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Abstract

Background: In the last decade, there have been many applications of formal language theory in

bioinformatics such as RNA structure prediction and detection of patterns in DNA. However, in

the field of proteomics, the size of the protein alphabet and the complexity of relationship between

amino acids have mainly limited the application of formal language theory to the production of

grammars whose expressive power is not higher than stochastic regular grammars. However, these

grammars, like other state of the art methods, cannot cover any higher-order dependencies such

as nested and crossing relationships that are common in proteins. In order to overcome some of

these limitations, we propose a Stochastic Context Free Grammar based framework for the

analysis of protein sequences where grammars are induced using a genetic algorithm.

Results: This framework was implemented in a system aiming at the production of binding site

descriptors. These descriptors not only allow detection of protein regions that are involved in

these sites, but also provide insight in their structure. Grammars were induced using quantitative

properties of amino acids to deal with the size of the protein alphabet. Moreover, we imposed

some structural constraints on grammars to reduce the extent of the rule search space. Finally,

grammars based on different properties were combined to convey as much information as possible.

Evaluation was performed on sites of various sizes and complexity described either by PROSITE

patterns, domain profiles or a set of patterns. Results show the produced binding site descriptors

are human-readable and, hence, highlight biologically meaningful features. Moreover, they achieve

good accuracy in both annotation and detection. In addition, findings suggest that, unlike current

state-of-the-art methods, our system may be particularly suited to deal with patterns shared by

non-homologous proteins.

Conclusion: A new Stochastic Context Free Grammar based framework has been introduced

allowing the production of binding site descriptors for analysis of protein sequences. Experiments

have shown that not only is this new approach valid, but produces human-readable descriptors for

binding sites which have been beyond the capability of current machine learning techniques.
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Background
From the very beginning of modern biology, which can be
traced to the 1950s when the structure of the DNA was
unveiled, linguistic metaphors were readily used to
describe the molecular world. Linguistics itself experi-
enced a revolution led by Noam Chomsky in the second
half of 20th century [1]. In the 1980s his work regarding
mathematical theory of language was adopted in the field
of molecular biology by several researchers [2-4]. Many
similarities between natural languages and the language
of nature have been revealed. For instance, any functional
polypeptide can be regarded as syntactically proper. How-
ever, similarly to natural languages, where a correct gram-
matical structure does not imply that a sentence is
meaningful, not all amino acid chains fold into proteins
with physiological functions.

According to the linguistic level of the analysis, computa-
tional tools utilised in biochemistry can be divided into
those operating at the lexical, structural, semantic and
pragmatic levels [5]. The first level is occupied by algo-
rithms providing statistical analysis [6]. Structural or syn-
tax features are examined by software which parse
sequences [7,8]. The embedded ambiguity of structures, as
well as flexibility and versatility are among the advantages
of this approach. Recently, an increasing amount of lin-
guistic methods with a probabilistic component has been
investigated at the structural level, i.e. Hidden Markov
Models [9] and stochastic Context-Free Grammars [10].
At the semantic level a representation of meaning is
assigned to the structure [11] and at the pragmatic level
some context of the sequence (e.g. relationships between
proteins) is taken into account.

In the field of protein sequence analysis, the size of the
alphabet and the complexity of relationships between
amino acids have mainly limited the application of for-
mal language theory to the production of grammars
whose expressive power is not higher than stochastic reg-
ular grammars. The first rules were designed to define
short functional patterns consisting of adjacent and well
conserved amino acids. They are expressed by non-proba-
bilistic regular grammars, e.g. PROSITE patterns [12] and
PRINTS [13,14]. Although their expressive power is fairly
limited, they have proved extremely useful in protein
annotation and detection of important protein regions
(e.g. active sites) by highlighting short sub-sequences
associated to biochemical functions. Approaches based
on Hidden Markov Models (HMMs) are regarded as the
state of the art methods in the field of protein sequence
annotation. Specifically, Profile HMMs, which were intro-
duced by Krogh et al. [15], are widely used and proved
their efficiency for representing motifs, calculating multi-
ple alignments, and profile analysis [10]. However, an
important drawback of HMM profiles is that they are not

human-readable and, therefore, these descriptors cannot
provide any biological insight by themselves. In addition,
since the expressive power of an HMM is similar to a sto-
chastic regular grammar [16-18], they have limitations
regarding the types of patterns they are able to encode. For
example, they cannot cover any higher-order dependen-
cies such as nested and crossing relationships that are
common in proteins, e.g. anti-parallel β-sheets and paral-
lel β-sheets respectively [19]. Similarly, bonds in binding
sites often exceed the capability of regular grammars and
HMMs [20].

Attempts to produce systems with an increased expressive
power have been limited [7,10,21] and, according to our
knowledge, the only practical tool dedicated to protein
analysis was built using stochastic tree grammars to pre-
dict both anti-parallel and parallel β-sheets [36,63]. These
weakly context-sensitive grammars could not only predict
which amino acids were involved in sheets, but also the
locations of the hydrogen bonds. However, the structure
of the grammar had to be provided; their algorithm
learned the probability parameters.

Context Free Grammars (CFGs) have the potential to
overcome some of the limitations of HMM based schemes
since they have the next level of expressiveness in Chom-
sky's classification and produce human-readable descrip-
tors. Although they do not have the power of context-
sensitive grammars and, therefore, cannot deal with cross-
ing relationships, their reduced complexity makes them
more practical and allows the possibility of learning gram-
mar structure from examples. Consequently, they could
potentially be used to describe a variety of patterns includ-
ing nested relationships. Anti-parallel β-sheets are natural
candidates, see Figure 1a). Moreover, we believe that
many ligand binding sites, where main dependencies are
essentially branched and nested like, could be detected
using CFGs. These relationships are often not direct inter-
actions between amino acids, but indirect through the
intermediate of a ligand. For example, the NAP (Nicotina-
mide-Adenine-Dinucleotide Phosphate) binding region
of aldo-keto reductases, see Figure 1b), could be modelled
as involving indirect nested dependencies between NAP
binding residues, Figure 1c). Moreover, CFGs can be uti-
lised to model dependencies between different parts of a
binding site, such as beta strands, helices and loops, by
using branching rules. Thus, the development of gram-
mars which have the abilities to model branched and
nested relationships should permit to improve modelling
of such type of binding sites.

CFG have already been applied successfully in the fields of
bioinformatics, particularly for RNA structure prediction
[5,10,22-24] and compression [25]. A CFG is particularly
adapted to this task because it can express, unlike regular
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grammar, the nested dependencies due to the Watson-
Crick pairing which is key to RNA structure. Due to a
larger set of terminals (20 amino acids) and less straight-
forward relations between residues (there is no equiva-
lence to the Watson-Crick pairing), utilisation of Context-
Free Grammars to analyse proteins has not been, so far,
comparably successful.

Since the design of an unbiased negative sample is partic-
ularly difficult in protein sequence analysis, the fact that
CFGs cannot be inferred from positive data only is a seri-
ous drawback [26]. An alternative is to develop an
approach based on stochastic grammars which, in princi-
ple, do not require a negative set for their inference
[17,27].

In this paper, a Stochastic Context Free Grammar based
framework for the analysis of protein sequences is pre-
sented and applied to the interpretation and detection of
amino acids involved in binding sites. We start by demon-
strating the value of our framework by showing the bio-

logical insight which is provided by the produced
grammars. Then, we assess its performance in sequence
annotation and binding site detection and evaluate them
against profile HMMs. In the Methods section, we present
the general principles which are behind our framework
and the key strategies it relies on. Formal definition of Sto-
chastic Context Free Grammars, implementation aspects
and detailed description of datasets are provided in the
Appendix.

Results and discussion
Description of datasets

We evaluate our framework using a set of binding site pat-
terns which are based on PROSITE entries [56]. They vary
in term of size and complexity and include PROSITE pat-
terns and domain profile, as well as a zinc finger 'meta-
pattern' that was derived from 7 zinc finger PROSITE pat-
terns (see Table 1). The negative test set is defined as a rep-
resentative set (up to 30% sequence identity) of all
protein sequences available in the Protein Data Bank
(PDB) [58].

a), b) Typical structures of antiparallel β-sheets (here beta hairpin) and NAP binding region of aldo-keto reductases - here shown on 1MRQ - respectively c) NAP binding site modelled as involving indirect nested dependenciesFigure 1
a), b) Typical structures of antiparallel β-sheets (here beta hairpin) and NAP binding region of aldo-keto 
reductases - here shown on 1MRQ - respectively c) NAP binding site modelled as involving indirect nested 
dependencies.

