
Cut-off grade is a decision-making criterion
that is generally used in mining to distinguish
ore from waste material. Consequently, it is
used to determine the quantities of material
(ore and waste) to be mined, ore processed,
and saleable product. A series of different cut-
off grades that are applied over the life-of-
mine (LOM) of a mining operation defines the
cut-off grade policy for that particular
operation. The cut-off grade therefore directly
affects the cash flows to be produced and the
net present value (NPV) of a project at the
mine planning or feasibility study stage.

Pioneering work on cut-off grade
calculation can be attributed to Mortimer’s
(1950) work on grade control for gold mines
in South Africa. Although Mortimer’s work is
given relatively little recognition, it established
the fundamental principle that not only must
rock at the lowest grade cover its cost of
extraction, but that the average grade of the

rock must provide a certain minimum profit
per ton processed.

Later in the 1960s, work on cut-off grade
calculation again appeared, including that
published by Henning (1963), Lane (1964),
and Johnson (1969). Lane (1988)
subsequently published an updated version of
his 1964 work as a comprehensive book on
the use of cut-off grade to economically define
ore using NPV as a proxy for value. To date, it
is Lane’s work on value-based cut-off grade
optimization that has received the most
attention among the mining fraternity. Lane’s
work placed more emphasis on optimizing cut-
off grade in order to improve the economic
viability of mining projects and operations.
The cut-off grade algorithm developed by Lane
(1964, 1988) was more elaborate than others
as it took into account constraints associated
with the capacities of the mine, mill, and
market, resulting in the derivation of six
potential cut-off grades from which an optimal
cut-off grade could be selected. Three of the
six cut-off grades are described as limiting cut-
off grades while the other three are denoted as
balancing cut-off grades. Limiting cut-off
grades are derived by assuming that each of
the three stages (mining, processing, and
refining) is an individual and independent
constraint on throughput due to production
capacity limitations, operating costs, and price
attributable to the output product. Balancing
cut-off grades are determined by assuming
that two out of the three stages are
concurrently operating at their capacity limits.

Despite its fairly comprehensive structure,
Lane’s cut-off grade optimization algorithm
had some shortcomings. For example, it could
not be used to determine cut-off grades for
polymetallic deposits. This shortcoming is now
addressed through the concept of net smelter
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return (NSR) for evaluating polymetallic deposits, as for
example in the work of Shava and Musingwini (2018) who
developed an NSR model for a zinc, lead, and silver mine.
Shava and Musingwini (2018) then related the NSR values to
the applicable cut-off grades for each of the three constituent
metals. Table I summarizes some studies that have attempted
to address different shortcomings in Lane’s cut-off grade
theory.

Despite making improvements to Lane’s original cut-off
grade theory, the models in Table I are deterministic and
therefore fail to capture the economic, technical, and
geological uncertainties that mining operations continually
face. The uncertainties include those associated with
commodity price and grade-tonnage distribution. Due to this
shortcoming, the NPVs generated from these models are sub-
optimal. There is, therefore, a need for a stochastic cut-off
grade optimization approach that can capture uncertainty in
parameters such as commodity price and grade-tonnage
distribution. This challenge had been long-recognized in
other studies not related to Lane’s framework, but which
attempted to use other stochastic and/or dynamic
programming (DP) approaches to address the challenge.

Several studies that have applied stochastic and/or DP
approaches in the calculation of cut-off grades have
incorporated the dynamic nature of input parameters. Table II
summarizes some studies that have attempted to address
uncertainty in parameters for cut-off grade determination.

The studies summarized in Table II, except for the model
by Asad and Dimitrakopoulos (2013), were not based on
Lane’s framework and tended to consider only one input
parameter as being stochastic. The study presented in this

paper therefore extended Lane’s algorithm to develop a
stochastic cut-off grade model by concurrently considering
variability in both commodity price and grade-tonnage
distribution. The model that was developed is code-named
‘NPVMining’.

Lane’s theoretical framework is premised on a schematic
material flow as illustrated in Figure 1. Depending on the
applicable cut-off grade, material from the mine can be
classified as waste and sent to the waste dump; as ore and
sent for milling in the processing plant; or as low-grade
material and sent to a stockpile for processing later during
the LOM. The milling process produces a concentrate which is
sent to the refinery to produce the final saleable product,
which is then marketed. 

The production capacities of the different stages in the
mining complex are denoted by M, C, and R, for the mining,
milling, and refinery capacities, respectively. Lane’s
framework uses the notations in Table III. The input
parameters in Table III were then modified to account for
variability as explained in the following sections.

Given a set of equally probable grade-tonnage curves (w),
the stochastic approach develops a cut-off grade policy by
determining the cut-off grade (G) from time periods 1 to N.
The NPV of future cash flows is maximized subject to mining,
processing, and refining capacity constraints. The objective
function for the cut-off grade optimization remains
unchanged from Lane’s original formulation, as represented
by Equation [1].

