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Abstract 

The supervisory control strategy of a hybrid vehicle 
coordinates the operation of vehicle sub-systems to achieve 
performance targets such as maximizing fuel economy and 
reducing exhaust emissions. This high-level control 
problem is commonly referred as the power management 
problem. In the past, many supervisory control strategies 
were developed on the basis of a few pre-defined driving 
cycles, using intuition and heuristics. The resulting control 
strategy was often inherently cycle-beating and lacked a 
guaranteed level of optimality. In this study, the power 
management problem is tackled from a stochastic 
viewpoint. An infinite-horizon stochastic dynamic 
optimization problem is formulated. The power demand 
from the driver is modeled as a random Markov process. 
The optimal control strategy is then obtained by using 
Stochastic Dynamic Programming (SDP). The obtained 
control law is in the form of a stationary full-state feedback 
and can be directly implemented. Simulation results over 
standard driving cycles and random driving cycles are 
presented to demonstrate the effectiveness of the proposed 
stochastic approach. It was found that the obtained SDP 
control algorithm outperforms a sub-optimal rule-based 
control strategy trained from deterministic DP results. 

1. Introduction 

Hybrid vehicle powertrains have been widely studied 
recently because of their potential to significantly improve 
fuel economy and reduce emissions of ground vehicles. 
Due to the multiple-power-source nature and the complex 
configuration, the control strategy of a hybrid vehicle is 
more complicated than that of an engine-only vehicle. The 
main function of the control strategy is power management, 
i.e., the design of the high-level control algorithm that 
determines the proper power split between the motor and 
the engine to minimize fuel consumption and emissions, 
while satisfying constraints such as drivability, charge 
sustenance and component reliability. 

Many existing power management strategies employ 
heuristic control techniques such as rules/fuzzy logic for the 
control algorithm development [1, 2]. The idea of this 
approach is commonly based on the concept of 
“load-leveling”, which attempts to operate the engine in an 
efficient region and uses the battery as a load-leveling 
device.  Another approach is based on static optimization 

method, whereby the proper split between the two energy 
sources is decided by minimizing the total equivalent 
consumption cost [3].  In an earlier work [4], we proposed 
a design procedure that uses deterministic dynamic 
programming (DDP) to find the optimal solution and then 
extracts implementable rules to form the control strategy. 
Even though the control laws we obtained have performed 
well in a real hybrid electric vehicle [5], there are two 
drawbacks to this approach.  First, this approach optimizes 
with respect to a specific driving cycle and might be neither 
optimal nor charge-sustaining under other cycles; secondly, 
the feedback solution to the DDP is not directly 
implementable and the rule extraction process can be 
time-consuming. To overcome these drawbacks, a design 
procedure based on stochastic dynamic optimization 
techniques is proposed in this paper. This alternative 
approach assumes that there is an underlying Markov 
process to represent the power demand from the driver. A 
similar approach to an automotive powertrain control 
problem can be found in [6]. Instead of being optimized 
over a given driving cycle, the power management strategy 
is optimized over a family of random driving cycles in an 
average sense. In order to obtain a time-invariant control 
strategy, an infinite-horizon optimization problem is 
formulated and solved by using stochastic dynamic 
programming (SDP). The control law derived from SDP is 
a time-invariant state variable feedback and can be directly 
used in real-time implementation. More importantly, the 
goal of charge sustaining can be incorporated in the control 
design process through this SDP approach.   

The paper is organized as follows: In Section 2, the 
configuration of a hybrid electric truck is described, 
followed by the stochastic modeling of power demands in 
Section 3. The stochastic dynamic programming approach 
is introduced in Section 4. Section 5 presents the simulation 
results using the SDP optimal policy. Conclusions are 
presented in Section 6. 

2. Parallel Hybrid Electric Vehicle Model 

2.1 Vehicle Configuration 

The hybrid vehicle studied in this paper was modified 
from an International 4700 series truck, a 4X2 Class VI 
diesel truck produced by Navistar [7]. The hybrid version 
of the truck has a parallel configuration with the electric 
motor positioned after the transmission. The original diesel 



engine was downsized from V8 (7.3L) to V6 (5.5L) and a 
49 KW electric motor was added. A schematic of the 
vehicle is given in Figure 1.  Basic vehicle information is 
given in Table 1. 

