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Abstract 

A stochastic optimization approach to stereo matching is pre- 
sented. Unlike conventional correlation matching and feature 
matching, the approach provides a dense array of disparities, 
eliminating the need for interpolation. First, the stereo match- 
ing problem is defined in terms of finding a disparity map that 
satisfies two competing constraints: (1) matched points should 
have similar image intensity, and (2) the disparity map should 
be smooth. These constraints are expressed in an ‘(energy” 
function that can be evaluated locally. A simulated anneal- 
ing algorithm is used to find a disparity map that has very 
low energy (i.e., in which both constraints have simultaneously 
been approximately satisfied). Annealing allows the large-scale 
structure of the disparity map to emerge at higher tempera- 
tures, and avoids the problem of converging too quickly on a 
local minimum. Results are shown for a sparse random-dot 
stereogram, a vertical aerial stereogram (shown in compari- 
son to ground truth), and an oblique ground-level scene with 
occlusion boundaries. 

1 Introduction 

To solve the stereo matching problem, one must assign corre- 
spondences between points on two lattices (the left and right 
images), such that corresponding points are the projections of 
the same point in the scene. The problem can be viewed as a 
complex optimization in which two criteria must be satisfied 
simultaneously. First, the corresponding points should have 
similar local features (in particular, similar intensity). Sec- 
ondly, the spatial distribution of disparities, or, equivalently, 
the spatial distribution of depth estimates, should be plausible 
with respect to the depths likely to be observed in real scenes. 
Several authors have noted that, because surfaces are spatially 
coherent, the result of the stereo process should also be co- 
herent, except at the relatively rare occlusion boundaries (for 
example, see Julesz [l] and Marr and Poggio [2]). The first cri- 
terion - similarity of local features - is insufficient because 
stereo correspondences are locally ambiguous. The second cri- 
terion, which is sometimes called the snoothness constraint, 
provides a heuristic for deciding which of the many combina- 
tions of feature-preserving correspondences are best. 

The two major conventional approaches to stereo matching 
- feature matching and area correlation - suffer from two 
serious problems: 
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Areas of nearly homogeneous image intensity are diffi- 
cult to match because they lack local spatial structure. 
Edge-matching approaches never even attempt to match 
in such areas because no edges are found, and area corre- 
lation approaches fail because no significant peaks appear 
in the correlation surface. For most stereo vision appli- 
cations, however, a dense matching is required. Dense 
estimates of depth are also more consistent with the sub- 
jective quality of human stereo experience, as revealed, 
for example, in random-dot stereograms. To obtain dense 
depth maps with the conventional approaches, one must 
resort to a postmatching interpolation step. 

Even where local structure is abundant, stereo correspon- 
dences may be ambiguous. Small-scale periodic struc- 
tures are particularly difficult to match. To resolve these 
ambiguities, stereo matchers usually rely on a propaga- 
tion of information, either from nearby areas, or from 
matching at larger scales, or both. 

This paper describes an approach to stereo matching that is 
quite different from conventional area-based and feature-based 
matching. It is essentially an undirected Monte Carlo search 
that simulates the physical process of annealing, in which a 
physical system composed of a large number of coupled ele- 
ments is reduced to its lowest energy configuration (or ground 
state) by slowly reducing the temperature while maintaining 
the system in thermal equilibrium. The system is composed of 
the lattice sites of the left image, and the state of each site en- 
codes a disparity assignment. The total energy of the system 
is the sum of the energies of the local lattice sites. The local 
energy, which is a function of the states of the lattice site and 
its neighbors, has two terms: one term is proportional to the 
absolute intensity difference between the matching points, and 
the other term is proportional to the local variation of dispar- 
ity (that is, to the lack of smoothness). The effect of a heat 
bath is simulated by considering local random state changes 
and accepting or rejecting them depending on the change in 
energy and the current temperature. 

2 Simulated Annealing 

Simulated annealing is a stochastic optimization technique that 
was inspired by concepts from statistical mechanics [3], [4]. 
It has been applied to a wide variety of complex problems 
that involve many degrees of freedom and do not have con- 
vex solution spaces. See Carnevali [5] for examples of image- 
processing applications. At the heart of simulated annealing is 
the Metropolis algorithm [6], which samples states of a system 
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in thermal equilibrium. When a system is in thermal 
rium, its states have a Boltzman distribution: 

equilib- 

P(E) = exp(-E/T) (1) 

where E is energy, P(E) is the probability of a state hav- 
ing energy E, and T is the temperature of the system.’ The 
Metropolis algorithm takes the system to equilibrium by con- 
sidering random, local state transitions on the basis of the 
change in energy that they imply: if the change is negative, 
the transition is accepted; whereas, if the change is positive, 
the transition is accepted with probability exp(-AE/T). 

Starting at a very high temperature, simulated annealing 
uses the Metropolis algorithm to bring the system to equilib- 
rium. Then the temperature is lowered slightly and the pro- 
cedure is repeated until a very low temperature is achieved. 
If the temperature is lowered too quickly, the system may get 
stuck in locally optimal configurations and the ground state 
may not be reached. The algorithm is shown in Figure 1. 

