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Abstract

This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty

in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynonfial

Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation

method enables to collapse those summations to a one-dimensional summation only. This report furnishes the

essential algorithmic details of the new stochastic collocation method and provides as a numerical example

the solution of the Riemann problem with the stochastic collocation method used for the discretization of

the stochastic parameters.

1 Background

With the continuous development and improvement of both CFD sinmlations reliability and accuracy, further
developments toward physically relevant results raise the need to account for more realistic operating condi-

tions. Past simulations used deterministic parameters such as for the boundary conditions, initial conditions,

geometry of the problem, physical properties, etc. Meanwhile, the actual conditions are not known precisely

and one must account for a certain level in uncertainty in the simulations. In a more general framework, it

is indeed of critical importance to quanti_" uncertainty (e.g. [9, 1, 17]) and establish a confidence interval

for the simulation-based predictions or design ([3 0. Unlike reliability analysis which deals with rare but
catastrophic events, uncertainty analysis is concerned with the probabilistic aspects of the simulations due

to the stochastic nature of physical parameters, initial and boundary conditions. Some sources of uncertainty
identified in numerical simulations include:

• inaccuracy / indeterminacy of initial conditions (experimental data, variability of operating environ-

ment),

• bias in physical models (turbulence model),

• approximations in mathematical model (due to linearization or assumptions that neglect some physical

effects such as temperature and/or pressure dependence of relevant physical parameters),

• uncertainty in describing the physical reality (errors in geometry, roughness, boundary conditions),

• discretization errors (numerical diffusion, round-off, algorithmic errors due to incomplete iteration

process, etc.).

See [1] or [41 for a more complete review.

One crucial issue is to accurately propagate uncertainty from, say, the boundary conditions to the bulk

field and finally to the output of the simulation. Several techniques have been proposed in the past. Among

these, the currently most commonly used if the so-called perturbation technique that basically involves ex-

panding the variables of the problem in terms of Taylor series around their mean value (e.g. Ill D . Though
effective, this technique is limited to Gaussian or weakly non-Gaussian processes due to the difficulty in

incorporating terms of order higher than two. Still, this technique allows for a quick estimation of the low
order statistics.

When one wants to get access to the full statistics, one can make use of the Monte Carlo technique. It

is considered as an "exact" method for accounting for uncertainty in the sense that it does not require any
approximations nor assumptions. The main advantages are that its convergence rate does not depend on the

number of independent random variables and that its application is straightforward. However, it becomes

intractable for large problems as it requires to carry thousands of simulations which results in prohibitive

CPU time. Indeed, the resulting approximated variance of a er2-variance random process is a_Ic --= cr2/n

where n is the number of independent samples. Despite some techniques which improve the convergence



rate(LatinHypercube,importancesampling,etc.),thislastpointpreventsits useformostofthepractical
problemscurrentlystudiedbyCFD.

Anotherpossiblyviableapproachconsistsin derivingtheinverseof thestochasticoperator(thatrep-
resentsthegoverningequations)by expandingit. in a Neumannseries.Meanwhile,thederivationof the
Neumannseriesmayhoweverbecomesdifficult,if notimpossible,forcomplexproblems.

Analternative,andmoreeffective,approachisthePolynomialChaos. Originating in the work of Wiener

(1938) and mainly applied ill the field of structural mechanics, this technique is now making its way in the

fluid mechanics community ([15, 16, 12, 14]). The basic idea is to project the variables of the problem onto
a stochastic space spanned by a set of complete orthogonal polynomials k0 that are functions of a random

variable _(0), where 0 is a random event. The terms of the polynomials are functions of _(8) and are thus
functionals. Many random variables can be used: for example, _(0) can be a Gaussian variable associated

with Hermite polynomials. This is the original form of the Wiener work and is called homogeneous chaos.

Other expansions are possible: Laguerre polynomials with a Gamnm distributed variable, Jacobi polynomials

with Beta distribution, etc. Obviously, the convergence rate, and thus the number of terms required for a
given accuracy, depends both on the random process to be approximated and on the random variable used.
This aspect was illustrated by [15].

