable, due to a folded saddle and a “canard explosion” of the Floquet
multipliers.

The paper is structured as follows. Section 2 presents the model, and section 3
studies its geometrical structure. Section 4 introduces a concept of solution that makes
sense for the discontinuous model, and section 5 introduces the regularization. Sec-
tion 6 shows slip-stick periodic orbits interacting with the canard solutions. Finally,
section 7 concludes the paper and discusses the results.

2. Model. A friction oscillator consists of a mass M that sits on a rough table, as
shown in Figure 1, and that is subject to a periodic forcing Fω(t̄) := −A sin(ωt̄) with
A and ω parameters and t̄ time. The mass is connected to a spring of stiffness κ that
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Fig. 1 Model of a friction oscillator.

at rest has zero length. Hence, the spring elongation u corresponds to the position
of M . In addition, the motion of the mass on the rough table generates a frictional
force F that aims to oppose this movement. The system of equations describing the
friction oscillator is

(1)
u̇ = v,

Mv̇ = −κu+ Fω(t̄) + F.

The friction force F is modeled as stiction. According to this law, F has different
values depending on whether or not the slip velocity v is zero. During slip (v 6= 0),
stiction is identical to the classical Coulomb law: the friction force is constant and
acts in the opposite direction to the relative motion,

(2) F = −Nfd sign v when v 6= 0.

In (2) the parameter N is the normal force, fd is the dimensionless dynamic friction
coefficient, and the sign function is defined as

signα :=

{

1 if α > 0,

−1 if α < 0.

Figure 2(a) illustrates the slipping law (2). For zero slip velocity (v = 0), it is necessary
to consider whether this happens over a time interval or instantaneously, i.e., whether
or not v̇ is also zero. The former case (v = v̇ = 0) defines the stick phase, and from
(1) it follows that

(3) F = w(t̄, u) when v = 0 and |w| < Nfs,

where w(t̄, u) := κu − Fω(t̄) is the sum of forces that induce the motion of M . The
parameter fs in (3) is the dimensionless static friction coefficient, and fs > fd > 0 [56].
The idea is that the value of the static friction is exactly the value that counteracts
the other forces acting on M , so that the mass will keep on sticking. However, the
static friction (3) can only oppose the motion of M up to the maximum static friction
±Nfs, and thus

F = Nfs signw when v = 0 and |w| > Nfs.

In this latter case the friction force is not sufficient to maintain v̇ = 0, and therefore
the mass will slip in forward time. Figure 2(b) illustrates the friction law for v = 0.
In compact form, stiction is written as

F (v, w) =











−Nfd sign v, v 6= 0,

w, v = 0 and |w| < Nfs,

Nfs signw, v = 0 and |w| > Nfs.
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(a)

Nf
d

-Nf
d

F

v

(b)

Nf
s

F

Nf
s
w

Fig. 2 Stiction friction F (v, w). (a) v 6= 0. (b) v = 0.

The friction law is not defined for v = 0 and |w| = Nfs, where the external forces
equal the maximum static friction during stick. Other modeling choices may fix a
value of F in these points. These choices do not affect the results of the following
analysis; see section 4. By rescaling

u =
V

ω
x, v = V y, t̄ =

t

ω
,

system (1) is rewritten in its dimensionless form

(4)

x′ = y,

y′ = −ξ(x, θ) + µ(y, ξ(x, θ)),

θ′ = 1,

where θ ∈ T
1 is a new variable describing the phase of the periodic forcing, and this

makes system (4) autonomous. In this new system the prime has the meaning of
differentiation with respect to the time t, and γ := Ω/ω is the ratio between the
natural frequency of the spring Ω :=

√

κ/M and the forcing frequency ω. Therefore,
γ → ∞ corresponds to the rigid body limit. Furthermore, in (4) we have introduced
the function

ξ(x, θ) :=
w

A
= γ2x+ sin θ.

Remark 2.1. The function ξ(x, θ) is the sum of the rescaled external forces. In
what follows, we drop the function’s arguments when they are unnecessary and simply
refer to it as ξ. In some plots (like in Figure 3) we will replace x by ξ(x, θ) to obtain
better pictures.

In (4), the function µ describes the dimensionless stiction law

(5) µ(y, ξ(x, θ)) =











−µd sign y, y 6= 0,

ξ, y = 0 and |ξ| < µs,

µs sign ξ, y = 0 and |ξ| > µs,

where µd,s := Nfd,s/A. System (4) together with the friction function (5) is the
model used in the rest of the analysis. In compact form it is written as z′ = Z(z),
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where z := (x, y, θ) ∈ R
2 ×T

1 and T
1 := R/2πZ. The vector field Z(z) is not defined

on the two lines {y = 0, ξ = ±µs}. Section 3 studies the phase space of (4) using
geometrical tools from piecewise-smooth theory [12, 19].

3. Geometric Analysis of the Discontinuous System. This section analyzes
the friction oscillator (4) with stiction friction (5) in the context of piecewise-smooth
dynamical systems. The notation is consistent with that in [21]. System (4) is smooth
in the two regions

G+ := {(x, y, θ) ∈ R
2 × T

1 | y > 0},
G− := {(x, y, θ) ∈ R

2 × T
1 | y < 0}.

Let Z+(z) (Z−(z)) be the vector field Z(z) restricted to G+ (G−) and extended to
the closure of G+ (G−, respectively). These two smooth vector fields have the explicit
form

Z± =











x′= y,

y′= −ξ(x, θ)∓ µd,

θ′= 1.

The set Σ := {(x, y, θ) ∈ R
2 × T

1 | y = 0} is a surface of discontinuity of Z(z) called
the switching manifold. The vector field Z(z) is well defined in Σ \ {ξ = ±µs}, and
its dynamics on the y-coordinate is

y′ = −ξ(x, θ) + µ (0, ξ(x, θ))











> 0 for ξ < −µs,

= 0 for |ξ| < µs,

< 0 for ξ > µs.

Therefore, it is natural to subdivide Σ into the three sets

Σ+
c := {(x, y, θ) ∈ R

2 × T
1 | y = 0 and ξ < −µs},

Σs := {(x, y, θ) ∈ R
2 × T

1 | y = 0 and − µs < ξ < µs},
Σ−

c := {(x, y, θ) ∈ R
2 × T

1 | y = 0 and ξ > µs}

that are shown in Figure 3(a). The set Σ+
c (Σ−

c ) is called the crossing region pointing
upwards (downwards) because orbits here switch from G− to G+ (from G+ to G−).
The strip Σs is called the sticking region because trajectories within it are not allowed
to switch to G±, and they correspond to solutions where the mass sticks to the table.
Let Zs(z) be the vector field Z(z) restricted to Σs and extended to the closure of Σs.
This two-dimensional vector field has the explicit form (x, θ)′ = (0, 1), and thus Σs is
foliated by invariant arcs of circles

(6) Fx0
:= {(x, y, θ) ∈ Σs | x = x0},

since θ ∈ T
1. Figure 3(b) shows the foliation Fx0

. The boundaries of Σs with Σ±
c

define the two sets

∂Σ+
c := {(x, y, θ) ∈ R

2 × T
1 | y = 0 and ξ = −µs},

∂Σ−
c := {(x, y, θ) ∈ R

2 × T
1 | y = 0 and ξ = µs}.

