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ABSTRACT

Deep learning is a promising approach to early DRV (Design Rule

Violation) prediction. However, non-deterministic parallel rout-

ing hampers model training and degrades prediction accuracy. In

this work, we propose a stochastic approach, called LGC-Net, to

solve this problem. In this approach, we develop new techniques of

Gaussian random field layer and focal likelihood loss function to

seamlessly integrate Log Gaussian Cox process with deep learning.

This approach provides not only statistical regression results but

also classification ones with different thresholds without retraining.

Experimental results with noisy training data on industrial designs

demonstrate that LGC-Net achieves significantly better accuracy

of DRV density prediction than prior arts.
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1 INTRODUCTION

Achieving design closure without any design rule violations (DRVs)

is a fundamental requirement for VLSI designs. However, accurate

design rule checking (DRC) is only possible after detailed routing,
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Figure 1: DRV density maps of two routing solutions for the same

placement with an industrial multi-threaded detailed router.

which is among the last few steps in physical design with little

room to fix all the remaining DRVs. In this regard, many research

efforts [2, 3, 12, 13, 16, 20, 21, 23] have been undertaken to predict

DRVs at earlier design stages, e.g., placement or global routing.

Deep learning-based techniques have especially become popular to

deliver early and high-fidelity DRV prediction, thanks to the strong

knowledge extraction and reuse capability.

Deep learning-based approaches typically require determinis-

tic training data. When it comes to the DRV prediction, however,

non-deterministic parallel routing can bring about non-negligible

randomness in DRV distribution [15]. Figure 1 shows the DRVmaps

of two routing solutions on the identical placement obtained by an

industrial parallel detailed router. Although they are similar to each

other, the two DRV maps are far from identical. From the view of

training machine-learning (ML) models, the DRV labels are very

noisy. Even more complicated, the randomness is imbalanced across

a layout; the dissimilarity of the two DRV maps in Figure 1 gets

significant in regions with higher DRV density. Such noise hampers

the model training and degrades the model performance. Nonethe-

less, to the best of our knowledge, the issue of non-deterministic

training data has hardly ever been studied in the EDA field.

In this work, we propose a stochastic approach to handle the non-

deterministic behavior of parallel detailed routers in deep learning-

based DRV prediction. With novel DRV distribution modeling and

Maximum Likelihood Estimation-based training techniques, the

proposed method can predict the parameters of the probabilistic

model governing the non-deterministic nature of DRV occurrence.

Thus, our deep-learning model can provide more detailed DRV in-

formation in presence of non-determinism, which cannot be dealt

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549347&domain=pdf&date_stamp=2022-12-22
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with by most of the previous works based on binary classification.

Furthermore, the prediction outcome can be transformed into DRV

classification results by setting proper thresholds. It is also note-

worthy that our proposed model needs single-pass training to give

binary-classification results for various label thresholds, while a

binary classifier requires multiple rounds of training, each with a

distinct label threshold.

Our main contributions are summarized as follows:

(1) We model the stochastic spatial distribution of DRVs via a

Log Gaussian Cox (LGC) process [5], which is a Poisson point

process [6] in 2D layout space with a Gaussian Random Field

(GRF) [14] that handles the correlation between nearby regions.

We build a deep learning framework – LGC-Net, which is a

realization of LGC process on the J-Net architecture [12].

(2) We develop the GRF layer – a new type of neural network layer

structure. It is an implementation of the theoretic concept of

GRF and designed in a way to be seamlessly integrated with

our LGC-Net architecture so that spatial correlations of DRVs

can be well captured.

(3) We propose a new loss function – Focal Likelihood Loss, for

training the proposed LGC-Net model. It unifies the concepts of

likelihood and focal loss, which are usually used separately. Its

computation is built upon the Poisson point process in the LGC

process. The likelihood estimate makes our LGC-Net training

much more robust to noisy data than the popular mean-square-

error-based loss functions. Moreover, the focal loss part helps

deal with imbalanced training data, which is often seen in cases

of DRV predictions.

(4) LGC-Net can be applied for either regression or classification.

For classification, it can be trained only once and then applied

with different label thresholds without retraining. This is a very

appealing difference from conventional classification models.

(5) Experiments results based on noisy training data obtained from

a set of industrial 7nm designs demonstrate that our method

achieves stochastic DRV density prediction performance signif-

icantly better than previous arts. Our regression-based classifi-

cation results are also remarkably superior to those from recent

previous work.

The rest of this paper is organized as follows. Section 2 reviews

relevant previous works. Section 3 presents preliminaries for un-

derstanding our method. Section 4 illustrates the details of our

LGC-Net to handle non-determinism in DRV prediction. Section 5

provides experimental results, and Section 6 concludes the paper.