[1]
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Table I

Taylor (1972) Taylor’s approach for balancing cut-off grades used statistical parameters to describe the grade distribution of
the orebody, since grade is variable throughout an orebody.

Taylor (1985) The approach incorporated a stockpiling stage into Lane’s framework so that instead of dumping low-grade
material as waste, it is kept as stockpiles as future ore feed to the mill.

Dagdelen (1992, 1993) Dagdelen developed an analytical method for finding balancing cut-off grades which was more efficient than
Lane’s graphical.

Whittle and Wharton (1995) The approach, which is incorporated in the open-pit mining software Geovia Whittle 4-X®, added linear
programming (LP) optimization into Lane’s theory to simultaneously incorporate stockpiling of mined material,
ore blending, and account for multiple minerals.

Asad (1997, 2005) Asad developed a cut-off grade optimization algorithm based on Lane’s work, but with a stockpiling option for
open-pit mining operations with two economic minerals.

King (2001) King modified Lane’s approach by incorporating variations in throughput for different ore types in order to cater
for polymetallic deposits.

Dagdelen and Kawahata (2008) The approach applied mixed-integer linear programming (MILP) to improve the efficiency of the calculation
process in Lane’s algorithm and was used develop the OptiPit®.mining software package

Gholamnejad (2008, 2009) Gholamnejad modified Lane’s algorithm to cater for the trade-off between an increase in the average mill grade
and a concomitant increase in rehabilitation costs. As the cut-off grade is increased, the amount of material
mined and dumped as waste also increases, leading to increased rehabilitation costs.

Osanloo, Rashidinejad, and Rezai (2008) The study incorporated environmental requirements into Lane’s cut-off grade optimization by incorporating waste
and tailings disposal costs.

King (2011) King modified the earlier (King, 2001) version by incorporating operating and administrative costs.
Githiria, Muriuki, and Musingwini (2016) The study developed a computer-aided application based on Lane’s algorithm and improved the efficiency of the

cut-off grade calculation process.



where d is the discount rate and Pwi is the cash flow
generated in period i by extracting the orebody based on a
grade-tonnage curve w.

However, the cash flow equation changes to incorporate
the uncertainty of both the metal price and grade-tonnage
distribution in the orebody, as indicated in Equation [2].

[2]

Using the optimum cut-off grades obtained in the
algorithm for the given grade-tonnage curve w, a yearly
production schedule that shows the cut-off grade, quantity
mined (Qmw), quantity processed (Qcw), quantity refined
(Qrw), profit, and NPV is calculated. Figure 2 illustrates the
steps involved in the algorithm used in this research study.

The algorithm developed from Figure 2 was coded using
the C++ programming language in Microsoft Visual Studio
2017 Integrated Development Environment (IDE) on a
standard computer to produce the application code-named
‘NPVMining’. The code for NPVMining is given in Appendix
1. The application is an executable file and will run on
computers that run applications with .exe extension. The
computer must have Visual Studio 2017 and Microsoft Office
2013 installed on it.

Microsoft Visual Studio 2017 (VC++) supports two
versions of the C++ programming language, which are the
ISO/ANSI standard C++, and C++/CLI (Common Language
Infrastructure). C++/CLI has a highly-developed design
capability that enables the assembly of the entire graphical
user interface (GUI), and the code that creates it being
generated automatically (Githiria, Muriuki, and Musingwini,
2016). The C++ programming language was used in the
implementation of the algorithm to enable the execution of
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Table II

Dowd (1976) The approach was based on DP to optimize cut-off grade. It incorporated the interaction of cut-off grades and
fluctuating commodity prices, but ignored variability in costs.

Krautkraemer (1988) Krautkraemer analysed the effect of stochastic metal prices on the selection of cut-off grades, depending on the rate
of metal price change relative to the discount rate, and concluded that fluctuations in metal prices critically affect the
selection of cut-off grades.

Cetin and Dowd (2002, 2013, 2016) The approach applied genetic algorithms (GAs) and DP to optimize cut-off grades for polymetallic mines, while
assuming a constant grade-tonnage distribution for the entire orebody. Cetin and Dowd (2016) compared GA, the
grid search method, and DP when deriving optimal cut-off grades for deposits with up to three constituent minerals
and concluded that GAs are more robust in optimizing cut-off grade for multi-mineral deposits under technical and
economic constraints only.

Asad (2007) Asad optimized cut-off grade for an open-pit mining operation through an NPV-based algorithm that considered metal
price and cost escalation but ignored geological uncertainty.

Li, Yang, and Lu (2012) The approach optimized cut-off grade using stochastic programming in open-pit mining but considered commodity
price as the only dynamic variable.