Table 1: Binding site patterns used for evaluation

Brief description

PS00219 PROSITE pattern for the anion exchanger family (PDOC00192)

PS00063 PROSITE pattern for the aldo-keto reductase family (PDOC00061). Family binds Nicotinamide-Adenine-Dinucleotide 
Phosphate (NAP).

PS00307 Pattern created by extension of PROSITE pattern which is a legume lectin beta-chain signature (PDOC00278). Family binds 
calcium and manganese located in the C-terminal section of the beta-chain.

MPI phosphatase Pattern created by selecting the fragment which interacts with sulphate ions (SO4) from the PROSITE profile for Rhodanese 
domain (PS50206) which is present in M-phase inducer (MPI) phosphatase family.

Zinc finger Zinc finger meta-pattern created using 7 different PROSITE zinc finger patterns: PS00028, PS00518, PS00752, PS01030, 
PS01102, PS13000 and PS01358.
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A complete description of these datasets is provided in
Appendix E.

Analysis of grammar structures

The rational for utilising Stochastic Context Free Gram-
mars to produce ligand binding site descriptors is that not
only they have the power to express branched and nested
like dependencies, but also their rules can be analysed to
acquire biological knowledge about binding sites of inter-
est. In this section, we illustrate how analysis of sequence
based SCFGs allows gaining an insight into the spatial
configuration of binding sites. We propose two ways of
analysing probabilistic grammars to extract biologically
meaningful features focusing on either parse trees or
grammar rules.

We start by providing an in-depth study of grammars pro-
duced to describe the extended PS00307 pattern which
include calcium and manganese binding sites. Through
this analysis, we will use the 3D structure of a legume lec-
tin protein, i.e. 1FAT, to visualise the structure of the site
and its description as provided by the grammar parse
trees. We will focus our attention on grammars based on
residue accessibility, calcium propensity and manganese
propensity, since these grammars have been shown as
being the most informative to describe the PS00307 pat-
tern. Figure 2a) shows the 3D structure of the extended
PS00307 pattern. Figure 2b) displays Hydrogen-bonds
involved in ligand binding and beta sheet which exhibit
anti-parallel β-sheet type relationships.

The grammar generated for this pattern based on accessi-
bility is composed of the following rules associated with

their normalized probability. p, z and n express respec-
tively high, average and low accessibility.

A → BC rules:

S → TS (0.49) | Vp (0.51)

T → XU (1.00)

U → nz (0.49) | zz (0.51)

V → pn (0.53) | pz (0.47)

W → zp (0.15) | TU (0.85)

X → VW (1.00)

A → a rules:

A/L R/K N/M D/F C/P Q/S E/T G/W H/Y I/V

n: 0.01 0.10 0.11 0.11 0.00 0.10 0.14 0.04
0.00 0.00

0.00 0.18 0.00 0.00 0.05 0.10 0.07 0.00
0.00 0.00

z: 0.11 0.05 0.05 0.04 0.01 0.05 0.02 0.09
0.10 0.03

0.03 0.00 0.05 0.00 0.08 0.05 0.07 0.03
0.09 0.05

p: 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00
0.03 0.14

0.13 0.00 0.11 0.18 0.00 0.00 0.00 0.13
0.03 0.11

As shown on the grammar parse tree, see Figure 3b), there
is a set of context free rules T→XU, X→VW, W→TU which
is repeated to elongate the tree. Moreover, the derivation
of X→VW is V→pn|pz. Since all amino acids which show
high accessibility propensity, i.e. L, M, F, C, W, I and V,
have also high beta sheet propensity [64], the V rule is
beta strand friendly. Therefore, this grammar imposes a
constraint between the length of the loop and the first
beta strand, see Figure 3a).

Similarly, the rule S → Vp associated with V → pn|pz is
Right-Hand Side strand friendly, which defines the second
beta sheet, see Figure 3a) &3b).

Whereas the accessibility based grammar describes in par-
ticular the beta sheet which is present in the pattern, the

a) 3D structure of the extended PS00307 pattern in 1FAT b) Hydrogen-bonds involved in ligand binding and beta sheet (residues in bold belong to the extended PS00307 pattern)Figure 2
a) 3D structure of the extended PS00307 pattern in 
1FAT b) Hydrogen-bonds involved in ligand binding 
and beta sheet (residues in bold belong to the 
extended PS00307 pattern).
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magnesium propensity based grammar deals with magne-
sium binding. Rules of the 'A → BC' type for this grammar
are the following:

S → Vn (0.43) | Vz (0.57)

T → zU (1.00)

U → Xn (0.26) | Tz (0.52) | TW (0.22)

V → nS (0.28) | XW (0.30) | VU (0.42)

W → np (0.67) | zp (0.31) | XW (0.02)

X → zW (1.00)

where p, z and n express respectively high, average and
low magnesium binding propensity.

The parse tree of this grammar reveals the magnesium
binding site is divided between strand and loop parts at V
→ VU branching rule, see Figure 4a), 4b) &4c). The deri-
vations of V on the strand side and U on the loop side
impose the presence of W rules. Since any W rule deriva-
tion exits with W → np|zp, which is magnesium binding
friendly, both sides of the magnesium binding sites must
include magnesium binding residues.

Finally, the calcium propensity based grammar defines
not only the calcium binding part of the pattern, but more
generally the pattern's structure. 'A → BC' type grammar
rules are the following:

S → TW (0.50) | XS (0.50)

T → TW (0.42) | XW (0.58)

a) Residues involved in the two beta strands b) Parse tree of accessibility based grammarFigure 3
a) Residues involved in the two beta strands b) Parse tree of accessibility based grammar.
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U → zp (1.00)

V → VU (0.06) | zz (0.94)

W → VW (0.46) | Vz (0.21) | pn (0.32)

X → VU (0.64) | XU (0.36)

where p, z and n express respectively high, average and
low calcium binding propensity.

The parse tree of this grammar decomposes neatly the site
in four parts: Beta1, Ca binding loop, Beta2 and rest of the
loop, see Figure 5a), 5b) &5c).

a) Magnesium binding site divided in the strand and loop parts b) Parse tree of magnesium propensity based grammar c) Nested loop expressing relationships between residues interacting with magnesiumFigure 4
a) Magnesium binding site divided in the strand and loop parts b) Parse tree of magnesium propensity based 
grammar c) Nested loop expressing relationships between residues interacting with magnesium.
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The second way of reading grammars, namely analysis of
highly probable production chains and especially cycles,
is demonstrated on the NAP binding pattern PS00063
which is found in some aldo- and ketoreductases. The
protein structure of 1MRQ is used for illustration (see Fig-
ure 6 for a 3D stick model of the binding site).

Rules of the 'A → BC' type for the NAP propensity gram-
mar for this pattern are the following:

S → zU (0.81) | Sz (0.19)

T → pV (0.72) | Tz (0.28)

U → zT (0.72) | Uz (0.28)

V → pU (0.24) | Vz (0.23) | Sp (0.19) |

V → zp (0.23) | np (0.11)

where p, z and n express respectively high, average and
low NAP propensity.

For this grammar, there exist two cyclic rule chains of high
probability (excluding recursive rules such as T→Tz)
which start from non-terminal T.

Cycle A defines a NAP binding fragment consisting of two
consecutive amino acids of high NAP propensity. This cor-
responds to the well conserved LYS270 and SER271 of
1MRQ, which are seen in orange in Figure 6.

Since the termination of any derivation of this grammar
imposes either V→np or V→zp rules and another T→pV
production (the only non recursive T rule) is required to
end the cycle B, the shortest parse tree terminating cycle B
(see above) would display the following pattern
'pzzpypp', where y represents either z or n. Residues of

a) Site divided in two strand and two loop parts b) Parse tree of calcium propensity based grammarFigure 5
a) Site divided in two strand and two loop parts b) Parse tree of calcium propensity based grammar.