The vector field Z(z) is not defined on ∂Σ±
c , but the three vector fields Zs(z) and

Z±(z) are. Indeed, ∂Σ±
c belong to the closure of both Σs and G±. Hence, on ∂Σ±

c ,
solutions may be forward nonunique. This will be discussed in section 4.
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(a)

(b)

x

y

µ
2¼

¼/2

3¼/2

˲

˲

˲
˲

˲

˲

§
s

I-I+

@§
c
-

@§
c
+

F
x
1

F
x
2

-¹
s

°2
1-¹

s

°2
¹
s
-1
°2

¹
s

°2

Fig. 3 (a) Vector fields Z± and their tangencies at ξ = ∓µd in the (ξ(x, θ), y, θ)-space. Z− is dashed
because it is below Σs. The gray bands indicate where Z± suggest crossing, but instead the
solution for y = 0 is sticking. (b) Phase space of Zs in the (x, y, θ)-space with the tangencies
at θ = {π/2, 3π/2}. The leaf Fx1

is a full circle, while Fx2
is an arc of a circle. The

intervals of nonuniqueness I± are introduced in Proposition 4.4.

Propositions 3.2 and 3.4 below lay out where the vector fields Zs(z), Z
±(z) are

tangent to ∂Σ±
c and Σ, respectively. The results are shown in Figure 3. First, a

definition introduces the concepts of visible and invisible tangency.

Definition 3.1. Let Σ̂ := {z ∈ R
n | χ(z) > 0}, where χ : Rn → R is a smooth

and regular function such that ∇χ(z) 6= 0 for every z ∈ R
n. Furthermore, let Ẑ : Σ̂ →

R
n be a smooth vector field with a smooth extension to the boundary of Σ̂, that is, for

χ(z) = 0. In addition, let LẐχ(z) := ∇χ · Ẑ(z) denote the Lie derivative of χ with

respect to Ẑ(z).
The vector field Ẑ(z) is tangent to the set χ(z) = 0 at p ∈ Σ̂ if LẐχ(p) = 0. The

tangency is called visible ( invisible) if L2
Ẑ
χ(p) > 0 (L2

Ẑ
χ(p) < 0), where L2

Ẑ
χ(p) is the

second-order Lie derivative. The tangency is a cusp if L2
Ẑ
χ(p) = 0 but L3

Ẑ
χ(p) 6= 0.

In other words, the tangency is visible if the orbit z′ = Ẑ(z) starting at p stays
in Σ̂ for all sufficiently small |t| > 0, and it is invisible if it never does so [12, pp. 93
and 237]. A quadratic tangency is also called a fold [64].
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Proposition 3.2. Zs(z) is tangent to ∂Σ−
c (∂Σ+

c ) at the isolated points θ ∈
{π/2, 3π/2}. The tangency is visible (invisible) for θ = π/2 and invisible (visible) for
θ = 3π/2.

Proof. Define the function χ(x, θ) = µs − ξ(x, θ) so that it is defined within Σ
and its zeros belong to ∂Σ−

c . Then LZs
χ(p) = 0 in θ = {π/2, 3π/2}. Moreover,

L2
Zs

χ(p) = sin θ. Hence, θ = π/2 (θ = 3π/2) is a visible (invisible) fold. Similar
computations prove the result for ∂Σ+

c .

Corollary 3.3. If µs > 1, then the invariant leaves Fx of (6) with |γ2x| < µs−1
are periodic orbits with period 2π. The remaining leaves of (6), having |γ2x| ≥ µs−1,
escape Σs in finite time. If µs < 1, no periodic orbits exist on Σs.

Proof. The sticking trajectory γ2x(t) = µs − 1 (γ2x(t) = −µs + 1) is tangent to
∂Σ−

c (∂Σ+
c ) because ξ(x, π/2) = µs (ξ(x, 3π/2) = −µs). These two lines coincide for

µs = 1. When µs > 1 the orbits |γ2x(t)| < µs−1 are included within the two tangent
orbits. Hence, they never intersect the boundaries ∂Σ±

c and therefore are periodic
with period 2π. Instead, the trajectories µs > |γ2x(t)| ≥ µs − 1 exit Σs in finite
time.

The orbit Fx1
⊂ Σs of Figure 3(b) is periodic, while Fx2

leaves Σs in finite time.
The period T = 2π corresponds to a period T̄ = 2π/ω in the original time t̄, as is often
mentioned in the literature [9, 59]. The condition µs > 1 corresponds to Nfs > A;
that is, the maximum static friction force is larger than the amplitude of the forcing
Fω. This interpretation makes it an obvious condition for having sticking solutions.

Proposition 3.4. The vector field Z− (Z+) is tangent to Σ on the line ξ = µd

(ξ = −µd). The tangency is invisible (visible) for θ ∈ ]π/2, 3π/2[, and it is visible
(invisible) for θ ∈ [0, π/2[ and θ ∈ ]3π/2, 2π[, while it is a cusp on the isolated points
θ = {π/2, 3π/2}.

Proof. Define the function χ(x, y, θ) = −y so that it is defined in G− and it is
zero in Σ. Then LZ−χ(p) = ξ(x, θ) − µd = 0 on the line ξ = µd, θ ∈ T

1. Moreover,
L2
Z−

χ(p) = cos θ. This is negative for θ ∈ ]π/2, 3π/2[ and positive for θ ∈ [0, π/2[
and θ ∈ ]3π/2, 2π[. The points θ = π/2 and θ = 3π/2 have L2

Z−
χ(p) = 0, but

L3
Z−

σ(p) 6= 0. Similar computations prove the result for Z+(z).

Knowledge of the tangencies is sufficient to describe the local phase space of
system (4) around the discontinuity Σ, as Figure 3 shows. Section 4 discusses how
forward solutions of Z(z), which are smooth within each set G± and Σs, connect
at the boundaries of these regions. It is futile to study solutions in backwards time
because when an orbit lands on Σs, the information of when it landed is lost.

4. Forward Solutions of the Discontinuous System. Classical results on exis-
tence and uniqueness of solutions require Lipschitz continuous right-hand sides and
therefore do not apply to discontinuous systems like (4). A class of discontinuous sys-
tems for which some results are known is that of Filippov type [19, (a) in section 4].
A Filippov-type system is a system where the linear convex combination of the vector
fields Z±(z) is sufficient to describe the dynamics within the switching manifold Σ.
Filippov’s convex method is useful, especially when there is no vector field already
defined on Σ.

Let Z±
y (z) be the y-component of Z±(z) at a point z ∈ Σ. Then Filippov’s convex

method defines the crossing region as the subset of Σ where Z+
y ·Z−

y (z) > 0, while the
sliding region Σs,Filippov satisfies Z+

y · Z−
y (z) < 0 [19, section 4], [12, p. 76]. The idea
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is that solutions inside the sliding region cannot exit Σ because Z±(z) do not allow
it.

Remark 4.1. System (4) together with the friction law (5) is not of Filippov type.
Indeed, the sliding region of system (4) is

Σs,Filippov := {(x, y, θ) ∈ R
2 × T

1 | y = 0 and − µd < ξ < µd},

which is a strip within Σs whenever µd < µs. In the two remaining bands

Σ−
s,stiction := {(x, y, θ) ∈ R

2 × T
1 | y = 0 and ξ ∈ ]µd, µs[},

Σ+
s,stiction := {(x, y, θ) ∈ R

2 × T
1 | y = 0 and ξ ∈ ]− µs,−µd[},

which are colored in gray in Figure 3(a), the vector field Zs(z) does not belong to the
convex closure of Z±(z). Here Filippov’s method predicts orbits that switch from G+

to G− or vice versa, but the actual solution of model (4) lies within Σs.
When µd = µs, the friction law (5) equals the classical Coulomb friction and Σs

coincides with Σs,Filippov. This case has been studied in [10, 21, 33].