Asad and Dimitrakopoulos (2013) Asad and Dimitrakopoulos modified Lane’s approach into a heuristic cut-off grade model to account for geological
uncertainty in ore supplied to multiple processing streams. However, the approach was limited to a single mine.

Thompson and Barr (2014) The approach optimized cut-off grade using stochastic programming in open-pit mining, but considered commodity
price as the only dynamic variable.

Myburgh, Deb, and Craig (2014) The approach was a hybrid heuristic approach to maximize NPV through cut-off grade optimization. It is incorporated
in the software package, Maptek Evolution®. The approach employs an evolutionary GA to optimize cut-off grade and
extraction sequence by managing two lower-level algorithms. The first one is LP-based and determines the optimal
flow of material through multiple processing streams and manages stockpiles.  The second is a local search
technique for deriving the best production schedule.

Table III

i Year -
N Mine life Years
CC Capital cost $ million
s Selling price $/g
r Refining cost $/oz
m Mining cost $/ton
c Milling cost $/ton
f Annual fixed costs $/year
y Recovery %
d Discount rate %
M Mining capacity t/a
C Milling capacity t/a
R Refining capacity t/a
Qm Material mined t/a
Qc Ore processed t/a
Qr Concentrate refined t/a



the application on Windows-based computers with different
architectures and/or platforms. This compatibility aspect
enables easy portability of the application to make it usable
by mine planners working on different computing platforms.
The output from the model is easily exported to Microsoft
Excel 2013 for comparison and analysis.

The flow diagram in Figure 2 was then modelled as
follows:
i. Identify the methods of data entry for the grade-tonnage

curves, commodity price, and costs.
ii. Develop software to input the grade-tonnage curves,

commodity price, and costs variations and run tests for
validation.

iii. Implement the algorithm for calculating cut-off grade and
NPV using the inputs provided.

iv. Test and validate the output and provide the output in a
format that will display the results appropriately.
Mathematical functions of commodity price against time

were applied in the above procedure. A random number
generator was developed to generate values within a
specified range so that input values are stochastic but within
realistic ranges.

The steps to determine a cut-off grade policy as outlined by
Lane (1964), but modified as illustrated in Figure 2 to
incorporate uncertainty in NPVMining, are as follows
(Githiria, 2018):

1. Formulate multiple realizations of grade-tonnage
distribution for the entire deposit.

2. Input the parameters to be used in the cut-off grade
policy, such as the mining capacity (M), milling capacity
(C), refining capacity (R), selling price (P), mining cost

(m), milling cost (c), refining cost (r), recovery (y),
annual fixed costs ( f ), and discount rate (d ).

3. Introduce variability in the input parameters (metal
price and grade-tonnage).  

4. Determine the optimum cut-off grade to be used in year
i using the cut-off grade equations. If the initial NPVi is
not known set the NPVi to zero.

5. Determine the tons of ore (qow), tons of waste (qww),
and average grades of the ore associated w the optimum
cut-off grade (gavg). Set: Qcwi = C if qow is greater than
the milling capacity (C), otherwise Qcwi = qow. Using
Equations {3]–[7], calculate the quantity to be mined
(Qm) and refined (Qr). Find the limiting capacity and the
mine life (N) from the following:

[3]

[4]

[5]

[6]

[7]

6. Determine the yearly profit using Equation [8].

[8]

7. Compute the NPV using the formula below by
discounting the profits at a given discount rate (d) for
the time calculated as the LOM.

[9]

This value of V becomes the second approximation of V
(the first was V=0) for use in the formulae to calculate the
optimum cut-off grade. 
8. Repeat the computation from step 5 until the value, V,

converges. 
9. Adjust the grade-tonnage distribution by subtracting

the ore tons from the grade-tonnage distribution
intervals above the optimum cut-off grade (G) and the
waste tons (Qmw – Qcw) from the intervals below the
optimum cut-off grade (G) in proportionate amounts.
This is to ensure that the distribution remains
unchanged, otherwise it will change to a different
grade-tonnage distribution. For each of the multiple
realizations of the grade-tonnage distribution the
current grade-tonnage curve being used at that specific
period will be altered simultaneously. This will cater for
the intertemporal dependencies that alter the grade-
tonnage distribution with time.

10. If it is the first iteration then, knowing the profits
obtained in each year, find the yearly NPV by
discounting back those profits and go to step 4. If it is
the second iteration, then stop.
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11. Use the net present values obtained in step 10 as the
initial NPV for each of the corresponding years for the
second iteration.