3D structure of the PS00063 pattern in 1MRQ where the lig-and (NAP) is shown in green, binding residues from the rule chain A in orange and binding residues from the rule chain B in blueFigure 6
3D structure of the PS00063 pattern in 1MRQ where 
the ligand (NAP) is shown in green, binding residues 
from the rule chain A in orange and binding residues 
from the rule chain B in blue.
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high NAP propensity show a 'i → i+3' periodicity which
could suggest the presence of a NAP binding site involving
an alpha helix. The derivation tree of 1MRQ shows that
compared to the shortest predicted parse tree, the recur-
sive rule T→Tz is used to extend the original pattern to
'pzzpzpzp' (i→i+3/i+4) which corresponds to the sub-
string 'NEQRIRQN'. Analysis of the PDB model confirms
this pattern defines a helix. Moreover, ASN273, ARG276
and ASN280, which are seen in blue in Figure 6, are
indeed very close to the ligand and provide an NAP bind-
ing environment. Ligplot data [59] show that ARG276,
and ASN280 are actually involved in the bound state of
the molecule.

Finally, we analyse the SO4 binding site associated to
PS50206 profile of m-phase inducer (MPI) phosphatase
using both parse trees and grammar rules. This region is
illustrated using cartoon and stick 3D models of 1CWS
(see Figure 7).

The parse tree of the accessibility based grammar for the
region is shown in Figure 8a). This tree shows a strong
asymmetry with a mainly hydrophilic left side and a
hydrophobic right side. This suggests very different struc-
tural properties between these parts of binding site. Figure
7a) reveals a beta-sheet on the left and an alpha-helix plus
one disturbed but clear turn on the right. In addition to

these features which could have been obtained using
standard secondary structure prediction methods, the
parse tree also highlights the creation of a hydrophilic
environment between the right side hydrophilic amino
acids close to the tree root (i.e. I and C) and the left side
amino acids. This is confirmed in Figure 7b) where the
side chains of right hand side CYS484 and ILE487 are
directed towards the beta sheet.

Using the parse tree of the SO4 propensity based grammar
(Figure 8b), some insight can be provided regarding SO4
binding. Contrarily to the hydrophilic side of the site
which is composed of residues showing low SO4 propen-
sity, the hydrophobic side appears as a good candidate for
SO4 binding. More specific information can be obtained
through the analysis of the SO4 propensity based gram-
mar whose rules of type 'A → BC' are as follows:

S → TW (1.00)

T → XW (0.51) | nU (0.25) | nz (0.25)

U → Xz (0.39) | Xn (0.34) | Xp (0.27)

V → np (0.57) | zp (0.36) | nz (0.07)

W → Vz (0.94) | Vp (0.06)

X → zS (0.54) | nS (0.46)

where p, z and n express respectively high, average and
low SO4 binding propensity.

Two most probably cyclic chains are as follows:

where the most likely derivation of W is: W → Vz and V
→ n|z p

From cycle A, the following pattern is revealed: 'ySyp-
zypz', where y represents either z or n. Since S can be sub-
stituted by the pattern itself, after a substitution the
patterns become 'yySypzypzypzypz'. This shows a 'i→i+3'
periodicity of SO4-friendly residues which is consistent
with the presence of an alpha-helix. In addition, the deri-
vation of the less likely cycle B produces the following pat-
tern: 'nySxypz' where x represents any SO4 propensity.
Then, if S is substituted by the pattern coded in cycle A, the

3D structure of the PS50206 pattern in 1CWS: a) cartoon model coloured according to the parse tree of the accessibil-ity based grammar (see Figure 8a); b) stick model including SO4 (orange) and WO4 (yellow) ligandsFigure 7
3D structure of the PS50206 pattern in 1CWS: a) 
cartoon model coloured according to the parse tree 
of the accessibility based grammar (see Figure 8a); b) 
stick model including SO4 (orange) and WO4 (yel-
low) ligands. Residues shown in red, grey and green colours 
have respectively high, average and low accessibility.
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Parse trees of a) accessibility and b) SO4 propensity based grammars for PS50206 pattern in 1CWSFigure 8
Parse trees of a) accessibility and b) SO4 propensity based grammars for PS50206 pattern in 1CWS. Red, black 
and green colours express respectively high, average and low level of the property of interest.
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new pattern models a 'i→i+3/i+4' periodicity, 'nyySypzyp-
zxypz', which is also typical for helices.

This result combined with the low SO4 propensity of the
hydrophobic side of the binding site suggests that SO4
binding would involve the arginine-rich ridge of a helix.
This is confirmed by Ligplot which shows that ARG488
and ARG492 are involved in SO4 binding.

This analysis of grammars describing ligand binding sites
has shown that probabilistic context-free grammars allow
the production of binding site descriptors which are
human-readable and, hence, provide some insight into
biologically meaningful features. Moreover, each of these
grammars relies on high probability rules which could not
be expressed with regular grammars. Therefore, this con-
firms that the description of many ligand binding sites
benefits from the expressive power of context free gram-
mars.

Stochastic Context-Free Grammars for sequence 

annotation and binding site detection

In order to demonstrate that, not only SCFG based
descriptors are meaningful, but are powerful at both
annotating sequences and detecting binding sites, we first
evaluate them on sites which can be expressed quite suc-
cessfully by a PROSITE pattern. In this section, all results
are produced using grammars containing a full set of
rules.

Since each SCFG deals with one amino acid property at a
time, scores obtained by several grammars need to be
combined to obtain optimal results (see Methods for
details). Table 2 shows TP and TN rates for grammars
based on different properties, their combinations and
their comparison with scores obtained by PROSITE pat-
terns. This short pattern - only 12 residues - is the anion
exchanger pattern (PS00219). The table reveals that
charge and van der Waals volume are important features
for the expression of this binding site. Moreover, SCFGs
allows detecting relevant sequences missed by the
PROSITE pattern.

Since each SCFG deals with one amino acid property at a
time, scores obtained by several grammars need to be
combined to obtain optimal results (see Methods for

details). Table 2 shows TP and TN rates for grammars
based on different properties, their combinations and
their comparison with scores obtained by PROSITE pat-
terns. This short pattern - only 12 residues - is the anion
exchanger pattern (PS00219). The table reveals that
charge and van der Waals volume are important features
for the expression of this binding site. Moreover, SCFGs
allows detecting relevant sequences missed by the
PROSITE pattern.

A more complete performance analysis of different gram-
mars (all constrained SCFGs) is provided in Table 3 for
PS00307 in terms of Precision, Recall and maximum F1 is
shown. We also provide in Figure 9 the Receiver Operating
Characteristic (ROC; Egan, 1975). Since negative-to-posi-
tive ratios in our datasets are quite high (between 6 and
13), ROC curves may present an optimistic assessment of
the performances of our framework. Therefore, we also
show in Figure 10 a Recall-Precision Curve (RPC) [60]
which has been proposed as a better alternative [61].
Although accessibility and, Ca and Mn propensity are key
properties of the residues involved in this binding site,
they need to be combined to produce good results.

Results obtained for PS00219 pattern by using SCFGs are
near perfect. Pattern PS00307 appeared to be more diffi-
cult, but Recall for 100%Precision is still very high 0.84.
The results for combined grammars are also very good for
PS00063: Recall of 0.81 for 0.93 Precision and maximum
F1 of 0.87 (see Table 4). Only 69% of sequences in the
positive set are recognised without FP. This slightly worse
result can be explained by the fact that unlike the two
other patterns, the pattern covers only a part of the bind-
ing site to relatively huge NAP molecule. Therefore many
key dependencies were not available to the grammars.

Since correct annotation does not imply correct detection,
both tests - annotation and detection - are necessary to
prove the functionality of the approach. In order to evalu-
ate capabilities of detection, a number of tests were carried
out. In Table 5 results for PS00307 for the combined
grammar most successful in annotation task are shown.

As an outcome of this evaluation, performance of detec-
tion appears to be good. In the most difficult task, where
the highest peak was demanded to be exactly at the posi-

Table 2: TP and TN rates for sequence annotation by grammars obtained for PS00219 pattern

Charge Van der Waals volume Beta sheet propensity Charge + volume PROSITE accuracy

TP rate 0.79 1.00 0.62 1.00 0.67

TN rate 0.96 0.97 0.42 0.99 1.00
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tion of the pattern, success rate was 75%. When 50% cov-
erage, i.e. 10 residues displacement for PS00307, was
allowed, success rate rose to 100%. Similar outcomes were
obtained for the other patterns where detection results
were in line with annotation results.

