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Abstract. This work proposes and analyzes a stochastic collocation method for solving elliptic partial
differential equations with random coefficients and forcing terms. These input data are
assumed to depend on a finite number of random variables. The method consists of a
Galerkin approximation in space and a collocation in the zeros of suitable tensor prod-
uct orthogonal polynomials (Gauss points) in the probability space, and naturally leads
to the solution of uncoupled deterministic problems as in the Monte Carlo approach. It
treats easily a wide range of situations, such as input data that depend nonlinearly on the
random variables, diffusivity coefficients with unbounded second moments, and random
variables that are correlated or even unbounded. We provide a rigorous convergence anal-
ysis and demonstrate exponential convergence of the “probability error” with respect to
the number of Gauss points in each direction of the probability space, under some regular-
ity assumptions on the random input data. Numerical examples show the effectiveness of
the method. Finally, we include a section with developments posterior to the original pub-
lication of this work. There we review sparse grid stochastic collocation methods, which
are effective collocation strategies for problems that depend on a moderately large number
of random variables.
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Introduction. Thanks to the rapidly growing power of computers, numerical
simulations are increasingly used to produce predictions of the behavior of complex
physical or engineering systems. Some sources of errors arising in computer simula-
tions now can be controlled and reduced by using sophisticated techniques such as
a posteriori error estimation [1, 3, 57], mesh adaptivity, and the more recent modeling
error analysis [49, 50, 13]. All this has increased the accuracy of numerical predictions
as well as our confidence in them.

Yet many engineering applications are affected by a relatively large amount of
uncertainty in the input data, such as model coefficients, forcing terms, boundary
conditions, and geometry. In this case, to obtain a reliable numerical prediction, one
has to include uncertainty quantification due to the uncertainty in the input data.

Uncertainty can be described in several ways, depending on the amount of infor-
mation available; among others, we mention the worst-case scenario analysis, fuzzy
set theory, evidence theory, and probabilistic setting. See [6, 35] and the references
therein. In this paper we focus on elliptic partial differential equations (PDEs) with
a probabilistic description of the uncertainty in the input data. The model problem
has the form

(0.1) L(a)u = f in D,

where L is an elliptic operator in a domainD ⊂ Rd, which depends on some coefficients
a(x, ω), with x ∈ D, ω ∈ Ω, and Ω indicating the set of possible outcomes. Similarly,
the forcing term f = f(x, ω) can be assumed to be random as well.

The first step in developing a stochastic collocation method consists in parametriz-
ing the input randomness by means of a finite number of random variables. This can
be the case if, for instance, the mathematical model depends on few parameters,
which can be taken as random variables with a given joint probability distribution.
For example, we might think of the deformation of an elastic homogeneous material in
which Young’s modulus and Poisson’s ratio (parameters that characterize the material
properties) are random variables, either independent or not.

In other situations, the input data may vary randomly from one point of the
physical domain D to another, and their uncertainty should rather be described in
terms of random fields with a given covariance structure: the value at each point of
the domain is a random variable, and the correlation between two distinct point values
in the domain is known and in general is nonzero; this case is sometimes referred to
as colored noise.

Examples of this situation are the deformation of inhomogeneous materials such as
wood, foams, or biomaterials such as arteries and bones; groundwater flow problems
where the permeability in each layer of sediment (rock, sand, etc.) should not be
assumed constant; and the action of wind (direction and point intensity) on structures.

Although such random fields are infinite-dimensional, in general, several tech-
niques are available to parametrize them with a given accuracy, by a finite number of
random variables. We mention, for instance, the so-called Karhunen–Loève [39, 40]
or a polynomial chaos (PC) expansion [59, 63]. The former represents the random
field as a linear combination of an infinite number of uncorrelated random variables,
while the latter uses polynomial expansions in terms of independent random variables.
Both expansions exist, provided that the random field a : Ω → V , as a mapping from
the probability space into a functional space V , has bounded second moments. Other
nonlinear expansions can be considered as well (see, e.g., [33] for a technique to express
a stationary random field with given covariance structure and marginal distribution
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as a function of countably many independent random variables; nonlinear transfor-
mations also have been used in [43, 60]). The use of nonpolynomial expansions may
be advantageous in some situations: for instance, in groundwater flow problems, the
permeability coefficient within each layer of sediment can feature huge variability,
which is often expressed in a logarithm scale. In this case, one might want to use
a Karhunen–Loève (or PC) expansion for the logarithm of the permeability, instead
of the permeability field itself. This leads to an exponential dependence of the per-
meability on the random variables, and the resulting random field might even have
unbounded second moments. An advantage of such a nonlinear expansion is that
it guarantees a positive permeability almost surely (a condition which is difficult to
enforce with a standard truncated Karhunen–Loève or PC expansion).

To solve numerically the stochastic PDE (0.1), a numerical technique which has
gained much attention in the last few years is the so-called stochastic Galerkin approx-
imation (see, e.g., [32]). It employs standard approximations in space (finite elements,
finite volumes, spectral or h-p finite elements, etc.) and polynomial approximation in
the probability domain, either by total degree polynomial spaces [62, 43, 31, 52],
tensor product polynomial spaces [4, 27], or piecewise polynomial spaces [4, 37].

The use of tensor product spaces is particularly attractive in the case of a small
number of random variables, since it allows naturally the use of anisotropic spaces
where the polynomial degree is chosen differently with respect to each random vari-
able.

On the other hand, tensor product spaces suffer from the so-called curse of di-
mensionality since the dimension of the approximating space grows exponentially fast
in the number of random variables. If the number of random variables is moderate
or large, one should rather consider total degree polynomial spaces or sparse tensor
product spaces [9, 27, 61]. The original publication of this work [7] did not address
this case, but our subsequent works did. For instance, section 6 reviews sparse grid
stochastic collocation methods, which are effective collocation strategies for problems
that depend on a moderately large number of random variables.

The extension of the spectral Galerkin method to cases in which the input data
depend nonlinearly on the random variables and possibly have unbounded second
moments is not straightforward and, in any case, would lead to fully coupled systems
of equations, which call for highly efficient parallel solvers.

In this work we propose a collocation method which consists in collocating prob-
lem (0.1) in the zeros of tensor product orthogonal polynomials with respect to the
joint probability density ρ of the random variables, should they be independent, or
any other auxiliary density ρ̂ corresponding to independent random variables, as long
as the ratio ρ/ρ̂ is bounded. Stochastic collocation has already been applied in a
variety of problems and is the subject of ongoing research; see, among others, [54, 42]
and the recent work [61], which the authors became aware of upon completion of this
work.

As will be pointed out in the paper, this method offers several advantages:
• It naturally leads to uncoupled deterministic problems also in the case of
input data which depend nonlinearly on the random variables.

• It treats efficiently the case of nonindependent random variables with the
introduction of the auxiliary density ρ̂.

• It can easily deal with unbounded random variables, such as Gaussian or
exponential ones.

• It deals without difficulty with a diffusivity coefficient a with unbounded
second moment.
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The main result of the paper is given in Theorem 4.1 in section 4, where we prove
that the collocation method preserves the same accuracy as the stochastic Galerkin
approach and achieves exponential convergence in all the above-mentioned cases, pro-
vided that the input data are infinitely differentiable with respect to the random
variables, under very mild assumptions on the growth of such derivatives, as is the
case for standard expansions of random fields.

The collocation method can also be seen as a pseudospectral method (see, e.g.,
[51] and [28] for unbounded domains), i.e., a stochastic Galerkin approximation with
the use of suitable Gaussian quadrature formulas. We will also show that in some
particular cases, where such Gaussian quadratures are exact, it actually coincides with
the stochastic Galerkin method based on tensor product spaces.

The outline of the paper is as follows: In section 1 we introduce the mathemat-
ical problem and the main notation used throughout. In section 2 we describe the
collocation method. In section 3 we provide some regularity results on the solution of
the stochastic PDE. In particular, we show that the solution is analytic with respect
to the random variables, provided that the input data, as functions of the random
variables, have infinite derivatives which do not grow too fast. In section 4 we give a
complete convergence result for the collocation method and prove exponential conver-
gence. Then, in section 5, we present some numerical results showing the effectiveness
of the proposed method. Finally, section 6 reviews sparse grid stochastic collocation
methods, which are effective collocation strategies for problems that depend on a
moderately large number of random variables. This last section presents sparse col-
location methods, some results on convergence rates, and two numerical examples,
including a numerical comparison with stochastic Galerkin.

1. Problem Setting. Let D be a convex bounded polygonal domain in R
d, and

let (Ω,F , P ) be a complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω

is the σ-algebra of events, and P : F → [0, 1] is a probability measure. Consider
the stochastic linear elliptic boundary value problem: find a random function, u :
Ω × D → R, such that P -almost everywhere (a.e.) in Ω, or in other words, almost
surely (a.s.) the following equation holds:

(1.1)
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.

We will make the following assumptions:
(A1) a(ω, ·) is uniformly bounded from below; i.e.,

there exist amin > 0 such that P
(
ω ∈ Ω : a(ω, x) > amin ∀x ∈ D

)
= 1.

(A2) f(ω, ·) is square integrable with respect to P ; i.e.,
∫

D E[f2] dx <∞.
Moreover, we introduce the following Hilbert spaces:
• VP = L2

P (Ω)⊗H1
0 (D), equipped with the norm ‖v‖2

P =
∫

D
E

[
|∇v|2

]
dx.

• VP,a ≡ {v ∈ VP :
∫

D E
[
a|∇v|2

]
dx < ∞}, equipped with the norm ‖v‖P,a =

√∫

DE
[
a|∇v|2

]
dx.

Observe that under the above assumptions, the space VP,a is continuously em-
bedded in VP and

‖v‖P ≤ 1√
amin

‖v‖P,a.
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Problem (1.1) can be written in the following weak form:

(1.2) find u ∈ VP,a such that

∫

D

E[a∇u · ∇v] dx =

∫

D

E[fv] dx ∀ v ∈ VP,a.

A straightforward application of the Lax–Milgram theorem allows one to state
the well-posedness of problem (1.2) in the following lemma.

Lemma 1.1. Under assumptions (A1) and (A2), problem (1.2) admits a unique
solution u ∈ VP,a which satisfies the estimate

(1.3) ‖u‖P ≤ CP

amin

(∫

D

E[f2] dx

) 1
2

.

In the previous lemma we have used the Poincaré inequality

‖w‖L2(D) ≤ CP ‖∇w‖L2(D) ∀w ∈ H1
0 (D).

Weaker Assumptions on the Random Coefficients. It is possible to relax the
assumptions (A1) and (A2) substantially and still guarantee the existence and unique-
ness of the solution u to problem (1.2). In particular, if the lower bound for the co-
efficient a is no longer a constant but a random variable, i.e., a(x, ω) ≥ amin(ω) > 0
a.s. a.e. on D, we have the following estimate for the moments of the solution.

Lemma 1.2 (moments estimates). Let p, q ≥ 0 with 1/p + 1/q = 1. Take a

positive integer k. Then if f ∈ Lkp
P (Ω;L2(D)) and 1/amin ∈ Lkq

P (Ω), we have that
u ∈ Lk

P (Ω;H
1
0 (D)).

Proof. Since

‖u(·, ω)‖H1
0(D) ≤ CP

‖f(·, ω)‖L2(D)

amin(ω)
a.s.,

the result is a direct application of Hölder’s inequality:

∫

Ω

‖u(·, ω)‖kH1
0(D)dP (ω) ≤ Ck

P

∫

Ω

(‖f(·, ω)‖L2(D)

amin(ω)

)k

dP (ω)

≤ Ck
P

(∫

Ω

‖f(·, ω)‖kpL2(D)dP (ω)

)1/p
(

∫

Ω

(
1

amin(ω)

)qk

dP (ω)

)1/q

.