The two gray bands Σ±
s,stiction are unstable to perturbations in y in the following

sense: consider, for instance, a point in Σ−
s,stiction that is pushed into G− by an

arbitrary small perturbation; this solution will evolve far from Σ−
s,stiction by following

Z−(z). In this sense, the piecewise-smooth flow is not continuous with respect to the
initial conditions.

Another notion of a forward solution of a discontinuous system is the Carathéodory
solution [8], [19, section 1]. This is an absolutely continuous function z(t) that satisfies

(7) z(t) = z(0) +

∫ t

0

Z(z(s)) ds, t ≥ 0,

where the integral is in a Lebesgue sense. Hence, in order to have a Carathéodory
solution, Z(z) need only be defined almost everywhere.

Proposition 4.2. For every z0 = z(0) ∈ R
2 × T

1 there exists a global forward
Carathéodory solution of model (4) satisfying (7) for every t ≥ 0.

Proof. For every z0 there exists at least one local classical solution of either Z±(z)
or Zs(z). A forward solution of (7) is obtained by piecing together such local orbits
on Σ. This process produces a global solution since (a) Z±(z) and Zs(z) are each
linear in (x, y), excluding the possibility of blowup in finite time, and (b) there can
be no accumulation points where the time intervals between switching converge to
zero.

Not every forward Carathéodory solution has a physical meaning. Consider, for
instance, a trajectory that under the forward flow (4) lands inside Σ−

s,stiction, as shown
in Figure 4(a). There are two ways to obtain a forward solution at this point: either
leave Σ and follow the vector field Z−(z), or remain on Σs. In addition, the forward
trajectory on Σs may switch toG− at any point within Σ−

s,stiction. The orbits switching

to G− appear to be mathematical artifacts, as they do not satisfy the condition
|ξ| > µs of the stiction law (5). There is a need for a concept of solution that discards
all these pathologies. The following definition does so by using a “minimal” approach.

Definition 4.3. A stiction solution t 7→ z(t), with t ≥ 0, is a Carathéodory
solution that leaves Σs only at the boundaries ∂Σ±

c .
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(a)

˲ »

¹
s

@§
c
-

˲

˲
˲

˲ ˲˲

˲

§
s;
-

stiction

(b)

˲ »

˲

˲

¼/2

@§
c
-

¹
s

3¼/2
I-

Fig. 4 (a) A Carathéodory solution with a pathological nondeterminacy of the forward motion on
the gray band. (b) Stiction solutions interacting with the line of forward nonuniqueness I−.

A stiction solution is called singular if, for some t1 ≥ 0, the point z(t1) belongs
to one of the following sets:

I+ := {(x, y, θ) ∈ R
2 × T

1 | ξ = −µs, y = 0, θ ∈ [π/2, 3π/2[ },
I− := {(x, y, θ) ∈ R

2 × T
1 | ξ = µs, y = 0, θ ∈ [0, π/2[∪ [3π/2, 2π[ }.

Otherwise, the stiction solution is called regular.

The sets I± belong to the boundary lines ∂Σ±
c . Three vector fields are defined

on ∂Σ±
c : Zs(z) and Z±(z). In particular, on both I± the vector field Zs(z) points

inside Σs, as follows from Proposition 3.2; compare with Figure 3(b). Proposition 4.4
describes the existence and uniqueness of stiction solutions for model (4).

Proposition 4.4. There exists a stiction solution z(t) of problem (4) for any
initial condition z0 = z(0) ∈ R

2 × T
1. Regular stiction solutions are forward unique,

while singular stiction solutions are forward nonunique.

Proof. It is clear that stiction solutions, as Carathéodory solutions, exist. Con-
sider a trajectory z(t) that reaches I− at a time t1, as shown in Figure 4(b). Two
different forward solutions satisfy (7): either leave Σ and follow the vector field Z−(z),
or remain on Σs. Hence, the singular stiction solution is forward nonunique at I−,
and similarly at I+. On the contrary, if z(t) /∈ I± at any t ≥ 0, then there is always
only one way to piece together the vector fields at the boundaries ∂Σ±

c , and therefore
z(t) is forward unique.

The nonuniqueness of models with stiction friction was mentioned in [5, 50], with-
out any further explanation. It is not possible to predict whether, for singular stiction
solutions, the mass will slip or stick in forward time. Hence, numerical simulations
that use stiction friction have to make a choice at the points of nonuniqueness to com-
pute the forward flow, often without noticing that a choice is being made. This means
that solutions may unknowingly be discarded. Section 5 investigates nonuniqueness
by regularization.

5. Regularization. We consider the regularization of the vector field Z(z) given
by the one-parameter family Zε(z) of smooth vector fields

(8) Zε(z) :=
1

2
Z+(z)(1 + φ(ε−1y)) +

1

2
Z−(z)(1− φ(ε−1y))
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(a) (b)

Fig. 5 (a) Regularization function satisfying (9) where φ(y) → ±1 as y → ±∞. (b) Regularization
function of Sotomayor–Teixeira type where φ reaches ±1 at finite values y = ±1; see (20).

for 0 < ε ≪ 1. The function φ(y) is a sufficiently smooth regularization function that,
based upon the physics of the problem, we will assume is odd and satisfies

(9) φ(y)

{

→ 1, y → ∞,

= µs/µd, y = δ,
and φ′(y)











> 0, 0 < y < δ,

= 0, y = δ,

< 0, δ < y < ∞,

φ′′(δ) < 0,

for all y ≥ 0, and where δ ∈ (0, 1).1 Consequently, y = ±δ is a global maxi-
mum/minimum of φ with values ±µs/µd ≷ ±1, respectively, and φ(y) → ±1 as
y → ±∞. See Figure 5(a) for an illustration. The regularized problem z′ = Zε(z) is
smooth and consequently (locally) well-posed, and at the same time we will see that
it “approximates” the discontinuous problem (4) for 0 < ε ≪ 1.

In noncompact form, z′ = Zε(z) is the singularly perturbed problem

(10)

x′ = y,

y′ = −ξ(x, θ)− µdφ(ε
−1y),

θ′ = 1,

with ξ(x, θ) = γ2x + sin θ being the function introduced in section 2. By the first
property of (9), it follows that

lim
ε→0

Zε(z) = Z±(z) for y ≷ 0,(11)

pointwise, so that the two problems coincide outside y 6= 0 in the limit ε → ∞. On
the other hand, when solutions of (10) enter the region of regularization, i.e., when
y = O(ε), we can follow them in the rescaled coordinate ŷ defined by

y = εŷ,(12)

1Notice that once we suppose δ > 0 we can without loss of generality, upon scaling ε, take
δ ∈ (0, 1).
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so that y = O(ε) becomes ŷ = O(1). In this new scaling, system (10) becomes the
multiple time scale problem

(13)

x′ = εŷ,

εŷ′ = −ξ(x, θ)− µdφ(ŷ),

θ′ = 1,

which is also known as the slow problem [31, 43]. By introducing the fast time τ := t/ε,
system (13) is equivalent to the fast problem

(14)

ẋ = ε2ŷ,

˙̂y = −ξ(x, θ)− µdφ(ŷ),

θ̇ = ε,

with the overdot meaning differentiation with respect to the fast time τ . The standard
procedure for solving multiple time scale problems is to combine the solutions of the
layer problem

(15) ˙̂y = −ξ(x, θ)− µdφ(ŷ), (x, θ)(τ0) = (x0, θ0),

with those of the reduced problem

(16)

x′ = 0,

0 = −ξ(x, θ)− µdφ(ŷ),

θ′ = 1,

where (15) and (16) are the limit for ε → 0 of the fast and slow problems (14) and
(13). The set of fixed points of the layer problem (15) is called the critical manifold,

(17) C0 := {(x, ŷ, θ) ∈ R
2 × T

1 | ξ(x, θ) + µdφ(ŷ) = 0},

and the solutions of the reduced problem (16) are constrained to it. The critical
manifold is said to be normally hyperbolic at the points where

∂ ˙̂y

∂ŷ

∣

∣

∣

∣

C0

= −µdφ
′(ŷC0)

is nonzero and ŷC0 = φ−1(−ξ(x, θ)/µd). It follows that C0 is not normally hyperbolic
on the two fold lines

f± := {(x, ŷ, θ) ∈ R
2 × T

1 | ξ = ∓µs, ŷ = ±δ}.