 
Figure 1: Schematic diagram of the hybrid electric truck 

Table 1: Basic vehicle specification 
DI Diesel Engine V6, 5.475L, 157HP/2400rpm 
DC Motor 49kW 
Lead-acid Battery Capacity: 18Ah, Number: 25 
Automatic Transmission 4 speed, GR: 3.45/2.24/1.41/1.0 
Vehicle Total mass: 7504 kg 

2.2 System Equations 

Because the computation time of dynamic programming 
problems increases exponentially with the number of states, 
a minimum number of state variables are kept. Due to the 
fact that the system-level performance is the main concern, 
dynamics that are much faster than 1Hz are ignored.  It 
was determined that only two state variables need to be 
kept: the battery SOC and the wheel speed. 

The discrete-time state equation of the battery SOC can 
be expressed as 

 , ,
1

( , )b k k b k
k k

b

i SOC P
SOC SOC

Q+ = − , (1) 

where k  is the time index (time step is assumed to be one 
second), bQ  is the maximum battery charge, and bi  is the 
battery current which is calculated from the battery 
power, bP , by using a static equivalent circuit model. By 
convention, positive bP  indicates discharging and 
negative bP  indicates charging. The battery power is 

derived from sgn( )  m
b m m mP ττ ω η−= ⋅ ⋅ , where the motor 

efficiency ( , )m m mη τ ω  is a function of motor torque and 
speed.  

The engine dynamics are ignored based on the 
quasi-static assumption [8]. The fuel consumption rate 

( , )fuel e eW ω τ , engine-out NOx emission ( , )NOx e eW ω τ  and 
PM emission ( , )PM e eW ω τ are assumed to be static 
functions of engine speed and engine torque. We assume 
the engine is fully warmed-up and effect of the engine 
temperature is not considered. The driveline components 

are fast and thus are represented by static models. 
Nonlinear maps are used to calculate the engine speed, 

( , )e t eω ω τ , and the torque converter output torque, 
( , )t t eτ ω τ , where tω  is the torque converter output speed. 

The transmission output torque is obtained from 
,( ) x x x t x lRτ η τ τ= − , where xR  is the transmission gear 

ratio, ( )x xgη  is the gear efficiency, which varies with the 
gear position, xg  , and , ( , )x l t xgτ ω  is the torque loss due 
to friction and churning loss. Note that the transmission 
inefficiency is modeled by reducing the torque 
multiplication while keeping the speed reduction the same 
(i.e., /x t xRω ω= ). The gear position is determined by the 
shift logic ( , )x e xg τ ω  generated in [4].  

The torques from the engine and the motor are summed 
after the transmission by using a torque coupling device 
that has a gear reduction ratio cR  and efficiency cη . The 
final propulsion torque after the differential is calculated by 

( ),d d d x c m c d lR Rτ η τ τ η τ= + − , where dR  and dη  are the 

gear ratio and gear efficiency, and , ( )d l xT ω  is the torque 
loss of the differential. 

The vehicle is modeled as a point-mass, and the wheel 
speed is calculated from the state equation 

( )( ), 1 , , ,2

1
wh k wh k wh k wh wh k d r a

r d

B r F F
M r

ω ω τ ω+ = + − − + , (2) 

where wh d fbτ τ τ= −  is the net wheel torque ( fbτ  is the 
friction braking torque), dr is the dynamic tire radius, whB  
is the viscous damping, rF  and aF  are the rolling 
resistance force and the aerodynamic drag force, 

2/r v r dM M J r= +  is the effective mass of the vehicle, and 

rJ  is the equivalent moment of inertia of the rotating 
components in the vehicle. 

3 Stochastic Modeling of Driver Power Demand 

The power demand is an input to the power management 
controller. The driver’s throttle and brake pedal commands 
are interpreted as a power demand to be satisfied by the 
powertrain. Unlike other work that treats the power demand 
as a-priori information (e.g., a known power demand path 
to follow a given driving cycle), we propose to model the 
driver’s demand as a discrete-time stochastic dynamic 
process. A stationary Markov chain is used to generate the 
power demand from the driver, demP , which is assumed to 
take on a finite number of values 

 { }1 2, ,..., pN
dem dem dem demP P P P∈ . (3) 

The wheel speed (directly related to the vehicle speed) is 
also discretized into a finite number of values 

 { }1 2, ,..., N
wh wh wh wh

ωω ω ω ω= .  (4) 



The dynamics of demP  is assumed to be  

 , 1dem k kP w+ = . (5) 

where the probability distribution of kw  is assumed to be 

 { } ,Pr ,    

, 1,2,..., ,    1,2,...,

j i l
dem dem dem wh wh il j

p

w P P P p

i j N l Nω

ω ω= = = =

= =
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where ,
1

=1
pN

il j
j

p
=
∑ , and ,il jp represents the one-step transition 

probability that the system is in j
demP  at time 1k +  given 

the system is in i
demP  and l

whω  at time k . It should be 
noted that ,il jp  is simplified from a two-dimensional 
Markov chain ,il jmp  with 1,2,...,m Nω= , due to the fact 

that the transition of whω  is a deterministic process. 