NPVMining caters for: (i) economic and operational
parameters, (ii) grade-tonnage distribution, and (iii) the cut-
off grade policy or production schedule as shown in Figure 3.
One of the source files, NPVMiningDlg.cpp, contains the code
that executes the algorithm through the user interface.
Appendix 1 contains the code for NPVMining. The input
parameters (price and costs) used in the calculations are
uploaded to the application using Microsoft Excel®
spreadsheets. Other parameters are entered into the user
interface via the dialog boxes. The metal price variability is
obtained from factoring either a fixed or geometric range.
After calculating the optimum cut-off grade, a cut-off grade
policy is generated showing the three main economic
indicators: annual profit, NPV, and LOM. The NPVMining
user interface has five dialog boxes: (i) grade category
window (Figure 4), (ii) price criteria window (Figure 5), (iii)
other parameters window (Figure 6), (iv) limiting capacity
selection window (Figure 7), and (v) cut-off grade calculation
window (Figure 7).

The grade-tonnage distribution, economic and
operational parameters are the input data used in the
computer-aided application. The grade-tonnage distribution
is entered into the grade category window as shown in 
Figure 4. The grade category input window has several dialog
boxes describing the lower grade limit, upper grade limit, and
quantity of ore per increment for the multiple realizations.

The economic and operational parameters are keyed on
the user interface using the price criteria and other
parameters window as shown in Figures 5 and 6. This data is
uploaded using Microsoft Excel® worksheets containing
technical data, while other data is entered in the dialog box
as required. This process simplifies data entry, which is
tiresome if done manually. The two input windows in Figures
5 and 6 have several dialog boxes that represent economic
and operational parameters such as metal price, mining cost,
milling cost, refining cost, mining capacity, processing
capacity, refining capacity, recovery, discount rate, and fixed
cost.

A stochastic cut-off grade optimization model to incorporate uncertainty for improved project value
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The break-even cut-off grade and Lane’s limiting cut-off
grade are selected and calculated as shown in Figure 7, and
the output is displayed in the output window as shown in
Figure 8. The main economic indicators of the project (annual
profit, NPV, and LOM) are displayed on the user interface.
After clicking the ‘calculate’ button, the results of the cut-off
grade policy calculations are displayed in the output window
and generated on an Microsoft Excel® spreadsheet as shown
in Figure 8. The spreadsheet consists of seven main columns:
optimum cut-off grade, quantity of material to be mined
(Qm), quantity of ore to be milled (Qc), quantity of product
refined (Qr), mine life, annual profit, and NPV. The resultant
cut-off grade policy is exported to Microsoft Excel® for ease
of use and interpretation.

The NPVMining application was tested on the data-set for
a case study of the McLaughlin gold mine, which is a defunct
gold mine in northern California, USA. The data-set was
obtained from the mining library compiled by Espinoza et al.
(2012) for research purposes. This data-set was selected
because it has previously been used in other cut-off grade
optimization studies, therefore allowing comparison of the
output from NPVMining with those studies.

Tables IV and V provide the simulated grade-tonnage
distribution and the economic, design, and operational
parameters, respectively, for the McLaughlin gold mine case

�
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Table IV

0.000-0.020 70 000 70 022 70 081 70 003 69 640 70 900
0.020-0.025 7 257 7 263 7 257 7 364 7 890 7 000
0.025-0.030 6 319 6 325 6 332 6 405 6 860 5 700
0.030-0.035 5 591 5 595 5 616 5 632 6 100 5 200
0.035-0.040 4 598 4 603 4 628 4 608 4 950 4 600
0.040-0.045 4 277 4 279 4 306 4 318 4 570 4 300
0.045-0.050 3 465 3 466 3 488 3 502 3 680 3 000
0.050-0.055 2 438 2 439 2 468 2 438 2 630 2 200
0.055-0.060 2 307 2 309 2 335 2 318 2 520 2 100
0.060-0.065 1 747 1 748 1 754 1 740 1 900 1 500
0.065-0.070 1 640 1 643 1 647 1 637 1 770 1 400
0.070-0.075 1 485 1 488 1 494 1 481 1 560 1 200
0.075-0.080 1 227 1 229 1 237 1 246 1 270 800
0.080-0.100 3 598 3 598 3 625 3 636 3 810 3 300
0.100-0.358 9 574 9 578 9 579 9 641 10 330 9 800
Total 125 523 125 585 125 847 125 969 129 480 123 000

Table V

CC Capital cost $ million 105 000 000 
m Mining cost $/ton 1.20
c Milling cost $/ton 19.00
r Refining/Selling cost $/oz 655.00
f Annual fixed costs $/year 8,350,000
y Recovery Decimal 0.90
d Discount rate Decimal 0.15
M Mining capacity t/a Unlimited
C Milling capacity t/a 1 050 000
R Refining capacity t/a Unlimited



study. Table VI provides the price variations used in the
calculations.