These lines separate C0 into three normally hyperbolic subsets,

C+
r := {(x, ŷ, θ) ∈ C0 | δ < ŷ < ∞},
Ca := {(x, ŷ, θ) ∈ C0 | −δ < ŷ < δ},
C−

r := {(x, ŷ, θ) ∈ C0 | −∞ < ŷ < −δ},

as shown in Figure 6, where Ca is attracting and C±
r are repelling. Notice that Ca

is a graph ŷ ∈ ] − δ, δ[ over Σs, while C+
r (C−

r ) is a graph ŷ > δ (ŷ < −δ) over
Σ+

s,stiction (Σ−
s,stiction, respectively). In terms of (x, y, θ), these sets collapse onto Σs

and Σ±
s,stiction, respectively, as ε → 0, since y = εŷ. Similarly, f± collapse onto

∂Σ±
c . This means that in the (x, y, θ)-space it is not possible to distinguish whether

a trajectory belongs to Ca or to C±
r for ε = 0.
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Fig. 6 Critical manifold C0 and its stability properties. In bold: f±. The double arrow denotes
dynamics in the fast time τ .

Proposition 5.1. The reduced problem on C0 coincides with the vector field
Zs(z) on Σs.

The proof is straightforward since the reduced problem, once constrained to C0,
is (x′, θ′) = (0, 1).

The results of Fenichel [17, 18] guarantee that a normally hyperbolic, compact,
and invariant manifold S0 ⊂ C0 perturbs into a nonunique and locally invariant slow
manifold Sε that is ε-close to S0 for ε sufficiently small. Furthermore, system (14)
has an invariant foliation with base on Sε that is a perturbation of the foliation of the
layer problem (15) with base on S0.

Consequently, it follows that the regularized problem (10) captures all the main
features of the discontinuous vector field (4) for ε → 0. Furthermore, when 0 < ε ≪ 1
the solutions of (10) are uniquely defined, so that the issue of nonuniqueness of (4)
is eliminated. Proposition 5.1 also motivates the conditions (9) for the function φ(y)
(see also Remark 5.2).

Nevertheless, formally the previous results in the scaling regime defined by (12)
only cover y = O(ε), and, as can also be seen from the layer problem (15), this regime
does not overlap with the regular perturbations of Z± for y = O(1) as ε → 0. In
particular, following (11), Z± sits at ŷ = ±∞ as ε → 0. One way, based upon an
adaptation of the blowup method, to cover Zε as ε → 0 uniformly in y is described
in the references [34, 36, 38, 40]. Summarizing, one considers the extended fast-time
system

(18)
z′ = εZε,

ε′ = 0,

which has a loss of smoothness along the switching manifold Σ×{0} in the extended
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(z, ε)-space. We then apply a cylindrical blowup transformation of Σ× {0},

(19) r ≥ 0, (ȳ, ε̄) ∈ S1 7→
{

y = rȳ,

ε = rε̄,

where S1 : ȳ2 + ε̄2 = 1. In the blowup space, the system regains smoothness and the
discontinuity set Σ× {0} is replaced by R× T× S1. However, unlike in the classical
blowup method, we perform (due to the special form of (18)) the desingularization
of the blown up vector field by dividing the right-hand side by the common factor
ε̄ (rather than by a power of r). In this way, one then gains (partial) hyperbolicity
along r = ε̄ = 0, which enables a general matching procedure between the two regimes
using local hyperbolic methods.

Geometrically, the coordinates (ŷ, ε) defined by (12) can be viewed as a directional
chart associated with the blowup (19) obtained by setting ε̄ = 1 such that

ε̄−1ȳ = ŷ.

In particular, ŷ for ε = 0 describe points on (ȳ, ε̄) ∈ S1 with ε̄ > 0, whereas ŷ → ±∞
corresponds to (ȳ, ε̄) = (±1, 0). These points are better described in the ȳ = ±1
charts, where the matching between y = O(1) and y = O(ε) is performed.

For further details, we refer the reader to [36, 38, 40]. Here we will instead follow
an adaptation of the regularization approach of Sotomayor–Teixeira (ST) [45, 60]
(see also Remark 5.2) and henceforth we make the following additional, simplifying
assumption: the function φ (9) is not asymptotic to ±1 as y → ∞ but instead reaches
the following values at y = ±1:

φ(y) = ±1 for all y ≷ ±1.(20)

Furthermore, we suppose that φ(k)(±1) = 0 for all k = 1, . . . , n, with n being suffi-
ciently large for the forthcoming theory of smooth systems to apply. See Figure 5(b)
for an illustration of a regularization function satisfying (20).

Following the work of [34, 36, 38, 40], the results remain qualitatively unchanged
by the somewhat unnatural (from an application point of view) assumption (20).
Technically, however, the problem is made significantly easier by (20) since we do not
have to work with the full blowup transformation and the charts ε̄ = ±1. Specifically,
by (20) we have that Zε(z) = Z±(z) for all y ≷ ±ε and in the coordinates (ŷ, ε) the
regularized system is therefore (naturally) compactified to ŷ ∈ [−1, 1]. For simplicity,
we will therefore focus in what follows on regularization functions that satisfy (20).

Remark 5.2. The classical ST regularization considers a regularization function
φST (y) with φST (y) = ±1 for y ≷ ±1 that is monotonously increasing within
y ∈ ]− 1, 1[ [60]. Applying this regularization to our model (4) gives, in the singular
limit ε → 0, that the regularization ZST

ε (z) has an attracting invariant manifold CST
a

that is a graph of ŷ over Σs,Filippov [35, 45]. In terms of (x, y, θ) this set collapses onto
Σs,Filippov instead of Σs, and hence ZST

ε (z) does not tend to Z(z) as ε → 0. For this
reason the classical ST regularization is inadequate for model (4).

Let ϕt(z0) be a regular stiction solution of model (4) with an initial condition in
z0, and let ϕε

t (z0) be the solution of the regularized problem (10) for the same initial
condition. The following statement relates these two solutions.
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Proposition 5.3. Consider system (10) with φ satisfying (9) as well as (20).
Then for any T > 0 there exists an ε0 > 0 such that the distance between the two
solutions ϕε

t (z0) and ϕt(z0) is bounded by |ϕε
t (z0)− ϕt(z0)| ≤ c(T )ε2/3 for t ∈ [0, T ],

0 < ε ≤ ε0. Here c(T ) is a constant that depends upon T .

Proof. Fenichel’s theorems guarantee that, sufficiently far from the fold lines f±,
the orbit ϕε

t (z0) of the slow-fast problem (13) is O(ε)-close to the singular trajectory
ϕt(z0). At the folds f±, if at the singular level the solutions are unique, the result by
Szmolyan and Wechselberger [62, Theorem 1] guarantees that the distance between
the two trajectories is bounded by O(ε2/3) for a finite time interval T . This is the
case of regular stiction solutions.