To conclude, our system managed to achieve good accu-
racy in both annotation and detection. The results con-
firmed suitability of our approach in integrating amino
acid properties in our grammars and combining obtained
grammars. It shows that these strategies together with
appropriate choice of the properties relevant to the pat-
tern provide satisfactory solutions to the requirement of
alphabet size reduction.

The remaining part of this paper will only show annota-
tion results since it makes comparisons with profile HMM
performances easier.

Constrained grammar evaluation

In this section we evaluate the approach consisting on
constraining the initial grammar structure as described in
the Methods section. It imposes a bias in the grammars so
that they use context-free features and it allows increasing
the number of non-terminal while keeping a manageable
total number of rules (see Appendix D). Comparisons
between performances obtained by SCFGs with a full set
of rules - standard SCFG - and a constrained set - Nest-
edNT SCFG - is provided in Table 6 where results regard-
ing annotation task for PS00063, PS00307, MPI
phosphatase and zinc finger meta-patterns are provided.

NestedNT SCFGs performed consistently better than
standard SCFGs, especially concerning Recall for
100%Precision. These results suggest that increasing the
number of non-terminals allows improving performance
by increasing expressive capabilities. Analysis of parse
trees shows that more than 6 independent NTs would be
required to cover all important structural features. Moreo-
ver, examination of grammar structures produced with
different parameters confirmed that constrained gram-
mars were more consistent in their structure than standard
SCFGs.

Performance comparison of SCFGs with profile HMMs

Since we have already demonstrated that unlike HMM
profiles, rules of SCFG are human readable and can be
used to gain some biological insight about binding sites,
in this section comparison between the two techniques is
limited to annotation results.

As PS00219, PS00063 and PS00307 patterns were opti-
mised for PROSITE, this method has an intrinsic advan-
tage compared to Profile HMMs and SCFGs for these
patterns in this experiment. Moreover, since MPI phos-

Annotation ROC curves for PS00307 single property and combined grammarsFigure 9
Annotation ROC curves for PS00307 single property 
and combined grammars.

Annotation RPC curves for PS00307 single property and combined grammarsFigure 10
Annotation RPC curves for PS00307 single property 
and combined grammars.

Table 3: Sequence annotation by grammars obtained for 
PS00307 pattern

Max F1 Precision Recall Rc|Pr = 1.0

Accessibility 0.61 0.59 0.63 0.00

Ca 0.44 0.43 0.45 0.06

Mn 0.52 0.47 0.57 0.00

Combination 0.91 1.00 0.84 0.84

Table 4: Sequence annotation by combined grammars obtained 
for PS00063 pattern

Max F1 Precision Recall Rc|Pr = 1.0

0.87 0.93 0.81 0.69
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phatases are a subset of Rhodanese-like proteins which
can be expressed by a domain profile (PS50206), it is
expected that profile HMMs would perform well in anno-
tating this family. Since PROSITE scores are calculated
using the whole Swiss-Prot/TrEMBL database, compari-
son with other methods based on Precision and therefore
F1 statistics may not be fair. Therefore, we use Recall for
100%Precision of Profile HMMs and PCFGs, and
PROSITE Recall to evaluate PROSITE performance against
the others. Table 7 shows comparison of results between
the methods for our patterns of interest.

As expected, although SCFGs scores are generally good,
PROSITE and Profile HMMs outperform SCFGs when
dealing with standard PROSITE patterns. PS00219 is an
exception where SCFGs obtain perfect score. Results
achieved by Profile HMM and SCFG for MPI phosphatase
pattern are very similar, with the former only slightly
superior over the latter. In the case of the zinc finger meta-
pattern, Table 7 does not reveal any significant difference

between performances of Profile HMMs and SCFGs. These
results validate our assumption that SCFGs gain efficiency
from higher expressiveness and, despite operating on a
reduced protein alphabet, can be at least as efficient as
lower-level grammars, i.e. PROSITE patterns and Profile
HMMs, built on sequences of amino acid identities. To
investigate further the meta-pattern results, ROC and RPC
are provided in Figure 11 and 12.

These curves show that although our stochastic grammars
are based here on a single feature - zinc propensity - they
perform slightly better than Profile HMMs. Although
none of the other tested properties allowed improving
SCFGs results, we believe there is still some space for
improvement if suitable properties could be combined to
zinc propensity.

Study of false negatives produced by these two methods at
their maximum performance level in the term of F1,
shows 13 sequences were rejected by SCFG while 17 by

Table 5: Binding site detection by grammars obtained for PS00307 pattern. 

Detection (Exact) Detection (50% coverage)

Accessibility 0.76 0.99

Ca 0.45 0.85

Mn 0.37 0.88

Combination 0.75 1.00

Detection (Exact): the peak is expected to be exactly at the position of the pattern; Detection (50% coverage): the peak is expected to be no longer 
distance than 50% of the pattern length (here: 10)

Table 6: Performance comparison of standard and NestedNT SCFGs

Max. F1 (Rc|Pr = 1.0)

PS00063 PS00307 MPI phosphatase Zinc finger

Standard NestedNT Standard NestedNT Standard NestedNT Standard NestedNT

Acc 0.31 0.36 0.16 0.61 0.49 0.76 0.25 -

NAP 0.18 0.18 - - - - - -

Ca - - 0.30 0.44 - - - -

Mn - - 0.46 0.52 - - - -

SO4 - - - - 0.65 0.79 - -

Zn - - - - - - 0.78 0.81

Comb 0.38 0.53 0.72 0.91 0.75 0.89 0.61 -
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Profile HMM. Since only 4 sequences belonged to both
groups, this seems to confirm both schemes have very dif-
ferent definitions of this binding site which might be
regarded as complementary.

Discussion
This study demonstrates the capability of the framework
we propose to take advantage of the expressive power of
Stochastic Context Free Grammar for analysis of protein
sequences. First, we have shown with a few examples that
the analysis of sequence based SCFG rules allows gaining
an insight into the 3D structure of binding sites. This is a
unique feature of our approach compared to, for example,
HMM based methods which only produce 'black box'
descriptors. Our analysis of grammar structures has

revealed that the ability of expressing branched and
nested dependencies is essential to describe some binding
sites which can be seen as displaying such relationships
through the intermediate of a ligand. This confirms the
theoretical potential of our method in describing sites
which are out of the scope of HMM profiles. It is impor-
tant to be aware that many sites, such as parallel β-sheets,
display dependencies which are beyond the expressive-
ness of SCFGs and, therefore, are not suitable candidates
for our approach.

Secondly, we have demonstrated that our SCFG based sys-
tem can be practical and accurate to annotate proteins and
detect binding site patterns. This confirms that the various

Table 7: Performance comparison of PROSITE patterns, Profile HMMs and SCFGs

Size Method Max F1 Pr Rc Rc| Pr = 1.0

PS00219 12 PROSITE 0.94 1.00 0.89 0.89

12 SCFG 1.00 1.00 1.00 1.00

PS00063 16 PROSITE 0.81 1.00 0.81 0.81

16 Profile HMM 0.95 1.00 0.91 0.91

16 SCFG 0.71 0.79 0.65 0.29

PS00307 7 PROSITE 0.52 0.36 0.94 0.94

25 Profile HMM 1.00 1.00 1.00 1.00

25 SCFG 0.91 1.00 0.84 0.84

MPI phosphatase - PROSITE No PROSITE pattern

25 Profile HMM 0.96 1.00 0.92 0.92

25 SCFG 0.94 0.98 0.89 0.85

Zinc finger 10-26 PROSITE Out of scope

26 Profile HMM 0.79 0.76 0.82 0.21

26 SCFG 0.81 0.75 0.87 0.21

ROC curves for a Profile HMM and a single Zinc propensity grammarFigure 11
ROC curves for a Profile HMM and a single Zinc pro-
pensity grammar.

