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Abstract

Dynamic demand management is a very promising research direction for improv-

ing power system resilience. This paper considers the problem of managing power

consumption by means of “smart” thermostatic control of domestic refrigerators. In

this approach, the operating temperature of these appliances, and thus their energy

consumption, is modified dynamically, within a safe range, in response to mains fre-

quency fluctuations. Previous research has highlighted the potential of this idea for

responding to sudden power plant outages. However, deterministic control schemes

have proved inadequate as individual appliances tend to “synchronize” with each

other, leading to unacceptable levels of overshoot in energy demand, when they “re-

cover” their steady-state operating cycles.

In this paper we design random controllers that are able to respond to sud-

den plant outages and which avoid the instability phenomena associated with other

feedback strategies. Stochasticity is used to achieve desynchronization of individual

refrigerators while keeping overall power consumption tightly regulated.
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1 Introduction

Dynamic demand management is a very promising research direction for improving power

system resilience. In a power grid, the system frequency (mains frequency) is an indicator

of the balance between demand (load) and supply (generation), with the nominal frequency

of 50Hz corresponding to perfect balance between the two. When demand levels exceed the

available supply, the frequency drops below 50Hz, while in the case of excess (with respect

to system load) generation, the frequency rises above 50Hz. As a result, system frequency

continuously fluctuates around the nominal level, and the system operator ensures that the

balance between demand and supply is continuously maintained, stabilizing the frequency

within narrow bands around 50Hz, by regulating the available supply.

In order for such (supply) regulation to be possible, however, it is required that ‘fre-

quency response services’, as well as sufficient reserves, are included in the system1. This

is essential not only for instantaneous frequency balancing, but, more importantly, for the

ability to respond to sudden power plant failures, which would otherwise lead to severe

blackouts.

From an economic perspective, frequency response services and reserve power are costly,

and any method which manages to reduce the magnitude of these services, without sacri-

ficing system stability, is of significant importance [8]. In recent years, research has been

initiated on the possibility of using frequency responsive loads, commonly referred to as

“dynamic demand control”, so as to reduce the amount of frequency response and reserve

services that are required, potentially leading to significant reductions in overall system

costs.

In this paper, we consider the problem of managing power demand by means of “smart”

thermostatic control of domestic refrigerators. In this approach, the operating temperature

1Frequency response services are provided by synchronized generators, running only part-loaded (and
hence not at maximum efficiency), as well as from industrial customers [1]. Reserve power is identified
with slower, part-loaded plants, and generation units that can start producing at short notice.
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of these appliances, and thus their energy consumption, is modified dynamically, within a

safe range, in response to mains frequency fluctuations. Previous research ([8],[3],[1]) has

shown that this is an effective way to respond to sudden power plant outages, reducing the

cost of reserve power required to deal with such events. The feasibility of the approach for

demand management stems from the large number of domestic refrigerators that are in use

(around 40 million appliances are estimated to operate in the UK [1]). In addition, similar

control schemes can be employed for any other types of appliances, both domestic and

industrial, that exhibit energy storage in the form of heat, such as freezers, water heaters,

etc. [8], greatly expanding the potential applications.

More closely, [8] and [3] investigate the potential of dynamic demand control of domestic

refrigerators, when the thermostat’s temperature thresholds (and, thus, the duty cycle of

appliances) are varied as linear functions of mains frequency deviation from its nominal

value, while they also perform an assessment of the control method in scenarios with

significant supply variability, due to power generated by wind turbines. In both cases, their

results demonstrate that the amount of standing reserve required by the power system can

be safely reduced. A similar approach is followed in [1], where the economic impacts of

such control strategies are also quantified depending on the types of generation units in

the system (nuclear plants, coal plants, combined cycle gas turbine plants, etc.).

Simple feedback schemes, however, such as those employed in [8] and [3], in which

the operating temperature is varied in a linear fashion with respect to mains frequency

deviations, can prove inadequate in achieving desired performance, as individual appliances

tend to “synchronize” with each other, leading to unacceptable levels of overshoot in energy

demand, when they “recover” their steady-state operating temperatures. The appearance

of such phenomena can be slow, but they do ultimately lead to unstable oscillations in the

frequency of the overall system.

The problem of dynamic demand management is also addressed in [10], in the context
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of (centralized) model predictive control (MPC). In this case, the appliances are assumed to

be connected to a communications network, and are able to receive and execute commands

that are generated by a central processing node. The approach is applied to problems in

which there is considerable supply variation due to the significant employment of alternative

energy sources (e.g. wind and photovoltaic). Non-anticipated events such as generator

failures are not explicitly addressed. As expected, the closed loop behaviour is far superior

to that corresponding to the simpler schemes of [8] and [3], but the prospects of immediate

utilization of such ideas are not enhanced, not least by the extra costs that would be

required for widespread implementation.