The following proposition relates the family of sticking solutions of Corollary 3.3
with a family of trajectories on the slow manifold for the regularized problem. For this,
define Sa ⊂ Ca as the compact, normally hyperbolic set Sa := {(x, ŷ, θ) ∈ R

2 × T
1 |

|γ2x| ≤ µs−1− c, ξ(x, θ)+µdφ(ŷ) = 0} for µs > 1 with c ∈ R
+ fixed so small that Sa

is nonempty. The set Sa is a graph over the set of invariant circles of Corollary 3.3
for c → 0.

Proposition 5.4. Suppose (9) and, specifically, that φ is odd. Then the compact
critical manifold Sa perturbs into a slow manifold Sa,ε for all 0 < ε ≪ 1 and on it there
exists a unique, attracting 2π-periodic limit cycle passing through (x, θ) = (O(ε), 0).

Proof. From Proposition 5.1 and Corollary 3.3 it follows that Sa is filled by circu-
lar trajectories. By Fenichel’s results, when 0 < ε ≪ 1 the submanifold Sa perturbs
into the graph ŷ = φ−1(−ξ(x, θ)/µd)+εh1(x, θ, ε) with h1 smooth. On this graph the
slow problem (13) is a 2π-periodic, nonautonomous ODE for x(θ), where θ has the
meaning of time:

(21) x′(θ) = εφ−1

(−ξ(x, θ)

µd

)

+ ε2h1(x, θ, ε).

Fix a global Poincaré section at θ = 0 and define the return map P (x(0), ε) = x(2π).
The fixed points of this map for 0 < ε ≪ 1 are the zeros of the Melnikov-like function

Q(x(0), ε) :=
P (x(0), ε)− x(0)

ε
=

∫ 2π

0

φ−1

(−γ2x(s)− sin s

µd

)

ds+O(ε),

where the last equality is obtained by integrating (21). For ε = 0, (21) implies
x(θ) = x(0) for all θ ∈ T

1. By assumption, both functions φ−1(s) and sin s are odd
functions of s. This means that Q(x(0), 0) = 0 if and only if x(0) = 0. Furthermore,
(x, ε) = (0, 0) is regular because

(22) ∂xQ(0, 0) = −γ2

µd

∫ 2π

0

1

φ′(− sin s/µd)
ds < 0

and φ′(ŷ) is always positive in Sa since ŷ ∈ ]−δ, δ[. Then the implicit function theorem
guarantees that for 0 < ε ≪ 1 there exists x(0) = m(ε) such that Q(m(ε), ε) = 0.
Hence, x(0) = m(ε) belongs to an attracting periodic orbit since from (22) it follows
that |∂x(0)P (x(0), ε)| < 1 for 0 < ε ≪ 1.

Therefore, when µs > 1 the family of invariant circles in Σs bifurcates into a
single attracting limit cycle on the slow manifold Sa,ε. This result gives an upper
bound of the time T of Proposition 5.3 as a function of ε, since on the slow manifold
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Sa,ε, after a time t = O(1/ε), orbits are O(1) distant to the original family of circles in
Σs. Furthermore, the regularization of regular stiction solutions does not necessarily
remain uniformly close.

It is not possible to make a statement similar to Proposition 5.3 for singular
stiction solutions, as they have nonunique forward solutions at the singular level. A
further understanding can be obtained by studying the reduced problem (16). This
differential algebraic equation is rewritten as a standard ODE by explicating the
algebraic condition with respect to x and by differentiating it with respect to the time
t:

(23)
−µdφ

′(ŷ)ŷ′ = cos θ,

θ′ = 1.

Proposition 5.5. The circles f± ⊂ {φ′(ŷ) = 0} are lines of singularities for
the reduced problem (23), and solutions reach them in finite time. On f±, the points
(ŷ, θ) = (−δ, π/2) and (ŷ, θ) = (δ, 3π/2) are folded saddles, while (ŷ, θ) = (δ, π/2) and
(ŷ, θ) = (−δ, 3π/2) are folded centers. Moreover, the intervals Î± ⊂ f± defined as

Î− :={(x, ŷ, θ) ∈ R
2 × T

1 | ξ = µs, ŷ = −δ, θ ∈ [π/2, 3π/2[ },

Î+ :={(x, ŷ, θ) ∈ R
2 × T

1 | ξ = −µs, ŷ = δ, θ ∈ [0, π/2[∪ [3π/2, 2π[ }

have nonunique forward solutions.

Proof. The time transformation µdφ
′(ŷ)dt̂ = dt allows one to rewrite system (23)

as the desingularized problem

(24)

˙̂y = − cos θ,

θ̇ = µdφ
′(ŷ)

in the new time t̂. The difference between systems (23) and (24) is that t̂ reverses
the direction of time within C±

r . Problem (24) has four fixed points in R
2 × T

1. The
points (δ, 3π/2) and (−δ, π/2) are hyperbolic saddles with eigenvalues ±

√

µd|φ′′(δ)|
and eigenvectors [1,∓

√

µd|φ′′(δ)|]T and [1,±
√

µd|φ′′(δ)|]T , respectively. The remain-

ing points (δ, π/2) and (−δ, 3π/2) are centers with eigenvalues ±i
√

µd|φ′′(δ)| and

eigenvectors [1,±i
√

µd|φ′′(δ)|]T and [1,∓i
√

µd|φ′′(δ)|]T , respectively. The inversion
of the time direction on C±

r gives the dynamics of the reduced problem (23). Thus,
a saddle in (24) is a folded saddle of (23), and similarly for the centers. Also, f± be-
come lines of singularities with the time inversion, and the segments Î± have forward
trajectories pointing inside both Ca and C±

r ; compare with Figure 7(a). Since θ′ = 1,
orbits reach or leave f± in finite time.

Figure 7 illustrates the results of Proposition 5.5. In the (x, y, θ) coordinates, the
segments Î± collapse onto the lines of nonuniqueness I± for ε = 0. The layer problem
(15) adds a further forward solution in Î± since orbits may also leave a point of these
lines by following a fast fiber for ŷ ≷ 0.

Each folded saddle of (23) has two special solutions: the singular vrai canard
Υv, a stable manifold of (24) that connects Ca to C±

r , and the singular faux canard
Υf , an unstable manifold of (24) that does the opposite [3, 15]. The vrai canard
divides the critical manifold into regions with different types of forward dynamics:
on one side of Υv, orbits turn, which means that they remain on Ca. On the other
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Fig. 7 (a) Phase space of the reduced problem (23). (b) Repelling invariant manifolds Q±
r in gray

and foliations F± in blue.

side of Υv, orbits reach f± \ Î± and then jump; that is, they move away from C0 by
following a fast fiber. Taken together the singular canards form a periodic orbit of
the reduced problem (23) that visits both Ca and C±

r ; see Figure 7(a). The folded
centers have no canard solutions [42], and for this reason they are not interesting for
the analysis. Systems with m ≥ 2 slow variables and one fast variable have robust
canard solutions; i.e., the canards persist for small parameter variations. It follows
that canard solutions are a generic feature of (12), where m = 2, appearing for any
regularization function (9). Canards also appear in the Van der Pol oscillator [22, 65],
in a model for global warming [66], and in a model for transonic wind [7].

In our case, we consider system (9) with any φ satisfying (10) and suppose 0 <
ε ≪ 1. Then the singular vrai canard Υv perturbs into a maximal canard [61]. This
orbit corresponds to the intersection of Sa,ε with S±

r,ε. Hence, the maximal canard
remains O(ε)-close to S±

r for a time t = O(1). Furthermore, a family of orbits remains
exponentially close to the maximal canard for some time before being repelled from
S±
r,ε [43, p. 200]. An orbit of this family is called a canard, and Figure 8(a) shows

an example of one. Define Q±
r as the subsets of C±

r whose points, when flowed
backwards in time, intersect the intervals of nonuniqueness Î±. Q±

r are colored in
gray in Figure 7(b). The lines Î± are, backwards in time, the base of a foliation of
fast (nonhyperbolic) fibers F± that are colored in blue in Figure 7(b). The following
proposition describes the role of the repelling manifolds Q±

r for 0 < ε ≪ 1.