Six grade-tonnage curves (GTC1 to GTC6) for the
McLaughlin deposit, as illustrated in Table IV, were used to
determine balancing cut-off grades as described in Lane’s
cut-off grade theory (Lane, 1964, 1988). The grade-tonnage
curve data was used to calculate the ratios and cumulative
values in relation to the different stages in a mining complex.
Over-estimation or under-estimation of the grade, volume, or
tonnage and other parameters related to a deposit is common
in most conventional and deterministic orebody models. This
is detrimental to the planning of the mining operation, which
consequently leads to loss of profits. There are several
statistical methods for measuring uncertainty of the orebody
in relation to the geological characteristics. Stochastic
approaches are employed to characterize the geological
uncertainty by modelling and estimating the orebody more
reliably. This study employed the Monte Carlo method to
simulate the grade-tonnage distribution of the orebody. It
used statistical and graphical techniques, including linear
and nonlinear modelling, to simulate the probable
distribution of the data. It is evident from the simulated
multiple realizations of the orebody that the tonnages
decrease with increasing grade ranges.

The McLaughlin mining operation case study
incorporates a mine, processing plant, and waste dump,
following the three main stages presented in Figure 1,
excluding the stockpiling option. The mine produces sulphide
and oxides ores mixed with waste material in controlled
quantities. The ore goes through several processing stages
such as gravity concentration, flotation, and leaching. In the
subsequent refining step, the gold is recovered from solution
and the waste material is sent to the waste dump. The
operation is assumed to have an unrestricted potential to
mine and refine/market the annual gold production, while
the processing capacity is set to be at 1.05 Mt/a of ore (Table
V). Gold price uncertainty applied in this study was assumed
to have a range (2% per period) that is increasing yearly, as
shown in Table VI, to be within the generally accepted long-
term gold price of around US$1300 per ounce.

The stochastic cut-off grade model (NPVMining) is used to
calculate the optimum cut-off grade that maximizes NPV in
the shortest mine life possible using the price variations in
Table VI and the grade-tonnage curves in Table IV. A
summary of the best-case scenario showing the calculated

NPV for six equally probable grade-tonnage curves and a
range of metal prices is generated as shown in Table VII. The
resultant cut-off grade policies from the model shows a
significant difference between the minimum and maximum
NPV generated through the equally probable grade–tonnage
curves. The resultant cut-off grade policies generate the
optimal NPV in approximately 9 years for the six grade-
tonnage curves. The application (NPVMining) also generates
possible outcomes in relation to the change in gold price. The
six possible outcomes for each price category generate
different outcome as shown in Table VII. The resultant cut-
off grade policies are generated by varying the grade–tonnage
curves for all mineable ore in every grade interval and the
metal prices against time. The solution was generated in
14.45 seconds after running the NPVMining code on
Microsoft Visual Studio 2017.

The relationship between NPV and the metal price was
modelled using a linear regression approach (Figures 9 and
10). The linear regression model shown in Figure 9 is applied
to identify the relationship between NPV and the response
variables (metal price) when all the other variables in the
model are held fixed. The correlation coefficient in the
relationship between metal price and NPV is about 0.97,
indicating that metal price variation has a high significance
for the NPV.
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Table VI

Year 1Range1 1250
Year 2 Range2 1270
Year 3 Range1 1290
Year 4 Range2 1310
Year 5 Range1 1330
Year 6 Range2 1356

Table VII

467 172 060.50 1250 125 523
467 172 060.49 1250 125 585
466 990 510.59 1250 125 847
468 922 686.82 1250 125 969
488 180 335.90 1250 129 480
475 864 529.70 1250 123 000
487 959 524.30 1270 125 523
487 959 524.30 1270 125 585
487 777 974.39 1270 125 847
489 777 241.30 1270 125 969
509 740 604.86 1270 129 480
496 886 282.14 1270 123 000
508 746 988.10 1290 125 523
508 746 988.10 1290 125 585
508 565 438.18 1290 125 847
510 631 795.78 1290 125 969
531 300 873.82 1290 129 480
517 908 034.58 1290 123 000
529 534 451.90 1310 125 523
529 534 451.88 1310 125 585
529 352 901.98 1310 125 847
531 486 350.25 1310 125 969
552 861 142.78 1310 129 480
538 929 787.03 1310 123 000
550 321 915.70 1330 125 523
550 321 915.68 1330 125 585
550 140 365.78 1330 125 847
552 340 904.73 1330 125 969
574 421 411.74 1330 129 480
559 951 539.47 1330 123 000
571 109 379.50 1350 125 523
571 109 379.47 1350 125 585
570 927 829.57 1350 125 847
573 195 459.21 1350 125 969
595 981 680.69 1350 129 480
580 973 291.91 1350 123 000
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The relationship between NPV and the other parameter
(grade-tonnage distribution) when all the other variables in
the model are held fixed is shown in Figure 10. The
correlation coefficient in the relationship between grade-
tonnage distribution and NPV is about 0.13, indicating that
grade-tonnage distribution has a low impact on NPV.