In contrast to [10], we adopt a framework in which there is no communication between

the controlled devices, and so each device has to act in an autonomous setting. While this

is a severe constraint, and complicates the problem, we note that the quantity of interest is

the temperature distribution of the whole population of appliances at each particular time

point. We therefore pose the problem in a probabilistic framework, in which we try to find

control schemes that steer the probability densities involved towards desired distributions.

The advantage of this approach is that it greatly reduces the dimensionality of the original

problem, while it allows for simple, yet successful solutions.

A viable control scheme in this setting, is the replacement of classical hysterisis-based

controllers with controls that randomly jump between the “on” and “off”states of the

appliances. Careful selection of the jump propensities allows for the decentralized control

of individual appliances’ duty cycles (and, therefore, power consumption), while, during

“recovery”, the “population” of refrigerators is sufficiently diversified (mixed) with respect

to temperature, thereby avoiding undesirable overshoot phenomena.

The probabilistic description of the problem allows for the derivation of closed-form

expressions for the first two moments of the temperature distributions involved, in terms

of the aforementioned jump propensities, so that the latter can be selected in order to
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control these quantities of interest. The resulting closed loop system can be shown to

exhibit properties of local asymptotic stability, regardless of parameter values, as well as

boundedness of solutions for all initial conditions.

The performance of the proposed controllers is assessed via simulations, when coupled

with a simple model of the power grid. Initial results verify the theoretical underpinnings

of our approach, and clearly illustrate the robustness of the method when compared to

earlier approaches.

The rest of the paper is organized as follows. Section 2 elaborates the mathematical

results enabling the proposed solution. A model of refrigerators is outlined in Section 2.1,

with the corresponding analysis shown in Section 2.2. The interconnected system and the

random controller are described in Section 3, while Section 4 proceeds with a stability

analysis of the closed loop system. Results of simulation studies are shown in Section

5. Conclusions can be found in Section 6, while the instability of deterministic control

schemes is discussed in the Appendix.

2 A stochastic approach to refrigerator control

2.1 Refrigerator modeling

For the purposes of deriving a random control algorithm, refrigerators are modelled as

Markov jump linear systems [2, 6], or to be more precise jump affine systems. Roughly

speaking these are switched affine systems whose driving signal is the stochastic process

associated to a finite Markov chain. In particular, in this context, we consider Markov

chains with two states only, an OFF and an ON state, and transition probability rates

between them which are denoted by λ1 and λ2 respectively. It is customary to graphically

represent such systems as done in Fig. 1. Letting T (t) denote the temperature of a single

appliance at time t, its evolution in each of the two states is described by an affine, first-
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order ordinary differential equation, as

Ṫ (t) = −α(T (t) − TON) when ON

Ṫ (t) = −α(T (t) − TOFF ) when OFF.
(1)

In (1) TOFF and TON denote respectively the ambient temperature and the steady-state

temperature reached by a refrigerator which is always ON. The positive coefficient α is a

thermal dispersion coefficient.

Figure 1: Markov chain illustration

We also use πON(t) and πOFF (t) to denote the probability of a single refrigerator being

in the ON and OFF state respectively. Obviously, πON(t) + πOFF (t) = 1 for all times t.

The equations governing the evolution in time of such probabilities are therefore given as:

π̇ON(t) = −λ1πON(t) + λ2πOFF (t)

π̇OFF (t) = −λ2πOFF (t) + λ1πON(t).
(2)

Due to ergodicity of the underlying Markov Chain, the vector (πON(t), πOFF (t))T

for each given pair (λ1, λ2) ∈ (0, +∞)2, converges to a unique stationary distribution

(π̄ON , π̄OFF )T . In particular, π̄ON also represents the average duty cycle of a single appli-

ance. It is straightforward to see that:

π̄ON =
λ2

λ1 + λ2

π̄OFF =
λ1

λ1 + λ2

. (3)

6



Due to the low-dimensionality of the Markov chain, explicit expressions for the transient

probability distributions can be computed as follows

πON(t) = e−(λ1+λ2)tπON(0) + (1 − e−(λ1+λ2)t)π̄ON

πOFF (t) = e−(λ1+λ2)tπOFF (0) + (1 − e−(λ1+λ2)t)π̄OFF .

It is worth pointing out that these are both monotone functions of time. Therefore, if pa-

rameters λ1 and λ2 undergo a step change, the corresponding probability distributions will

evolve monotonically to their new steady-state value. As power absorption of a population

of appliances is proportional to the fraction of them which are in the ON state, monotonic-

ity of πON(t) is a first important indication of the absence of undesired overshoots in power

absorption.

2.2 Open loop behaviour: analytical results

As our goal is to regulate the overall behaviour of a population of refrigerators, it is conve-

nient to derive formulae that describe the time-evolution of the probability distribution of

temperatures of a single appliance, and expressions for the associated first two moments.