Proposition 5.6. For 0 < ε ≪ 1, compact subsets S±
r of Q±

r perturb into the
sets S±

r,ε that are O(ε)-close to S±
r . The slow problem on S±

r,ε is connected backwards

in time to a family of fast trajectories F±
ε that is O(ε2/3)-close to F±. The orbits

on F±
ε and S±

r,ε separate the trajectories that, after possibly having been exponentially
close to S±

r,ε, are attracted to the slow manifold Sa,ε from the trajectories that follow
a fast trajectory away from the slow surface.
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Fig. 8 (a) A canard orbit at the intersection of Sa,ε with S−
r,ε. (b) Dynamics around a point of Î−

for 0 < ε ≪ 1. (c) and (d) The same dynamics of Figures 8(a) and 8(b) in the (x, y, θ)-
coordinates. The canard-like solutions leaving Σ−

s,stiction resemble Carathéodory solutions of

model (4); compare with Figure 4(a).

Proof. By reversing the time orientation on the slow (13) and fast (14) problems,
the orbits on Q±

r satisfy the assumptions of Proposition 5.3. Hence, the distance from
F± to F±

ε is O(ε2/3). Now consider again the true time direction and take a set of
initial conditions that is exponentially close to the fibers F±

ε . These orbits will follow
the repelling slow manifolds S±

r,ε for a time t = O(1) [61]. The manifolds S±
r,ε act

as separators of two different futures: on one side the orbits will become attracted
to the slow attracting manifold Sa,ε, while on the other side they will jump away by
following an escaping fast fiber; compare with Figure 8(b).

It follows that around Î± and F± there is a high sensitivity to the initial condi-
tions. Even though the (x, θ)-dynamics on Ca coincides with that on C±

r , trajectories
close to these two manifolds may have different futures. Orbits belonging to Sa,ε will
exit Sa,ε at a predictable point. On the other hand, the orbits that follow S±

r,ε are
very sensitive and may escape from it at any time. These two types of trajectories
are colored in blue and magenta, respectively, in Figures 8(b) and 8(d). The orbits
that follow S±

r,ε for some time are canard-like in their forward behavior. However, in
backwards time they are connected to a family of fast fibers instead of to Sa,ε, and
for this reason they are not typical canards like Υv.

We complete this section by making the following important remarks on the
connection to the piecewise-smooth system and the stiction solutions: In the original
coordinates (x, y, θ), the canard trajectories of the folded saddles and the canard-
like solutions of the lines Î± leave the slow manifold at a point inside Σ±

s,stiction,
as in Figures 8(c) and 8(d). In the ε = 0 limit, we can identify these trajectories
as orbits (x, θ)(t) of Zs within Σ : y = 0 that satisfy the Carathéodory condition
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(7). However, they are not stiction solutions. It follows that some of the a priori
nonphysical Carathéodory solutions of (4) appear upon regularization of the stiction
model: these are the trajectories of Zs that intersect I± backwards in time. All the
other Carathédory solutions of model (4) do not have a corresponding solution in
the regularized model. These statements are all independent of the regularization
function φ.

The physical interpretation of the solutions with canard is that the slip onset is
delayed with respect to the time when the external forces have equaled the maximum
static friction force. Figure 11(c) in subsection 6.1 shows a numerical solution with
this delay.

6. Slip-Stick Periodic Orbits. This section considers a family of periodic orbits
of model (4) that interacts with the lines of nonuniqueness I±. Then subsection 6.1
discusses how the family perturbs in the regularized system (10) for 0 < ε ≪ 1 by
combining numerics and analysis.

Model (4) has several kinds of periodic motion: pure slip [9, 59], pure stick [26],
nonsymmetric slip-stick [2, 20, 48, 49, 52], and symmetric slip-stick [26, 49]. This sec-
tion focuses on the latter, as slip-stick orbits are likely to be affected by the nonunique-
ness at I±. Figure 9 shows an example of such a trajectory. The symmetric slip-stick
trajectories can be found by solving a system of algebraic equations, because system
(4), in its nonautonomous form, is piecewise-linear in each region. Furthermore, it is
sufficient to study only half the period, as ensured by Lemmas 6.1 and 6.2.

Lemma 6.1. System (4) has a symmetry

(25) S(x, y, θ) = (−x,−y, θ + π).

Proof. The map (25) is a diffeomorphism R
2 × T

1 → R
2 × T

1 that satisfies the
condition for a symmetry Z(S(z)) = DS(z)Z(z), where DS(z) is the Jacobian of S(z)
and z = (x, y, θ) [46, p. 211].

Lemma 6.2. Let ϕt(z) be the regular stiction orbit of system (4) at time t with
initial condition z = (x, y, θ). If ϕπ(z) = (−x,−y, θ+ π), then the orbit is symmetric
and periodic with period T = 2π.

Proof. Applying the symmetry map (25) to the point ϕπ(z) gives

S(−x,−y, θ + π) = (x, y, θ + 2π).

Since Z(x, y, θ + 2π) ≡ Z(x, y, θ) for any θ ∈ T
1, the flow ϕt(z) is symmetric and

periodic, with symmetry (25) and period T = 2π.

The results of Lemma 6.2 have been used in [59] even though the symmetry is not

made explicit. Define ϕslip
t (z0) (resp., ϕ

stick
t (z1)) as the slip (stick) solution of Z−(z)

(Zs(z)) with initial conditions in z0 (z1). The following lemma states the conditions
under which these two solutions, pieced together, belong to a symmetric slip-stick
periodic orbit.

Lemma 6.3. Necessary conditions for the slip and stick solutions ϕslip
t (z0) and

ϕstick
t (z1) to form the lower half of a symmetric, slip-stick, periodic orbit are

ϕslip

π−θ∗(z0) = ϕstick
0 (z1),(26a)

ϕstick
θ∗ (z1) = S(z0),(26b)

where 0 < θ∗ < π is the duration of one stick phase and z0 ∈ ∂Σ−
c , z1 ∈ Σs.
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Fig. 9 A symmetric, slip-stick, periodic orbit with θ ∈ T
1. The dashed line represents trajecto-

ries in Z−. The interest lies in studying how such an orbit interacts with the intervals of
nonuniqueness I± (in bold) under variation of a parameter.

Table 1 Parameter values used in the simulations.

System µs µd ε δ a b c d

Nonsmooth (4) 1.1 0.4
Regularized (10) 1.1 0.4 10−3 0.6 10.5766 –16.9937 1.7575 5.6595

Condition (26a) guarantees the continuity between the stick and slip phases, while
(26b) guarantees the symmetry. The upper half-period of the orbit follows by applying

the symmetry map (25) to ϕslip
t and ϕstick

t .

Corollary 6.4. Conditions (26) are equivalent to

xslip(π − θ∗) = −x0,(27a)

yslip(π − θ∗) = 0,(27b)

π − θ∗ + θ0 = θ1,(27c)

where z0 = (x0, y0, θ0) ∈ Σ−
c , z1 = (x1, y1, θ1) ∈ Σs, and ϕslip

t (z0) = (x(t), y(t), θ(t))slip.