Example 1 (lognormal diffusion coefficient). As an application of the previous
lemma, we can conclude the well-posedness of (1.2) with a lognormal diffusion coef-
ficient. For instance, let

a(x, ω) = exp

(
N∑

n=1

bn(x)Yn(ω)

)

, Yn ∼ N(0, 1) independent and identically
distributed.

Use the lower bound

amin(ω) = exp

(

−
N∑

n=1

‖bn‖L∞(D)|Yn(ω)|
)

,
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and then for k, q <∞
(1.4)

‖1/amin‖kq
Lkq

P (Ω)
=

∫

Ω

(
1

amin(ω)

)qk

dP (ω)

=

∫

RN

exp

(

kq

N∑

n=1

‖bn‖L∞(D)|zn|
)

exp

(

−1

2

N∑

n=1

z2
n

)

dz1 · · · dzN <∞.

Now let ǫ > 0. Then by Lemma 1.2 the assumption f ∈ L
k(1+ǫ)
P (Ω;L2(D)) together

with (1.4) implies u ∈ Lk
P (Ω;H

1
0 (D)).

1.1. Finite-Dimensional Noise Assumption. In many problems the source of
randomness can be approximated using just a small number of uncorrelated, some-
times independent, random variables; take, for example, the case of a truncated
Karhunen–Loève expansion [39, 40]. This motivates us to make the following as-
sumption.

Assumption 1 (finite-dimensional noise). The coefficients used in the computa-
tions have the form

a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x) on Ω×D,

where N ∈ N+ and {Yn}Nn=1 are real-valued random variables with mean value zero

and unit variance.

We will denote with Γn ≡ Yn(Ω) the image of Yn, Γ =
∏N

n=1 Γn, and we will
assume that the random variables [Y1, Y2, . . . , YN ] have a joint probability density
function ρ : Γ → R+, with ρ ∈ L∞(Γ).

Example 2. The following standard transformation guarantees that the diffusivity
coefficient is bounded away from zero a.s.:

(1.5) log(a− amin)(ω, x) = b0(x) +
∑

1≤n≤N

√

λnbn(x)Yn(ω);

i.e., one performs a Karhunen–Loève expansion for log(a − amin), assuming that
a > amin a.s. On the other hand, the right-hand side of (1.1) can be represented as
a truncated Karhunen–Loève expansion:

f(ω, x) = c0(x) +
∑

1≤n≤N

√
µncn(x)Yn(ω).

Remark 1. It is usual to have f and a independent, because the loads and the
material properties are seldom related. In such a situation we have a(Y (ω), x) =
a(Ya(ω), x) and f(Y (ω), x) = f(Yf (ω), x), with Y = [Ya, Yf ] and the vectors Ya, Yf
independent.

After making Assumption 1, the solution u of the stochastic elliptic boundary
value problem (1.2) can be described by just a finite number of random variables, i.e.,
u(ω, x) = u(Y1(ω), . . . , YN (ω), x). Thus, the goal is to approximate the function u =
u(y, x), where y ∈ Γ and x ∈ D. Observe that the stochastic variational formulation
(1.2) has a “deterministic” equivalent which is the following: find u ∈ Vρ,a such that

(1.6)

∫

Γ

ρ (a∇u,∇v)L2(D) dy =

∫

Γ

ρ (f, v)L2(D) dy ∀ v ∈ Vρ,a,

noting that here and later in this work the gradient notation, ∇, always means differ-
entiation with respect to x ∈ D only, unless otherwise stated. The space Vρ,a is the
analogue of VP,a with (Ω,F , P ) replaced by (Γ,BN , ρ dy).
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Since the solution to (1.6) is unique and is also a solution to (1.2), it follows that
the solution has necessarily the form u(ω, x) = u(Y1(ω), . . . , YN (ω), x). The stochastic
boundary value problem (1.1) now becomes a deterministic Dirichlet boundary value
problem for an elliptic PDE with an N -dimensional parameter. For convenience, we
consider the solution u as a function u : Γ → H1

0 (D) and use the notation u(y)
whenever we want to highlight the dependence on the parameter y. We use similar
notation for the coefficient a and the forcing term f . Then it can be shown that
problem (1.1) is equivalent to

(1.7)

∫

D

a(y)∇u(y) · ∇φdx =

∫

D

f(y)φdx ∀φ ∈ H1
0 (D), ρ-a.e. in Γ.

For our convenience, we will suppose that the coefficient a and the forcing term f
admit a smooth extension on the ρ dy-zero measure sets. Then (1.7) can be extended
a.e. in Γ with respect to the Lebesgue measure (instead of the measure ρ dy).

Remark 2. Strictly speaking, (1.7) will hold only for those values of y ∈ Γ for
which the coefficient a(y) is finite. In this paper we will assume that a(y) may go to
infinity only at the boundary of the parameter domain Γ.

Making Assumption 1 is a crucial step, turning the original stochastic elliptic
equation into a deterministic parametric elliptic equation and allowing the use of finite
element and finite difference techniques to approximate the solution of the resulting
deterministic problem (cf. [36, 20]).

Observe that the knowledge of u = u(y, x) fully determines the law of the random
field u(ω, x). However, the computation of some quantities of interest such as failure
probabilities might pose extra challenges from the numerical point of view. On the
other hand, computation of moments of the solution or functionals of the solution is
direct (see sections 2 and 4.1).

2. Collocation Method. We seek a numerical approximation to the exact so-
lution of (1.6) in a finite-dimensional subspace Vp,h based on a tensor product,
Vp,h = Pp(Γ)⊗Hh(D), where the following hold:

• Hh(D) ⊂ H1
0 (D) is a standard finite element space of dimension Nh, which

contains continuous piecewise polynomials defined on regular triangulations
Th that have a maximum mesh spacing parameter h > 0.

• Pp(Γ) ⊂ L2
ρ(Γ) is the span of tensor product polynomials with degree at most

p = (p1, . . . , pN ); i.e., Pp(Γ) =
⊗N

n=1 Ppn
(Γn), with

Ppn
(Γn) = span(ymn , m = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp is Np =
∏N

n=1(pn + 1).
We first introduce the semidiscrete approximation uh : Γ → Hh(D), obtained by

projecting (1.7) onto the subspace Hh(D), for each y ∈ Γ, i.e.,

(2.1)

∫

D

a(y)∇uh(y) · ∇φh dx =

∫

D

f(y)φh dx ∀φh ∈ Hh(D) for a.e. y ∈ Γ.

The next step consists in collocating (2.1) on the zeros of orthogonal polynomials
and building the discrete solution uh,p ∈ Pp(Γ) ⊗ Hh(D) by interpolating in y the
collocated solutions.

To this end, we first introduce an auxiliary probability density function ρ̂ : Γ →
R+ that can be seen as the joint probability of N independent random variables; i.e.,
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it factorizes as

(2.2) ρ̂(y) =
N∏

n=1

ρ̂n(yn) ∀y ∈ Γ and is such that

∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥
L∞(Γ)

<∞.

For each dimension n = 1, . . . , N , let yn,kn
, 1 ≤ kn ≤ pn + 1, be the pn + 1 roots of

the orthogonal polynomial qpn+1 with respect to the weight ρ̂n, which then satisfies
∫

Γn
qpn+1(y)v(y)ρ̂n(y)dy = 0 for all v ∈ Ppn

(Γn).
Standard choices for ρ̂, such as constant, Gaussian, etc., lead to well-known roots

of the polynomial qpn+1, which are tabulated to full accuracy and do not need to be
computed.

To any vector of indexes [k1, . . . , kN ] we associate the global index

k = k1 + p1(k2 − 1) + p1p2(k3 − 1) + · · · ,

and we denote by yk the point yk = [y1,k1 , y2,k2 , . . . , yN,kN
] ∈ Γ. We also introduce,

for each n = 1, 2, . . . , N , the Lagrange basis {ln,j}pn+1
j=1 of the space Ppn

,

ln,j ∈ Ppn
(Γn), ln,j(yn,k) = δjk, j, k = 1, . . . , pn + 1,

where δjk is the Kronecker symbol, and we set lk(y) =
∏N

n=1 ln,kn
(yn). Hence, the

final approximation is given by

uh,p(y, x) =

Np∑

k=1

uh(yk, x)lk(y),

where uh(yk, x) is the solution of problem (2.1) for y = yk.
Equivalently, if we introduce the Lagrange interpolant operator Ip : C0(Γ;H1

0 (D))
→ Pp(Γ)⊗H1

0 (D), such that

Ipv(y) =
Np∑

k=1

v(yk)lk(y) ∀v ∈ C0(Γ;H1
0 (D)),

then we have simply uh,p = Ipuh.
Finally, for any continuous function g : Γ → R we introduce the Gauss quadrature

formula Ep
ρ̂ [g] approximating the integral

∫

Γ
g(y)ρ̂(y) dy as

(2.3) Ep
ρ̂ [g] =

Np∑

k=1

ωkg(yk), ωk =

N∏

n=1

ωkn
, ωkn

=

∫

Γn

l2kn
(y)ρ̂n(y) dy.

This can be used to approximate the mean value or the variance of u as

ūh ∈ Hh(D), ūh(x) = Ep
ρ̂

[
ρ

ρ̂
uh(x)

]

,

varh(uh) ∈ L1(D), varh(uh)(x) = Ep
ρ̂

[
ρ

ρ̂
(uh(x) − ūh(x))

2

]

as long as ρ/ρ̂ is a smooth function. Otherwise, ūh and varh(uh) should be computed
with a suitable quadrature formula which takes into account eventual discontinuities
or singularities of ρ/ρ̂.
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2.1. Collocation versus Stochastic Galerkin Approximation. An alternative
approach to the collocation method introduced thus far consists in approximating
problem (1.6) with a stochastic Galerkin method: find uGh,p ∈ Pp(Γ) ⊗ Hh(D) such
that

(2.4)

∫

Γ

ρ (a∇uGh,p,∇v)L2(D) dy =

∫

Γ

ρ (f, v)L2(D) dy ∀ v ∈ Pp(Γ)⊗Hh(D).

This approach has been considered by several authors [4, 20, 27, 62, 32, 43]. Observe
that, in general, problem (2.4) leads to a fully coupled system of linear equations,
whose dimension is Nh×Np and that demands highly efficient strategies and parallel
computations for its numerical solution [23]. Conversely, the collocation method re-
quires only the solutions of Np uncoupled linear systems of dimension Nh and is fully
parallelizable.

In [4, 5] a particular choice of basis functions (named double orthogonal polynomi-
als) for the space Pp(Γ) is proposed. This choice allows us to decouple the system in
the special case where the diffusivity coefficient and the forcing term are multilinear
combinations of the random variables Yn(ω) (as is the case if one performs a trun-
cated linear Karhunen–Loève expansion) and the random variables are independent,

i.e., ρ(y) =
∏N

n=1 ρn(yn). The proposed basis is then obtained by solving the following
eigenvalue problems for each n = 1, . . . , N :

∫

Γn

zψkn(z)v(z)ρn(z) dz = ckn

∫

Γn

ψkn(z)v(z)ρn(z) dz, k = 1, . . . , pn + 1.

The eigenvectors ψkn are normalized so as to satisfy the property
∫

Γn

ψkn(z)ψjn(z)ρn(z) dz = δkj ,

∫

Γn

zψkn(z)ψjn(z)ρn(z) dz = cknδkj .

See [4, 5] for further details on the double orthogonal basis.
We now aim at analyzing the analogies between the collocation and the stochastic

Galerkin methods. The collocation method can be seen as a pseudospectral Galerkin
method (see, e.g., [51]), where the integrals over Γ in (2.4) are replaced by the quadra-
ture formula (2.3): find uh,p ∈ Pp(Γ)⊗Hh(D) such that

(2.5) Ep
ρ̂

[
ρ

ρ̂
(a∇uh,p,∇v)L2(D)

]

= Ep
ρ̂

[
ρ

ρ̂
(f, v)L2(D)

]

∀ v ∈ Pp(Γ)⊗Hh(D).