To this end, let ρ+(t, T ) and ρ−(t, T ) denote the unnormalized pdf of the temperature of

a device in the ON and OFF state respectively, at time t. In particular note that

πON(t) =

∫ +∞

−∞

ρ+(t, T )dT, πOFF (t) =

∫ +∞

−∞

ρ−(t, T )dT,

so that
∫ +∞

−∞

ρ+(t, T )dT +

∫ +∞

−∞

ρ−(t, T )dT = 1.
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These (unnormalized) temperature distributions satisfy a form of Kolmogorov’s forward

equation, such that

∂ρ+

∂t
= α(T − TON)∂ρ+

∂T
+ (α − λ1)ρ+ + λ2ρ−

∂ρ
−

∂t
= α(T − TOFF )∂ρ

−

∂T
+ (α − λ2)ρ− + λ1ρ+.

(4)

Even though equations (4) admit no closed-form solution it is possible, thanks to the

affine nature of the underlying dynamics, to obtain ODEs that describe the evolution of the

first two moments associated with these distributions, as well as asymptotic (steady-state)

values for these moments. To this end, we define T+(t) and T−(t) as

T+(t) =

∫ +∞

−∞

Tρ+(t, T )dT (5)

T−(t) =

∫ +∞

−∞

Tρ−(t, T )dT, (6)

so that E[T (t)] = T+(t)+T−(t). Differentiating the previous formulae with respect to time,

and using (4), we obtain differential equations for the time evolution of these quantities,

as follows:

Ṫ+ = −(α + λ1)T+ + λ2T− + απONTON (7)

Ṫ− = −(α + λ2)T− + λ1T+ + απOFF TOFF . (8)

It then follows that the expected temperature E[T (t)] satisfies the differential equation

˙E[T (t)] = −α(E[T (t)] − πONTON − πOFF TOFF ). (9)

Taking into account the steady-state values of πON and πOFF given in (3), the expected
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value of T converges asymptotically to

E[T (∞)] = π̄OFF TOFF + π̄ONTON =
λ1

λ1 + λ2

TOFF +
λ2

λ1 + λ2

TON . (10)

Now consider the variance v(t) = var[T (t)] of T . This is given as

v(t) =

∫ +∞

−∞

(T − E[T ])2(ρ+(t, T ) + ρ−(t, T ))dT

=

∫ +∞

−∞

T 2(ρ+(t, T ) + ρ−(t, T ))dT − (E[T ])2.

Differentiating the above with respect to t, and using (4), yields

v̇(t) = −2
[

α[v(t) + (E[T ])2 − TONT+ − TOFF T−] + E[T ] ˙E[T ]
]

. (11)

Overall, the first and second population’s moments are governed by the following block-

triangular set of ODEs:

π̇ON = −λ1πON + λ2πOFF

π̇OFF = −λ2πOFF + λ1πON

Ṫ+ = −(α + λ1)T+ + λ2T− + απONTON

Ṫ− = −(α + λ2)T− + λ1T+ + απOFF TOFF

v̇ = −2 [α[v + (T+ + T−)2 − TONT+ − TOFF T−]+

−(T+ + T−)α(T+ + T− − πONTON − πOFF TOFF )] .

(12)

Due to the cascaded structure of this system and linearity of its diagonal terms, it is easy

to see that the system is globally asymptotically convergent. In particular, the asymptotic
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value for the variance equals:

v̄ = (TON − TOFF )2 αλ1λ2

(λ1 + λ2)2(α + λ1 + λ2)
. (13)

The formulae derived so far will be useful also for the derivation of a control strategy which

is developed in the next Section.

3 The interconnected system

The power grid is modeled by a 3rd order linear system [4]


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
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
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(∆PL − ∆Pf )

Ptot

,

(14)

corresponding to the block diagram shown in Figure 2. Exact values for the parameters in

(14) are given in Section 5. Notice that (14) is expressed in a ‘per-unit’ basis ([1]), so that

∆f = 50 × ∆ω.

Figure 2: Model of power grid

The appliances load the grid at the summing junction via the variable ∆Pf , which

represents the deviation in overall power (consumed by all the appliances that are connected

to the network) from their nominal consumption level. The additional variable ∆PL is used
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so as to simulate a sudden loss of power in the system2.

Standard refrigerator controllers operate on a hysteretic basis, in which two tempera-

ture levels Tmax and Tmin trigger the motor ON and OFF respectively. Initial attempts

at dynamic demand refrigerator control ([8],[1]) focused on dynamically adjusting these

threshold levels, by imposing a linear dependence on mains frequency deviations, as

T̃max(t) = Tmax + K∆f(t)

T̃min(t) = Tmin + K∆f(t),
(15)

where K is a constant of proportionality.