Proof. The stick solution of (4) with initial condition z1 = (x1, 0, θ1) is given by
(x, y, θ)stick(t) = (x1, 0, t + θ1). Condition (26a) then implies that xslip(π − θ∗) = x1

and yslip(π − θ∗) = 0, while θslip(π − θ∗) = π − θ∗ + θ0 = θ1. Condition (26b) adds,
furthermore, that x1 = −x0.

The slip-stick solutions of (4) are now investigated numerically. The system of
conditions (27) has five unknown parameters: γ, θ0, θ

∗, µs, and µd. It is reasonable
to fix µs and µd, since these are related to the material used, and then find a family
of solutions of (27) by varying the frequency ratio γ = Ω/ω. The values used in the
computations are listed in Table 1. Notice that conditions (27) are necessary but not
sufficient: further admissibility conditions may be needed. These are conditions that
ensure that each piece of solution does not exit its region of definition; for example,
the stick solution should not cross ∂Σ−

c before t = θ∗, and should not cross ∂Σ+
c for

any t ∈ [0, θ∗]. A numerical computation shows that system (27) has two branches

of solutions Πl,r
0 , as shown in Figure 10: one for γ < 1 and one for γ > 1. The

branches are disconnected around the resonance for γ = 1, where chaotic behavior
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Fig. 10 (a) Two families of slip-stick orbits Πl,r
0

of (4) for µs = 1.1, µd = 0.4. The solid line is
θ0, while the dashed line is θ∗. The blue denotes a stable periodic orbit, while the magenta
denotes a saddle periodic orbit. (b) Maximum amplitude of the orbits.

may appear [2, 9, 48]. The branch Πl
0 for γ < 1 is bounded by pure slip orbits when

θ∗ → 0 and by the visible tangency on Σs when θ0 → π/2. The latter is marked with
a circle in Figure 10(a). The branch Πr

0 for γ > 1 is delimited by pure slip orbits
when γ → 1, since again θ∗ → 0, while when γ ≫ 1, which is the rigid body limit,
the family is bounded by θ∗ → π. Here periodic orbits have a very short slip phase
and an almost π-long stick phase.

A slip-stick orbit of model (4) has three Floquet multipliers: one is trivially
unitary, the second one is always zero, and the last indicates the stability of the
periodic orbit. The zero multiplier is due to the interaction of the periodic orbit with
the sticking manifold Σs: solutions lying on this surface are backwards nonunique.
Figure 10 denotes in blue the attracting periodic solutions and in magenta the repelling
ones. In particular, the family Πl

o becomes unstable sufficiently close to the visible
tangency at θ0 = π/2, which is marked with a circle in Figure 10. This is because
the visible tangency acts as a separatrix of two very different behaviors: on one side
orbits jump, while on the other side they turn; recall Figure 7(a).

6.1. Slip-Stick Periodic Orbits in the Regularized System. This section finds
slip-stick periodic solutions of the regularized model (10) with a numerical continua-
tion in AUTO [11]. The solutions are then compared with those of the discontinuous
system (4). The regularization function φ used is of the form (20), being a polynomial

φ(y) = y(ay6 + by4 + cy2 + d),

within y ∈ [−1, 1]. The coefficients a, b, c, d are therefore determined by the conditions
in (9) and (20), and the specific values used in the simulations are listed in Table 1.
The function φ is therefore C∞ everywhere except at y = ±1. Here all one-sided
derivatives exist, but only the first derivative is continuous there and, consequently,
φ is therefore only C1. Figure 11(a) shows the family of slip-stick periodic orbits Πε

of system (10). This can be seen, loosely, as the union of three branches,

Πε = Πl
ε ∪Πc

ε ∪Πr
ε,

where Πl,r
ε are O(ε2/3)-close to the regular branches Πl,r

0 [62]. The branch Πc
ε connects

Πl
ε to Πr

ε at the rigid body limit, which is γ ≫ 1, and it consists of slip-stick periodic
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Fig. 11 Numerical simulation in AUTO. (a) Dashed line: the family Πε. The repelling branch Πc
ε

connects the two regular branches Πl,r
ε . Solid line: families Πl,r

0
. The colors denote the

stability of the orbits, as in Figure 10. (b) Two periodic orbits coexisting for γ = 31: a
regular slip-stick in blue and a slip-stick with canard segments in magenta. The x marks
the folded saddle, while the � denotes the folded node. (c) and (d) Projections of (b) in the
(θ, ŷ)- and (ξ, ŷ)-planes.

orbits each having two canard segments. Figures 11(b) to 11(d) show for γ = 31 two
coexisting periodic orbits: the magenta one belongs to Πc

ε, and the blue one belongs
to Πr

ε. In particular, Figure 11(c) shows the delay in the slip onset, when the orbit
follows the canard, since the slip happens after a time t = O(1) with respect to when
the orbit has intersected the fold lines f±.

Remark 6.5. Recall from (17) that trajectories on C0 satisfy ξ(x, θ) = −µdφ(ŷ).
By Fenichel’s results, a compact, normally hyperbolic submanifold S0 ⊂ C0 perturbs
into a slow manifold Sε for 0 < ε ≪ 1, and the flow on Sε converges to the flow of (16)
as ε → 0. It follows that the time evolution of ξ(x, θ) is equivalent to evolution of the
friction force up to O(ε) terms; see Figures 11(b) and 11(d). In these figures, though,
the vertical segments do not lie on Sε, but are the projections of the fast fibers onto
Sε, and these are denoted with a double arrow.
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The existence of the branch Πc
ε is supported by Proposition 6.6 below. For this,

let Σout be a cross-section orthogonal to the y-axis such that the fast fibers with base
on the singular vrai canard on C−

r intersect it on the line Lout,0. Furthermore, define
Σin as the cross-section orthogonal to the ξ-axis such that it intersects Ca on the line
Lin,0; see Figure 12(a).

Proposition 6.6. Suppose that there exists a smooth return mechanism R :
Σout → Σin that maps Lout,0 ⊂ Σout bijectively into Lin,0 ⊂ Σin for ε = 0. Sup-
pose, furthermore, that Lin,0 = R(Lout,0) is transversal to the singular vrai canard
Υv. Then for 0 < ε ≪ 1 there exists a locally unique orbit ϕε

t (z) that has a canard seg-
ment, and which tends to the singular canard for ε → 0. Furthermore, this orbit has
a saddle stability with Floquet multipliers: {1,O(e−c1/ε),O(e c2/ε)} with c1,2 ∈ R

+.

Proof. First notice that R(Σout) is an exponentially thin tubular neighborhood
within Σin of a line segment Lin,ε = Sa,ε ∩ Σin. Notice also, by Fenichel’s theory
and the assumption of transversality, that Lin,ε is smoothly O(ε)-close to Lin,0 and
contains the intersection of a maximal canard with Σin. This canard is the base of a
smooth foliation of fibers, say FΥv,ε, transverse to Lin,ε. The foliation intersects Σout

in a curve Lout,ε that is at least C1 O(ε2/3)-close to Lout,0. Therefore, upon mapping
Lout,ε forward using R, we obtain a unique transverse intersection of R(Lout,ε) with
FΥv,ε within Σin for each 0 ≤ ε ≪ 1. Let qε denote the corresponding point on Σout.
We then proceed as in the proof of canards in the planar setting; see [41]. In particular,
by the blowup analysis in [61], it follows that there is small section Σfold at the folded
saddle transverse to the fold line, described in the coordinates of the associated scaling
chart, as well as a small neighborhood Nε of qε such that the following holds: The
backward and forward flows of Nε intersect Σfold. The existence of a periodic orbit
then becomes a root-finding problem. The existence of the root follows from an
implicit function theorem argument. In particular, q0 gives a root for ε = 0 which
is nondegenerate. To explain the latter, we consider the variational equations and
first take variations along Lout,ε. This gives exponential decay in backward time but
produces—by the transversality of R(Lout,ε) with Lin,ε—a nonzero tangent vector to
Sa,ε at Σfold in forward time. Next, we take variations in a direction transverse to
Lout,0 at q0. At Σfold, this produces a nonzero tangent vector to Sr,ε in backward
time, and in combination this then gives the nondegeneracy of the root q0 since these
vectors, by the transversility of Sa,ε and Sr,ε along the vrai canard at Σfold as ε → 0,
are linearly independent. It subsequently also follows that the periodic orbit, being
the transverse intersection of an attracting slow manifold and a repelling one, is of
saddle-type.