Indeed, by choosing in (2.5) the test functions of the form v(y, x) = lk(y)φ(x), where
φ(x) ∈ Hh(D) and lk(y) is the Lagrange basis function associated to the knot yk,
k = 1, . . . , Np, one is led to solve a sequence of uncoupled problems of the form
(2.1) collocated in the points yk, which, ultimately, gives the same solution as the
collocation method.

In the particular case where the diffusivity coefficient and the forcing term are
multilinear combinations of the random variables Yn(ω) and the random variables are
independent, it turns out that the quadrature formula is exact if one chooses ρ̂ = ρ.
In this case, the solution obtained by the collocation method actually coincides with
the stochastic Galerkin one. This can be seen easily by observing that, with the
above assumptions, the integrand in (2.4), i.e., (a∇uh,p ·∇v), is a polynomial at most
of degree 2pn + 1 in the variable yn and the Gauss quadrature formula is exact for
polynomials up to degree 2pn + 1 integrated against the weight ρ.

The collocation method is a natural generalization of the stochastic Galerkin
approach and has the following advantages:
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• It decouples the system of linear equations in Y also in the case where the
diffusivity coefficient a and the forcing term f are nonlinear functions of the
random variables Yn.

• It treats efficiently the case of nonindependent random variables with the
introduction of the auxiliary measure ρ̂.

• It can easily deal with unbounded random variables (see Theorem 4.1 in
section 4).

As will be shown in section 4, the collocation method preserves the same accuracy
as the stochastic Galerkin approach and achieves exponential convergence if the co-
efficient a and forcing term f are infinitely differentiable with respect to the random
variables Yn, under very mild requirements on the growth of their derivatives in Y .

As a final remark, we show that the double orthogonal polynomials proposed in
[4] coincide with the Lagrange basis lk(y), and the eigenvalues ckn are nothing but
the Gauss knots of integration.

Lemma 2.1. Let Γ ⊂ R, ρ : Γ → R be a positive weight, and let {ψk}p+1
k=1 be the

set of double orthogonal polynomials of degree p satisfying
∫

Γ

ψk(y)ψj(y)ρ(y) dy = δkj ,

∫

Γ

yψk(y)ψj(y)ρ(y) dy = ckδkj .

Then the eigenvalues ck are the nodes of the Gaussian quadrature formula associ-

ated to the weight ρ, and the eigenfunctions ψk are, up to multiplicative factors, the

corresponding Lagrange polynomials built on the nodes ck.
Proof. We have, for k = 1, . . . , p+ 1,

∫

Γ

(y − ck)ψk(y)v(y)ρ(y)dy = 0 ∀v ∈ Pp(Γ).

Take v =
∏p+1

j=1
j �=k

(y − cj) ∈ Pp(Γ) in the above and let w =
∏p+1

j=1(y − cj). Then

∫

Γ

w(y)ψk(y)ρ(y)dy = 0 ∀k = 1, . . . , p+ 1.

Since {ψk}p+1
k=1 defines a basis of the space Pp(Γ), the previous relation implies that w

is ρ-orthogonal to Pp(Γ). In addition, the functions (y− ck)ψk are also orthogonal to
the same subspace: this yields, due to the one-dimensional nature of the orthogonal
complement of Pp(Γ) over Pp+1(Γ),

(y − ck)ψk = αkw = αk

p+1
∏

j=1

(y − cj), k = 1, . . . , p+ 1,

which gives

ψk = αk

p+1
∏

j=1
j �=k

(y − cj), k = 1, . . . , p+ 1;

i.e., the double orthogonal polynomials ψk are collinear to Lagrange interpolants at the
nodes cj . Moreover, the eigenvalues cj are the roots of the polynomial w ∈ Pp+1(Γ),
which is ρ-orthogonal to Pp(Γ), and therefore they coincide with the nodes of the
Gaussian quadrature formula associated to the weight ρ.
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3. Regularity Results. Before going through the convergence analysis of the
method, we need to state some regularity assumptions on the data of the problem and
consequent regularity results for the exact solution u and the semidiscrete solution
uh.

In what follows we will need some restrictive assumptions on f and ρ. In par-
ticular, we will assume f to be a continuous function in y, whose growth at infinity,
whenever the domain Γ is unbounded, is at most exponential. At the same time we
will assume that ρ behaves as a Gaussian weight at infinity, as does the auxiliary
density ρ̂, in light of assumption (2.2).

Other types of growth of f at infinity and corresponding decay of the probability
density ρ, for instance, of exponential type, could be considered as well. Yet we will
limit the analysis to the aforementioned case.

To make these assumptions precise, we introduce a weight σ(y) =
∏N

n=1 σn(yn) ≤
1, where

(3.1) σn(yn) =

{

1 if Γn is bounded,

e−αn|yn| for some αn > 0 if Γn is unbounded,

and the functional space

C0
σ(Γ;V ) ≡

{

v : Γ → V, v continuous in y, max
y∈Γ

‖σ(y)v(y)‖
V
< +∞

}

,

where V is a Banach space of functions defined in D.
Assumption 2 (growth at infinity). In what follows we will assume that
(a) f ∈ C0

σ(Γ;L
2(D)), and

(b) the joint probability density ρ satisfies

(3.2) ρ(y) ≤ Cρ e
−∑N

n=1(δnyn)2 ∀y ∈ Γ

for some constant Cρ > 0 and δn strictly positive if Γn is unbounded and zero

otherwise.

The parameter δn in (3.2) gives a scale for the decay of ρ at infinity and provides
an estimate of the dispersion of the random variable Yn. On the other hand, the
parameter αn in (3.1) controls the growth of the forcing term f at infinity.

Remark 3 (growth of f). The convergence result given in Theorem 4.1 in section 4
extends to a wider class of functions f . For instance, we could take f ∈ C0

σ(Γ;L
2(D))

with σ = e−
∑N

n=1(δnyn)2/8. Yet the class given in (3.1) is already large enough for
most practical applications (see Example 2).

We can now choose any suitable auxiliary density ρ̂(y) =
∏N

n=1 ρ̂n(yn) that sat-
isfies, for each n = 1, . . . , N ,

(3.3) Cn
mine

−(δnyn)2 ≤ ρ̂n(yn) < Cn
maxe

−(δnyn)2 ∀yn ∈ Γn

for some positive constants Cn
min and Cn

max that do not depend on yn.
Observe that this choice satisfies the requirement given in (2.2), i.e., ‖ρ/ρ̂‖L∞(Γ) ≤

Cρ/Cmin with Cmin =
∏N

n=1 C
n
min.

Under the above assumptions, the following inclusions hold true:

C0
σ(Γ;V ) ⊂ L2

ρ̂(Γ;V ) ⊂ L2
ρ(Γ;V )
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with continuous embedding. Indeed, on one hand we have

‖v‖L2
ρ(Γ;V ) ≤

∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥

1
2

L∞(Γ)

‖v‖L2
ρ̂
(Γ;V ) ≤

√
Cρ

Cmin
‖v‖L2

ρ̂
(Γ;V ).

On the other hand,

‖v‖2
L2

ρ̂
(Γ;V ) =

∫

Γ

ρ̂(y)‖v(y)‖2
V dy ≤ ‖v‖2

C0
σ(Γ;V )

∫

Γ

ρ̂(y)

σ2(y)
dy ≤

N∏

n=1

Mn‖v‖2
C0

σ(Γ;V )

with Mn =
∫

Γn
ρ̂n/σ

2
n. Now, for Γn bounded, Mn ≤ Cn

max|Γn|, whereas if Γn is
unbounded,

Mn =

∫

Γn

(

e−
(δny)2

2 +2αn|y|
)

e
(δny)2

2 ρ̂n(y) dy ≤ Cn
max

√
2π

δn
e2(αn/δn)2 .

The first result we need is the following lemma.
Lemma 3.1. If f ∈ C0

σ(Γ;L
2(D)) and a ∈ C0

loc(Γ;L
∞(D)), uniformly bounded

away from zero, then the solution to problem (1.7) satisfies u ∈ C0
σ(Γ;H

1
0 (D)).

The proof of this lemma is immediate. The next result concerns the analyticity
of the solution u whenever the diffusivity coefficient a and the forcing term f are
infinitely differentiable with respect to y, under mild assumptions on the growth of
their derivatives in y. We will perform a one-dimensional analysis in each direction
yn, n = 1, . . . , N . For this, we introduce the following notation:

Γ∗
n =

N∏

j=1
j �=n

Γj ,

with y∗n denoting an arbitrary element of Γ∗
n. Similarly, we set

ρ̂∗n =

N∏

j=1
j �=n

ρ̂j

and

σ∗
n =

N∏

j=1
j �=n

σj .

Lemma 3.2. Under the assumption that, for every y = (yn, y
∗
n) ∈ Γ, there exists

γn < +∞ such that

(3.4)

∥
∥
∥
∥
∥

∂kyn
a(y)

a(y)

∥
∥
∥
∥
∥
L∞(D)

≤ γknk! and
‖∂kyn

f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤ γknk!,

the solution u(yn, y
∗
n, x) as a function of yn, u : Γn → C0

σ∗
n
(Γ∗

n;H
1
0 (D)) admits an

analytic extension u(z, y∗n, x), z ∈ C, in the region of the complex plane

(3.5) Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}
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with 0 < τn < 1/(2γn). Moreover, for all z ∈ Σ(Γn; τn),

(3.6) ‖σn(Re z)u(z)‖C0
σ∗

n
(Γ∗

n;H1
0 (D)) ≤

CP e
αnτn

amin(1− 2τnγn)
(2‖f‖C0

σ(Γ;H1
0 (D)) + 1)

with the constant CP as in (1.3).
Proof. In every point y ∈ Γ, the kth derivative of u with respect to yn satisfies

the problem

B(y; ∂kyn
u, v) = −

k∑

l=1

(
k
l

)

∂lyn
B(y; ∂k−l

yn
u, v) + (∂kyn

f, v) ∀v ∈ H1
0 (D),

where B is the parametric bilinear form B(y;u, v) =
∫

D
a(y)∇u · ∇v dx. Hence

‖
√

a(y)∇∂kyn
u‖L2(D) ≤

k∑

l=1

(
k
l

)
∥
∥
∥
∥
∥

∂lyn
a(y)

a(y)

∥
∥
∥
∥
∥
L∞(D)

‖
√

a(y)∇∂k−l
yn

u‖L2(D)

+
CP√
amin

‖∂kyn
f‖L2(D).

Setting Rk = ‖
√

a(y)∇∂kyn
u‖L2(D)/k! and using the bounds on the derivatives of a

and f , we obtain the recursive inequality

Rk ≤
k∑

l=1

γlnRk−l +
CP√
amin

γkn(1 + ‖f‖L2(D)).

The generic term Rk admits the bound

Rk ≤
1

2
(2γn)

k

[

R0 +
CP√
amin

(1 + ‖f‖L2(D))

]

.

Observing that R0 = ‖
√

a(y)∇u(y)‖L2(D) ≤ CP√
amin

‖f(y)‖L2(D) and

‖∇∂kyn
u‖L2(D)

k!
≤ Rk√

amin
,

we get the final estimate on the growth of the derivatives of u,

‖∇∂kyn
u(y)‖L2(D)

k!
≤ CP

amin
(2‖f(y)‖L2(D) + 1)(2γn)

k.

We now define for every yn ∈ Γn the power series u : C → C0
σ∗

n
(Γ∗

n, H
1
0 (D)) as

u(z, y∗n, x) =
∞∑

k=0

(z − yn)
k

k!
∂kyn

u(yn, y
∗
n, x).

Hence,

σn(yn)‖u(z)‖C0
σ∗

n
(Γ∗

n,H
1
0(D)) ≤

∞∑

k=0

|z − yn|k
k!