2 PREVIOUS METHODS

Design rule violations is awidely-adopted indicator of layout routabil-

ity. DRV prediction in early design stages allows designers or tools

to prevent DRVs in a proactive manner. Machine learning-based

methods [2, 20], especially deep learning-based techniques [12, 21,

21, 23], have demonstrated their great potential in providing early

and high-fidelity DRV prediction. A support vector machine-based

technique is developed in [20] to predict locations of DRVs. A neu-

ral network-based approach is proposed in [2] for short violation

prediction from a placed netlist. RouteNet [23] is the first deep

learning-based DRV predictor. It utilizes a convolutional neural

network (CNN) to predict the total number of DRVs and a fully

Figure 2: J-Net convolutional architecture for DRV prediction [12].

convolutional network (FCN) to pinpoint the DRV locations. A

CNN-based approach is developed in [21] to transform global rout-

ing reports into DRV Maps. The work of J-Net [12] proposes a

customized convolutional network to pinpoint DRV locations at

advanced sub-10nm process nodes, where pin accessibility becomes

a major contributor to DRVs.

Other related works include routing congestion predictors [3,

9, 18, 22] for VLSI and FPGA circuits, a neural architecture search

technique for automatic routability predictor development [7], a

CNN-based classifier to identify pin accessibility risks [16] and

routability predictor-driven placement optimization methods [13,

19]. However, the issue of non-deterministic training data has not

yet been studied in the aforementioned works.

3 BACKGROUND

3.1 J-Net Convolutional Network

For accurate DRV prediction at advanced technology nodes, both (i)

higher resolution pin configuration images and (ii) lower resolution

tile-based features, e.g., net density, need to be considered. A flexi-

ble convolutional architecture, called J-Net, is proposed in [12] to

handle the mixed resolution images. J-Net has an encoder-decoder

architecture as shown in Figure 2. Feature maps of different resolu-

tions are fed into different levels at the encoding path. If a feature

map is fed to a middle level of the encoding path, it is concatenated

with the feature representations of the same resolution produced

from the previous levels. In this way, J-Net can accommodate input

features with different resolutions effectively.

3.2 Focal Loss

Focal loss (FL) [17] is a loss function proposed to address extremely

imbalanced data in classification model training. For a sample with

label 𝑙 ∈ {0, 1}, the raw classification outcome 𝑦 ∈ R (0 ≤ 𝑦 ≤ 1)

can be viewed as the probability of this sample being classified as

“1.” The focal loss of 𝑦 is given by:

FL(𝑦, 𝑙) = −(1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 ), (1)

where 𝛾 is a hyperparameter, and 𝑝𝑡 is defined as 𝑦 if 𝑙 = 1 and 1−𝑦
otherwise. The term 𝑝𝑡 near 1 indicates samples where the model
can correctly classify with high probabilities, whereas 𝑝𝑡 near 0
means difficult-to-classify samples. When a sample has small 𝑝𝑡 ,
the modulating factor (1 − 𝑝𝑡 )𝛾 is near 1 and the loss is unaffected.

As 𝑝𝑡 goes to 1, the modulating factor goes to 0 down-weighting
the loss for well-classified samples. Hyperparameter 𝛾 adjusts the
rate at which easy samples are down-weighted. Figure 3 depicts

how 𝛾 affects FL. Note that the FL can not be applied to regression
problems directly.
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Figure 3: Illustration of focal loss [17].

3.3 Log Gaussian Cox Process

A point process [6] is a probabilistic model for random scattering

of points in a mathematical space 𝑆 ⊆ R𝑑 (the 𝑑-dimensional Eu-
clidean space). A point process on 𝑆 is called a Poisson point process
if the number of points in any bounded region 𝐵 ⊆ 𝑆 , denoted by
𝑁 (𝐵), is a random variable following a Poisson distribution. A Pois-

son point process is fully characterized by a location-dependent

intensity function 𝜇 (𝐵), which gives the expected number of points
in 𝐵 as well as its variance, i.e., 𝐸 [𝑁 (𝐵)] = Var[𝑁 (𝐵)] = 𝜇 (𝐵).1
The Poisson point process can be viewed as a fundamental point

process model in that it possesses the property of “complete spatial

randomness” of points.

Real-world applications of point processes usually exhibit some

degree of clustering or repelling between the points in a space. The

Log Gaussian Cox (LGC) process [5] is an extension of the Poisson

point process to handle such spatial correlation between points

via a hierarchical stochastic structure. An LGC process consists of

a Poisson point process with its intensity function modeled by a

Gaussian Random Field (GRF) [14]. A random field represents the

joint probability distribution for a set of random variables over a

multi-dimensional space such as R2. A GRF is a random field where

every finite collection of those random variables obeys a multivari-

ate normal distribution. In an LGC process, a GRF is leveraged to

capture the pair-wise correlation between the intensity values of

regions.

4 STATISTICAL DRV PREDICTION

4.1 Modeling Statistical Distribution of DRVs by
Log Gaussian Cox Process

Given a circuit layout, we tessellate it into an array of uniform

rectangular tiles, each of which is an 𝑙 × 𝑙 square;2 a rectangular
layout with size𝑊 ×𝐻 is divided into𝑤 ×ℎ tiles, where𝑤 = �𝑊 /𝑙�
and ℎ = �𝐻/𝑙�. With a tessellated layout space, we model the

spatial distribution of non-deterministic DRVs as an LGC process in

a discrete 2D space indexed by tile row and column numbers (𝑖, 𝑗)
with intensity function 𝜇 (𝑖, 𝑗). Figure 4 illustrates such stochastic
modeling of non-deterministic DRVs. The Poisson point process

implies that the number of DRVs occurring at tile (𝑖, 𝑗), denoted by
𝑁DRV (𝑖, 𝑗), obeys a Poisson distribution with mean 𝜇 (𝑖, 𝑗), i.e.,

Pr
[
𝑁DRV (𝑖, 𝑗) = 𝑘

]
= 𝑒−𝜇 (𝑖, 𝑗)

𝜇 (𝑖, 𝑗)𝑘
𝑘!