It follows that specifying driving-cycle characteristics is 
equivalent to specifying the transition probabilities, ,il jp . A 
natural way to determine values for the transition 
probabilities is to estimate them on the basis of observed 
sample paths, such as past driving records, or standard 
driving cycles. We used standard driving cycles in this 
study to determine the transition probabilities as follows: 
various standard driving cycles were selected to represent 
mixed city, suburban, and highway driving. From the speed 
profile, demP  and whω  could be calculated by the vehicle 
model. Using nearest-neighbor quantization, the sequence 
of observations ( , )dem whP ω was mapped into a sequence of 
quantized states ( , )i l

dem whP ω . The transition probability could 
then be estimated by the maximum likelihood estimator, 
which counts the observation data as 

 ,
,ˆ      if 0il j

il j il
il

m
p m

m
= ≠ , (7) 

where ,il jm  is the number of times that the transition from 
i

demP  to j
demP  has occurred given the wheel speed state 

was l
whω , and ,

1

n

il il j
j

m m
=

= ∑  is the total number of times 

that i
demP  has occurred at wheel speed l

whω . However, it is 
possible a training set may not be rich enough to cover the 
whole state space, and, in some cases, ilm  may be zero for 
some i  and l . Therefore, a smoothing technique was 
used to the estimated parameters [9].  

After the Markov model is built, we constructed a 
stochastic hybrid vehicle model as shown in Figure 2. The 
model includes three state variables: SOC, wheel speed, 
and driver power demand. The Markov driver model is 
used to determine the probability distribution of future 
power demands and to generate a sequence of synthetic 
power demands, in order words, a random driving cycle. A 
power management controller that is optimized on the basis 

of this stochastic model will be described in the next 
section. 

 
Figure 2: Block diagram of the hybrid electric vehicle 

4. Stochastic Dynamic Optimization 

The section determines an optimal policy for the power 
split between two power sources (engine and motor) so that 
the fuel consumption and emissions are minimized. In the 
meantime, vehicle drivability and the desire to maintain 
battery SOC have to be satisfied. 

4.1 Problem Formulation 

We start by formulating an infinite horizon problem, 
which is proper because the system dynamics and the cost 
are time-invariant and we do not have a final time or 
terminal constraint defined. A key benefit of the infinite 
horizon problem is that the generated control policy is 
time-invariant and thus can be easily implemented.  

Our objective is to find an optimal control policy 
( )u xπ=  that maps observed states to control decisions so 

as to minimize the expected total cost over an infinite 
horizon: 

 ( )
1

0
0

( ) lim , ( )
k

N
k

k kN w k

J x E g x xπ γ π
−

→∞
=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑ , (8) 

where g  is the instantaneous cost incurred, 0 1γ< <  is 
the discount factor, and 0( )J xπ  indicates the resulting 
expected cost when the system starts at state 0x  and 
follows the policy π  thereafter. For our hybrid vehicle 
control problem, the control signal is engine power eP . 
When we impose a drivability requirement, the motor 
power mP  becomes a dependent variable due to the power 
balance requirement imposed at each time step, 
 , , ,e k m k dem kP P P+ = . (9) 

The instantaneous cost is the weighted sum of the fuel 
consumption, NOx emission, PM emission, and a penalty 
for SOC deviation; it takes the form 
 fuel NOx PMg W W W Mµ ν α= + ⋅ + ⋅ + ⋅ , (10) 

where µ  and ν  are the weighting factors on the 
emissions, and M  penalizes the SOC deviation, which is 



measured by a quadratic distance between the current SOC 
value and the SOC reference point 

 ( )2

refM SOC SOC= − . (11) 

The integral constraint on charge sustenance is moved into 
the cost function so that the SOC depletion can also be 
minimized. To satisfy the charge-sustaining constraint, the 
weighting factor α  is chosen to ensure the SOC is 
operated in an allowable region. The optimization is subject 
to equality constraints (system equations) described in 
Section 2, and the following inequality constraints:  
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4.2 Stochastic Dynamic Programming Approach 

Stochastic dynamic programming has been extensively 
studied in the literature. It can handle constrained nonlinear 
optimization problems under uncertainties [10]. In this 
study, an approximate policy iteration algorithm is used.  