σn(yn)‖∂kyn
u(yn)‖C0

σ∗
n
(Γ∗

n;H1
0 (D))

≤ CP

amin
max
yn∈Γn

{

σn(yn)
(

2‖f(yn)‖C0
σ∗

n
(Γ∗

n;L2(D)) + 1
)} ∞∑

k=0

(|z − yn|2γn)k

≤ CP

amin
(2‖f‖C0

σ(Γ;L2(D)) + 1)

∞∑

k=0

(|z − yn|2γn)k ,D
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where we have exploited the fact that σn(yn) ≤ 1 for all yn ∈ Γn; the series converges
for all z ∈ C such that |z − yn| ≤ τn < 1/(2γn). Moreover, in the ball |z − yn| ≤ τn,
we have, by virtue of (3.1), σn(Re z) ≤ eαnτnσn(yn), and then

σn(Re z)‖u(z)‖C0
σ∗

n
(Γ∗

n,H
1
0 (D)) ≤

CP e
αnτn

amin(1 − 2τnγn)
(2‖f‖C0

σ(Γ;L2(D)) + 1).

The power series converges for every yn ∈ Γn; hence, by a continuation argument, the
function u can be extended analytically on the whole region Σ(Γn; τn), and estimate
(3.6) follows.

Example 3. Let us consider the case where the diffusivity coefficient a is expanded
in a linear truncated Karhunen–Loève expansion

a(ω, x) = b0(x) +
N∑

n=1

√

λnbn(x)Yn(ω),

provided that such an expansion guarantees a(ω, x) ≥ amin for almost every ω ∈ Ω
and x ∈ D [27]. In this case we have

∥
∥
∥
∥
∥

∂kyn
a

a

∥
∥
∥
∥
∥
L∞(Γ×D)

≤
{√

λn‖bn‖L∞(D)/amin for k = 1,

0 for k > 1,

and we can safely take γn =
√
λn‖bn‖L∞(D)/amin in (3.4).

If we consider, instead, a truncated exponential expansion

a(ω, x) = amin + eb0(x)+
∑N

n=1

√
λnbn(x)Yn(ω),

we have
∥
∥
∥
∥
∥

∂kyn
a

a

∥
∥
∥
∥
∥
L∞(Γ×D)

≤
(√

λn‖bn‖L∞(D)

)k

,

and we can take γn =
√
λn‖bn‖L∞(D). Hence, both choices fulfill the assumption in

Lemma 3.2.
Example 4. Similarly to the previous case, let us consider a forcing term f of the

form

f(ω, x) = c0(x) +
N∑

n=1

cn(x)Yn(ω),

where the random variables Yn are Gaussian (either independent or not) and the
functions cn(x) are square integrable for any n = 1, . . . , N . Then the function f
belongs to the space C0

σ(Γ;L
2(D)), with weight σ defined in (3.1), for any choice of

the exponent coefficients αn > 0.
Moreover,

‖∂kyn
f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤

{

‖cn‖L2(D) for k = 1,

0 for k > 1,

and we can safely take γn = ‖cn‖L2(D) in (3.4). Hence, such a forcing term satisfies
the assumptions of Lemma 3.2. In this case, though, the solution u is linear with
respect to the random variables Yn (hence, clearly analytic), and our theory is not
needed.

Observe that the regularity results are valid also for the semidiscrete solution uh.
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4. Convergence Analysis. Our aim is to give a priori estimates for the total
error ǫ = u− uh,p in the natural norm L2

ρ(Γ) ⊗H1
0 (D). The next theorem states the

convergence result we are seeking, and the rest of the section will be devoted to its
proof. In particular, we will prove that the error decays (sub)exponentially fast with
respect to p under the regularity assumptions made in section 3. The convergence
with respect to h will be dictated by standard approximability properties of the finite
element space Hh(D) and the regularity in space of the solution u (see, e.g., [18, 14]).

Theorem 4.1. Under the assumptions of Lemmas 3.1 and 3.2, there exist positive
constants rn, n = 1, . . . , N , and C, independent of h and p, such that

(4.1)

‖u− uh,p‖L2
ρ⊗H1

0
≤ 1√

amin
inf

v∈L2
ρ⊗Hh

(∫

Γ×D

ρa|∇(u− v)|2
) 1

2

+C

N∑

n=1

βn(pn) exp{−rn pθn
n },

where

• if Γn is bounded,

{
θn = βn = 1,

rn = log
[

2τn

|Γn|

(

1 +
√

1 + |Γn|2
4τ2

n

)]

,

• if Γn is unbounded,

{

θn = 1/2, βn = O(
√
pn),

rn = τnδn,

τn is smaller than the distance between Γn and the nearest singularity in the complex

plane, as defined in Lemma 3.2, and δn is defined as in (3.2).
The first term on the right-hand side of (4.1) concerns the space approximability

of u in the subspace Hh(D) and is controlled by the mesh size h. The actual rate of
convergence will depend on the regularity in space of a(y) and f(y) for each y ∈ Γ
as well as on the smoothness on the domain D. Observe that an h or h-p adaptive
strategy to reduce the error in space is not precluded by this approach.

The exponential rate of convergence in the Y direction depends on the constants
rn, which in turn are related to the distances from the sets Γn to their nearest singu-
larities in the complex plane. In Examples 3 and 4 we have estimated these constants
in the case where the random fields a and f are represented by either a linear or
exponential truncated Karhunen–Loève expansion. Hence, a full characterization of
the convergence rate is available in these cases.

Observe that in Theorem 4.1 it is not necessary to assume the finiteness of the
second moment of the coefficient a.

Before proving the theorem, we recall some known results of approximation theory
for a function f defined on a one-dimensional domain (bounded or unbounded) with
values in a Hilbert space V , f : Γ ⊂ R → V . As in section 2, let ρ : Γ → R+ be a
positive weight which satisfies, for all y ∈ Γ, ρ(y) ≤ CMe−(δy)2 for some CM > 0 and
δ strictly positive if Γ is unbounded and zero otherwise; let yk ∈ Γ, k = 1, . . . , p+1, be
the set of zeros of the polynomial of degree p orthogonal to the space Pp−1 with respect

to the weight ρ; and let σ be an extra positive weight such that σ(y) ≥ Cme
−(δy)2/4 for

some Cm > 0. With this choice, the embedding C0
σ(Γ;V ) ⊂ L2

ρ(Γ;V ) is continuous.

Observe that the condition on σ is satisfied both by a Gaussian weight σ = e−(µy)2D
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with µ ≤ δ/2 and by an exponential weight σ = e−α|y| for any α ≥ 0. Finally,

we denote by Ip the Lagrange interpolant operator, Ipv(y) =
∑p+1

k=1 v(yk)lk(y) for
every continuous function v, and by ωk =

∫

Γ l
2
k(y)ρ(y) dy the weights of the Gaussian

quadrature formula built upon Ip.
The following two lemmas are a slight generalization of a classical result by Erdös

and Turán [25].
Lemma 4.2. The operator Ip : C0

σ(Γ;V ) → L2
ρ(Γ;V ) is continuous.

Proof. We have, indeed, that for any v ∈ C0
σ(Γ;V )

‖Ipv‖2
L2

ρ(Γ;V ) =

∫

Γ

∥
∥
∥
∥
∥

p+1
∑

k=1

v(yk)lk(y)

∥
∥
∥
∥
∥

2

V

ρ(y) dy.

Thanks to the orthogonality property
∫

Γ
lj(y)lk(y)ρ(y) dy = δjk, we have

‖Ipv‖2
L2

ρ(Γ;V ) =

∫

Γ

p+1
∑

k=1

‖v(yk)‖2
V
l2k(y)ρ(y) dy

≤ max
k=1,...,p+1

‖v(yk)‖2
V
σ2(yk)

p+1
∑

k=1

∫

Γ

l2k(y)ρ(y)

σ2(yk)
dy

≤ ‖v‖2
C0

σ(Γ;V )

p+1
∑

k=1

ωk

σ2(yk)
.

In the case of Γ bounded, we have σ ≥ Cm and
∑p+1

k=1 ωk = 1 for any p, and the result

follows immediately. For Γ unbounded, since ρ(y) ≤ CM e−(δy)2 , all the even moments
c2m =

∫

Γ
y2mρ(y) dy are bounded, up to a constant, by the moments of the Gaussian

density e−(δy)2 . Therefore, using a result from Uspensky in 1928 [56], it follows that

p+1
∑

k=1

ωk

σ2(yk)

p→∞−→
∫

Γ

ρ(y)

σ2(y)
dy ≤ CM

C2
m

√

2π

δ
,

and we conclude that

‖Ipv‖L2
ρ(Γ;V ) ≤ C1‖v‖C0

σ(Γ;V ).

Observe that, in general, if V is just Banach and not Hilbert, we obtain, for the
worst case, ‖Ipv‖L2

ρ(Γ;V ) ≤ C1

√
p+ 1‖v‖C0

σ(Γ;V ). Note that for specific choices of ρ
this estimate may be improved.

Lemma 4.3. For every function v ∈ C0
σ(Γ;V ) the interpolation error satisfies

‖v − Ipv‖L2
ρ(Γ;V ) ≤ C2 inf

w∈Pp(Γ)⊗V
‖v − w‖C0

σ(Γ;V )

with a constant C2 independent of p.
Proof. Let us observe that for all w ∈ Pp(Γ)⊗ V , it holds that Ipw = w. Then

‖v − Ipv‖L2
ρ(Γ;V ) ≤ ‖v − w‖L2

ρ(Γ;V ) + ‖Ip(w − v)‖L2
ρ(Γ;V )

≤ C2‖v − w‖C0
σ(Γ;V ).

Since w is arbitrary on the right-hand side, the result follows.

D
o

w
n
lo

ad
ed

 0
5
/2

1
/1

5
 t

o
 1

0
9
.1

7
1
.1

3
7
.2

1
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC COLLOCATION FOR PDEs WITH RANDOM DATA 333

Lemma 4.3 relates the approximation error (v−Ipv) in the L2
ρ-norm with the best

approximation error in the weighted C0
σ-norm for any weight σ(y) ≥ Cme

−(δy)2/4. We
now analyze the best approximation error for a function v : Γ → V which admits an
analytic extension in the complex plane in the region Σ(Γ; τ) = {z ∈ C, dist(z,Γ) <
τ} for some τ > 0. We will still denote the extension by v; in this case, τ represents
the distance between Γ ⊂ R and the nearest singularity of v(z) in the complex plane.

We study separately the two cases of Γ bounded and unbounded. We start with
the bounded case, in which the extra weight σ is set equal to 1. The following result
is an immediate extension of the result given in [21, Chapter 7, section 8]

Lemma 4.4. Given a function v ∈ C0(Γ;V ) which admits an analytic extension
in the region of the complex plane Σ(Γ; τ) = {z ∈ C, dist(z,Γ) ≤ τ} for some τ > 0,
it holds that

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤
2

̺− 1
e−p log(̺) max

z∈Σ(Γ;τ)
‖v(z)‖

V
,

where

1 < ̺ =
2τ

|Γ| +
√

1 +
4τ2

|Γ|2 .

Proof. We sketch the proof for completeness. We first make a change of variables,

y(t) = y0 + |Γ|
2 t, where y0 is the midpoint of Γ. Hence, y([−1, 1]) = Γ. We set

ṽ(t) = v(y(t)). Clearly, ṽ can be extended analytically in the region of the complex
plane Σ([−1, 1]; 2τ/|Γ|) ≡ {z ∈ C, dist(z, [−1, 1]) ≤ 2τ/|Γ|}.

We then introduce the Chebyshev polynomials Ck(t) on [−1, 1] and the expansion
of ṽ : [−1, 1]→ V as

(4.2) ṽ(t) =
a0

2
+

∞∑

k=1

akCk(t),

where the Fourier coefficients ak ∈ V , k = 0, 1, . . . , are defined as

ak =
1

π

∫ π

−π

ṽ(cos(t)) cos(kt) dt.