Select a random state S. 
Select a sufficiently high starting temperature T. 
while T > 0 do 

Make a random state change S’ t R(S). 
AE + E(S’) - E(S) 
; Accept lower energy states. 
ifAE<OthenStS’ 
; Accept higher-energy states with probability P. 
else 

P + exp(-AE/T) 
x + random number in (0, l] 
ifx<PthenStS’ 

if there has been no significant decrease in E 
for many iterations 

then lower the temperature T. 

Figure 1: The Simulated Annealing Algorithm 

Simulated annealing tends to exhibit good average-case 
performance. It has the advantage of being a very simple algo- 
rithm that is inherently massively parallel. Furthermore, the 
parallelism is easily implemented because the processors need 
only short interconnections, may run asynchronously, and can 
even be unreliable. To be a good candidate for simulated an- 
nealing, a problem should follow the analogy of physical an- 
nealing. The function to be optimized should be expressed as 
an analog to the energy of a system composed of many local el- 
ements, and the interaction between the local elements should 
be short-range. A small random change in the state of the sys- 
tem should be possible by switching the microstate of a local 
element, and the resulting change in energy should be quickly 
computed by evaluating only the effects of the element’s neigh- 
bors. 

‘The Boltzman distribution is usually written aa exp(-AS/T), where 
k is Boltzman’s constant. Because we define energypnd temperature as 
pure numbers, no con&ant is necessary. 

3 Stochastic Stereo Matching 

If the relative positions and orientations of the two cameras are 

known, as well as the internal camera parameters, we can use 

the epipolar constraint to restrict the correspondences to the 
epipolar lines [7]. With no loss of generality, we can assume 
that the epipolar lines are parallel to the horizontal lines of 
lattice sites.2 The correspondence problem then reduces to 
the assignment of a single horizontal disparity to each pixel in, 
say, the left image lattice. 

Suppose that we have left and right image lattices, Lk and 
Rk, with k = {i,j),O 5 i,j 5 n - 1 , that constitute a stereo 
pair with horizontal epipolar lines. The intensity of the left 
lattice point Lk is IL(k) = 1~(i, j), and similarly for right 
lattice points. For every k there is a (horizontal) disparity 
D(k) such that the lattice point Lk = Li,j in the left image 
matches the point &I = &,j+D(k) in the right image. The 
problem is to find an assignment of disparities to lattice points 
that satisfies the two criteria discussed in Section 1: similar 

intensity and smoothness. We assume that the upper and lower 
limits of disparity, Dmin and D,,,, are known. Furthermore, 
we consider only integer values of disparity. Even with these 
restrictions, the system has N = (DmZ - Dmin + 1)“’ possible 
states. Typical values in our examples are D,,, = 9, Dmi, = 
0, and n = 128, in which case N = 10’6384. Exhaustive search 
is obviously out of the question. 

The disparity map should satisfy two criteria that are, to 
some extent, incompatible. The first criterion, which we call 
the photometric constraint, dictates that the disparity assign- 
ments should map points in L to points in R with comparable 
intensity: IL(k) fil IR(k’). The second criterion is the smooth- 
nes8 constraint, which limits the variation in the disparity map. 

Both criteria cannot be perfectly satisfied except in trivial 
situations. The photometric constraint can only be approxi- 
mately satisfied due to sensor noise, quantization, slight light- 
ing differences, and the presence of areas in one image that 
are occluded in the other. As discussed above, areas of home- 
geneous intensity will lead to ambiguous disparities based on 
photometry alone. The smoothness constraint will be perfectly 
satisified only with a uniform disparity map. 

In an attempt to satisfy the two 
minimize a function of the form: 

criteria simultaneously, we 

E = c Ilk(k) - h&i + W))lI + WW)ll . (2) 
k 

The first term inside the sum represents the photometric con- 
straint and the second term the smoothness constraint. The 
constant X determines their relative importance. We imple- 
ment the ]]VD(k)l] p t o era or as the sum of the absolute dif- 
ferences between disparity D(k) and the disparities of the kth 
lattice point’s eight neighbors. Equation (2) is similar to the 
nonquadratic Tikhonov stabilizer proposed for stereo by Pog- 
gio, et. al. [8]. 

Following the simulated annealing algorithm, the system 
begins in a state chosen at random. Individual lattice points 
are considered in scan-line order, new disparities are selected 
at random, and the changes in energy are computed from equa- 

21f the epipolar lines are not horizontal, the images can be mapped into 
a rectified etereo pair. 
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tion (2). Instead of monitoring the energy distribution to test 
for thermal equilibrium, we use a fixed annealing schedule. 