In deterministic cut-off grade optimization approaches
applied in the mining industry, the outcomes are determined
through known parameters without any room for random
variation. This limits the flexibility of a mine plan in cases
where commodity price and operational costs fluctuate
through the LOM. However, the self-adaptation in stochastic
algorithms contributes greatly to their ability to address
successfully most complex real-world problems. This is due
to their strategic outlook on mining problems that allows
them to be easily applied to complex mining situations. 
Table VIII summarizes the results of a comparison conducted
between NPVMining and the following cut-off grade
approaches: 

(i) Break-even cut-off grade model (Githiria and
Musingwini, 2018)

(ii) Cut-off Grade Optimiser (Githiria and Musingwini,
2018)

(iii) OptiPit® (Dagdelen and Kawahata, 2008)
(iv) Maptek Evolution® (Myburgh, Deb, and Craig, 2014). 

Table VIII shows that NPVMining generated the highest
NPV. Compared to the other cut-off grade approaches,
NPVMining produced results that were:

� 186% better  than the break-even cut-off grade model

� 7% better than the Cut-off Grade Optimiser
� 35% better than OptiPit®
� 13% better than Maptek Evolution®.

The superior NPV generated by NPVMining can be
attributed to its incorporation of stochasticity of input
parameters, which is not incorporated in the other models.
This demonstrates that superior results are obtained by
incorporating uncertainty into Lane’s cut-off grade theory.

The stochastic NPVMining model was applied to a gold mine
case study data-set to ascertain its benefits in an operational
mine. NPVMining was used to generate six cut-off grade
policies, indicating that a change in grade-tonnage
distribution has an overall effect on NPV. A comparison
between NPVMining and other cut-off grade optimization
models demonstrated and validated the efficiency of the
model. Using an Intel dual-core processor running at
3.00GHz and with 4.00GB RAM, the model generated results
for each simulation within 5 seconds. The improvements in
NPV generated by NPVMining ranged between 7% and 186%,
demonstrating the value of using stochastic approaches to
cut-off grade optimization. Ignoring the commodity price and
geological uncertainties in daily mining operations may have
very serious negative economic implications for a mining
project.

The work reported in this paper is part of a PhD research
study in the School of Mining Engineering at the University
of the Witwatersrand. The financial support obtained from
the Julian Baring Scholarship Fund (JBSF) for the PhD study
is greatly acknowledged.
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Table VIII

LOM (years) 35 10 18 10 9.12
Profits/cash flow ($ million) 863 825.44 885.60 760.10 887.09
NPV($ million) 163.42 435.52 347.08 413.84 467.17
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double CNPVMiningDlg::determineStripRatio(double
dCutoff_grade, int iPos)
{

//determine breakeven cutoff grade policy
double dSRatio; int g = 0;
double dCurrentPrice = dValArray[iPos]; //getCurrentPrice();
POSITION pos = listGradeCat.GetHeadPosition();
dTotalWaste = 0.0;
dTotalOre = 0.0;
while (pos)
{

GradeCategory sGradeCat = listGradeCat.GetNext(pos);
if (sGradeCat.dLowerLimit < dCutoff_grade) dTotalWaste
+= sGradeCat.dQuantity;
else dTotalOre += sGradeCat.dQuantity;

}
dTotalOre -= dMinedOre;
dSRatio = dTotalWaste / dTotalOre;
dSRatio = round(dSRatio*100)/100;
return dSRatio;

}

double CNPVMiningDlg::average_grade(double dCutoff_grade)
{

A stochastic cut-off grade optimization model to incorporate uncertainty for improved project value

VOLUME 119                                       225 �



A stochastic cut-off grade optimization model to incorporate uncertainty for improved project value

double dResult = 0.0;
POSITION pos = listGradeCat.GetHeadPosition();
while (pos)
{

GradeCategory sGradeCat = listGradeCat.GetNext(pos);
if (sGradeCat.dLowerLimit >= dCutoff_grade) {

dResult += sGradeCat.dMidpoint *
sGradeCat.dQuantity;
dResult = round(dResult * 1000) / 1000;

}
}
dResult /= dTotalOre;
dResult = round(dResult * 1000) / 1000;
return dResult;

}

void CNPVMiningDlg::determineOptimumGrade()
{

dTotalWaste = 0.0;
POSITION pos = listGradeCat.GetHeadPosition();
while (pos)
{

GradeCategory sGradeCat = listGradeCat.GetNext
(pos);
sGradeCat.dOreQty = dTotalQty - dTotalWaste;
sGradeCat.dWasteQty = dTotalWaste;
dTotalQty -= sGradeCat.dQuantity;
dTotalWaste += sGradeCat.dQuantity;
sGradeCat.dmc = sGradeCat.dOreQty / (sGradeCat.dOreQty
+ sGradeCat.dWasteQty);
sGradeCat.dG = determineGSum(pos) /
sGradeCat.dOreQty;
sGradeCat.dmr = (sGradeCat.dOreQty * sGradeCat.dG) /
(sGradeCat.dOreQty + sGradeCat.dWasteQty);
sGradeCat.dcr = sGradeCat.dG;