It is well known (see, e.g., [21, 12]) that the series (4.2) converges in any elliptic disc
D̺ ⊂ C, with ̺ > 1, delimited by the ellipse

(4.3) E̺ =

{

z = t+ is ∈ C, t =
̺+ ̺−1

2
cosφ, s =

̺− ̺−1

2
sin(φ), φ ∈ [0, 2π)

}

in which the function ṽ is analytic. Moreover (see [21] for details), we have

‖ak‖V
≤ 2̺−k max

z∈D̺

‖ṽ(z)‖
V
.

If we denote by Πpv ∈ Pp(Γ) ⊗ V the truncated Chebyshev expansion up to the
polynomial degree p and observe that |Ck(t)| ≤ 1 for all t ∈ [−1, 1], we have

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤ ‖ṽ −Πpṽ‖C0([−1,1];V )

≤
∞∑

k=p+1

‖ak‖V
≤ 2

̺− 1
̺−p max

z∈D̺

‖ṽ(z)‖
V
.D
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Finally, we have to link ̺ to the size of the analyticity region of ṽ. It is easy to verify
that the ellipse given by

̺ =
2τ

|Γ|

(

1 +

√

1 +
|Γ|2
4τ2

)

is the largest ellipse that can be drawn inside Σ([−1, 1]; 2τ/|Γ|), and this proves the
stated result.

For the case of unbounded Γ we first recall a result given in [34], and then we
state in Lemma 4.6 a result tuned to our situation.

We denote by Hn(y) ∈ Pn(R) the normalized Hermite polynomials

Hn(y) =
1

√

π
1
2 2nn!

(−1)ney
2 ∂n

∂yn

(

e−y2
)

and by hn(y) = e−y2/2Hn(y) the Hermite functions. We recall that the Hermite
polynomials form a complete orthonormal basis of the L2(R) space with respect to

the weight e−y2

, i.e.,

∫

R

Hk(y)Hl(y)e
−y2

dy = δkl.

Lemma 4.5 (Hille [34]). Let f(z) be an analytic function in the strip of the

complex plane Σ(R; τ) ≡ {z = (y+ iw) ∈ C,−τ ≤ w ≤ τ}. A necessary and sufficient

condition in order that the Fourier–Hermite series

(4.4)

∞∑

k=0

fkhk(z), fk =

∫

R

f(y)hk(y) dy,

shall exist and converge to the sum f(z) in Σ(R; τ) is that for every β, 0 ≤ β < τ ,
there exists a finite positive C(β) such that

(4.5) |f(y + iw)| ≤ C(β)e−|y|
√

β2−w2
, −∞ < y <∞, −β ≤ w ≤ β.

Moreover, the following bound for the Fourier coefficients holds:

(4.6) |fn| ≤ Ce−τ
√

2n+1.

In particular, the previous result tells us that, in order to have exponential decay
of the Fourier coefficients fn, we not only need f(z) to be analytic in Σ(R; τ) but also
must require that it decay on the real line, for y →∞, at least as e−τ |y|.

We now introduce two weights: the exponential σ = e−α|y|, for some α > 0,
and the Gaussian G = e−(δy)2/4. We recall that Lemma 4.3 holds for both. We will
assume that the function v is in the space C0

σ(Γ;V ), but we will measure the best
approximation error in the weaker norm C0

G(Γ;V ), with Gaussian weight, so that we
can use the result from Hille given in Lemma 4.5. The following lemma holds.

Lemma 4.6. Let v be a function in C0
σ(R;V ). We suppose that v admits an

analytic extension in the strip of the complex plane Σ(R; τ) = {z ∈ C, dist(z,R) ≤ τ}
for some τ > 0, and that

∀z = (y + iw) ∈ Σ(R; τ), σ(y)‖v(z)‖
V
≤ Cv(τ).
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Then, for any δ > 0, there exist a constant C, independent of p, and a function
Θ(p) = O(

√
p) such that

min
w∈Pp⊗V

max
y∈R

∣
∣
∣
∣
‖v(y)− w(y)‖

V
e−

(δy)2

4

∣
∣
∣
∣
≤ CΘ(p)e−τδ

√
p.

Proof. We introduce the change of variable t = δ y/
√
2 and denote ṽ(t) = v(y(t)).

Observe that ṽ ∈ C0
σ̃(R;V ) with weight σ̃ = e−

√
2 α

δ
|t|. We consider the expansion of

ṽ in Hermite polynomials

(4.7) ṽ(t) =
∞∑

k=0

vkHk(t), where vk ∈ V , vk =

∫

R

ṽ(t)Hk(t)e
−t2 dt.

We now set f(z) = ṽ(z)e−
z2

2 . Observe that the Hermite expansion of f as defined in
(4.4) has the same Fourier coefficients as the expansion of ṽ defined in (4.7). Indeed

fk =

∫

R

f(t)hk(t) dt =

∫

R

ṽ(t)Hk(t)e
−t2 dt = vk.

Clearly, f(z) is analytic in the strip Σ(R; τδ√
2
), being the product of analytic functions.

Moreover,

‖f(y + iw)‖
V
= |e−

(y+iw)2

2 |‖ṽ(z)‖
V
≤ e−

y2−w2

2 e
√

2 α
δ
|y|Cv(τ).

Setting

C(β) = max
−∞<y<∞
−β≤w≤β

exp

{

−y2 − w2

2
+
√
2
α

δ
|y|+ |y|

√

β2 − w2

}

,

which is bounded for all − τδ√
2
≤ β ≤ τδ√

2
, the function f(z) satisfies the hypotheses

of Lemma 4.5. Hence the Hermite series converges in Σ(R; τδ√
2
) and the Fourier co-

efficients vk behave as in (4.6). We choose w ∈ Pp ⊗ V as the truncated Hermite
expansion of v, up to degree p: w̃(t) = Πpṽ(t) =

∑p
k=0 vkHk(t). We have

Ep(v) = min
w∈Pp⊗V

max
y∈R

∣
∣
∣
∣
‖v(y)− w(y)‖

V
e−

(δy)2

4

∣
∣
∣
∣

≤ max
t∈R

∣
∣
∣‖ṽ(t)−Πpṽ(t)‖V

e−
t2

2

∣
∣
∣ ≤ max

t∈R

‖
∞∑

k=p+1

vkhk(t)‖V
.

It is well known (see, e.g., [11]) that the Hermite functions hk(t) satisfy |hk(t)| < 1
for all t ∈ R and all k = 0, 1, . . . . Hence, the previous series can be bound as

Ep(v) ≤
∞∑

k=p+1

‖vk‖V
≤ C

∞∑

k=p+1

e
− τδ√

2

√
2k+1

.

We now use the following bound for the series above, whose proof can be found in [7,
Appendix, Lemma A.2]:

∀r ∈ R
+, r < 1,

∞∑

k=p+1

r
√

2k+1 ≤ a
√
p+1 (2

√
p+ 1 + 1)(1− a) + 2

a(1− a)2
, a = r

√
2,

and this concludes the proof.
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We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. The error naturally splits into ǫ = (u−uh)+(uh−uh,p). The

first term depends on the space discretization only and can be estimated easily; indeed,
the function uh is the orthogonal projection of u onto the subspace L2

ρ(Γ) ⊗H1
0 (D)

with respect to the inner product
∫

Γ×D ρa|∇ · |2. Hence

‖u− uh‖L2
ρ(Γ)⊗H1

0 (D) ≤
1√
amin

(∫

Γ×D

ρa|∇(u − uh)|2
) 1

2

≤ 1√
amin

inf
v∈L2

ρ(Γ)⊗Hh(D)

(∫

Γ×D

ρa|∇(u− v)|2
) 1

2

.

The second term uh − uh,p is an interpolation error. We recall, indeed, that uh,p =
Ipuh. To lighten the notation, we will drop the subscript h, it being understood that
we work on the semidiscrete solution. We recall, moreover, that uh has the same
regularity as the exact solution u with respect to y.

To analyze this term we employ a one-dimensional argument. We first pass from
the norm L2

ρ to L2
ρ̂:

‖u− Ipu‖L2
ρ⊗H1

0
≤

∥
∥
∥
∥

ρ

ρ̂

∥
∥
∥
∥

1
2

L∞(Γ)

‖u− Ipu‖L2
ρ̂
⊗H1

0
.

Here we adopt the same notation as in section 3; namely, we indicate with •n a
quantity relative to the direction yn and with •∗n the analogous quantity relative
to all other directions yj , j �= n. We focus on the first direction y1 and define an
interpolation operator I1 : C0

σ1
(Γ1;L

2
ρ̂∗
1
⊗H1

0 ) → L2
ρ̂1
(Γ1;L

2
ρ̂∗
1
⊗H1

0 ),

Ip1v(y1, y
∗
1 , x) =

p1+1
∑

k=1

v(y1,k, y
∗
1 , x)l1,k(y1).

Then the global interpolant Ip can be written as the composition of two interpolation

operators Ip = I1 ◦ I(1)
p , where I(1)

p is the interpolation operator in all directions

y2, y3, . . . , yN except y1: I(1)
p : C0

σ∗
1
(Γ∗

1;H
1
0 )→ L2

ρ̂∗
1
(Γ∗

1;H
1
0 ). We then have

‖u− Ipu‖L2
ρ̂
×H1

0
≤ ‖u− I1u‖L2

ρ̂
×H1

0
︸ ︷︷ ︸

I

+ ‖I1(u− I(1)
p u)‖L2

ρ̂
×H1

0
︸ ︷︷ ︸

II

.

Let us bound the first term. We think of u as a function of y1 with values in a Hilbert
space V , u ∈ L2

ρ̂1
(Γ1;V ), where V = L2

ρ̂∗
1
(Γ∗

1) ⊗ H1
0 (D). Under Assumption 2 in

section 3 and the choice of ρ̂ given in (3.3), the following inclusions hold true:

C0
σ1
(Γ1;V ) ⊂ C0

G1
(Γ1;V ) ⊂ L2

ρ̂1
(Γ1;V )

with σ1 = G1 = 1 if Γ1 is bounded and σ1 = e−α1|y1|, G1 = e−
(δ1y1)2

4 if Γ1 is
unbounded. We know also from Lemma 4.2 that the interpolation operator I1 is
continuous both as an operator from C0

σ1
(Γ1;V ) with values in L2

ρ̂1
(Γ1;V ) and from

C0
G1

(Γ1;V ) in L2
ρ̂1
(Γ1;V ). In particular, we can estimate

I = ‖u− I1u‖L2
ρ̂1

(Γ1;V ) ≤ C2 inf
w∈Pp1⊗V

‖u− w‖C0
G1

(Γ;V ).
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To bound the best approximation error in C0
G1

(Γ;V ), in the case of Γ1 bounded we
use Lemma 4.4, whereas if Γ1 is unbounded, we employ Lemma 4.6 and the fact that
u ∈ C0

σ1
(Γ1;V ) (see Lemma 3.1). In both cases, we need the analyticity result, for

the solution u, stated in Lemma 3.2. Putting everything together, we can say that

I ≤
{

Ce−r1p1 , Γ1 bounded,

CΘ(p1)e
−r1

√
p1 , Γ1 unbounded,

the value of r1 being specified in Lemmas 4.4 and 4.6. To bound the term II, we use
Lemma 4.2:

II ≤ C1‖u− I(1)
p u‖C0

σ1
(Γ1;V ).

The term on the right-hand side is again an interpolation error. Thus we have to
bound the interpolation error in all the other N−1 directions, uniformly with respect
to y1 (in the weighted norm C0

σ1
). We can proceed iteratively, defining an interpolation

I2, bounding the resulting error in the direction y2, and so on.

4.1. Convergence of Moments. In some cases one might be interested only in
computing the first few moments of the solution, namely, E[um], m = 1, 2, . . . . We
show in the next two lemmas that the error in the first two moments, measured in a
suitable spatial norm, is bounded by the mean square error ‖u− uh,p‖L2

ρ⊗H1
0
, which,

due to Theorem 4.1, is exponentially convergent with respect to the polynomial degree
p employed in the y directions. In particular, without extra regularity assumptions on
the solution u of the problem, we have optimal convergence for the error in the mean
value (first moment) measured in L2(D) or H1(D) and for the error in the second
moment measured in L1(D).