, 𝑘 = 0, 1, 2, . . . (2)

1Formally, 𝜇 (𝐵) is defined with a locally integrable function 𝜆 : R𝑑 → [0,∞) such
that 𝜇 (𝐵) =

∫
𝐵
𝜆 (𝑥)𝑑𝑥 . If this integral is finite, 𝑁 (𝐵) obeys a Poisson distribution,

i.e., Pr[𝑁 (𝐵) = 𝑘 ] = 𝑒−𝜇 (𝐵) 𝜇 (𝐵)𝑘
𝑘! , where 𝑘 is a non-negative integer.

2In our experiments, 𝑙 is set to be 1.26𝜇𝑚.

Figure 4: A Log Gaussian Cox process in a 2D layout space.

Figure 5: Mean vs. variance of the number of DRVs in a tile.

and GRF captures dependency among tiles by enforcing 𝜇 (𝑖, 𝑗) to
have correlation with nearby layout tiles.

We argue that the LGC process can be a good match to the non-

deterministic DRV distribution. The domain of an LGC process

is the set of non-negative integers, which matches the range of

𝑁DRV (𝑖, 𝑗) in the layout naturally. To further demonstrate the ratio-
nale behind adopting an LGCprocess formodeling non-deterministic

DRV distribution, we took five placed circuits and obtained DRV

maps from 32 detailed routing runs for each circuit with an indus-

trial router. Treating 𝑁DRV (𝑖, 𝑗) as a random variable, we obtained

32 samples for each random variable from which we estimate their

mean and variance. Figure 5 shows the relationship between the

mean and variance of 𝑁DRV (𝑖, 𝑗). According to the LGC process,

the mean is supposed to be equal to the variance. We can find

that the variance has a roughly linear relationship with the mean,

which conforms to the LGC process characteristics. Although we

observe the variance-to-mean ratio being about 3, a relatively-small

ratio shows that the LGC process is a reasonable model for the

DRV distribution. In addition, we can see clustering behaviors of

DRV occurrence in Figure 1, which can be easily captured in our

stochastic modeling thanks to GRF in the LGC process.

4.2 Problem Formulation of LGC-Net

Given a pre-route design, our goal is to predict the intensity function

𝜇 (𝑖, 𝑗) of each layout tile (𝑖, 𝑗), which we name the DRV intensity.

According to the LGC process, 𝜇 (𝑖, 𝑗) is equal to the mean and

variance of the DRV density on tile (𝑖, 𝑗). Hence, with predicted
𝜇 (𝑖, 𝑗) for each tile (𝑖, 𝑗), we can derive the Poisson distributions
governing non-deterministic DRVs.

We note that DRVs are caused mainly by pin accessibility is-

sues [4] and routing congestion. Hence, we use the following fea-

ture images as input features of the proposed model.

(1) High resolution pin configuration images. These images

capture the exact locations and shapes of every pin in the
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Figure 6: Overview of the proposed LGC-Net to handle non-deterministic routing solutions in DRV prediction.

entire layout [12]. For each metal layer where pins reside, one

pin configuration image is generated. These pin configuration

images help identify pin accessibility issues. In our setup, a

tile (1.26 × 1.26 µm2) corresponds to 126 × 126 pixels in a pin

configuration image.

(2) Tile-based layer-wise routing congestion maps. They are

produced by a trial global router. Unlike a majority of prior arts

resorting to a 2D routing congestion map, we use 3D layer-wise

congestion maps as input, since the actual routing is conducted

in a 3D space. Although a few recent efforts [7, 12] classify

DRC hotspot without any routing information, predicting DRV

intensity with noisy label data is evidently much more chal-

lenging. Besides, it is reasonably fast to call a trial global router,

which takes a couple of minutes for one placement instance on

our test cases.

We now state the target problem as follows. Given a placement

with its trial routing result, predict a 2D DRV intensity map in

which each entry (𝑖, 𝑗) represents the DRV intensity 𝜇 (𝑖, 𝑗) in the
corresponding layout tile. Labels are extracted from post-routing

design rule checking.

4.3 Overview of LGC-Net

Figure 6 depicts an overview of the proposed LGC-Net. We view

that each placed layout corresponds to one LGC process describing

the statistical distribution of DRVs. The similar but not identical

DRV labels from different routing solutions for the same placement

are regarded as samples of the corresponding LGC process. We inte-

grate a deep neural network J-Net [12] with our proposed GRF layer

into LGC-Net for mapping a placement instance to the parameters

(i.e., the DRV intensity function) of the corresponding LGC process.