Using this approach, each variable of the problem to simulate is expanded as, say for the velocity u:

o_

u(x, t, 8) = E ui(x, t) _Pi(_(8)) • (1)
i----0

For practical simulations, the series has to be truncated to a finite number of terms, hereafter denoted

Npc. This framework remains valid also for partially, or non-, correlated variables. In that case, the variables

of the problem are functions of several independent, random variables and _ is now a vector. The general
expression for the Hermite polynomial H is

G_P

e-½ _ _ (2)

As discussed in [2], there is a one-to-one correspondence between functions Hp(_i_,..., _i.) and koj(_(O)).
The general expression for the Hermite Chaos is finally given by

Npc

_(=, t, 0) = _ _,(_, t) _(_(8)),
i=O

with the number of terms Npc determined from

(3)

Npc + 1 - (np_ + pp_)!
rtpc! Ppc! ' (4)

where Ppc is the order of the expansion and npc the dimensionality. It follows that Npc grows very quickly

with the dimension and the order of the decomposition. As an example, for a second order, 2-D Hermite
polynomial expansion, we get

it(=, t, O) _-- _tO(= , t)-i-_t 1(a:, t)_ 1(O)-{-tt2(X , t)_¢2 (O)-Ptt3 (a:; t) (_.¢12(0) -- 1)+u4(x, t)_¢1 (0)_.¢2 (O)+tts(= , t) (_¢2(0) - 1)

(5)
where _] (8) and _2(0) are two independent random variables.

In the case of the Hermite polynomials, the zeroth order represents the mean value and the first order

the Gaussian part. while higher orders account for non-Gaussian contributions. The Hermite polynomials

span a complete orthogonal set of basis functions in the stochastic space. The inner product is expressed as



f(fl({) f2({)) = I'1({) f2({) u'({) d{,
oc

where the weight function u,(_) is the npc-D normal distribution:

(6)

In the L2 norm space, we thus get

where 5 is the Kronecker operator.

w({) - 1 e-½ ¢r¢ . (7)

(8)

2 Full Spectral Approach for Quasi 1-D Nozzle Flow

To illustrate the Polynomial Chaos approach and highlight the computational burden of the nmltidimensional

stochastic summations, the Polynomial Chaos technique is derived here for a quasi 1-D nozzle flow. Mathelin

and Hussaini ([7]) have presented results for inviscid quasi 1-D nozzle flow solutions using Polynomial Chaos.

The system of compressible Euler equations in conservative form is

Qt + Fx =S, (9)

where

Q = pu A F = pu 2 A + PA S = POA/Ox , (10)

pEA puEA+PuA 0

with p the density, u the velocity, A the cross-section area, P the static pressure and E the total ener_'.

The pressure can be removed from the above equations making use of the following equation:

P 1 u2-- + (11)E- (_.-1)p _ "

Equation (9) thus becomes

) (0)Q= puA F= 3-_2 pu2A+("/-1)pEA S= (_-1) pE- OA/Oz .

pEA ";,puE A- _ pu3 A 0

The Euler equations are discretized in space using the spectral element method. This spatial discretization

is consistent with the spectral expansion involved in the Polynomial Chaos technique. Equation (9) is
projected onto a spectral and stochastic basis and the Galerkin technique is applied. The spectral space is

spanned by Chebyshev polynomials on points (in local coordinates Y _ [-1, 1]):

( r,n _ Vn _ [0;N] c N
_ = cos \ N / (13)

where N is the number of points within each element. The interpolants of variables, say u, in spectral space
read as

N

_(_,t) = y_ _(t) h_(_). (14)



where

rr_=O

-- T._(_n) Tm(_), (15)

with T._ the Chebyshev polynomials and ci such as

_=2 iE {O;X} (16)

_ = 1 i E]0;N[c N. (17)

Similarly, in the stochastic space,

Npc

_(o,z,t)= Y]_,(_,t)%(do)).
i=0

(18)

After rearrangement, it finally follows:

Npc Npc N

E E EP""AJ(%¢J %) (h,_,hp)
i=0 j=O n=O

Npc NPc Noc N N

i=0 j=O k=O n=O m=O

Npc NPc Npc N N

_=0 j=O k=O n=O m=O

V{l C [O;Npc], p C [O;N]} C N

(19)

S

0

Npc Npc Npc N N

(_,-1) E E E E EPi'"EJm OAk (qli_j_k%) (h,_,hm,hp)
i=0 j=O k=O n=O m=O

Npc Npc Npc Npc N N N
"7- 1 OA,.

i=0 j=O k=O r=O n=O m=O o=0

0

(20)



OF

Ox

NpC NI:,C Npo N N

i=0 3=[l k=O n=O m=O

h,,, Ohm

[(h_, h,,. OAkhp) + Ak

Np(, Nnc Nr, c Npc _'; _\' N 3- % [ OAk
i=0 3:0 k=O r=O n:O m=O o=O

•\'i,c Npc Npc" N _,' [ 0A&.+
_=0 j=0 k:O rL=0 m=0

 ,4)I
Npc

Z
Npc NpC NpC N N ,\'

j=O k=O r=O n=O m=O o=0 _ OX

i=O j=0 k=O r=O sin0 n=0 rn=O o:0 q=O

OAk Oh,,,

(21)

where 7 is the specific heat ratio ('y = 1.4 for diatomic gas).