Even though such strategies are effective in the short-term (i.e. when for the first

time a plant failure occurs), evidence is provided in the Appendix and Simulation Sections

that they eventually lead to unstable overall behaviour of the closed-loop system. This

phenomenon takes two different forms:

• long-term phase synchronization of refrigerators: indeed even non-identical popula-

tion of refrigerators with duty cycles of comparable duration will tend to asymptoti-

cally synchronize their oscillations, giving rise to the so called phase-locking phenom-

enon, see for instance [7].

• uncontrolled modifications of the population’s temperature distribution: the uniform

in phase distribution that one expects of a population of randomly switched on

utilities gets unpredictably modified by the occurence of load disturbances and leads

to significant oscillations in power demand even in the medium term.

In the rest of this Section, we describe an alternative control strategy that avoids such

instabilities.

2Note that a sudden power loss is equivalent to a sudden increase in demand, of the same magnitude.
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3.1 Random control strategy

In what follows, it is constructive to define the control variables u1 and u2 as

u1 =
λ1

α
and u2 =

λ2

α
. (16)

Now consider equations (10) and (13). In terms of the new variables, these can be

rewritten as

E[T (∞)] =
u1

u1 + u2

TOFF +
u2

u1 + u2

TON (17)

v̄ = (TON − TOFF )2 u1u2

(u1 + u2)2(1 + u1 + u2)
. (18)

Note also that equation (3), which determines the duty cycle of each appliance as a

function of the transition rates, can be rewritten as

π̄ON =
u2

u1 + u2

. (19)

Control of the appliances can be achieved via the selection of the transition rates λ1 and

λ2 as functions of the grid frequency deviation (fnom − f(t)). By fixing a desired value for

the variance in operating temperatures, vdes in (18), the transition rates λ1 and λ2 can be

determined by postulating a desired average temperature, Tdes, or a desired average duty

cycle, πdes. In particular, if the latter is adopted, the following expressions are obtained

by inverting the previous formulas:

u1 = (π2
des − πdes + vdes/(TON − TOFF )2)(πdes − 1)(TON − TOFF )2/vdes

u2 = −πdes(π
2
des − πdes + vdes/(TON − TOFF )2)(TON − T 2

OFF )/vdes

(20)

Our decentralized control strategy is therefore to vary either Tdes or πdes as linear functions
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of the frequency deviation:

Tdes(t) = Tnom + KT (fnom − f(t)) (21)

πdes(t) = πnom + Kπ(fnom − f(t)), (22)

where KT and Kπ are proportionality constants, and Tnom and πnom are the nominal values

of the average temperature and the (corresponding) duty cycle when there is no frequency

deviation in the grid (∆f = 0).

In the simulations shown in Section 5, πdes was chosen as the reference variable, as it

led to faster responses.

The control scheme described above results in a time-inhomogeneous Markov chain,

with rate functions λ1(t) and λ2(t) which can be computed as functions of the instantaneous

mains frequency f(t), just by composing equations (20) and (22).

Individual appliances, then, will run the following simple algorithm:

• When device switches to ON mode:

1. Set t0 = t and r=RND.

2. Start evaluating the integral I(t) =
∫ t

t0
λ1(τ)dτ .

3. Switch to OFF at time t′, for which I(t′) ≥ − ln(r).

• When device switches to OFF mode:

1. Set t0 = t and r=RND.

2. Start evaluating the integral I(t) =
∫ t

t0
λ2(τ)dτ .

3. Switch to OFF at time t′, for which I(t′) ≥ − ln(r).

In the above, RND denotes a random number, uniformly distributed in the interval [0, 1].
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Note that the scheme is computationally simple, in that it only involves a random number

generator and a standard quadrature routine.

3.2 Algorithm variations

Based on the random control strategy of Section 3.1, several ‘hybrid’ algorithms can be

constructed.

For example, even though the random controller of the previous Section regulates the

mean and variance of a refrigerator’s temperature, it might be desirable in practical ap-

plications to introduce safety thresholds Tmax and Tmin, which would serve to prohibit

temperature excursions beyond ‘safe’ levels. This leads to a random controller with tem-

perature constraints, according to which, if any of the Tmax or Tmin thresholds is exceeded,

the appliance forcibly switches ON (or, respectively, OFF), overriding the random control

action.

In addition, initial simulations indicated that, even though the proposed random con-

troller performs overall better than simpler linear feedback schemes, the latter respond

faster at the onset of a failure, where the initial frequency drop is very sharp. To cater for

the slower response, the Tmin ‘safety’ threshold can be made frequency dependent, resulting

in a random controller with variable constraints, as follows:

T̄min = Tmin − Ks∆f.