}
}

double CNPVMiningDlg::limitingcutoff_grade(int iPos)
{

double dResult = 0.0;
double dPrice = 0.0;
double dNPV = cObj->get_NPV();
double dAFixedCost = cObj->get_annualFixedCost();
double dMillCapacity = cObj->get_millingCapacity();
double dMineCapacity = cObj->get_miningCapacity();
double dRefCapacity = cObj->get_refiningCapacity();
//using the first value in the array
dPrice = dValArray[iPos];

if (m_boolMillCap == true) {
dResult = (cObj->get_millingCost() + ((dAFixedCost +
(cObj->get_discountedRate() * dNPV)) / dMillCapacity)) /
((dPrice - cObj->get_refiningCost()) * cObj-
>get_recovery());

}
else if (m_boolMineCap == true) {

dResult = (cObj->get_millingCapacity() + ((dAFixedCost +
(cObj->get_discountedRate() * dNPV)) / dMineCapacity))
/ ((dPrice - cObj->get_refiningCost()) * cObj-
>get_recovery());

}

else if (m_boolRefCap == true) {
dResult = (cObj->get_refiningCost() + ((dAFixedCost +
(cObj->get_discountedRate() * dNPV)) / dRefCapacity)) /
((dPrice - cObj->get_refiningCost()) * cObj-
>get_recovery());

}
dResult = round(dResult * 100) / 100;

return dResult;
}

double CNPVMiningDlg::breakevencutoff_grade(int iPos)
{

double dResult = 0.0;
double dPrice = 0.0;
//using the first value in the array
dPrice = dValArray[iPos];
dResult = cObj->get_millingCost() / ((dPrice - cObj-
>get_refiningCost()) * cObj->get_recovery());
dResult = round(dResult * 100) / 100;

return dResult;
}

bool CNPVMiningDlg::checkGradeCatDuplicate(double lowerlimit,
double upperlimit)
{

bool bFound = false;
for (int g = 0; g < m_listGradeCat.GetItemCount(); g++)
{

if (_wtof(m_listGradeCat.GetItemText(g, 1)) == lowerlimit
|| upperlimit == _wtof(m_listGradeCat.GetItemText(g, 2)))
{

bFound = true;
break;

}
}
return bFound;

}

bool CNPVMiningDlg::checksubCatDuplicate(CString cat, CString
subcat)
{

bool bFound = false;
for (int g = 0; g < m_listPriceCat.GetItemCount(); g++)
{

if (m_listPriceCat.GetItemText(g, 1) == cat && subcat ==
m_listPriceCat.GetItemText(g, 2))
{

bFound = true;
break;

}
}
return bFound;

}

int CNPVMiningDlg::factorial(int n)
{

return (n == 1 || n == 0) ? 1 : factorial(n - 1) * n;
}
int CNPVMiningDlg::combinationcount(int n, int r)

�
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{
return (factorial(n) / (factorial(r)*factorial(n - 1)));

}
int CNPVMiningDlg::getusedcategoriesList()
{

int iTotal = 0, iLast = 0;
int iCat = m_listPriceCat.GetItemCount();
for (int v = 0; v < 30; v++) szUsedCatItems[v] = L"";
for (int t = 0; t < iCat; t++)
{

CString szTempCat = m_listPriceCat.GetItemText(t, 1);
for (int k = 0; k < 30; k++)
{

if (k == iLast)
{

if (szTempCat == szUsedCatItems[iLast - 1])
break;
else {

szUsedCatItems[iTotal] = szTempCat;
iTotal += 1;
iLast += 1;
break;

}
}
else if (k < iLast) continue;

}
}
return iTotal;

}
int CNPVMiningDlg::combinationtotals()
{

CString szArrayVals[100][2];
CString szArrayCat[20];
int iArrayCatSubItems[20] = { 0 };
int iArrayCatSubItemsCmb[20] = { 0 };
int iArrayCatSubItemsCmbTotals = 0;
int iCurrVal = 0, iCurrPos = 0;
//determine how many categories exist
int iCat = m_cmbPriceCat.GetCount();
for (int u = 0; u < iCat; u++)
{

m_cmbPriceCat.GetLBText(u, szArrayCat[u]);
}
//determine the number of combinations expected
int iCatCmb = combinationcount(iCat, 1);
//loop through all the data and identify the subcategories in
each category and store them in an array
for (int t = 0; t < m_listPriceCat.GetItemCount(); t++)
{

szArrayVals[t][0] = m_listPriceCat.GetItemText(t, 1);
szArrayVals[t][1] = m_listPriceCat.GetItemText(t, 2);
for (int k = 0; k < iCat; k++)
{

if (szArrayVals[t][0] == szArrayCat[k])
iArrayCatSubItems[k] += 1;