The scalar products in the spectral space are defined by, say for (hn, h,_, ho)

1(h,,, hm, ho) = hn(_) hm(_) ho(_) d-e
1

S x x N To(.y,OTb(.2m) Tc(_o ) fl= -- To(e) Tb(_) rc(e) d_.N aZ Z Z CaCbCcCnCmCo 1
a=O b=O c=O

(22)

The nonlinearity in the inviscid momentum flux results in a 9-dimensional summation in Eq. (21). Five of

these sums are due to the Polynomial Chaos expansion, and would remain even for a simple finite difference

spatial discretization. For the extension of this problem to turbulent, viscous flow (see Mathelin, et al. [8]),

the corresponding equation for the turbulent kinetic energy contains a 12-dimensional sum, with seven of

these due to the Polsaaomial Chaos terms.

For this problem all the nonlinearities are of polynomial type. For the Riemann problem, a fundamental

component of many modern algorithms for soh, ing Euler and Navier-Stokes equations, the nonlinearities are

more complex. The appropriate approach to this for Polynonfial Chaos methods is not obvious.



3 Stochastic Collocation Method

The stochastic collocation method was developed to enable application to Spectral Discontinuous Galerkin

Methods (for which solution of the Riemann problem is a necessity) as well as to reduce the cost of Polynomial
Chaos methods for more classical discretizations, such as described above for quasi 1-D nozzle fiow.

Let a and b be two independent random variables. In the Polynomial Chaos method, the infinite series
for each variable would be expressed as, say, for a,

and the product ab would be

o =_a,v,(¢), (2a)
i=0

ab = E E aib_q2i(_)q2j(_) . (24)
i=0 j=O

(Here we drop any dependence upon x and t and concentrate on just the random variable _ without reference
to the random event parameter 0.)

The finite series for a is then
Npc

a = _ a_,_,(_). (25)
i=0

The usual Galerkin truncation yields for the expansion coefficients of the product c = ab

Npc" Npc

(ab)_= Z _ _, b, (q,,% %) vk • [o;N_,_]c N. (26)
i=0 j=0

Therefore, computing the Npc + 1 coefficients of the product ab takes of order _Ngc operations. The
complexity is even greater for cubic products. Moreover, for non-polynomial nonlinearities, such as those
that arise in the Riemann problem, the Galerkin truncation is not obvious.

For traditional deterministic problems, these difficulties are often treated by resorting to a collocation

method instead of the Galerkin method. The usual spatial collocation approach consists of projecting the

equations into the physical space (_). But a "physical space" corresponding to the random variable _ has

limited physical meaning, and the spatial scheme cannot be directly transformed. To deal with this problem,
we define a new stochastic space whose properties are known.

In the stochastic collocation method (SCM) one lets the Probability Density Function (PDF) of the

random variable _ serve as the basis for the transformation between the physical random variable _ and

its artificial stochastic space. We use a to denote a point in this artificial stochastic space. The range of

the corresponding Cumulative Distribution Function (CDF) is [0,1], and provided that the underlying PDF
is non-zero in the interior of its domain, the CDF is strictly monotonic and therefore this transformation

is bijective. Denote the CDF of _ by _'_((). We prefer to map the CDF to the standard domain [-1,1] of
orthogonal polynomials, and so we define

F¢(_)= 2J:_(_)- 1. (27)

Finally, denote the inverse of F_ by G_. Let a be a point in the domain [-1,1] of G. This is the new, known
stochastic space that is the foundation of the SCM. We have then

c_ = F((_) = 2.T'((_) - 1 (28)

and

= G_(a) . (29)

The SCM utilizes collocation points oi, i = 0,..., h_, in [-1,1] . These have associated quadrature weights
wi, chosen to give the best approximation to inner products on [-1,1]. In the present work we make the



particularchoiceof theGauss-Legendrepointsandweights.Thecollocationpointsin thestochasticspace
areassociatedwith tilepoints_i,i = 0,..., ?Vq, in random variable space according to (29).

Let us return now to the example of evaluating the product of two random variables a and b. First. we

construct the appropriate mapping functions, F, and Fb (and also their inverses Ga and Gb), from the PDFs

of a and b. Second, we evaluate a and b at the points ai, obtaining

ai = Go(ai) i = 0 ..... :\_ (30)
bi=Gb(ai) i=O ..... A"o.