4 Stability analysis

We now proceed to the stability analysis of a large population of refrigerators governed by

the random algorithm described in Section 3.1 connected to the power supply network as

modeled by equations (14). Our main result in this respect is stated below:
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Claim: the interconnection of a large population of identical refrigerators,

regulated according the random algorithm described above, yields a locally

asymptotically stable closed-loop system (assuming the model (14)) regardless

of parameters values and control gains.

To substantiate our claim we first derive a closed-loop mathematical model of this large

scale system. To this end, it is useful to recall that equations (4) carry both a stochastic

and a deterministic interpretation. From the stochastic point of view they describe the evo-

lution of probability distributions of a continuous time random process (a single randomly

regulated refrigerator). From the deterministic point of view, the quantity
∫ θ2

θ1
ρS(t, θ)dθ

can be seen as the fraction of refrigerators in state S that at any given time t have temper-

ature in the interval [θ1, θ2] provided a large population of identical refrigerators is assumed

each of which updates its state according to the previously illustrated algorithm. It is worth

pointing out that equations (4) keep their validity also if λ1 and λ2 are time-varying inputs.

Moreover, the deterministic interpretation just mentioned allows to derive the closed-loop

system simply by juxtaposition of equations (4) with the power-network model (14):

∂ρ+

∂t
= α[T − TON ]∂ρ+

∂T
+ (α − λ1(f))ρ+ + λ2(f)ρ−

∂ρ
−

∂t
= α[T − TOFF ]∂ρ

−

∂T
+ (α − λ2(f))ρ− + λ1(f)ρ+.

f = G(s)[Ln − KπON ],

(23)

where we denoted G(s) the transfer function from ∆Pf to ∆f . Notice that the load due

to refrigerators is proportional trough the gain K to the fraction of fridges which are in

the ON state (πON). The input Ln is instead the nominal load. While equations (23)
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G(s)

πON(t)

ω(t)

Ld(t)

K

T+ T
−

v

−

Figure 3: Closed-loop system

are infinite-dimensional, their momenta evolve according to a finite dimensional nonlinear

system of equations. In particular:

π̇ON = −λ1(f)πON + λ2(f)πOFF

π̇OFF = −λ2(f)πOFF + λ1(f)πON

f = G(s)[Ln − KπON ].

(24)

The equations for T+, T− and v are as in (12). Notice that the overall system exhibits a

cascaded structure with the πON -f feedback loop forcing the remaining variables T−, T+

and v, see Fig. 3. Notice that we may exploit the conservation law: πON(t) + πOFF (t) = 1

in order to write the πON subsystem as a scalar nonlinear system:

π̇ON = −[λ1(f) + λ2(f)]πON + λ2(f), (25)

f = G(s)[Ln − KπON ]
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It is convenient to denote the function fON(π, f):

fON(π, f) := −[λ1(f) + λ2(f)]π + λ2(f).

The nonlinear switching propensities λ1 and λ2 are designed so that:

∀ fe ∃ unique πe ∈ (0, 1) : fON(πe, fe) = 0.

Moreover, for all π 6= πe in [0, 1] it holds

(π − πe) · fON(π, fe) < 0

which implies global asymptotic stability of the equilibrium πe for the constant input fe.

Linearization around such equilibrium yields the equations of a first-order asymptotically

stable linear system of positive DC gain. This is a strictly passive system, (see for instance

[5]). Due to passivity of G(s) and the passivity theorem the equilibrium point of (25)

is locally asymptotically stable regardless of parameters values. Moreover, so are also

the equations involving higher-order momenta due to their cascaded structure. While

global asymptotic stability of the closed-loop system appears difficult to prove, boundedness

of πON (always in [0, 1] ) and BIBO stability of G(s) allow to conclude boundedness of

solutions of the closed-loop system (25) for all initial conditions. By a standard analysis

based on Input-to-State stability of cascades, (see for instance [9] ), it is then possible to

show boundedness of first and second momenta of ρ for all initial conditions.
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5 Simulation results

In this section, we present preliminary results on the performance of the random controller

and its variations, outlined in Sections 3.1 and 3.2, and compare with the deterministic

controller of [8], when these algorithms are employed to control a population of 40 million

refrigerators (90% of which is assumed to be of the ‘dynamic demand’ type), connected to

a power supply network as shown in Section 3.

The parameters of the power grid model (14) were set to the values used in [1], and are

given in Table 1. Two different scenarios were considered, differing in the amount of total

power being supplied by the network, so as to highlight the effects of the refrigerators in

the closed loop system.

Tg Tt Req M D Ptot (GW)
0.2 50 0.177 6.7 1 (a)55, (b)25

Table 1: Grid parameter values

The nominal parameters in the refrigerator model (1), namely α, TON , and TOFF , were

set to 2.4×10−4, −38.3 and 20, respectively, corresponding to the cycle shown in Figure 4,

and a nominal duty cycle of approximately 25%. Both ‘dynamic demand’ and ‘non-dynamic

demand’ (i.e. conventional) appliances were simulated, with 1000 appliances in each set,

while the total power consumption of the two sets was scaled up so as to approximate the

total of 40 million appliances. The state and temperature of each simulated refrigerator

were randomly initialized, while model parameters for each appliance (α, TON , TOFF ) were

also randomly chosen from a [−15%, +15%] uniform window around the nominal values

previously stated. The parameters (controller gains, etc.) employed in the various control

algorithms are collected3 in Table 2.