For our hybrid electric vehicle problem, the state vector 
( , , )wh demx SOC Pω=  forms a three-dimensional state space, 

where SOC  and whω  originally take on continuous 
values, and demP  has finite values as shown in (3). To 
solve the SDP problem, we discretize SOC 
as 1 2{ , ,..., }sNSOC SOC SOC SOC∈ , and the wheel speed as 
(4). The total state space is then represented by finite 
grids{ , 1,2,..., }i

s px i N N Nω= . The control variable eu P=  

is also discretized into 1 2{ , ,..., }uN
e e eP P P . 

Based on the Bellman’s optimality equation, the SDP 
problem is solved by a policy iteration algorithm. The 
policy iteration conducts a policy evaluation step and a 
policy improvement step in an iterative manner until the 
optimal cost function converges.  In the policy evaluation 
step, given a control policy π , we calculate the 
corresponding cost function ( )J xπ  by iteratively updating 
the Bellman equation 

 ( ){ }1( ) ( , ( )) 's i i i s

w
J x g x x E J xπ ππ γ+ = +  (13) 

for all i , where s  is the iteration number, and 'x  is the 
new state, i.e., ( )' , ( ),i ix f x x wπ= , given by (1), (2), and 
(5).  However, the first two components of state 'x , 
( , )whSOC ω , do not necessarily fall exactly on the state grid. 
In this case, a linear interpolation of the cost function along 
the first two dimensions is used. In order to accelerate the 
computations, only a fixed number of iterations are 
performed regardless of the convergence of the estimated 
cost function. This truncated policy-evaluation method has 
been shown to reduce the computation time effectively [11]. 

In the policy improvement step, the improved policy is 
found through the following equation 

 { }
u ( )

'( ) argmin ( , ) ( ')
i

i i

wU x
x g x u E J xππ γ

∈

⎡ ⎤= +⎣ ⎦  (14) 

for all i , where Jπ  is the approximate cost function 
obtained from the policy evaluation step. Each of the 
minimizations is performed subject to the constraints 
shown in (12). After the new policy is obtained, we go back 
to the policy evaluation step to update the cost function by 
using the new policy. This iterative process is repeated, 
until Jπ converges within a selected tolerance level. 

5. Optimization and Simulation Results 

5.1 SDP Results 

The stochastic optimization procedure is summarized in 
Figure 3. Four representative driving cycles are chosen to 
construct the observation samples of the stochastic system. 
The Markov model is built by estimating the transition 
probabilities from the sample cycle data as described in 
Section 2. An example of the estimated transition 
probabilities is shown in Figure 4. Since the power demand 
has 30 discrete states, the transition probability for a given 
wheel speed is a 30 30×  matrix that maps the current 
power demand to the next power demand. It can be seen 
that the power demand is highly correlated as the 
probabilities are centered around the diagonal axis.   

 
Figure 3: Stochastic dynamic optimization process 

In the SDP optimization, the weighting factors 40µ =  
and 800ν =  are selected based on the tradeoff analysis 
conducted in [4]. The discount factor is 0.95γ =  and α  
is chosen as 600. The policy iteration procedure is 
terminated when the maximum absolute value of the 
difference of two successive cost functions is less than 0.01. 
The resulting policy takes the form of a look-up table, 

* ( , , )wh demSOC Pπ ω , i.e., the optimal engine power *
eP  is a 

function (look-up table) of SOC, wheel speed, and driver 
power demand. The desired motor power can then be 
calculated from * *

m dem eP P P= − . To illustrate the control 
policy more clearly, the optimal engine power *

eP  is 



transformed to an optimal power-split-ratio ( PSR ) defined 
as * * /e demPSR P P= . The PSR shows four possible operating 
modes: motor-only ( 0PSR = ), engine-only ( 1PSR = ), 
power-assist ( 0 1PSR< < ), and recharging ( 1PSR > ). For 
better visualization, we plot PSR  against demP  and SOC 
in Figure 5. The figure shows that the optimal policy is to 
use motor-only mode at extremely low demP , the recharging 
mode when the power demand is low/medium and the 
power-assist mode when the power demand is high. In 
addition, note that PSR  increases as SOC decreases, in 
order to ensure charge sustenance. 