Lemma 4.7 (approximation of mean value).

‖E[u− uh,p]‖V (D) ≤ ‖u− uh,p‖L2
ρ(Γ)⊗V (D), with V (D) = L2(D) or H1(D).

The proof is immediate and omitted. Although the previous estimate implies
exponential convergence with respect to p, under the assumptions of Theorem 4.1,
the above estimate is suboptimal and can be improved by a duality argument (see [4]
and Remark 5.2 in [5]).

Lemma 4.8 (approximation of the second moment).

‖E[u2 − u2
h,p]‖L1(D) ≤ C‖u− uh,p‖L2

ρ(Γ)⊗L2(D),

with C independent of the discretization parameters h and p.
Proof. We have

‖E[u2 − u2
h,p]‖L1(D) = ‖E[(u− uh,p)(u + uh,p)]‖L1(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)‖u+ uh,p‖L2

ρ(Γ)⊗L2(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)

(

‖u‖L2
ρ(Γ)⊗L2(D) + ‖uh,p‖L2

ρ(Γ)⊗L2(D)

)

.

The term ‖uh,p‖L2
ρ⊗L2 can be bounded as

‖uh,p‖L2
ρ(Γ)⊗L2(D) = ‖Ipuh‖L2

ρ(Γ)⊗L2(D) ≤ C1‖uh‖C0
σ(Γ;L2(D)) ≤ C(f, amin),

where we have used the boundedness of the interpolation operator Ip stated in Lemma
4.2. The last inequality follows from the fact that the semidiscrete solution uh is the
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orthogonal projection of the exact solution u onto the subspace Hh with respect to
the energy inner product; hence

‖
√

a(y)∇uh(y)‖L2(D) ≤ ‖
√

a(y)∇u(y)‖L2(D) ∀y ∈ Γ,

and the last term can be controlled in terms of amin and the forcing term, f .
Similarly, it is possible to estimate the approximation error in the covariance

function of the solution u.
On the other hand, to estimate the convergence rate of the error in higher or-

der moments, or of the second moment in higher norms, we need extra regularity
assumptions on the solution to ensure proper integrability and then be able to use
analyticity.

In [44] it is also shown that controlling the mean square error ‖u− uh,p‖L2
ρ⊗H1

0
is

enough to have a control on all statistical moments of a locally Lipschitz functional
of the solution. More precisely, let ζ : H1

0 (D) → R be a possibly nonlinear func-
tional, such that ζ(0) = 0. Given R > 0, we assume that ζ is Lipschitz in the ball
B(H1

0 (D), R) of radius R; i.e., there exists a constant ΞR such that

|ζ(u)− ζ(v)| ≤ ΞR‖u− v‖H1
0

∀u, v ∈ B(H1
0 (D), R).

Provided that both the exact solution u and the discrete one uh,p are bounded
uniformly in Γ, i.e., ‖u(y)‖H1

0
≤ Λ and ‖uh,p(y)‖H1

0
≤ Λ for all y ∈ Γ, then it can be

shown [44] that

E[ζ(u)q − ζ(uh,p)
q] ≤ qΞq

ΛΛ
q−1‖u− uh,p‖L2

ρ⊗H1
0

for any 1 ≤ q <∞.

Hence the error on the qth moment of the random variable ζ(u) will be exponentially
convergent, however with a constant that depends on q.

5. Numerical Examples. This section illustrates the convergence of the colloca-
tion method for a stochastic elliptic problem in two dimensions. The computational
results are in accordance with the convergence rate predicted by the theory.

The problem to solve is

−∇ · (a∇u) = 0 onΩ×D,

u = 0 onΩ× ∂DD,

−a∂nu = 1 onΩ× ∂DN ,

∂nu = 0 onΩ× (∂D − (∂DD ∪ ∂DN)),

with

D = {(x, z) ∈ R
2 : −1.5 ≤ x ≤ 0, −0.4 ≤ z ≤ 0.8},

∂DD = {(x, z) ∈ R
2 : −1 ≤ x ≤ −0.5, z = 0.8},

∂DN = {(x, z) ∈ R
2 : −1.5 ≤ x ≤ 0, z = −0.4};

cf. Figure 1.
The random diffusivity coefficient is a nonlinear function of the random vector Y ,

namely,

(5.1)
a(ω, x) = amin + exp

{

[Y1(ω) cos(πz) + Y3(ω) sin(πz)] e
− 1

8

+ [Y2(ω) cos(πx) + Y4(ω) sin(πx)] e
− 1

8

}

.
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Fig. 1 Geometry and boundary conditions for the numerical example.

Here amin = 1/100, and the real random variables Yn, n = 1, . . . , 4, are independent
and identically distributed with mean value zero and unit variance. To illustrate the
behavior of the collocation method with either unbounded or bounded random vari-
ables Yn, this section presents two different cases, corresponding to either Gaussian or
uniform densities. The corresponding collocation points are then Cartesian products
determined by the roots of either Hermite or Legendre polynomials.

Observe that the collocation method requires only the solution of uncoupled de-
terministic problems in the collocation points, even in the presence of a diffusivity
coefficient which depends nonlinearly on the random variables as in (5.1). This is a
great advantage with respect to the classical stochastic Galerkin finite element method
as considered in [4] or [43] (see also the considerations given in section 2.1). Observe,
moreover, how easily the collocation method can deal with unbounded random vari-
ables.

Figure 2 shows some realizations of the logarithm of the diffusivity coefficient,
while Figures 3 and 4 show the mean and variance of the corresponding solutions. The
finite element space for spatial discretization is the span of continuous functions that
are piecewise polynomials with degree five over a triangulation with 1178 triangles and
642 vertices; see Figure 5. This triangulation has been adaptively graded to control
the singularities at the boundary points (−1, 0.8) and (−0.5, 0.8). These singularities
occur where the Dirichlet and Neumann boundaries meet, and they essentially behave
like

√
r, with r being the distance to the closest singularity point.

To study the convergence of the tensor product collocation method, we increase
the order p for the approximating polynomial spaces, Pp(Γ), following the adaptive
algorithm described on page 1287 of [5]. This adaptive algorithm increases the tensor
polynomial degree with an anisotropic strategy: it increases the order of approxima-
tion in one direction as much as possible before considering the next direction.

The computational results for the H1
0 (D) approximation error in the expected

value, E[u], are shown on Figure 6, while those corresponding to the approximation
of the second moment, E[u2], are shown on Figure 7. To estimate the computational
error in the ith direction, corresponding to a multi-index p = (p1, . . . , pi, . . . , pN ), we
approximate it by E[e] ≈ E[uh,p−uh,p̃], with p̃ = (p1, . . . , pi+1, . . . , pN). We proceed
similarly for the error in the approximation of the second moment.

As expected, the estimated approximation error decreases exponentially fast as
the polynomial order increases, for both the computation of E[u] and E[u2], with
either Gaussian or uniform probability densities.D
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Fig. 2 Some realizations of log(a).
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Fig. 3 Results for the computation of the expected value for the solution, E[u].

Fig. 4 Results for the computation of the variance of the solution, Var[u].

6. Further Developments. After the works [61, 7] were published, there have
been a lot of developments in stochastic collocation methods, mainly concerning ef-
fective collocation strategies for problems that depend on a moderately large number
of random variables (high dimensionality of the probability space).

The stochastic collocation method proposed in section 2 is based on a tensor
product polynomial approximation and interpolates the semidiscrete solution uh of
problem (2.1) on a full tensor grid obtained by tensorization of one-dimensional Gaus-
sian abscissas. This approach can be computationally expensive if the number N of
random variables needed to describe the input data is moderately large. This draw-
back is often called the curse of dimensionality, which, in this context, refers to the
exponential growth in the required amount of computational work with respect to the
number of input random variables.

The immediate consequence of the curse of dimensionality is that the convergence
rate of the error with respect to the total number of collocation points, a quantity
directly related to the overall computational cost, is very poor for N large. To fix
ideas, let us consider the case of bounded random variables and equal polynomial
degree p in each direction. We assume, moreover, that the exponential convergence
rate rn in Theorem 4.1 is practically the same rn ≈ r for all n = 1, . . . , N and
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Fig. 5 Top: Unstructured grid for the spatial discretization. The corresponding finite element spaces
are the span of continuous functions that are piecewise polynomials with degree five. Bottom:
Detail of the mesh refinement near the left singularity.

denote by err = ‖uh − uh,p‖L2
ρ⊗H1

0
the error between the semidiscrete solution uh

and its stochastic collocation approximation. Then Theorem 4.1 states that the error
err is exponentially decaying in p, i.e., err ≤ C exp{−rp}. However, the number of
collocation points in the full tensor grid is η = (1+p)N , which leads to an error versus
cost relation of err ≤ C̃ exp{−rη1/N}. Observe that if η ≪ eN , which is likely to
happen if N is large, then η1/N ∼= 1 + log(η)/N and the effective rate is algebraic,
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Fig. 6 Convergence results for the approximation of the expected value, E[u].

rather than exponential,

err ≤ Cη−r/N ,

and can easily become worse than the Monte Carlo convergence rate, err ≈ η−1/2.
On the other hand, it is well known that to build a multivariate approximation

or a quadrature formula for a smooth function, a full tensor grid is often unnecessary
and much smaller sparse grids can be used instead. This idea dates back to Smolyak
[53] and has been exploited by several authors in different contexts in the last three
decades (see, e.g., [15, 48] and the references therein).

In the framework of PDEs with random input data, the sparse grid stochastic
collocation method has been proposed in [61] and analyzed in [46] (see also [29, 26]).
It naturally requires solving uncoupled deterministic problems as in the Monte Carlo
method while keeping the number of evaluation points much smaller than the full
tensor stochastic collocation version introduced in section 2. The sparse grid approach,
and in particular its anisotropic version proposed in [45], greatly reduces the curse of
dimensionality and may be expected to be competitive with the classical Monte Carlo
method even for moderately large dimensionality. Therefore, it is of major practical
relevance to understand in which situations the sparse grid stochastic collocation
method is more efficient than the Monte Carlo method.

In this section we review the construction of a sparse grid approximation. It
builds upon stochastic collocation on a sequence of tensor grids and in this respect
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1 1.5 2 2.5 3 3.5 4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p1

H
1 0
 E

rr
o
r 

in
 E

[u
2
]

Convergence with respect to the polynomial order  p1, random variable Y1

Gaussian density
Uniform density

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p2

H
1 0
 E

rr
o
r 

in
 E

[u
2
]

Convergence with respect to the polynomial order  p2, random variable Y2

Gaussian density
Uniform density

1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p3

H
1 0
 E

rr
o
r 

in
 E

[u
2
]

Convergence with respect to the polynomial order  p3, random variable Y3

Gaussian density
Uniform density

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p4

H
1 0
 E

rr
o
r 

in
 E

[u
2
]

Convergence with respect to the polynomial order  p4, random variable Y4

Gaussian density
Uniform density

Fig. 7 Convergence results for the approximation of the second moment, E[u2].

is a generalization of the method presented in section 2. To provide insight into its
performance, section 6.2 states error estimates derived first in [46, 45] for the fully
discrete solution, analyzing the computational efficiency of the sparse grid stochas-
tic collocation method in terms of the number of collocation points (deterministic
problems to solve). In particular, the estimates derived in [46] demonstrate at least
algebraic convergence with respect to the total number of collocation points of the
type err ≤ Cη−r/(1+log(N)), thus proving a highly reduced curse of dimensionality
with respect to full tensor collocation.

Computational evidence shown in section 6.4 complements the theory and shows
the effectiveness of the sparse grid stochastic collocation method compared to full
tensor stochastic collocation, the Monte Carlo method, and stochastic Galerkin as
defined in (2.4) (see also [32, 4, 27, 62] and the references therein).