The performance of the various algorithms was assessed in the case of a sudden loss of

3To ensure 0 ≤ πON ≤ 1, a floor and ceiling value were introduced when calculating πdes according to
equation (22) in the random algorithms.
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Figure 4: Fridge Cycle

Hysteretic Tmin = 4, Tmax = 6
Deterministic Tmin = 4, Tmax = 6, K = 5

Random Kπ = 5, Tdes = 5, vdes = 1
Constrained Random Kπ = 5, Tdes = 5, vdes = 1, Tmin = 1, Tmax = 9
Variable Constrained Kπ = 5, Tdes = 5, vdes = 1, Tmin = 1, Tmax = 9, Ks = 10

Table 2: Controller parameter values

1.32GW of power from the system, which was imposed by introducing a step increase in PL

in equation (14). The duration of the loss was 15 minutes, after which the power recovered

to the original levels in a ramp fashion, with the recovery period lasting 10 minutes (see

Figure 5).
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Figure 5: Power Loss

Figures 6(a) and 6(b) show the system frequency deviation (∆f), the overall power

19



consumed by refrigerators, and the average temprerature across the appliances as functions

of time, for the two scenarios considered. The results demonstrate the superiority of the

proposed control algorithm when compared to the deterministic control method of [8]; the

closed loop is stable, while it also has the desired transient properties (see Figures 7(a)

and 7(b) for a magnified version of the transient response).

The instability phenomena associated with the deterministic method (and which are

elaborated upon in the Appendix) are highlighted in Figure 6, especially in cases where the

total power consumed by the ‘adaptive’ refrigerators constitutes a significant fraction of

the overall power demand in the system (Scenario II - Figure 6(b)). The random strategy

does not suffer from such drawbacks.

In particular, the random controller (in all its variations) manages to stabilize the

system’s frequency at higher levels (i.e. smaller ∆f) than the deterministic algorithm,

without leading to undesirable overshoot in power consumption during the recovery phase,

as is the case for the latter. A trade-off is identified between the absense of overshoot

of the consumed power and the time required for the average temperature to recover its

steady-state value, which is (significantly) longer for the random controller. The proposed

scheme does not allow for the control of the recovery time, as the time constant in the

expression for E[T ] (9) is equal to 1/α, which is a device constant.

The ‘variable constrained’ version of the random controller responds as fast as the

deterministic algorithm, while the introduction of ‘safety’ temperature thresholds does not

adversely affect the closed loop performance.

6 Conclusions

A new algorithm for dynamic-demand control of refrigerator appliances has been presented

and theoretically justified. The proposed algorithm adopts a probabilistc description of
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Figure 6: Scenario I and II results
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Figure 7: Scenario I and II results (magnified)
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the problem, resulting in a relatively simple control scheme. Application of this control

strategy ensures sufficient diversification (mixing) of the temperature across the controlled

appliances, and does not lead to overshoot or instability phenomena associated with simpler

deterministic schemes. The control scheme can also be applied to other kinds of devices that

exhibit energy storage in the form of heat, such as freezers, water heaters, etc.. Similar ideas

may also be exploited in other areas where the issue of node ‘synchronization’ potentially

leads to problematic behaviour, such as in internet congestion studies.

Initial simulation results verify the theoretical underpinning of the proposed approach.

The random controller is capable of maintaining the power system’s frequency for a longer

period of time, when compared to the deterministic scheme, and results in faster recovery

at the end. Contrary to deterministic feedback, which breaks down in cases where the total

average power consumed by refrigerators is large relative to the overall system demand,

the random controller was shown to perform robustly.

Future work will focus on testing the approach in several scenarios of practical impor-

tance in the power systems industry, while an assessment of the potential economic benefits

of the proposed method will also be undertaken.

Acknoledgements

This work is supported by the EPSRC grant “Control For Energy and Sustainability”,

grant reference EP/G066477/1.

References

[1] M. Aunedi, J.E. Ortega Calderon, V. Silva, P. Mitcheson, and G. Strbac, “Eco-

nomic and Environmental Impact of Dynamic Demand,” Centre for Sustain-

23



able Electricity and Distributed Generation, November 2008, http://www.supergen-

networks.org.uk/filebyid/50/file.pdf

[2] O.L. do Valle Costa, M. Dutra Fragoso and R. P. Marques, Discrete-time Markov

jump linear systems. Springer-Verlag, London, 2005.