The GRF layer is a customized network layer that implements a

Gaussian random field, allowing our LGC-Net to capture the spatial

correlations of DRVs. Based on the LGC process, we develop the

Focal Likelihood Loss (FLL) function, which guides the training of

LGC-Net in a Maximum Likelihood Estimation (MLE) manner. This

is another key difference that distinguishes LGC-Net from J-Net

and other deep learning models.

4.4 Gaussian Random Field (GRF) Layer

The GRF layer is a customized neural network layer implementa-

tion of GRF that can be integrated with deep learning models to

achieve end-to-end training. It processes the unstructured predic-

tion output Z ∈ R𝑤×ℎ of the J-Net model and outputs a structured
output Y ∈ R𝑤×ℎ . Here, unstructured output means the intensity
function prediction outcome without considering the dependency

among tiles, while the structured output means the prediction tak-

ing correlation among nearby tiles into account.

The GRF layer is essentially composed of a set of matrix op-

erations, whose computation can be conveniently accelerated by

off-the-shelf ML packages. Denote the flattened vector of Z as z,

which is a vector of length𝑤 ×ℎ, and the flattened vector of Y as y.

The GRF layer outputs z that maximizes the probability

Pr[y | z] = 1

𝛼
𝑒−𝐸 (y,z) , (3)

where 𝛼 is a normalization term ensuring that the integral of the

probability over y is equal to 1, and 𝐸 (y, z) is defined as:
𝐸 (y, z) =

∑
𝑖

(𝑧𝑖 − 𝑦𝑖 )2 + 𝛽
∑
𝑖< 𝑗

𝑆𝑖, 𝑗 (𝑦𝑖 − 𝑦 𝑗 )2 . (4)

In Equation (4), 𝛽 is a weighting factor, and 𝑆𝑖, 𝑗 is a similarity
measure between the 𝑖-th and the 𝑗-th entry. The first term on the

right-hand side of Equation (4) enforces the structured output Y

to be close to the unstructured output Z, while the second term

enforces similar entries to have similar outputs. The similarity

measure 𝑆𝑖, 𝑗 describes the similarity among entries, which is given

by 𝑒−𝑑 (𝑖, 𝑗)/𝜎 if 𝑖 ≠ 𝑗 and 0 otherwise, where𝑑 (𝑖, 𝑗) is the Manhattan
distance between two layout tiles corresponding to entry 𝑖 and 𝑗 ,
and 𝜎 is a learnable parameter.

𝐸 (y, z) can be rewritten in a vector form as follows:

𝐸 (y, z) = y𝑇Qy − 2y𝑇 z + z𝑇 z ∝ y𝑇Qy − 2y𝑇 z , (5)

where Q(𝑖, 𝑗) is given by

Q(𝑖, 𝑗) =
{
1 + 𝛽

∑
ℎ≠𝑖 𝑆𝑖,ℎ if 𝑖 = 𝑗,

−𝑆𝑖, 𝑗 if 𝑖 ≠ 𝑗 .
(6)

We let the weighting factor 𝛽 be a learnable parameter.
Once the values of 𝛽 and 𝑆𝑖, 𝑗 are obtained, Q can be computed.

For positive-definite matrix Q, the optimal structured output y∗
that maximizes Pr[y | z] can be obtained by

y∗ = Q−1z . (7)

With the GRF layer, we use a two-stage training process. At the

first stage, the GRF layer does not come into play and the J-Net part

is trained solely to output unstructured prediction. At the second
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stage, the GRF layer is attached to the model as the last layer and

the entire model is trained end-to-end to deliver structured output.

We empirically find that such two-stage training process is easier

to converge than a one-stage end-to-end training.

4.5 Focal Likelihood Loss (FLL)

FLL is a novel loss function that combines the capability of focal

loss to address imbalanced data and the strength of MLE (Maximum

Likelihood Estimation) in coping with uncertainty. Its computation

is built upon the Poisson point process in LGC process. MLE esti-

mates the parameters of an assumed probability distribution given

some observed data, by maximizing a likelihood function so that

the observed data is most probable. Here, the probability distribu-

tion is the LGC process and the parameters are the DRV intensities

𝜇; the observed data is the noisy DRV labels L ∈ N𝑤×ℎ ( N is the

set of non-negative integers) collected after detailed routing. The

likelihood is calculated as

𝜁 (𝐿𝑖, 𝑗 , 𝑌𝑖, 𝑗 ) = log
(
Pr[𝐿𝑖, 𝑗 |𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ]

)
, (8)

where the conditional probability Pr[𝐿𝑖, 𝑗 |𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ] is calculated
according the properties of Poisson point process:

Pr[𝐿𝑖, 𝑗 |𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ] =
𝑌
𝐿𝑖,𝑗
𝑖, 𝑗 𝑒−𝑌𝑖,𝑗

𝐿𝑖, 𝑗 !
. (9)

It is obtained by letting 𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 and 𝑘 = 𝐿𝑖, 𝑗 in Equation (2).
FLL is defined as follows:

FLL(Y, L) = − 1

𝑤ℎ

∑
𝑖, 𝑗

(
1 − Pr[𝐿𝑖, 𝑗 |𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ]

)𝛾 𝜁 (𝐿𝑖, 𝑗 , 𝑌𝑖, 𝑗 ) .
(10)

Essentially, Equation (10) is obtained via replacing the 𝑝𝑡 in Equa-
tion (1) by Pr[𝐿𝑖, 𝑗 | 𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ].3 FLL guides the training process
to converge to a solution that maximizes the likelihood 𝜁 (𝐿𝑖, 𝑗 , 𝑌𝑖, 𝑗 ).
The term 1 − Pr[𝐿𝑖, 𝑗 | 𝜇 (𝑖, 𝑗) = 𝑌𝑖, 𝑗 ] is the focal loss term, which
down-weights easy samples adaptively during training, as intro-

duced in Section 3. The introduction of the focal loss term helps

FLL handle the issue of imbalanced data sets.