4 Results 

We have tested the stochastic matching algorithm on a variety 
of images, including random-dot stereograms, vertical aerial 
stereograms, and oblique ground-level stereograms. Identical 
parameters were used for all the examples shown in this sec- 
tion. In particular, the intensity ranged between 0 and 255, 
and we used X = 5. We used a fixed annealing schedule: the 
temperature begins at T = 100 and is repeatedly reduced by 
10% until it falls below T = 1. A total of ten scans through the 
lattice are performed for each temperature in this sequence. 

Figure 2 shows a four-level “wedding cake” random-dot 
stereogram composed of 10% white and 90% black pixels. The 
background has zero disparity, and each successive layer has an 
additional two pixels of disparity. The figure shows the results 
with disparities encoded as grey values. Pixels with higher 
disparity are “closer” and are displayed as brighter values. In- 
termediate results for T = 47 and T = 25 and the final result 
for T = 0 are shown. 

Figures 2c-e illustrate an important advantage in stochas- 
tic matching: the large-scale structure of the scene begins to 
emerge at higher temperatures, and as the temperature de- 
creases finer structures become apparent. Temperature there- 
fore provides a mechanism for dealing with problems of scale 
that is simpler than the complex search strategies employed 
by conventional methods. Note that the final disparity map is 
dense and that it corresponds very well to the three-dimensional 
wedding-cake shape. The errors are confined to the occlusion 
boundaries. 

The next example, shown in Figure 3, is a vertical aerial 
stereogram supplied by the Engineering Topographic Labo- 
ratory (ETL). Th e original images have been bandpassed to 
remove the DC component. Again, intermediate results for 
T = 47 and T = 25 and the final result for T = 0 are shown. 
In addition, a disparity map supplied by ETL is shown for 
comparison. ’ The stochastic matching algorithm produces 
a result that is quite similar to the ETL data, although it is 
somewhat smoother. To some extent, this difference can be 
explained by the fact that the ETL result was produced from 
higher-resolution stereo images. The errors on the right border 
of Figure 3e are due to the fact that the stereo images do not 
have 100% overlap. 

The final example, shown in Figure 4, is an oblique view 
of an outdoor scene containing a number of trees in both the 
foreground and background. The result in Figure 4e is cer- 
tainly plausible, although we do not have a quantitative dis- 
parity model to compare it with, as in the previous examples. 
The matching algorithm seems to have smoothed over the fore- 
ground trees more than necessary, although we must be careful 
when relying on our subjective impressions of depth. When we 
interpret a scene like this one, we do not use stereo exclusively. 

‘The ETL disparity map wae made with an interactive digital corre- 
lation device that depends on a human operator to detect and correct 
errore. The disparity map in Figure 3f hae been sampled from a larger 
map compiled from much higher-resolution imagery. 

(a) left image (b) right image 

(c) T = 47 (d) T = 25 

(e) T = 0 

Figure 2: A 10% Random Dot Stereogram. 

5 Conclusions 

Stochastic stereo matching provides an attractive alternative 
to conventional stereo-matching techniques in several respects. 
The algorithm is simple, and, with suitable parallel hardware, 
can be very fast. Unlike conventional approaches, it produces 
a dense disparity map. 

As noted by Geman and Geman [9], stochastic optimization 
by simulated annealing is in some ways similar to relaxation 
labeling [lo]. In both approaches, objects are classified in such 
a way as to be consistent with a global context and to satisfy 
local constraints. There are, however, important differences. 
Relaxation labeling is a nonstochastic approach that, unlike 
simulated annealing, finds the local optimum closest to the 
initial state. Simulated annealing is intended to find the global 
optimum, or at least a local optimum nearly as good as the 
global one. Relaxation labeling has no counterparts for two 
important concepts in simulated annealing: temperature and 
thermal equilibrium. 
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(b) right image 

(c) T = 47 (d) T = 25 

(a) left image 

(c) T = 47 

(e) T = 0 (f) ETL disparity map 

Figure 3: A Vertical Aerial Stereogram. 

The concept of temperature in simulated annealing pro- 
vides a way to handle different scales in the problem instance. 
At higher temperatures, objects are only weakly coupled, and 
long-range interactions among large collections of objects can 
dominate the behavior of the system. At lower temperatures, 
local interactions take over. This effect was clearly seen in 
the examples of Section 4. Some physical systems exhibit a 
phase transition at some critical temperature. When simulat- 
ing such systems, one must be careful to lower the temperature 
very slowly in the vicinity of the critical temperature. We have 
not observed phase transitions in the stereo problem and have 
been able to use fixed annealing schedules. 

We are considering two extensions of the simple model pre- 
sented here. First, the effective range of disparity could be in- 
creased by using lattices of several scales, allowing the coarser 
ones to bias the finer, in a manner similar to the hierarchi- 
cal control structures used in many other matching techniques. 
Second, following Geman and Geman [9], a “line process” could 
be used to model depth discontinuities; although, in addition 
to lines, the process would also model occluded areas. 

(b) right image 

I 

s.* r.4 

(d) T = 25 

(e) T = 0 

Figure 4: An Oblique Stereogram. 
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