6.1. Sparse Grid Stochastic Collocation Approximation. We present here a
generalization of the classical Smolyak construction (see, e.g., [53, 9]) to build a mul-
tivariate polynomial approximation on a sparse grid. As in Lemma 4.2, for each
direction yn we introduce a sequence of one-dimensional polynomial interpolant oper-

ators of increasing order: Im(i)
n : C0

σ(Γn;V ) → Pm(i)−1(Γn) ⊗ V . Here i ≥ 1 denotes
the level of approximation and m(i) the number of collocation points used to build
the interpolation at level i, with the requirement that m(1) = 1 and m(i) < m(i+ 1)

for i ≥ 1. In addition, let m(0) = 0 and Im(0)
n = 0. Here the collocation abscissas
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{y(i)
n,j, j = 1, . . . ,m(i)} for the one-dimensional interpolation formula Im(i)

n are Gauss
points with respect to the weight ρ̂n, that is, the zeros of the ρ̂n-orthogonal polynomial
qn,m(i). Further, we introduce the difference operators

∆m(i)
n = Im(i)

n − Im(i−1)
n .

Given an integer w ≥ 0 called the approximation level and a multi-index i = (i1, . . . , iN)
∈ NN

+ , i ≥ 1, we introduce a function g : NN
+ → N strictly increasing in each argument

and define a sparse grid approximation of the semidiscrete solution uh of problem (2.1)
as

(6.1) Sm,g
w [uh] =

∑

i∈NN
+ :g(i)≤w

N⊗

n=1

∆m(in)
n (uh).

Formula (6.1) can be equivalently written as

(6.2) Sm,g
w [uh] =

∑

i∈NN
+ :g(i)≤w

c(i)

N⊗

n=1

Im(in)
n (uh), with c(i) =

∑

j∈{0,1}N :
g(i+j)≤w

(−1)|j|.

From the previous expression, we see that the sparse grid approximation is obtained
as a linear combination of full tensor product interpolations, as defined in section 2.
However, the constraint g(i) ≤ w in (6.2) is typically chosen so as to forbid the use
of tensor grids of high degree in all directions at the same time.

Observe moreover that whenever i is such that {j ∈ {0, 1}N : g(i + j) ≤ w} =
{0, 1}N , then c(i) = 0, so there may be many terms in the sum in (6.2) that do not
need to be computed. Formula (6.2) implies evaluation of the function uh in a finite
set of points Hm,g

w ⊂ Γ, usually called sparse grid and obtained as a superposition of
all full tensor grids appearing in (6.2) that are multiplied by a nonzero coefficient c(i).
See Figure 8 for some examples. We finally remark that formula (6.2) is in general
not interpolatory unless nested sequences of one-dimensional abscissas are used; see
[9].

To fully characterize the sparse approximation operator Sm,g
w one has to provide

the two strictly increasing functions m : N+ → N+ and g : NN
+ → N. The first

defines the relation between the level i and the number of points m(i) in the corre-
sponding one-dimensional polynomial interpolation formula Im(i), while the second
characterizes the set of multi-indices used to construct the sparse approximation. The
requirement for g to be increasing guarantees that if i is an admissible multi-index,
i.e., i ∈ Υ ≡ {j ∈ NN

+ , g(j) ≤ w}, then all multi-indices j ≤ i are also admissible.
Therefore, the index set Υ satisfies the admissibility condition in the sense of [30,
section 3.1].

Since m is not surjective in N+ (unless it is affine) we introduce a left inverse

m−1(k) = min{i ∈ N+ : m(i) ≥ k}.

Observe that with this choice m−1 is a (nonstrictly) increasing function satisfying
m−1(m(i)) = i and m(m−1(k)) ≥ k.

Let m(i) = (m(i1), . . . ,m(iN )) and consider the set of polynomial multidegrees

Λm,g(w) = {p ∈ N
N , g(m−1(p + 1)) ≤ w}.
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Denote by PΛm,g(w)(Γ) the corresponding multivariate polynomial space spanned by
the monomials with multidegree in Λm,g(w), i.e.,

PΛm,g(w)(Γ) = span

{
N∏

n=1

ypn
n , with p ∈ Λm,g(w)

}

.

The following result proved in [8] states that the sparse approximation formula Sm,g
w

is exact in PΛm,g(w)(Γ).
Proposition 6.1.
(a) For any f ∈ C0

σ(Γ;V ), we have Sm,g
w [f ] ∈ PΛm,g(w) ⊗ V .

(b) Moreover, Sm,g
w [v] = v for all v ∈ PΛm,g(w) ⊗ V .

We recall that the most typical choice of m and g is given by (see [53, 9])

m(i) =

{

1 for i = 1

2i−1 + 1 for i > 1
and g(i) =

N∑

n=1

(in − 1).

This choice of m, combined with the choice of Clenshaw–Curtis interpolation points
(extrema of Chebyshev polynomials), leads to nested sequences of one-dimensional
interpolation formulas and a reduced sparse grid.

On the other hand, if we choose m(i) = i, it is easy to find functions g for the
construction of sparse collocation approximations in standard polynomial spaces, such
as tensor product, total degree, etc. Table 1 summarizes several options available.

Table 1 Sparse approximation formulas and corresponding set of polynomial multidegrees used for
approximation.

Approx. space Sparse grid: m, g Polynomial space: Λ(w)

Tensor product m(i) = i {p ∈ N
N : maxn pn ≤ w}

g(i) = maxn(in − 1) ≤ w

Total degree m(i) = i {p ∈ NN :
∑

n
pn ≤ w}

g(i) =
∑

n
(in − 1) ≤ w

Hyperbolic cross m(i) = i {p ∈ N
N :

∏

n
(pn + 1) ≤ w + 1}

g(i) =
∏

n
(in) ≤ w + 1

Smolyak m(i) =

{

2i−1 + 1, i > 1

1, i = 1
{p ∈ N

N :
∑

n
f(pn) ≤ f(w)}

g(i) =
∑

n
(in − 1) ≤ w f(p) =







0, p = 0

1, p = 1

⌈log
2
(p)⌉, p ≥ 2

It is also straightforward to build related anisotropic sparse approximation for-
mulas by making the function g act differently on the input random variables yn.
Anisotropic sparse stochastic collocation [45] combines the advantages of isotropic
sparse collocation with those of anisotropic full tensor product collocation: the first
approach is effective in reducing the curse of dimensionality for problems depend-
ing on random variables which weigh approximately equally in the solution, and the
second is appropriate for solving highly anisotropic problems with relatively low ef-
fective dimension, as in the case where input random variables are Karhunen–Loève
truncations of “smooth” random fields.
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This anisotropy is described in terms of properly defined weights, α = (α1, . . . , αN ).
For example, to obtain an anisotropic version of the isotropic Smolyak method in
Table 1 we can first define an anisotropic set of indices by the function g(i;α) =
∑N

n=1
αn

αmin
in, i.e., {i ∈ NN

+ : g(i;α) ≤ w}, where αmin = minn αn. Then the
anisotropic Smolyak approximation formula reads

(6.3) Sm,g,α
w [uh] =

∑

i∈NN
+ :g(i;α)≤w

N⊗

n=1

∆m(in)
n (uh).

Anisotropic versions of the other sparse grid approximation formulas presented in
Table 1 are detailed in [8]. Figure 8 shows examples of a full tensor, total degree,
isotropic Smolyak, and anisotropic Smolyak sparse grid, respectively. Observe that
the full tensor and the Smolyak grids both have maximum polynomial degree of
approximation in each variable equal to 32. On the other hand, the total degree
sparse grid shown in the figure has only polynomial degree of approximation p = 10,
as the p = 32 case would result in a grid denser than the tensor product grid, being
in this case only two-dimensional.

Fig. 8 Examples of grids obtained from formula (6.2). From left to right: tensor product with
w = 32; total degree with w = 10; Smolyak with w = 5; anisotropic Smolyak with w = 5 and
α = (1, 2).

The key idea in the anisotropic sparse stochastic collocation method is to place
more points in those directions with slower convergence rate, tuning the actual number
of points to the type of convergence. The actual construction of α can be based on
either a priori or a posteriori information, as suggested in [45]. In particular, for
problems with analytic dependence on the input random variables the weights αn can
be taken equal to the exponential rates, rn, introduced in Theorem 4.1, i.e., αn = rn,
n = 1, . . . , N .

In this respect, the methodology described above for tuning the anisotropy to the
regularity of the solution differs from the dimension-adaptive method developed in
[30] and applied in the context of PDEs with random input data in [29], where the
sparse approximation structure has to be uncovered only by successive enrichment,
and does not exploit any a priori information on the solution.

A related approach due to Schwab and coworkers (see, for instance, [55]) uses
sparse wavelet chaos subspaces. Those approximations are of ANOVA type, are also
anisotropic, and use a priori regularity from the exact solution. The main idea in the
ANOVA approach is to reduce the curse of dimensionality by approximating the exact
solution by a span of tensor products that depends only on at most a given number
of input random variables.
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Finally, we mention the possibility of building a piecewise polynomial approxi-
mation, also called the multielement probabilistic collocation method, as proposed in
[26], where anisotropy is introduced a priori at the level of h discretization.

6.2. Convergence Analysis. Standard techniques for developing error bounds for
multidimensional approximations are based on one-dimensional results. This is the
reason why the tools developed in section 4 to prove Theorem 4.1 are very useful, even
when we no longer use full tensor product approximations. In such a case a general
approach is to bound both the discretization error and the number of collocation
points η = η(w,N) = #Hm,g

w in terms of the level w. To conclude, one produces a
bound of the error in terms of η, which gives an estimate in the complexity of the
method. As examples of this type of result, we state two theorems that apply for
bounded input random variables.

The first result, from [46], estimates the convergence rate of the isotropic Smolyak
method as defined in Table 1. In this result we focus only on the sparse stochastic
collocation discretization error, since the space discretization error can be analyzed
exactly as in Theorem 4.1.

Theorem 6.2. For a function u ∈ C0(Γ;V ) satisfying the assumptions of Theo-
rem 4.1 the isotropic Smolyak formula based on ρ̂-Gaussian abscissas satisfies

(6.4)

‖u− Sm,g
w [u]‖L2

ρ(Γ;V ) ≤
√

‖ρ/ρ̂‖L∞(Γ) C(rmin, N)η−µ,

µ :=
rmin e log(2)

ζ + log(N)
,

with ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1. The constant C(rmin, N) is defined in [46,
formula (3.31), p. 2331] and tends to zero as rmin →∞.

We recall that an isotropic full tensor product interpolation converges roughly as
C(rmin, N)η−rmin/N if N ≫ log(η). The slowdown effect that the dimension N has on
the last convergence is known as the curse of dimensionality and is the reason for not
using isotropic full tensor interpolation for large values of N . On the other hand, the
isotropic Smolyak approximation seems to be better suited for this case. Indeed, from
estimate (6.4) we see that the Smolyak algebraic convergence has the faster exponent
O( rmin

ζ+log(N) ). This is a clear advantage of the isotropic Smolyak method with respect

to the full tensor and justifies our claim that the use of Smolyak approximation reduces
the curse of dimensionality.

The second result we state is taken from [45] and analyzes the rate of convergence
for the anisotropic Smolyak formula.