[3] D.G. Infield, J. Short, C. Horne, and L.L. Freris, “Potential for Domestic Dynamic

Demand-Side Management in the UK,” IEEE Power Engineering Society General

Meeting 2007, pp.1–6, June 2007.

[4] D.I. Jones, “Dynamic system parameters for the National Grid,” IEE Proceedings of

Generation Transmission and Distribution, Vol. 152, No. 1, pp. 53–60, January 2005.

[5] R. Lozano, B. Brogliato, O. Egeland, and B. Maschke, Dissipative systems analysis

and control. Springer-Verlag, London, 2000.

[6] M. Mariton, Jump linear systems in automatic control. Marcel Decker, 1990.

[7] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: a universal concept in

nonlinear sciences. Cambridge University Press, 2003.

[8] J.A. Short, D.G. Infield, and L.L. Freris, “Stabilization of Grid Frequency Through

Dynamic Demand Control,” IEEE Transactions on Power Systems, Vol. 22, No. 3,

pp. 1284–1293, August 2007.

[9] E.D. Sontag, “Input to state stability: Basic concepts and results”, In P. Nistri and G.

Stefani, editors, Nonlinear and Optimal Control Theory, pp. 163220, Springer-Verlag,

Berlin, 2007.

[10] M. Stadler, W. Krause, M. Sonnenschein, and U. Vogel, “Modelling and evaluation

of control schemes for enhancing load shift of electricity demand for cooling devices,”

Elsevier Environmental Modelling and Software, Vol. 24, pp. 285–295, 2009.

24



TMAXTMIN

TOFF

TON

Figure 8: Relay nonlinearity

A Phase-locking in deterministically regulated appli-

ances

The standard approach to temperature control in refrigerators is to determine the ON/OFF

state of the motor by means of a relay system. In this case equations governing temperature

read:

Ṫ = −α(T − H(T )) (26)

where H(T ) is the hysteresis nonlinearity shown in Fig. 8. If TMIN and TMAX are held

constant and TON < TMIN < TMAX < TOFF , then the temperature T , converges in finite

time to a periodic solution which has maximum and minimum at TMIN and TMAX . This

asymptotic solution Tss(t), has a period τ = ton + toff which can be explicitly computed
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by solving the two equations below:

TMIN − TON = e−α·ton(TMAX − TON)

TMAX − TOFF = e−α·toff (TMIN − TOFF ).
(27)

Indeed, assuming Tss(0) = TMAX we have

Tss(t) =











e−αt(TMAX − TON) + TON if 0 ≤ t ≤ ton

e−α(t−ton)(TMIN − TOFF ) + TOFF if ton ≤ t ≤ τ

When a population of identical fridges is operated in parallel, the power absorption of the

refrigerators asymptotically tends to a periodic function of period τ . If the population is

connected to a model of power network, this will induce a periodic fluctuation of mains

frequency of the same period. For a uniform initial distribution of phases, however, the

number of refrigerators in the ON state is approximately constant (and exactly so in the

limiting case). This means that even a large population of fridges uniformly distributed

with respect to phase only induces a neglegible fluctuation of mains frequency.

We analyze next what is the effect of periodically forcing equation (26) by defining

the hysteresis threshold values TMIN and TMAX to be periodic functions of time. Let us

assume:

TON < TMIN(t) < TMAX(t) < TOFF ∀ t ∈ R

TMIN(t + Υ) = TMIN(t) TMAX(t + Υ) = TMAX(t) ∀ t ∈ R

(28)

for some positive number Υ. In addition we may define:

TMIN = mint∈R TMIN(t) TMIN = maxt∈R TMIN(t)

TMAX = mint∈R TMAX(t) TMAX = maxt∈R TMAX(t).
(29)
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Under such assumptions and with the notation introduced rough lower and upper-bounds

to the duration of temperature oscillations for a forced refrigerator may be derived as

follows:

τMIN = −
1

α

[

log

(

TMIN − TON

TMAX − TON

)

+ log

(

TOFF − TMAX

TOFF − TMIN

)]

τMAX = −
1

α

[

log

(

TMIN − TON

TMAX − TON

)

+ log

(

TOFF − TMAX

TOFF − TMIN

)]

.

Tighter bounds are instead computed by solving:

τ̂MAX = maxθ,tON ,tOFF
tON + tOFF

subject to

TMIN(θ + tON) − TON = e−αtON [TMAX(θ) − TON ]

TMAX(θ + tON + tOFF ) − TOFF = e−αtOFF [TMIN(θ + tON) − TOFF ]

(30)

and:

τ̂MIN = minθ,tON ,tOFF
tON + tOFF

subject to

TMIN(θ + tON) − TON = e−αtON [TMAX(θ) − TON ]

TMAX(θ + tON + tOFF ) − TOFF = e−αtOFF [TMIN(θ + tON) − TOFF ].