Figure 12(b) shows numerically that the discontinuous model (4) satisfies the
assumptions of Proposition 6.6. This supports the existence of the branch Πc

ε in the
regularized model for ε sufficiently small. Because of the symmetry, the branch Πc

ε has
two canard segments for each period. A canard explosion may appear when a family
of periodic orbits interacts with a canard. The explosion is defined as the transition
from a small oscillation to a relaxation oscillation for an exponentially small variation
in the parameter [41]. However, system (10) has no canard explosion: Figure 11(a)
shows that the maximum amplitude of the oscillations does not increase with the
continuation from Πl

ε to Πc
ε. The effect of the canard lies instead in the explosion of

one of the Floquet multipliers, as previously stated in Proposition 6.6 and observed
numerically in AUTO. The saddle stability of the family Πc

ε implies that the periodic
orbits of Πc

ε are always repelling, even with a time inversion. Hence, these periodic
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Fig. 12 (a) Construction of the cross-sections Σin,out. (b) Numerical simulation showing that
R(Lout,0) (dashed line) is transversal to Υv (solid line) for ε = 0 and γ = {5, 15}. The

visible tangency is marked with x. The dashed-dotted lines are ∂Σ±
c .

orbits are not visible in standard simulations. However, their stable manifolds act as
separatrices between the basins of attraction of the slip-stick periodic orbits and the
pure stick orbits described in Proposition 5.4. It would be interesting to design an
experiment, with very high precision in the initial conditions, in which the effects of
the canard are measurable. If canard solutions appear, then this would support the
validity of the stiction model and its regularization.

Proposition 6.7. The branch Πc
ε is bounded above by γ = 1/

√
εδ for 0 < ε ≪ 1.

Proof. Differentiate ξ(x, θ) = γ2x + sin(θ) with respect to time, and rewrite the
slow problem (13) in the (ξ, ŷ, θ) variables

ξ′ = γ2εŷ + cos θ,

εŷ′ = −ξ − µdφ(ŷ),

θ′ = 1.

If γ2 = O(1/ε), it makes sense to introduce the rescaling Γ := γ2ε, so that the slow
problem becomes

ξ′ = Γŷ + cos θ,

εŷ′ = −ξ − µdφ(ŷ),

θ′ = 1.

This system again has a multiple time scale with critical manifold (17). Its reduced
problem in time t̂ is

(28)
˙̂y = −Γŷ − cos θ,

θ̇ = µdφ
′(ŷ).

Notice that (28) differs from the desingularized problem (24) only in the term Γŷ in
the ŷ dynamics. The fixed points of (28) exist if |Γδ| ≤ 1, and they have coordinates
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ŷ = ±δ, cos θ = ∓Γδ. The comparison of system (28) with the desingularized problem
(24) shows that the fixed points have shifted along the θ-direction. In particular, the
saddles have moved backward while the centers have moved forward. Furthermore,
the centers have become stable foci. For increasing values of Γ the stable foci turn
into stable nodes. When |Γδ| = 1, pairs of saddles and nodes collide and disappear
through a saddle-node bifurcation of type I [43, Lemma 8.5.7]. Beyond this value,
canard solutions cease to exist. Such a condition is equivalent to γ = 1/

√
εδ.

The bound γ = 1/
√
εδ, which is highlighted in Figure 11(b), is larger than the

value of γ for which the family Πc
ε folds. In particular, at the turning point, the

folded foci have not yet turned into folded nodes. Thus, the collision of the folded
saddles with the folded foci is not a direct cause of the saddle-node bifurcation of Πc

ε,
but gives only an upper bound for the existence of the family. Notice also that when
the folded nodes appear, there might exist further periodic orbits that exit the slow
regime through the canard associated to the stable nodes.

Furthermore, the orbits of Πc
ε interact with the folded saddle only, and they do

not interact with the other points of Î±. The regularized problem (10) may have other
families of periodic orbits that interact with Î±, for example, a family of pure slip
periodic orbits that reaches Î± from a fast fiber and then jumps off through a canard-
like solution. However, this family would also turn unstable when passing sufficiently
close to the canards because of the high sensitivity to the initial conditions around
F±. In particular, an explosion in the Floquet multipliers is again expected because
of Proposition 6.6.

7. Conclusions. Nonuniqueness of solutions is intrinsic in nonsmooth model-
ing [28]. On a fundamental level, nonuniqueness is even problematic in numerical
simulations, where a choice is required and “valid solutions” might therefore be dis-
carded. In this paper, we have shed further light on nonuniqueness and developed
a new terminology for “valid solutions” through the analysis of a simple piecewise-
smooth model of a forced mass-spring system subject to stiction friction.

Stiction is a widely used piecewise-smooth formulation of the friction force because
of its simplicity. However, as demonstrated, this friction law has issues of nonunique-
ness at the onset of slip. A regularization of the model resolves the nonuniqueness and
we have found a repelling slow manifold that separates forward sticking and forward
slipping solutions. Around the slow manifold there is a high sensitivity to the initial
conditions. Some trajectories remain close to this slow manifold for some time be-
fore being repelled. These trajectories, which mathematically are known as canards,
have the physical interpretation of delaying the slip onset when the external forces
have equaled the maximum static friction force at stick. This result could poten-
tially be verified experimentally, thus furthering the understanding of friction-related
phenomena. Indeed, the appearance of the canard solutions is a feature of stiction
friction rather than the specific friction oscillator model. For example, the addition
of a damping term on the friction oscillator or the problem of a mass on an oscillat-
ing belt would give rise to similar canard solutions. Moreover, these canards appear
generically within the class of regularization functions that we consider. In fact, the
system is qualitatively independent of the regularization, which is an important ob-
servation.

The canard solutions of the regularized systems can be interpreted, in the discon-
tinuous model, as Carathéodory trajectories that allow the slip onset at points inside
the sticking region. These Carathéodory orbits are identified by being backwards
transverse to the lines of nonuniqueness.
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The paper has also shown that the regularized system has a family of periodic
orbits Πε interacting with the folded saddles. The orbits with canard Πc

ε ⊂ Πε have
a saddle stability, and we showed, in Proposition 6.6, in an abstract setting, that this
relates to a canard-like explosion of the Floquet multipliers O(e±cε−1

). Furthermore,
we observed that the family Πc

ε connects, in the rigid body limit, the two families of

slip-stick periodic orbits Πl,r
0 that are otherwise disconnected for the discontinuous

problem. We speculate that the connectedness of the cycles are related to a tangency
of the image of the return map R with the canard (see Figure 12) and that it might
be possible to do a more thorough analysis of the rigid-body limit by doing a proper
scaling and blowup analysis (see, e.g., [29, 38]). We also speculate that this tangency
is associated with the onset of chaos through a horseshoe (see also [22, 23] for related
work on chaos in the forced van der Pol), but we leave this to future work. We
complete the paper by emphasizing that our approach is general enough to apply to
systems of increased complexity (e.g., higher dimension).
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