In many applications including DRV intensity regression, maxi-

mizing likelihood matters more than minimizing absolute errors.

Consider two cases, where one has prediction 𝑌𝑖, 𝑗 = 0 and label

𝐿𝑖, 𝑗 = 1, and the other has prediction 𝑌𝑘,𝑙 = 9 and label 𝐿𝑘,𝑙 = 10.

Although both cases have the same absolute errors (or MSEs), the

first case is arguably worse than the second one. Correspondingly,

our FLL penalizes the first case much more heavily, since 𝐿𝑖, 𝑗 = 1

can never happen if the Poisson distribution has mean 0. As shown

in Figure 1, the absolute difference between two different routing

solutions for the same design is larger in regions with large number

of DRVs. As such, we prefer to tolerate larger absolute prediction

errors for tiles with higher DRV density. Our proposed FLL can

handle the DRV density-dependent noise nicely.

To reduce runtime overhead during training, we pre-calculate

log(𝑘!) for every integer 𝑘 ∈ [0, 𝐾] before training and store them
in a look-up table. Then, Equation (8) can be calculated as:

𝜁 (𝐿𝑖, 𝑗 , 𝑌𝑖, 𝑗 ) = 𝐿𝑖, 𝑗 log(𝑌𝑖, 𝑗 ) − 𝑌𝑖, 𝑗 − log(𝐿𝑖, 𝑗 !) , (11)

3In our experiments, we set 𝛾 as 1.

Table 1: Testcase characteristics.

Design Dimensions (µm) #IPs #Gates #Nets #DRVs

Train
set

D1 161.28 × 72.58 2 26906 26647 330142
D2 122.88 × 124.42 0 44088 46461 33133
D3 142.08 × 124.42 0 76799 79993 17795
D4 103.68 × 305.86 0 126238 131862 268615
D5 138.24 × 305.86 0 149351 151128 6394
D6 276.48 × 510.62 16 172133 159509 15471
D7 249.60 × 300.67 3 183544 192820 84620
D8 760.32 × 189.22 600 270614 290613 370

Test
set

D9 207.36 × 145.15 0 79062 85635 192862
D10 215.04 × 139.97 0 84477 92054 3280
D11 211.20 × 419.90 4 217821 218583 99322

where log(𝐿𝑖, 𝑗 !) is obtained via the look-up table, and Pr[𝐿𝑖, 𝑗 |𝑌𝑖, 𝑗 ]
is obtained by performing an exponentiation operation.

5 EXPERIMENTAL VALIDATION

5.1 Testcases and Data Collection

Experiments were conducted on 11 industrial designs at a 7nm

process node, whose characteristics are summarized in Table 1. The

testing designs were totally unseen during training. A total of 10

placement instances were generated for each design by varying tool

parameters in an industrial synthesis & physical design flow. For

each placement instance, 10 detailed routing runs were performed

with the same setting. We observed around ±10% difference in

the number of DRVs across different routing runs for the same

placement solution. The average number of DRVs for each design

are shown in Table 1. We extracted features from the design flow

via tcl scripts and implemented our LGC-Net on the ML framework

PyTorch. During training, a pair of (i) placement and (ii) DRV labels

from one routing run was regarded as one data point. Also, we

deployed two data augmentation techniques proposed in [12], i.e.,

random flipping and random cropping, to enlarge training set. In

evaluation, we compared the prediction outcome with the average

DRV ground truth across 10 routing runs.

5.2 Performance Metrics

5.2.1 Regression Metrics. We used the following metrics to assess

regression performance:

(1) The mean-squared-error (MSE).

(2) The Pearson correlation coefficient between the DRV density

ground truth data and the predicted DRV intensity.

(3) The mean of the predicted DRV intensity for tiles with label

𝑁DRV = 0. For perfect prediction, the mean is 0. The smaller

the mean, the better the prediction performance.

(4) The mean of normalized errors for tiles with DRVs. For a tile

with label 𝑙 and prediction output 𝑦, the normalized error is

given by |𝑙 −𝑦 |/
√
𝑙 . According to the Poisson processes,

√
𝑙 can

be viewed as an approximate of the standard deviation of the

DRV density. The normalized error measures the prediction

error normalized against the standard deviation.