 
Figure 4: Transition probability of power demand at 

whω =39 (rad/s) 

 
Figure 5: Optimal SDP policy at whω =44 (rad/s) 

5.2 Simulation Results 

After the optimal policy is obtained, we first perform 
random cycle simulations by using the simplified model 
shown in Figure 2. A random power demand trajectory can 
be generated by the Markov model. More specifically, at 
time k , the current power demand and wheel speed 
( , )dem whP ω  are interpolated to the nearest grid point 
( , )i l

dem whP ω . The corresponding probability of the next 

power demand { }Pr j
demP  is obtained. Using a uniform 

random number generator, the power demand at time 1k +  
is then determined. The discrete-time simulation updates 

the system dynamics and generates the control based on 
SDP policy every sampling time. Since the power demand 
is stochastic, the wheel speed (vehicle speed) also becomes 
stochastic and can emulate diverse driving scenarios. Figure 
6 shows an example of this random cycle simulation. The 
simulation time is 1500 seconds and the initial conditions 
are 0 0.55SOC = , ,0 0whω = , and ,0 0demP = . From Figure 
6, it can be seen that the simulated power demands from the 
Markov chain lead to mixed highway, suburban, and urban 
driving patterns in terms of wheel speed. This demonstrates 
that the Markov stochastic modeling can generate diverse 
driving cycles which resemble real driving conditions. Our 
control policy is optimized over all the possible random 
cycles in an average sense. 

 
Figure 6: Random cycle simulation 

When a vehicle is officially evaluated, it is driven over 
pre-determined cycles. To illustrate the effectiveness of the 
proposed control design approach, a continuous-time 
standard driving cycle simulation is performed. The control 
policy derived from SDP is integrated in the original, 
detailed HEV model [7]. The model is implemented in the 
SIMULINK environment, as presented in Figure 7. Instead 
of using a Markov driver, a PI (proportional-integral) 
controller replaces the driver and is used to ensure the 
specified velocity profile is followed. The driver model 
outputs the acceleration pedal and braking pedal signals, 
which are subsequently interpreted as a power demand for 
the power management controller. This simulation set-up 
allows us to study the performance of control algorithms 
under realistic driving conditions. Through the 
continuous-time simulation, the performance of the control 
policy from SDP is compared with our prior work over 
different driving cycles as given in Table 2.  The 
“Rule-Based (DDP)” refers to a rule-based control strategy 
trained based on the results of deterministic dynamic 
programming [4]. Compared with the rule-based results, the 
SDP control strategy achieves better performance over most 
of the test cycles. Since the rule-based controller was 
trained on the UDDSHDV cycle, the relative performance 
of SDP is slightly worse on that cycle. For driving cycles 



that were not used in the training of the Markov chain, SDP 
also shows better performance over rule-based control. 

0

Load Output Variables

T wheel

Brake

Slope

w wheel

v veh

VEHICLE DYNAMICS

HEV
Controller

Motor cmd

w motor 

Current

T motor

ELECTRIC MOTOR

cyc_mph

Dring Cycle

Load Input Data

DRIVER

w eng 
T motor
Gear
w shaft
clutch cmd

T pump

T shaft

w motor

w trans
DRIVELINE

T pump

Eng cmd
w eng

DIESEL ENGINE

Current soc

BATTERY

 
Figure 7: Hybrid-electric vehicle simulation in SIMULINK 

Table 2: Simulation results of SDP control policy 
( 40 800fuel NOx PM+ ⋅ + ⋅ [g/mile]) 

Driving cycle Rule-Based (DDP) SDP 

UDDSHDV ∗ †  793.2 796.2 

WVUINTER ∗  896.0 885.4 

WVUSUB ∗  582.2 587.3 

WVUCITY ∗  494.1 477.9 
NYCCOMP 401.2 393.5 

HWFET 958.7 941.0 
SC03 1011.8 993.5 

∗ Cycles that used as training sets for learning the Markov model. 
† Cycle that used to apply DDP and train the rule-based control. 

6. Conclusions 

A design method for the power management control 
algorithm for hybrid electric vehicles is developed by using 
Markov chain modeling and stochastic dynamic 
programming techniques.  The driver power demand is 
modeled as a Markov process to represent the future 
uncertainty of the driver power request under diverse 
driving conditions. As opposed to deterministic 
optimization over a given driving cycle, the stochastic 
approach optimizes the control policy over a family of 
diverse driving patterns. The infinite-horizon SDP solution 
generates a time-invariant state-dependent power split 
strategy, which governs the engine and motor operations.  
The algorithm can be directly implemented in simulations 
and vehicle testing. Simulation results indicate that the SDP 
control strategy achieves improved performance in most of 
testing scenarios over the sub-optimal rule-based control 
strategy which is trained based on deterministic DP-results. 
Furthermore, the proposed approach provides a directly 
implementable control design path, which is highly 
desirable because of its potential for a fully integrated 
optimal design and control process. 
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