(31)

It is useful for the subsequent analysis to keep track of the k-th maximum (and possibly

minimum) point of T (t) (since initial time t = 0) by defining variables T+(k) and T−(k)

to be the time instant at which maximum and minimum temperature values are assumed

for the k-th time respectively. In particular, there exists a function F : R → R such that:

T+(k + 1) = F (T+(k)).
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Notice that due to continuity of TMIN and TMAX with respect to t and continuity of

solutions, F is also continuous. To obtain a more explicit expression for F we may define

the following functions:

fOFF
MAX(t) = t + 1

α
log(TOFF − TMAX(t))

fOFF
MIN (t) = t + 1

α
log(TOFF − TMIN(t))

fON
MAX(t) = t + 1

α
log(TMAX(t) − TON)

fON
MIN(t) = t + 1

α
log(TMIN(t) − TON).

(32)

Assume that T+(1) = 0. By explicit integration of (26) we obtain:

fON
MIN(T−(k)) = fON

MAX(T+(k))

fOFF
MAX(T+(k + 1)) = fOFF

MIN (T−(k)).
(33)

Notice that whenever:

−α[TMIN(t) − TON ] < T ′

MIN(t)

T ′

MAX(t) < α[TOFF − TMAX(t)]

the functions fOFF
MAX and fON

MIN are monotone with respect to t so that their inverse is well

defined and one may define the recursion:

T+(k + 1) = fOFF
MAX

−1
(fOFF

MIN (fON
MIN

−1
(fON

MAX(T+(k))))) = F (T+(k)) k = 1, 2, . . . (34)

Notice that the functions fO
M with M = MIN, MAX and O = ON,OFF, fulfill the following

property:

fO
M(t ± Υ) = fO

M(t) ± Υ ∀ t ∈ R. (35)
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Similarly, for inverse functions we have:

fO
M

−1
(t ± Υ) = fO

M

−1
(t) ± Υ. (36)

Exploiting the properties in (35) and (36) we rewrite recursion (34) in terms of the new

variable ϕ defined as:

ϕ(k) = T+(k) − kΥ. (37)

The variable ϕ(k) keeps track of the phase difference (expressed in time units) between

temperature peaks and the forcing periodic signals TMIN(t) and TMAX(t). Straightforward

manipulations show that letting

F (t) = fOFF
MAX

−1
(fOFF

MIN (fON
MIN

−1
(fON

MAX(t))))

we have the equation:

ϕ(k + 1) = T+(k + 1) − (k + 1)Υ = F (T+(k)) − (k + 1)Υ

= F (T+(k) − kΥ) − Υ = F (ϕ(k)) − Υ

Three distinct scenarios are possible for the recursion:

ϕ(k + 1) = F (ϕ(k)) − Υ. (38)

1. The first possibility is that F (ϕ) − Υ > ϕ for all ϕ ∈ R. In this case ϕ(k) is an

increasing sequence (with positive average slope). This implies that temperature

oscillations are slowlier than those of the forcing signal.

2. The second possibility is that F (ϕ) − Υ < ϕ for all ϕ ∈ R. In this case ϕ(k)

is a decreasing sequence (with negative average slope). In this case temperature

29



Stable fixed point

Unstable fixed point

Figure 9: Stable and unstable fixed points of (38)

oscillations are faster than those of the forcing signal.

3. The last possibility is that there exist fixed points of the map F (ϕ)−Υ (in particular

if t̄ is a fixed point than also t̄ ± nΥ is a fixed point for all n ∈ N). This happens

whenever:

Υ ∈ (τ̂MIN , τ̂MAX). (39)

Stability of fixed points can be easily determined by checking the relative slopes of

intersection points of the map F (ϕ) − Υ with the diagonal (see Fig. 9).

If the function F (ϕ) − Υ only crosses twice the diagonal on each interval of length

Υ, then only two fixed points will exist (modulo equivalence ±nΥ), one almost glob-

ally asymptotically stable and the other unstable. From a physical point of view

this situation corresponds to a scenario in which phase synchronization occurs and

temperature oscillations happen at the same frequency of the forcing signal.
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Notice that, in a closed-loop scenario in which TMIN(t) and TMAX(t) are determined as a

function of the global network frequency, and frequency fluctuations are in turn determined

by variations in the absorbed power which is periodic of period τ , necessarily τ = Υ. That

is, scenario 1 and 2 are not possible in a periodic regime in which deterministic hysteretic

regulation is adopted. The above analysis suggests that the presence of small periodic

ripples in networks frequency will gradually entrain oscillations of fridges that have nearby

oscillations frequency, thus reinforcing the frequency ripple and eventually lead to even

larger numbers of entrained refrigerators. Simulations indeed confirm the intrinsic risks of

such regulation approach as catastrophic oscillations eventually develop in the network.
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