5.2.2 Multi-Class Classification Metrics. For 𝐾-class classification,
we firstly calculated the confusion matrix, where 𝑐𝑖, 𝑗 represents the
number of tiles that are labeled class 𝑖 and predicted class 𝑗 . Then
the following metrics were calculated:

• True-positive-rate (TPR) for class 𝑖: TPR(𝑖) = 𝑐𝑖,𝑖/
∑𝐾−1

𝑗=0 𝑐𝑖, 𝑗 .
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Table 2: Average DRV density regression performances of LGC-Net

with different input features and of [11] on the test set.

Performance metrics
LGC-Net w/ different inputs

Zhou[11]
F1 F2 F3 F4

Correlation coefficient 0.25 0.29 0.44 0.70 0.23

MSE 3.13 0.56 0.57 0.32 4.16

Mean outcomes

(DRV-free tiles)

1.76 0.27 0.33 0.06 2.03

Mean norm. error

(tiles w/ DRVs)

2.78 0.93 1.30 0.86 3.31

• Precision for class 𝑖: Precision(𝑖) = 𝑐𝑖,𝑖/
∑𝐾−1

𝑗=0 𝑐 𝑗,𝑖 .

• F1-score for class 𝑖: F1(𝑖) = 2 × TPR(𝑖)×Precision(𝑖)
TPR(𝑖)+Precision(𝑖) .

• Macro-averaged F1-score: MacroF1 =
∑𝐾−1
𝑖=0 F1(𝑖)/𝐾.

• Micro-averaged F1-score:MicroF1 =
∑𝐾−1
𝑘=0 𝑐𝑘,𝑘/

∑𝐾−1
𝑖=0

∑𝐾−1
𝑗=0 𝑐𝑖, 𝑗 .

5.2.3 Binary Classification Metrics. For the binary classification

performance, we plotted ROC (Receiver Operating Characteristic)

curves dictating the trade-off between TPR and false-positive-rate

(FPR). TPR is the number of correctly classified positive samples

out of the total number of positive samples, and FPR is the number

of negative samples wrongly predicted as positive out of the total

number of negative samples.

5.3 Experiment 1: Impact of Non-Determinism

We study how the DRV prediction is affected by non-deterministic

routing. For the placement instances from testing designs, the DRV

label from the first routing run is compared with the average DRV

label across the remaining 9 runs. The MSE is 0.24 and the correla-
tion coefficient is 0.78. The significant error and limited correlation
imply that the predictability of DRV density is greatly affected

by the non-determinism in routing. It is impossible to get perfect

estimation even with the time-consuming detailed routing.

5.4 Experiment 2: Regression Results and
Ablation Study

We present the regression results of our LGC-Net with the following

four different input feature combinations:

(1) F1: only 3D layer-wise congestion maps.

(2) F2: pin configuration maps and a few tile-based connection

features extracted without trial routing results (same as [12]).

(3) F3: pin configuration and 2D congestion maps.

(4) F4: pin configuration and 3D layer-wise congestion maps.

The results from different input feature sets on DRV density

regression performance are listed in Table 2. We can see that both

the pin configuration images (F4 results vs. F1 ones) and the conges-

tion maps (F3 results vs. F2 ones) are of great importance for DRV

prediction. Also, comparing F4 results with F3 ones we can find

that the 3D layer-wise congestion maps provide more information

than the 2D congestion map.

Figure 7 shows a snapshot of our DRV prediction results with

feature set F4. We can see that our prediction outcome matches

well with the average DRV density map and the variance map. Our

Figure 7: Illustration of regression results of D9, where the LGC-Net

outcome (lower right) matches with both the mean (lower left) and

variance of #DRVs (lower middle).

Figure 8: Validation performances for LGC-Net regression using our

focal likelihood loss compared with using various MSE losses.

prediction outcome seems to be a smoothed version of the average

DRV density map.

During training, we hold 20% training data as the validation set

and evaluate the models after each training iteration. We transform

the regression outcome into binary classification during validation

and use the area under ROC curve (AUC-ROC) as the performance

metric (the larger the area, the better the performance). To study the

effectiveness of our proposed focal likelihood loss, we compare the

validation performance for LGC-Net regression using our FLL with

the performances using various MSE losses. As shown in Figure 8,

we observe that none of theMSE loss training can converge well and

they often get stuck at a solutionwith 0.5 area, whichmeans random

guess. The failure of MSE loss training is mainly caused by the noisy

and imbalanced data set of DRV density maps. In contrast, our FLL

helps the model successfully converge to meaningful solutions.

In other words, our FLL technique facilitates the training of deep

learning models with noisy and imbalanced data set.

We also investigate the impacts of our Gaussian Random Field

layer on DRV regression. We observe that the correlation coefficient

drops by 0.05 and the MSE increases by 0.07 when removing the
GRF layer from our LGC-Net. The training time is doubled when

integrating the LGC layer to LGC-Net due to our two-stage training

scheme introduced in Section 4.4 while the inference time overhead

is neglectable.
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5.5 Experiment 3: Comparison with [11]

We compare LGC-Net with [11], which is the only previous DRV

regression work to the best of our knowledge. It is a multivari-

ate adaptive regression-based method using pin density, ratio of

blocked areas, HPWL density and global routing results as inputs.

Since [11] does not reveal its loss function, we adopt the MSE loss

function in this experiment.