RPC curves for a Profile HMM and a single Zinc propensity grammarFigure 12
RPC curves for a Profile HMM and a single Zinc pro-
pensity grammar.
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strategies developed to deal with the challenge of using
SCFGs for proteins sequences were appropriate. Our
approach of integrating quantitative properties of amino
acids into the SCFG framework has shown to be an effi-
cient method to reduce the size of grammars. Moreover,
properties based on ligand propensity were especially use-
ful. In addition, combining grammars typically yielded in
better scores than those obtained by any single property
grammar. Furthermore, experimentations, where gram-
mar structures are constrained, suggest that restricting the
grammar induction search space using heuristics is an
approach which merits further investigation. Results show
that our approach usually does not perform as well as Pro-
file HMMs in annotation task when dealing with binding
sites which can be well expressed with rigid regular gram-
mars. This can be explained by the fact our scheme relies
on a reduced amount of information, i.e. amino acid
properties instead of amino acid identities,

The main benefit of the system we propose is that - when
considering only rules with significant probabilities - both
structure and rule probabilities of context-free grammars
are learned automatically without introducing constraints
specific to the targeted sites. Such grammars of relatively
simple structure are human-readable; hence they could
become valuable sources of information for molecular
biologists. Another advantage of our framework is that,
unlike other methods, it does not rely on sequence align-
ments. Therefore, as encouraging results with zinc finger
meta-pattern suggest, our system may be particularly
suited to deal with patterns shared by non-homologous
proteins.

Conclusion
We have presented a novel Stochastic Context-Free Gram-
mars based framework relying on quantitative representa-
tion of amino acid properties. The SCFG based system for
protein sequence analysis was tested on several data sam-
ples in various configurations. First, we have shown the
produced binding site descriptors are human-readable
and their analysis can provide biological insight into the
structures of their associated binding sites. To our knowl-
edge, no other type of binding site descriptors can reveal
subtle interactions as described by SCFGs. Secondly, by
achieving high Precision and Recall in annotation and
very good detection rates our system proved to be a prac-
tical tool for protein pattern recognition. Moreover,
results for the zinc finger meta-pattern which outper-
formed Profile HMMs suggest that meta-patterns are one
of the fields where application of SCFGs can be especially
useful. In addition, since both approaches produced dif-
ferent false negative, SCFGs can be seen as complemen-
tary to existing Profile HMM based methods. This suggests
our SCFG framework could be used to improve those
methods. This study also supports the idea that binding

site regions which could be seen as involving indirect
nested dependencies between residues are prime targets
for our framework.

An increase of the number of non-terminal symbols
allows representing a larger variety of relations within a
binding site. Additional constraints to grammars enable
the use of more symbols and facilitate the learning proc-
ess. Indeed, our experiment showed that, generally, con-
strained grammars produced better results. For future
work, we intend to further our research into constrained
grammars by inferring optimal grammar structure. We
will also implement secondary structure based grammars
to take advantage of this higher level property. Further-
more, our procedure of grammar combination will be
refined by customising each grammar's weight to reflect
the entropy of underlying properties in the training sam-
ples and single grammar performance. Finally, we plan to
develop a web tool allowing interactive analysis of bind-
ing sites encoded by SCFG based descriptors.

Methods
Principles

We present a grammar based system for analysis of pro-
tein sequences. The complexity of amino acid interactions
led us to adopt a Context Free Grammar framework.
Moreover, the difficulty of producing negative samples
guided our selection towards a stochastic scheme (a for-
mal definition of stochastic context-free grammars is pro-
vided in Appendix A). Since in the context of protein
sequences the structure of the grammar is originally
unknown, it needs to be induced. In this work a genetic
algorithm is used for this purpose (see Appendix C for
details). The general principle behind our framework is to
start the learning process from a set containing all possible
rules and infer their probabilities. Although this approach
leads to quite large sets of rules even for moderate alpha-
bets, it avoids bias which can be introduced by additional
constraints. Moreover, an inherent property of proper sto-
chastic grammar is that the distribution of probabilities
onto a small number of rules, which express well the pat-
tern of interest, gives better scores than even distribution
onto all possible rules. Consequently, a natural trend dur-
ing grammar evolution is the reduction of probabilities of
rules that are unnecessary. Therefore, after grammar
induction, the final set of rules can be pruned to omit
rules which will have only a limited impact on the overall
score of a scanned sequence.

In principle, the number of context-free rules for a given
number of non-terminal symbols can be infinite. How-
ever, by transforming a CFG into a Chomsky Normal
Form (CNF, see Appendix A for details), the number of
rules is bound by the cube of the number of non-termi-
nals. Therefore, this formulation will be used in our
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framework. Another advantage of CNF is that it can be
parsed by the efficient polynomial probabilistic CKY
parser (see Appendix B).

Since a protein can be fully defined by a string composed
of 20 different characters, protein grammar is expected to
rely on a large set of terminals (20 amino-acids). There-
fore, the space containing the possible rules needed to
describe the protein language is enormous and cannot be
searched in a finite time by current induction techniques.
In order to deal with the size of the protein alphabet, we
introduce quantitative properties of amino acids into our
SCFG framework to reduce the number of symbols in a
grammar (additional strategies used to handle computa-
tional complexity are detailed in Appendix D). For each
given property, our method relies on defining all the ter-
minal rules of the form A → a and associating them with
proper probabilities. Three non-terminal symbols (Low,
Medium and High) are created to represent low, medium
and high level of the property of interest, e.g. small,
medium or large van der Waals volume. These non-termi-
nals are later called 'property non-terminals' or pNT.
Those rules have therefore the following format:

where each amino acid (ai) is associated with each of these
non-terminals with a probability (Pr).

For a given property, probabilities are calculated using the
known quantitative values, pval, associated to the amino
acids, ai, using the following equations:

These probabilities are then normalized so that they are
proper, i.e. the following equation is true:

Since all terminal rules are fixed with given probabilities,
only the probabilities of the subset of rules in the form of
A → BC are subject to evolution. However, relations
expressed by these rules only refer to the 3 property levels

instead of the 20 amino acid types. Moreover, to avoid
trivial solutions, non-terminals which are Left-Hand Side
(LHS) symbols in the terminal rules are prohibited from
being LHS non-terminal symbols of these other rules. The
LHS non-terminals of A → BC are later called 'independ-
ent non-terminals' or iNT.

A drawback of this significant reduction of the size of the
possible rule space is that properties of each amino acid
are represented by a single feature in the induced gram-
mar. In our framework (see Figure 13), this limitation is
overcome by generating one grammar per relevant physi-
ochemical property. Protein sequences are parsed for each
grammar and their parsing scores are combined to achieve
more robust results: the final score is an arithmetic aver-
age of the scores obtained for each single property gram-
mar.

Choice of amino acid properties

Our method relies on the selection of amino acid proper-
ties in order to deal with the size of the protein alphabet
by defining specific terminal rules based on their quanti-
tative values. These values are collected from the AAindex
database which provides quantitative estimates of the 20
amino acids for over 500 properties [43-45]. They are
clustered into 6 categories which can be broadly labelled
as beta propensity, alpha and turn propensities, composi-
tion, physiochemical properties, hydrophobicity and oth-
ers. Representatives of the well defined properties, i.e. the
5 first ones, are selected by choosing properties which are
the closest to the centres of the property clusters defined
in the AAindex database. They are defined using their
AAindex property codes as:

• Average relative frequency of beta-sheet, KANM800102
[46],

• Information measure for middle helix, ROBB760103
[47],

• Relative frequency of occurrence JOND920101 [48],

• Normalized van der Waals volume, FAUJ880103 [49],

• Information value for accessibility with average fraction
of 35% (called later "accessibility"), BIOV880101 [50].

In addition to these properties, we also used the net
charge of amino acids. Values are obtained by combining
net, positive and negative charge indices from
KLEP840101 [51], FAUJ880111 and FAUJ880112 [49]
respectively. Moreover, since we target protein binding
sites, ligand binding propensities of amino acids can also
be very informative. Those propensities are calculated by
standardising the ligand binding statistics provided by the
Molecular Structure Database of EMBL-EBI [52].
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Although in principle, grammars could be generated for
all of those properties, computational constraints make it
impractical. Therefore, an appropriate set of properties is
chosen using expert knowledge for each binding site of
interest.