Theorem 6.3. Let the function u ∈ C0(Γ;V ) satisfy the assumptions of Theorem
4.1. Let the anisotropic Smolyak formula (6.3) be based on ρ̂-Gaussian abscissas

and anisotropy weights αn = rn with rn as in Theorem 4.1. We have the following
estimate:

(6.5)

‖u− Sm,g,r
w [u]‖L2

ρ(Γ;V ) ≤
√

‖ρ/ρ̂‖L∞(Γ) Ĉ(r, N)η−µ̃,

µ̃ :=
rmin log(2)e

2 log(2) +
∑N

n=1 rmin/rn
,

with the constant Ĉ(r, N) depending only on the rate vector r = (r1, . . . , rN ); see [45,
Theorem 3.13].
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The remarkable property of estimate (6.5) is that the exponent µ̃ depends on the

dimension N only through the term
∑N

n=1 rmin/rn. Suppose now that the stochastic
input data are truncated expansions of random fields and that we are able to esti-
mate the values {rn}∞n=1. Whenever the sum

∑∞
n=1 1/rn is finite, then the algebraic

exponent in (6.5) does not deteriorate as the truncation dimension N increases. It
is also shown in [45] that, under the same condition, the constant Ĉ(r, N) is uni-
formly bounded with respect to N . This condition is satisfied, for instance, by the
problem considered in section 6.4.1. This is a clear advantage with respect to the
isotropic Smolyak method since, in this case, the anisotropic method does not suf-

fer from the curse of dimensionality. In fact, in such a case we can work directly
with the anisotropic Smolyak formula (6.3) in infinite dimensions: here the vector of
indices becomes natural sequences, and the constraint that defines the index set is
∑∞

n=1(in − 1)rn ≤ wrmin.
Similar results hold for other PDEs with analytic dependence on the input vari-

ables; see, for instance, [44]. Furthermore, an error estimate for unbounded random
variables with Gaussian tails can be obtained in a completely analogous way using
the results of this work, in particular Lemma 4.6.

For ANOVA-type sparse approximation the analysis has been carried out in [55].

6.3. More on Regularity Results and Convergence Rates. As we have seen in
the previous section, to build an effective anisotropic sparse grid approximation one
needs a sharp estimate of the exponential convergence rates rn for one-dimensional
interpolation. This actually turns back to studying the regularity of the solution
u : Γ → H1

0 (D) of the parametric problem (1.7) with respect to each variable yn, i.e.,
looking at the function u(yn, y

∗
n, x) as a function of yn, u : Γn → C0

σ∗
n
(Γ∗

n;H
1
0 (D)).

This was done in section 3; in particular, Lemma 3.2 characterizes the analyticity
region of the function u(z) = u(z, y∗n, x), z ∈ C, by checking the radius of convergence
of the Taylor series in every point yn ∈ Γn.

Another procedure that sometimes leads to a sharper characterization of the
analyticity region consists in studying directly problem (1.7) in the complex domain,
i.e., by replacing yn with a complex variable z ∈ C and looking for a complex solution
u : C → C0

σ∗
n
(Γ∗

n;H
1
0 (D)). The analyticity region Σ(Γn, τn) is then characterized by

those values z ∈ C for which the complex problem is well posed and the solution u(z)
satisfies the Cauchy–Riemann conditions. This approach is detailed in [44].

We give some details for the linear problem (1.7) with a deterministic right-hand
side f . With the notation a(z) = a(z, y∗n, x), the following lemma can be shown [44].

Lemma 6.4. The solution u : C → C0
σ∗

n
(Γ∗

n;H
1
0 (D)) is analytic in the region of

the complex plane Σn ≡ {z ∈ C : Re(a(z)) > 0, a(z) analytic in z}.
If we consider a linear truncated Karhunen–Loève expansion as in Example 3

and assume that the random variables are bounded, i.e., Γn = (ymin
n , ymax

n ), then the
analyticity region can be estimated as

Σn ≡ {z ∈ C : ymin
n − τn ≤ Re(z) < ymax

n + τn}, with τn =
amin

2
√
λn‖bn‖L∞(D)

,

which is larger than the one given in section 3 and, in particular, has no limitation
on Im(z).

Introducing now the scaling z(t) = ȳn + |Γn|
2 t, t ∈ C, with ȳn =

ymax
n +ymin

n

2 , the

scaled function ũ(t) = u(z(t)) is analytic in the region Σ̃n = {t ∈ C : |Re(t)| ≤
1 + 2τn

|Γn|}. Therefore, following the argument in Lemma 4.4, we see that the largest

Bernstein ellipse Eρ (4.3) that can be drawn in the region Σ̃n has larger semi-axis
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(̺ + ̺−1)/2 = 1 + τn, and the exponential convergence rate in Theorem 4.1 can be
improved to

(6.6) rn = log



1 +
2τn
|Γn|



1 +

√

1 +
|Γn|
τn







 .

This estimate has been used in [8] to construct better anisotropic polynomial approx-
imations (see section 6.4.2).

6.4. Numerical Examples. Here we consider two numerical examples for the
diffusion problem in the form of (1.1) defined in the unit square [0, 1]2, with homo-
geneous Dirichlet boundary conditions and a stochastic conductivity coefficient that
depends on a finite number of random variables. The first example shows the effec-
tiveness of anisotropic stochastic collocation for a problem with a large number of
input random variables. The second provides a comparison with stochastic Galerkin
in terms of computational efficiency.

6.4.1. First Example. This numerical example is taken from [45]. It uses a de-
terministic load f(ω, x, z) = cos(x) sin(z) and a random diffusion coefficient aN(ω, x)
representing a stratified medium, given by

(6.7) log(aN (ω, x)− 0.5) = 1 + Y1(ω)

(√
πLc

2

)1/2

+

N∑

n=2

ζn ϕn(x)Yn(ω),

where the weights ζn have the decay

(6.8) ζn :=
(√

πLc

)1/2
exp

(

−
(
⌊n2 ⌋πLc

)2

8

)

if n > 1

and the functions ϕn(x) are taken as

(6.9) ϕn(x) :=

{

sin
(
⌊n2 ⌋πx

)
if n even,

cos
(
⌊n2 ⌋πx

)
if n odd.

Here Lc represents a physical correlation length for the random field a, meaning
that the random variables a(x1) and a(x2) become essentially uncorrelated for |x1 −
x2| ≫ Lc. Expression (6.7) represents a possible truncation of a one-dimensional
random field with stationary covariance

cov[log(aN − 0.5)](x1, x2) = exp

{

− (x1 − x2)
2

L2
c

}

.

In this example, the random variables {Yn(ω)}Nn=1 are independent, have zero mean
and unit variance, i.e., E [Yn] = 0 and E [YnYm] = δnm for n,m ∈ N+, and are
uniformly distributed in the interval [−

√
3,
√
3]. The correlation length is Lc = 1/16.

Figure 9 shows the convergence rate for the anisotropic Smolyak method, for var-
ious levels of truncation in the expansion (6.7). The anisotropy weights αn have been
computed a posteriori performing a one-dimensional numerical convergence analysis
(see [45, section 2.2] for details).

Observe the remarkable performance of the anisotropic Smolyak method. The
convergence rate is dimension dependent, but due to our algorithm’s inherent capa-
bility to adapt itself to the eigenvalue decay of (6.7), we notice that this dependence
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Fig. 9 A 21-, 31-, 41-, 81-, 121-dimensional comparison of the anisotropic Smolyak method, with a
posteriori selection of the α weights, and a 21-dimensional Monte Carlo approach for solving
problem (1.1) with diffusion coefficient (6.7) and correlation length Lc = 1/16. We plot the
L2(D) approximation error in the expected value versus the number of collocation (sample)
points.

is no longer evident as we increase the dimension from N = 41 to N = 81 and fur-
ther to N = 121. Furthermore, the dominance of the anisotropic sparse grid method
is further displayed when comparing its convergence in 121 stochastic dimensions to
that of Monte Carlo in only 21 dimensions.

6.4.2. Second Example. This example, taken from [8], represents a thermal con-
duction problem in a medium with four circular inclusions with random conductivity
(see Figure 10, left). The problem is as in (1.1) with homogeneous Dirichlet boundary
conditions and a heat source uniformly distributed on the whole domain. The random
coefficient is a(ω,x) = 1 +

∑4
n=1 γnyn(ω)χn(x), where χn is the indicator function

for each circle, Yn(ω) ∼ U(−0.99, 0), and γn ≤ 1. The values of the coefficients γn
are shown in Figure 10, left. Notice that these values give different importance to the
four random variables. In particular, the inclusion in the bottom-left corner has the
largest variance, and we expect it to contribute the most to the total variance of the
solution. It is therefore intuitively justified to use polynomial degrees higher in the
corresponding direction of the stochastic multidimensional space rather than in the
other ones.

We compare the accuracy of the stochastic Galerkin and stochastic collocation
methods by looking at statistical indicators of the following quantity of interest:
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10
0

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SG: dim−stoc * iter−CG / SC: nb points/ MC: sample size

| 
E

[ψ
p
] 

−
 E

[ψ
e

x ]
 |

 /
 E

[ψ
e

x]

 

 

Monte Carlo

SG−ATD

SC−ATD

Fig. 10 Comparison between SG-ATD and SC-ATD methods with theoretical weights in the com-
putation of E [ψ]. Error εmean [ψ] versus computational cost.

ψ(u) =
∫

F u(x)dx. Let up be an approximate solution (computed either with stochas-
tic Galerkin or stochastic collocation) and uex the exact solution. We check here the
convergence of the following error in the mean: εmean [ψ] = |E [ψ(up)]− E [ψ(uex)] |.

In Figure 10, right, we compare the performances of the anisotropic total degree
stochastic Galerkin (SG-ATD) method and the anisotropic total degree sparse grid
method (SC-ATD) using the theoretical weights αn = rn estimated from (6.6) and
Example 3. The horizontal axis shows the estimated computational cost that, for the
collocation method, is given in terms of the number of collocation points in the sparse
grid and, for the Galerkin method, in terms of the dimension of the anisotropic total
degree polynomial space multiplied by the number of block diagonal preconditioned
conjugate gradient iterations to solve the coupled linear system. In this test, the
collocation method seems to be superior to the Galerkin one, even for very small
tolerances.

7. Conclusions. The original version of this revised article [7] proposed a collo-
cation method for the solution of elliptic PDEs with random coefficients and forcing
terms. This method requires the solution of fully parallelizable, uncoupled determin-
istic problems also in the case of input data which depend nonlinearly on the random
variables; treats efficiently the case of nonindependent random variables with the in-
troduction of an auxiliary density ρ̂; deals easily with unbounded random variables,
such as Gaussian or exponential ones; and deals with no difficulty with a diffusivity
coefficient a with unbounded second moment.

The work [7] provided a full convergence analysis and proved exponential conver-
gence “in probability” for a broad range of situations. The theoretical result is given
in Theorem 4.1 and confirmed numerically by the tests presented in section 5.

The extension of the analysis to other classes of linear and nonlinear problems is
the subject of ongoing research.

The use of tensor product polynomials, even anisotropic ones as suggested in [7],
suffers from the curse of dimensionality. Hence, this method is efficient only for a
small number of random variables or, equivalently, for a small effective dimension.
For moderate or large dimensionality of the probability space, one should rather turn
to sparse tensor product spaces. This aspect was investigated in subsequent works.

The work [46] analyzed a sparse grid stochastic collocation method for solving
PDEs whose coefficients and forcing terms depend on a finite number of random
variables. The sparse grids were constructed from the Smolyak formula, utilizing
either Clenshaw–Curtis or Gaussian abscissas.
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Then the work [45] proposed and analyzed a novel weighted Smolyak method,
describing an optimal choice for the weight parameters. These weights tune the
anisotropy of the approximation to each given problem. Their systematic choice
can be based either on a priori or a posteriori information and is motivated by the
regularity of the solution and the error estimates derived in [45].

In fact, given a PDE with random data, a crucial problem is to find optimal
approximation spaces. This interesting problem appears not only in the realm of
stochastic collocation. In the area of stochastic Galerkin there has been active re-
search to provide better types of approximation including h-p type, also called the
multielement method [4, 58] and ANOVA-type expansions as in [55].

On the other hand the works [22, 47] (see also the references therein) have pursued
generalized spectral decompositions for approximation, seeking reduced bases that are
tailored to the solution and which seem to be rather promising. Approximation of
low regularity functions in high dimensions is particularly difficult; see, for instance,
[38, 37, 41, 16, 17]. It is worth mentioning that the development of numerical methods
for PDEs with random coefficients is still very much ongoing, and better numerical
methods are expected to appear.
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