As shown in Table 2, LGC-Net with feature set F4 significantly

outperforms the result of Zhou [11]. The superior performance from

our method is brought by our input features, the deep neural work

architecture, and the proposed stochastic techniques for handling

noisy training data.

5.6 Experiment 4: Comparison with J-Net [12]
and RouteNet [23]

In this experiment, we compare the performance of our LGC-Net

with J-Net [12] and RouteNet [23], which are two state-of-the-art

deep learning-based DRV classifiers. The works J-Net [12] and

RouteNet [23] were originally proposed for binary DRC hotspot

prediction problem. Here, we also extend them for multi-class classi-

fication, using the weightedMSE loss during training.We transform

our LGC-Net regression results into classification ones by setting

different thresholds. For multi-class classification, tiles are divided

into three classes according to their number of DRVs, using 0.5 and
4.5 as the thresholds. Note that we use the average DRV map across

10 routing runs as ground truth in evaluation, so the thresholds are

real numbers. Tiles with #DRV<0.5 are easy to route while those

with > 4.5 DRVs can be viewed as hard to route. For binary classifi-
cation, we compare the prediction accuracy at label thresholds 0.5,
2.5 and 4.5, separately.

5.6.1 Multi-Class Classification Results. Table 3 compares themulti-

class classification performances of our LGC-Net and extensions

of J-Net [12] and RouteNet [23]. It can be seen that our LGC-Net

performs obviously better than other methods, by 17% higher micro-

averaged F1 score and 25% higher macro-averaged F1 score. Besides,

for those misclassified tile samples by our method, most of them are

classified to be categories similar to their label categories. In con-

trast, many misclassified samples by the extended version of [12]

are classified to be categories far away from their labels. As a matter

of fact, it classifies over 169k class-0 samples into class 2.

The superior performance of the LGC-Net regression-based clas-

sification is attributed to two main reasons. The first lever is our

stochastic techniques in handling noisy data. Also, regression la-

bels are naturally more informative than classification labels. The

LGC-Net regression-based classification can take advantage of the

regression labels.

5.6.2 Classifications with Different Thresholds. ROC curves of LGC-

Net regression-based binary classification, J-Net [12] and RouteNet [23]

are shown in Figure 9. Compared with the J-Net and RouteNet bi-

nary classifiers, our regression-based classification delivers superior

performance at various label thresholds. Another advantage of our

method is that the regression model needs one-time training to give

binary-classification results for various label thresholds; whereas

one binary classifier is required to be trained for each distinct label

Table 3: Average multi-class classification results on the test set.

Our LGC-Net

Predicted class 0 1 2

Label=0 932275 80715 4367

Label=1 16170 23765 6254

Label=2 1239 6717 12658

Micro-averaged F1 89.4%

Macro-averaged F1 60.9%

Extension of JNet [12]

Predicted class 0 1 2

Label=0 766738 80829 169790

Label=1 10154 3487 32548

Label=2 1199 128 19287

Micro-averaged F1 72.8%

Macro-averaged F1 35.6%

Extension of RouteNet [23]

Predicted class 0 1 2

Label= 0 633462 73914 309981

Label= 1 15702 8026 20850

Label= 2 7009 5867 9349

Micro-averaged F1 60.0%

Macro-averaged F1 31.0%

threshold, consequently leading to several times longer training

and inference overhead.

5.6.3 Computing Runtime. The training time of LGC-Net on a

Nvidia GeForce RTX 2080-Ti is about 60 hours, which is 2× longer

than that of a J-Net classifier [12]. The longer traing time is caused

by the two-stage training process introduced in Section 4.4. Since

our trained model can be reused for different placements, the amor-

tized training cost is limited. LGC-Net can be applied for either

regression or classification. For classification, it can be trained only

once and then applied with different label thresholds without re-

training. The LGC-Net inference runtime on one placement instance

is about 1 minute.

5.7 Experiment 5: Effect of Data Pruning

We study the impact of using the DRV label from single routing

run or the average label across 10 routing runs for each placement

during training. Arguably, the results from single routing round or

the average results are deterministic, since each placement instance

corresponds to one DRV label. We also try performing Gaussian

filtering with a standard deviation of 1 on the noisy DRV label from

one routing solution and then use it for training. We compare their

prediction performances with those of using the results from all 10

routing runs.

Figure 10 shows that it does not help eliminate the negative ef-

fects of non-deterministic parallel routing by using only the result

from one detailed routing round (10% data) or the average result

across 10 rounds (average of 10 runs) for each placement instance.

In contrast, it obviously degrades the prediction performance since

less training data is deployed. In addition, simply performing Gauss-

ian filtering on noisy DRV labels (10% data + GF) is not sufficient to

handle the noisy data issue. It is also interesting to note that, Gauss-

ian filtering enhances the performance of [12] but does not help
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Figure 9: ROC curves for binary-classification at different label thresholds: (a) th = 0.5, (b) th = 2.5, and (c) th = 4.5.

Figure 10: The effects of training (a) with one detailed routing result

and (b) with the average result across 10 runs for each placement.

our approach which has already explicitly considered the stochastic

properties of DRVs.