These functions are then approximated in a-space by their interpolating polynomials, as for example,

Nq

,:% (a) = Z ajho (a) , (31)
)---- ()

where the functions hi are the classical Lagrange interpolants based on the .Yq + 1 collocation points, i.e.,

tb is a polynomial of degree 3,_ and hj (ai) = dij.

The representation of the product e = ab associated with a Galerkin method would be

Nq Nq

< a'\'% "% hk >= Z E aibj < hihjh_. > . (32)
i=0 j=O

But in the SCM we resort to the quaxtrature rule to approximate this as

Nq Nq Nq

< aXqb xÈ hk > _-- E E E aibj hi(a,)hj{o,)hk(a,) u,,
/=0 i=0 j=0

x, N, ,% (33)

= Z Z E a_bj 5,1@5kz w,
l=O i=0 j=0

= akbkW k .

So, the representation of the product is just

Nq

Gc(a) - cN_(a) = E(akbkwk) hk(a). (34)
k=0

The last step is to map this result back into the random variable space to obtain the approximate CDF of

c = ab. Recall that (34) gives the representation in a-space of the random variable c. We now need to back
out the CDF of c from the transformation rules (28) and (29). (In these equations we make the appropriate

identification _ = c.) We have, fmalb; for the CDF, _-_, of e

1 (F_(c)+ 1)
-_'c(c) = _ (35)

l(G_-l(a)+l),2

recalling that F_ is the inverse function of G_. The PDF of c is then readily obtained by differentiation of

(35).

In our present implementation of the SCM we use standard interpolation methods for the mappings (28)

and (35). For the forward mapping we start with a uniform distribution of the _ (ai in our example) for

representing the PDF of _. We base the interpolant for the inverse mapping on the collocation points a_, in
which case we have

C,,c(ai)=aibiwi i--0,...,Nq. (36)



since hk(ai) = (Sik.

The complexity of this implementation of the SCM in one dimension is Nq, regardless of the form of the
nonlinearity. In contrast the Galerkin method already scales as Nac for a simple quadratic nonlinearity.

The quadrature in the stochastic collocation method does introduce additional errors compared with those

of the Galerkin method, but these are reduced as Nq increases. This is usually not a major issue since the

collocation scheme allows for dramatic speed-up compared to full Galerkin approach and a relatively high
value for Nq is affordable.

As an example of this process, consider the cubic equation

f(u) = u a , (37)

where u is a Gaussian random variable, with mean 1.0 and standard deviation of 1/(2vfff. Figure 1 shows

the PDF of u, the a-representation of u, the a-representation of f(u) = u a, and the corresponding PDF of
f(_).
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Figure 1: Illustration of stochastic collocation for f(u) = u 3.



4 Application to Stochastic Riemann Solver

To illustrate the applicability of the above method, the stochastic Riemann problem is considered here. The

field variables are assumed to be discontinuous at a time t and this leads to the generation of shock wave,

rarefaction and expansion fan. See Landau & Lifshitz ([5]) or Liepmann & Roshko ([6]) for a review of

the physical phenomena involved. To compute the resulting state for later times, one can make use of the

algorithm proposed by Sod ([10]). It produces strongly non-linear equations including rational powers and
conditional expressions. While straightforward in a deterministic space, the application of such an algorithm

becomes very tricky with a stochastic approach. For example, two expressions are to be applied depending

on the pressure ratio: if P*/P > 1 , then use equation (a) and if P*/P < 1, then use equation (b). But

when both pressures are non-deterministic, what does P*/P > 1 or P*/P < 1 mean ?

Using the collocation scheme, the pressure ratio now has a deterministic expression in the c_-space and

it is possible to determine the resulting state. Figures 2 through 4 show the propagation of the stochastic

description of the state across the discontinuity, i.e., the stochastic collocation solution of the stochastic

Riemann problem. In these computations Nq = 200.

a_ oJ ,
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/
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(b) Interface state.
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Figure 2: Density PDF evolution throughout a discontinuity.

(a) Left state.

o_

o_s

!

(b) Interface state.

:::f
u, (

(c) Right state.

Figure 3: Velocity PDF evolution throughout a discontinuity.

Preliminary results from Mathelin, et al. ([8]) indicate that substantial CPU savings have been achieved
by the stochastic collocation method in Polynomial Chaos solutions of quasi 1-D nozzle flow. In their simplest

case, Euler flow, the computational time was reduced by a factor of 4. The computational savings is strongly

dependent upon the discretization parameters. More details are available in [8].
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Figure 4: Pressure PDF evolution throughout a discontinuity.
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