Constrained grammars

An alternative to inferring a grammar with a complete set
of rules is to produce a grammar where constraints are
introduced in the design of an initial rule set. This brings
a couple of advantages. First, for a given number of rules
the number of non-terminals (NT) can be increased. Sec-
ondly, it allows imposing a bias in the grammars so that
they use context-free features (i.e. nesting and branching)
instead of regular features which may lead to local
minima in the rule inference search space. The rationale
behind this concept is that it requires at least two rules in
Chomsky Normal Form that collaborate with each other
to represent nested dependencies. As evolution of proba-
bilities of rules with different LHS non-terminals is inde-
pendent, the bias towards nested solutions may need to
be enforced in the grammar structure. To achieve this, we
propose to constrain rules of the type A → BC.

To describe these constraints, we shall recall the following
definitions:

• Non-terminal symbol which represents explicitly an
amino acid property is called 'property NT' or pNT.

• Non-terminal not representing explicitly an amino acid
property is called 'independent NT' or iNT.

In the full rule set, A must be iNT while B and C can be any
NT:

Therefore, for 7 NTs including 3 pNT this results in a total
of 196 rules.

Our constraints, called Nested NT, aim at imposing to the
grammar the production of nested relations, while the
structure of the grammar is kept general. This is performed
by dividing independent NTs into two equal and mutu-
ally exclusive subsets. They are named 'odd independent
NT' or oiNT, and 'even independent NT' or eiNT. Then
restrictions on the rule set are introduced: they are repre-
sented by the following 3 subtypes of rules:

The generalised nested relations are produced by the first
and second rules which impose switching in the course of
derivation between oiNT and eiNT. Additionally, the third
rule creates a branch if the NT of the free form is iNT.

This scheme produces only 76 rules for 7 NT. Hence, for
NestedNT the number of NTs can be increased from 7 to
9 while keeping the number of rules manageable (i.e. 162
rules, more details in Appendix D).

Evaluation and datasets

The large size of the amino acid alphabet, the non-trivial
character of dependencies between residues and the high
computational complexity of Context-Free Grammars
make the task of learning efficient SCFGs for protein pat-
tern detection very challenging. In order to assess the per-
formance of our framework, grammars evolved under our
scheme were first utilised to gain insight into binding site
biological features. Then, they were evaluated in their
ability to detect the precise positions of a binding site
within a sequence and to annotate protein sequences.
Finally, results were compared to those obtained from
Profile HMMs. These profiles were built using the latest
version (v 2.3.2 at the time of writing) of the standard
HMMER package [20] where standard parameters were
applied and same positive training data sets as SCFGs
were used for training.

In the annotation task, the parser returns either the pres-
ence or the absence of the binding site of interest. To eval-
uate our results, we use the F1 measure, a harmonic mean
of Precision and Recall, defined as follows:

iNT NT NT→  
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iNT pNT pNT
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General scheme of the methodFigure 13
General scheme of the method.
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Since F1 is more conservative measure than arithmetic or
geometric average, it allows finding the optimal threshold
to distinguish between presence and absence. Typically,
the highest score generated by a properly induced gram-
mar occurs in the position of the binding site. However,
precise site detection is not a requirement for correct
annotation.

Binding site patterns used to evaluate our framework are
based on PROSITE entries, since PROSITE is the database
containing the most comprehensive library of protein pat-
terns; many of them describe binding sites [56]. While
PROSITE contain both regular expression based patterns
and domain profiles, in this document when we mention
PROSITE patterns we refer to the former. Since PROSITE
patterns are regular expressions, there is some bias
towards representing binding sites with strong regular fea-
tures. However, some PROSITE patterns are associated
with relatively high false positive and false negative rates
and therefore are suitable for testing our scheme. Moreo-
ver, many PROSITE patterns can be associated to a single
binding site environment, e.g. 11 patterns are linked to
zinc fingers. Since our framework does not rely on the
alignment of protein sequences, which implies some
homology, it makes it possible to combine patterns func-
tionally similar but associated with different protein fam-
ilies. Those meta-patterns can be particularly powerful in
detecting binding sites in sequences without homologues.

Three PROSITE binding site patterns of various sizes and
complexity were selected to show that our general
approach is valid. Then, using a PROSITE domain profile,
we analysed a subset of the proteins it describes to com-
pare our method with a HMM profile. Finally, a zinc fin-
ger meta-pattern that we created using 7 zinc finger
PROSITE patterns is processed to demonstrate the per-
formance of our framework on binding sites which
belong to different protein families. For each pattern of
interest, positive and tests sets were based on the associ-
ated PROSITE dataset - no negative training set is required
in the learning process. Ideally the negative test set should
have been defined as a representative set of all protein
sequences available in UniProt [57] which does not con-
tain the pattern of study. Due to computational con-
straints a smaller set had to be defined. Therefore, the
Protein Data Bank (PDB) [58] instead of UniProt was cho-
sen as the database of reference.
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Appendices
A. Formal definition of stochastic context-free grammars

The formal definition of a context-free grammar G is the
following [28]:

where V is a finite set of non-terminal symbols, T is a finite
set of terminal symbols, P is a finite set of production rules
and S is a special start symbol (S ∈ V). The sets V and T are
mutually exclusive. Each rule from the set P has the fol-
lowing form:

where A ∈ V and X ∈ (V ∪ T)*. A context-free grammar
may include rules with an empty Right-Hand Side (RHS)
denoted as:

A given grammar is called λ-free if and only if there is no
rule in the set P where a RHS symbol X is empty (λ). It has
been proven that for each context-free grammar G, a λ-free
grammar G' may be constructed:

where L(G) denotes the language generated by the gram-
mar G. For each λ-free grammar G' = < V', T', P', S' >, one
can find a grammar G" = < V", T', P", S'> that is equivalent
to G' and is in the Chomsky Normal Form (CNF), in other
words, its set P" consists of productions of two types:

where upper case letters refer to non-terminals and lower
case letters refer to terminal symbols. Although the repre-
sentation of grammars in Chomsky Normal Form is not
the most compact one, context-free grammars in the CNF
have a simple and well-defined form of rules. Therefore,
this formalism is commonly used in computational lin-
guistics and many efficient algorithms have been specially
designed for it.

The definition of a Stochastic Context Free Grammar
(SCFG) is similar to the definition of a non-probabilistic
CFG, where probabilities are attributed to each rule:
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Usually, probabilities of all productions for one Left-
Hand Side (LHS) symbol sum to one; the SCFG is then
called proper.

B. Standardised parsing method for stochastic context-free 

grammars

The Cocke-Kasami-Younger (CKY) algorithm (designed in
the 1960s) is one of the most common parsing methods
for CFGs. It has a simple structure and is efficient: its com-
putational complexity is polynomial O(n3) regarding
string length. This is a bottom-up parser, i.e. the deriva-
tion tree is built starting from terminal symbols. It
requires a context-free grammar in the Chomsky Normal
Form, so that the string which is analysed gets shorter at
every iteration step. In this work, we implemented a mod-
ified version of the CKY algorithm, called Stochastic CKY
or SCKY [29], so that Stochastic Context Free Grammars
can be parsed. The outcome of this procedure is the prob-
ability that a given sequence was generated by a certain
grammar G (i.e. the sequence belongs to the language
L(G)) instead of a Boolean value as in the case of non-
probabilistic CKY. This probability is defined as a product
of probabilities of all grammar rules involved in the con-
struction of the corresponding parse tree. More formally,
it can be described as follows [30]:

Given an input sequence W of N terminal symbols: W =
a1, a2, ..., aN. Grammar G consists of R non-terminal sym-
bols: α1, α2, ..., αR and a set P of LT terminal (p1: αr → ai,
Pr(pl)) and LNT non-terminal (pm: αr → αs αt, Pr(pm))
rules. A table T of dimensionality N × N × R is constructed
and initially filled with zeros. Then the following algo-
rithm is applied:

For each element ai of the input sequence W (i.e. for i =
1 to N)

for each terminal rule in the P set (i.e. l = 1 to LT)

if there is a production rule pl: αr → ai,

the value of T at position [i, 1, αr] is increased
by Pr(pl)

Then, for i = 2 to N

and for j = 1 to N-i+1

and for k = 1 to i-1

for each non-terminal rule in the P set (i.e.m = 1 to
LNT)

if there is a production rule pm: αr → αs αt in G,

the value of T at position [i, j, αr] is increased:

T [i, j, αr] + = T [j, k, αs] × T [j + k, i-k, αt] ×
Pr(pm)

The value of T [i, j, αr] is consequently the probability that
a sequence of terminal symbols:

(or the subsequence of the input sequence W between
positions i and i+j-1) was derived from the non-terminal
symbol αr of the grammar G. Therefore, after all steps, the
value of T [1, N, 1] is the probability that the input
sequence W belongs to the language L(G). This version of
the algorithm, where a probability for a certain node is
calculated as a sum of probabilities of all sub trees is called
the Baum-Welch style SCKY algorithm [31].