5.8 Discussion of Data Efficiency

We want to highlight that our method has better data efficiency for

noisy data sets compared to previous deep learning-based DRV pre-

diction methods. In particular, compared with [12], which utilizes

a model with similar amount of learnable parameters to ours, our

method has obviously better performance after training with the

noisy DRV data, as shown in Figure 10.

It is noteworthy that our LGC-Net also works well when it is

trained with one noisy DRV label for each placement instance (ours

with 10% data in Figure 10). With the noisy data set, LGC-Net

trained with one routing run result for each placement outperforms

[12] trained with 10 routing run results for each placement.

6 CONCLUSION AND BROAD IMPACT

In this work, we present a stochastic approach – LGC-Net, to han-

dle non-determinism in deep learning-based DRV predictions. Ex-

periments results from noisy training data on industrial designs

demonstrate that our method can handle the non-deterministic

training data caused by parallel routing and achieves significantly

better DRV density prediction performance than previous arts.

We view that the noisy label data due to non-deterministic par-

allel computing is a general problem in applying ML techniques to

EDA problems, given that many EDA algorithms are accelerated

by multi-threading. More broadly, it has been recognized that noise

or chaotic behavior is ubiquitous in EDA tools [1, 8, 10, 15], i.e., a

slight change in inputs or even the exact same input can lead to

large variation in results. Thus, the results here provide a helpful

experience for addressing this general challenge in future research.

ACKNOWLEDGMENTS

This work is partially supported by SRC GRC-CADT 3103.001 and

NSF CCF-2106725.

REFERENCES
[1] A. B. Kahng and S. Mantik. 2002. Measurement of inherent noise in EDA tools.

In Proc. ISQED. 206–211.
[2] A. F. Tabrizi et al. 2018. A machine learning framework to identify detailed

routing short violations from a placed netlist. In Proc. DAC. 1–6.
[3] J. Chen, J. Kuang, G. Zhao, D. Huang and E. Young. 2020. PROS: A plug-in for

routability optimization applied in the state-of-the-art commercial eda tool using
deep learning. In Proc. ICCAD. 1–8.

[4] J. Lou, S. Thakur, S. Krishnamoorthy, and H.-S. Sheng. 2002. Estimating routing
congestion using probabilistic analysis. IEEE TCAD 21, 1 (2002), 32–41.

[5] J. Møller, A. R. Syversveen and R. P. Waagepetersen. 1998. Log gaussian cox
processes. Scand. Stat. Theory Appl. 25, 3 (1998), 451–482.

[6] J. Møller and R. P. Waagepetersen. 2003. Statistical Inference and Simulation for
Spatial Point Processes. CRC Press.

[7] J. Pan et al. 2020. Automatic Routability Predictor Development Using Neural
Architecture Search. arXiv preprint arXiv:2012.01737 (2020).

[8] K. Jeong and A. B. Kahng. 2010. Methodology from chaos in IC implementation.
In Proc. ISQED. 885–892.

[9] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan. 2020. High-
definition routing congestion prediction for large-scale FPGAs. In Proc. ASP-DAC.
26–31.

[10] M. R. Hartoog. 1986. Analysis of placement procedures for VLSI standard cell
layout. In Proc. DAC. 314–319.

[11] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou and Y. Cai. 2015. An accurate detailed
routing routability prediction model in placement. In Proc. ASQED. 119–122.

[12] R. Liang et al. 2020. DRC hotspot prediction at sub-10nm process nodes using
customized convolutional network. In Proc. ISPD. 135–142.

[13] S. Liu, Q. Sun, P. Liao, Y. Lin and B. Yu. 2021. Global placement with deep
learning-enabled explicit routability optimization. Proc. DATE, 1821–1824.

[14] S. Z. Li. 2009. Markov Random Field Modeling in Image Analysis. Springer.
[15] Synopsys. 2021. IC Compiler II Implementation User Guide S-2021.06-SP3.
[16] T. C. Yu et al. 2020. Pin Accessibility Prediction and Optimization With Deep-

Learning-Based Pin Pattern Recognition. IEEE TCAD 40, 11 (2020), 2345–2356.
[17] T. Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár. 2017. Focal loss for dense

object detection. In Proc. ICCV. 2980–2988.
[18] R. Kirby et al. 2019. CongestionNet: Routing congestion prediction using deep

graph neural networks. In Proc. VLSI-SoC. IEEE, 217–222.
[19] Y. H. Huang et al. 2019. Routability-driven macro placement with embedded

CNN-based prediction model. In Proc. DATE. IEEE, 180–185.
[20] W. T. Chan, P. H. Ho, A. B. Kahng, and P. Saxena. 2017. Routability optimization

for industrial designs at sub-14nm process nodes using machine learning. In Proc.
ISPD. 15–21.

[21] W. T. Hung et al. 2020. Transforming global routing report into DRC violation
map with convolutional neural network. In Proc. ISPD. 57–64.

[22] C. Yu and Z. Zhang. 2019. Painting on placement: Forecasting routing congestion
using conditional generative adversarial nets. In Proc. DAC. 1–6.

[23] Z. Xie et al. 2018. RouteNet: routability prediction for mixed-size designs using
convolutional neural network. In Proc. ICCAD. 1–8.