If a probability for a certain node is calculated as a maxi-
mal probability instead of the sum from all sub trees:

one obtains a Viterbi style SCKY algorithm [32]. In this
case the value of T [i, j, αr] is the probability that a
sequence of terminal symbols ai, ai+1, ..., ai+j-1 (or the sub-
sequence of the input sequence W between positions i and
i+j-1) was derived from the non-terminal symbol αr of the
grammar G in the Viterbi or most likely parse. T [1, N, 1]
is therefore the probability that the input sequence W was
generated by the grammar G in the Viterbi parse.

In order to assign comparable scores to derivation trees of
different spans, a scheme that allows for detection of the
most probable node in the parsing tree was developed.
The general idea is based on the fact that each additional
level of parsing causes a certain decrease in the resulting
probability. Therefore, the analysis of that effect can be
used for standardisation based on a scaling factor which
would allow comparing scores at different parse tree
spans. A general approach to scaling within Viterbi-style
CKY parsing scheme is to calculate normalized scores
(Score') as follows:

where A compensates the decrease in score caused by link-
ing another terminal (A → a), R compensates the decrease
in score caused by invoking a rule (A → BC) and i is the
parsing level. As it is difficult to calculate the values of A
and R, an empirical scaling factor, F = RA, was introduced.
It is based on the change in average raw (not scaled) scores
with increasing parse tree spans calculated over a large

a a a ai i j i i i j, , , ,+ − + + −=1 1 1…

T i j max T j k T j k i k Pr pr k s t s t m[ , , ] { [ , , ] [ , , ] ( )}, ,a a a= × + − ×

Score Score A RA i’ ( ) ,= × ×
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negative dataset for a given grammar. Analyses performed
for various grammars confirmed the constant character of
this change across derivation tree spans (see Figure 14).
This justifies the utilisation of one scaling factor per gram-
mar, which is calculated as

where a is the coefficient of linear regression if the loga-
rithm of the score is used instead of its raw value.

Standard deviation is shown. Marked area denotes parse
tree spans which cover at least one whole pattern instance
from the learning set (pattern based on PS00307, see
Datasets section for details).

In our framework, Baum-Welch style is utilised in training
and Viterbi style in scanning mode. Baum-Welch parsing
was chosen for grammar induction to avoid rapid conver-
gence to trivial local minima in the absence of a negative
training set. On the other hand, according to our experi-
ments Viterbi algorithm produces better discrimination
between positive and negative samples and therefore it is
more appropriate for scanning. Moreover, Sakakibara's
work suggests that when a grammar is correctly induced,
the most likely parse tree of a binding site sequence
reflects its structural features [22]. In both cases, the basic
version of the parser returns a score which is the log of
probability rather than the probability itself. Therefore, it
is the average log of probabilities for all training samples
which is optimised in the training step.

C. Learning method for stochastic context-free grammars

Since grammar rules are generally unknown in real world
applications, efficient and robust methods are required to

infer Stochastic Context-Free Grammars. There are two
main approaches for learning grammars: Maximum A
Posteriori (MAP) Expectation-Maximisation algorithms
(EM) and evolutionary methods (Genetic Algorithms
(GA) [33,34] or Genetic Programming (GP) [35]). The
former was employed for SCFGs of known structure (only
probabilities were trained) [22,23]. Moreover, a MAP esti-
mation process was designed based on single base and
base pair (local neighbours) frequencies, mutation rates
and, finally, rule probabilities [37]. Among evolutionary
approaches, GP was successfully applied to derive gram-
mars for small domain-specific non-probabilistic Con-
text-Free languages using positive and negative examples
[38]. A tabular representation for CFGs was also proposed
to reduce the problem of learning CFGs to the problem of
merging and splitting non-terminals according to positive
and negative samples [39]. Furthermore it was shown that
it is possible to learn grammar from positive examples
only, if precise information of the grammatical structure
of the unknown grammar is available [27]. Finally,
steady-state distributed GA was applied for a version of
SCFGs called Biased Weighted Grammars [40]. In this
approach, grammar rules were divided into two parts: a
real and constant 'bias', and an integer 'weight' which was
evolved. Following experiments on theoretical grammars
and short sequences, the authors reported faster conver-
gence and a better success rate and grammar compactness
than grammars obtained by the Inside Outside version of
the EM algorithm.

Following successful applications of evolutionary algo-
rithms to SCFG [39,40] and our previous experience in
CFG learning [41], we chose a Genetic Algorithm for
grammar induction. In the design of the GA we adopted
the approach where a single individual represents a whole
grammar. This strategy has been already successfully
applied in many similar applications [8,40,42]. Since our
GA actually evolves probabilities of grammar rules, real
number coding was chosen for the genotype. The initial
population is initialised randomly and then iteratively
subjected to evaluation, reproduction, genomic operators
and finally succession. These processes are described in
more detail at the end of the section. The goodness of
grammars induced by the GA is assessed on the basis of its
fitting to the training sample of sequences, i.e. the selected
grammar is the one which generates maximal log proba-
bilities over the whole set. The algorithm stops when there
is no further significant improvement in the score.

The implementation of our grammar induction algorithm
is based on Matthew Wall's GAlib library which provides
a set of C++ genetic algorithm objects [54].

In order to normalise results regarding sequence length,
the objective function is defined as an arithmetic average

F a= 10 ,

Linear character of the change in average raw scores with increasing parse tree spanFigure 14
Linear character of the change in average raw scores 
with increasing parse tree span. Standard deviation is 
shown. Marked area denotes parse tree spans which cover at 
least one whole pattern instance from the learning set (pat-
tern based on PS00307, see Datasets section for details).
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of logs of probability returned by the parsing algorithm
for each positive sample:

where S is the positive sample, Wi is a sequence from S, G
is a given grammar and Pr(Wi|G) is the probability that Wi

belongs to L(G).

The reproduction step of the GA uses the tournament
method which picks randomly a small set of individuals
from the original population, and then selects the best
one which is added to the set of parents [53]. This is
repeated until the appropriate number of parents is cho-
sen. The strength of this method is that the selective pres-
sure is held at the same level during the whole induction
process. This strategy with the tournament of 2 competi-
tors was confirmed to be effective in applications similar
to ours [8,42]. Once the reproduction step is completed,
the population of parents is subjected to standard
genomic operations to produce new individuals. We uti-
lised a steady-state scheme with overlapping populations
(50%) to assure the stability of the GA algorithm: only the
poorer half of the population is substituted by new indi-
viduals. Since our GA deals with probabilities of stochas-
tic rules, i.e. real numbers, offspring are produced by
crossover where the genetic information of two individu-
als is averaged. However, some random distortion is
added in order to enhance exploratory capabilities of the
algorithm (so called blind crossover in Galib's frame-
work). Subsequently, a classical one point mutation oper-
ator is used to mutate randomly chosen genes. This allows
escaping from evolutionary traps by making possible the
exploration of space not covered by parents. The probabil-
ities of crossover and mutation were 0.9 and 0.001 respec-
tively. Finally, the termination condition of the GA is
applied: it is based on monitoring the improvement of the
score given by the objective function.

Combined with the tournament selection, we apply a scal-
ing scheme exercising diversity pressure on the popula-
tion, called a sharing function [34], where the fitness score
for a given individual is decreased if it is similar to other
ones. The application of such a scheme during evolution
improves exploratory abilities of the GA by keeping it
from settling in local extremes of the fitness landscape.
While the Euclidean style distance is an intuitive measure
for comparing chromosome probabilities, it suffers from
a significant drawback in the case of stochastic grammars
where probabilities are normalized. This measure does
not take into account the fact that the importance of a
given rule depends on other rules with the same LHS non-
terminal. To overcome this problem another score, called

here Weighted Hamming distance (DistWH), was intro-
duced where comparisons between two chromosomes are
also normalized by dividing distances between single
genes by the total weight of the chromosomes:

where ri and si are values of rule probabilities. Such dis-
tance takes into account properties of the normalized
grammar without confusing genotype (raw chromo-
somes) and phenotype stages (after normalisation). As
expected, experiments showed Weighted Hamming dis-
tance metric is superior both in performance and conver-
gence speed over the Euclidean style measure [55].

D. Strategies to handle the computational complexity

Although we introduced a strategy to deal with the size of
the protein alphabet by dealing with each physiochemical
property separately and introducing 3 non-terminal rules
which express their quantitative values, the computa-
tional complexity of parsing a Context-Free Grammar
remains an issue: it is cubic in time and square in space
regarding the length of the input sentence. While standard
memory resources are adequate for protein sequence
scanning (the average length of a sequence is around 350
amino acids), the time complexity is a critical issue in par-
ticular during the process of grammar induction. Typically
a population made of hundreds of grammars needs to be
parsed at each step of the iterative process. Moreover,
since the structure of the final grammar is initially
unknown, the initial population of grammars should
have a set of rules large enough so that it has the potential
to express the properties of the pattern of interest.

Most applications reported in the literature use popula-
tion sizes between 50 and 1000 individuals. Since a com-
promise had to be found between exploratory capabilities
and manageability, we chose to induce grammars using a
constant population of 200 individuals. We conducted
experiments which revealed that for such a population
size, the total number of rules of each individual should
not exceed 200 to be able to generate a grammar within a
reasonable amount of time (several hours). This con-
straint led us to design two different strategies regarding
the selection of initial rules. The first approach supplies
each individual with a complete set of rules associated
with random probabilities in order not to introduce any
bias in the evolution of grammars. Since we use Chomsky
Normal Form for rules, the number of possible rules is
bounded by the cube of number of non-terminals. There-
fore, in this scheme no more than 7 non-terminals can be
introduced to keep the number of rules below 200. The
second approach introduces some additional assump-
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tions regarding the structure of the grammar, as described
in next section. This allows emphasing the context free-
ness of the expected solution and increasing the number
of non-terminals to 9 without increasing the volume of
the initial rule set.

Although genetic algorithms converge whatever their ini-
tial population [53], they may not find the global optimal
solution. Therefore, for each grammar generation, we
actually produced several grammars (usually 3) whose
scanning results were combined using arithmetical aver-
aging of scores. Using a cluster of powerful machines - 16
bi-processor 64 bit machines with AMD Opteron™ 244
(1.8 GHz, 1 MB cache) processors - time needed for pro-
ducing all grammars associated to a given pattern was typ-
ically of a few hours.

E. Detailed description of datasets

The base of the negative samples in all tests consisted of
829 single chain sequences of 300-500 residues returned
by PDB30% (accessed on 12th December 2006). Then for
each experiment, sequences matching the studied pattern,
if any, were removed from the negative set: one sequence
was excluded for PS00063 pattern and two for Zinc finger
pattern.

• PS00219 is one of two motifs for the anion exchanger
family (PDOC00192). The training set consisted of 8 dif-
ferent instances of the 12 residue long PROSITE pattern:

F-G-G-[LIVM](2)-[KR]-D-[LIVM]-[RK]-R-R-Y

and the 11-residue binding site sequence of a protein
missed by the pattern:

F-G-G-L-I-L-D-I-K-R-K

We added 76 sequences from the UniProt (9th December
2006) matching PS00219 to the positive part of the test-
ing set.

• PS00063 pattern is one of three PROSITE patterns
designed for the aldo-keto reductase family
(PDOC00061) binding NAP ligand (Nicotinamide-Ade-
nine-Dinucleotide Phosphate). The pattern is located in
the C-terminal of an about 300 residue long protein and
centred on a lysine residue which is likely to be the active
site residue. The 16 residues long PROSITE consensus pat-
tern is:

[LIVM]-[PAIV]-[KR]-[ST]-{EPQG}-{RFI}-
x(2)-R-{SVAF}-x-[GSTAEQK]-[NSL]-x-{LVRI}-
[LIVMFA]

The training set consisted of 13 representative instances
(chosen on the basis of low sequence similarity) of this
pattern and sequences found in the PROSITE false nega-
tive set. 86 complete sequences matching the pattern
formed the positive testing set. A sequence which con-
tained PS00063 motif was excluded from the negative test
set.

• PS00307 is a legume lectin beta-chain signature that
binds calcium and manganese located in the C-terminal
section of the beta-chain (PDOC00278):

[LIV]-[STAG]-V-[DEQV]-[FLI]-D-[ST]

The pattern has 64 true positive hits, while 4 sequences are
missed and there are 116 false positives. According to the
associated Ligplot diagram [59] (Figure 15), many resi-
dues taking part in the binding site are not covered by the
pattern. Hence, we extended the length of the training
sequences up to 25 amino acids, according to multiple
sequences alignment (see below). Eventually, the training
set consisted of 22 representative sequences of the pattern
instance and its neighbourhood (50 residues altogether).
Four instances (bold) were much less conserved than the
others:

The positive test set consisted of 67 true positive and false 

negative PROSITE pattern PS00307 matches from Uni-

Prot database (accessed on 23rd April 2007).

• The M-phase inducer (MPI) phosphatase family consists
of proteins which bind SO4 molecules. The family cannot
be covered by a single PROSITE pattern. However, it forms
a subset of Rhodanese-like proteins described by Rhoda-
nese domain profile (PS50206). The training set consisted
of 16 representative sequences of the binding site and its
neighbourhood (total length 25). These short sequences
were extracted from the Swiss-Prot database:
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The positive test set included 130 non-redundant
sequences which belongs to the family according the Uni-
Prot (accessed on 22nd February 2008).

• Zinc finger is a large superfamily of binding DNA pro-
teins which relies on a zinc atom to support the structure
of the binding site (see Figure 16). 11 different PROSITE

patterns define their binding sites. We created a zinc finger
meta-pattern by selecting all patterns which involved 4
zinc binding residues and did not exceed 30 residues of
maximum length.

The 7 patterns that our meta-pattern is based on are the
following:

Lengths of those patterns vary from 10 to 27 amino acids.
Also numbers of true positive hits in different sequences
in the UniProtKB/Swiss-Prot database differ dramatically
between patterns: from 7 (PS00752) to 1598 (PS00028).
In order to produce a meta-pattern, a representative set of
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C C C− − − − − − − − − − − −[ ] [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( )DESN x TS x I x RK x P x SLAT x3 3 4 4 2 −− [ ]CAYF

(PS01102)

C C C C− − − − − − − − − − − −x x STACD x x LIVFQ x RD NQDS( ) ( , ) [ ] ( ) [ ] ( ) [ ] [2 3 5 4 4 ]]

(PS13000)

W x x x N x x− − − − − − − − − −C C C C( , ) ( ) ( ) ( )2 4 3 6 2

(PS01358)

Ligplot scheme of residues involved in Calcium and Manga-nese binding in P16404Figure 15
Ligplot scheme of residues involved in Calcium and 
Manganese binding in P16404. P16404: (LEC_ERYCO) 
Lectin precursor (ECorL) [Erythrina corallodendron (Coral 
tree)]; PDB: 1AXO[62]}.

Typical structure of a zinc finger binding siteFigure 16
Typical structure of a zinc finger binding site.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AXO
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20 instances of those patterns was chosen as a positive
training set on the basis of 30% or lower similarity of the
pattern. The positive test set of 99 sequences was picked
randomly from the set of over 500 sequences. Table 8
shows the number of positive training and test samples in
both sets according to the pattern type (Notice that some
sequences contain instances of more than one pattern
from the set). Although none of the PROSITE patterns
involved in the Zinc finger meta-pattern was found in the
negative dataset, two sequences described in the PDB as
containing the Zinc finger motif were excluded from the
set.
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