}
}
//determine the number of combinations for each category
for (int d = 0; d < iCat; d++)

{
if (iArrayCatSubItems[d] > 1)
{

iArrayCatSubItemsCmb[d] =
combinationcount(iArrayCatSubItems[d], 1);

}
else if (iArrayCatSubItems[d] == 1)
{

iArrayCatSubItemsCmb[d] = 1;
}

}
//get the summation of all the combinations
for (int j = 0; j < iCatCmb; j++)
{

for (int i = 0; i < iCatCmb; i++)
{

iCurrVal = iArrayCatSubItemsCmb[iCurrPos];
if (i <= iCurrPos) continue;
else iArrayCatSubItemsCmbTotals +=
iCurrVal*iArrayCatSubItemsCmb[i];

}
iCurrPos += 1;

}
return iArrayCatSubItemsCmbTotals;

}
void CNPVMiningDlg::fillcombinationlist(COleSafeArray
*m_combinationList)
{

long index1[2];
int iArrayCatLastSubItems[20] = { 0 };
int iLastPosArray[20] = { 0 };
//get a list of the category combinations
int iCat = iUsedCatNum;
for (int r = 0; r < 100; r++)
{

for (int e = 0; e < 2; e++)
{

szArrayVals[r][e] = L"";
}

}
for (int b = 0; b < 20; b++) iLastPosArray[b] = -1;
int iItemCount = m_listPriceCat.GetItemCount();
for (int t1 = 0; t1 < iItemCount; t1++)
{

CString szCatItem = m_listPriceCat.GetItemText(t1, 1);
szArrayVals[t1][0] = szCatItem;
CString szSubCatItem = m_listPriceCat.GetItemText(t1, 2);
szArrayVals[t1][1] = szSubCatItem;
for (int k = 0; k < iCat; k++)
{

if (szArrayVals[t1][0] == szUsedCatItems[k])
{

iArrayCatLastSubItems[k] = t1;
}

}
}
int iCurrRow = 2, iCurrCol = 1;
int i = 0;
while (1)
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{
for (int j = 0; j < iCat; j++)
{

for (int t = 0; t < iItemCount; t++)
{

if (szArrayVals[t][0] != szUsedCatItems[j])
continue;
if (j == 0)// has a number on its right
{

if (iLastPosArray[j] !=
iArrayCatLastSubItems[j]) {

int iTemp = j;
bool bTemp = true;

loopj:
if (iLastPosArray[iTemp + 1] ==

iArrayCatLastSubItems[iTemp + 1]) 
if (iTemp + 1 == iCat - 1)
{

if (t <= iLastPosArray[j] && bTemp ==
true) {

continue;
}

}
else {

iTemp += 1;
if (iLastPosArray[iTemp + 1] <

iArrayCatLastSubItems[iTemp + 1]) bTemp = false;
goto loopj;

}
}
if (t < iLastPosArray[j]) continue;

}
else {

if (t < iArrayCatLastSubItems[j])
continue;
else {

int iTemp = j;
bool bTemp = true;

loopj1:
if (iLastPosArray[iTemp + 1] ==

iArrayCatLastSubItems[iTemp + 1]) {
if (iTemp + 1 == iCat - 1)
{

if (t <= iLastPosArray[j] &&
bTemp == true) {

//start from the first sub item
if (j > 0) t =
iArrayCatLastSubItems[j - 1] +
1;
else return;

}
}
else {

iTemp += 1;
if (iLastPosArray[iTemp + 1] <
iArrayCatLastSubItems[iTemp +
1]) bTemp = false;
goto loopj1;

}
}

}

}
}
else //no number on its right
{

if (iLastPosArray[j] !=
iArrayCatLastSubItems[j]){

if (t <= iLastPosArray[j]) continue;
}

}
index1[0] = iCurrRow + i;
index1[1] = iCurrCol + j;
if (j == 0)
{

long numpos[2];
numpos[0] = index1[0];
numpos[1] = 0;
CString szNum; szNum.Format(L"%d",
numpos[0] - 1);
BSTR bstr = szNum.AllocSysString();
m_combinationList->PutElement(numpos, bstr);
SysFreeString(bstr);
}
BSTR bstr1 = szArrayVals[t][1].AllocSysString();
m_combinationList->PutElement(index1, bstr1);
SysFreeString(bstr1);
iLastPosArray[j] = t;
break;

}
}
i++;

}
}

double CNPVMiningDlg::dgetAnnualProfit(int iPos)
{

double dResult = 0.0;
double dPrice = 0.0;
//using the first value in the array
dPrice = dValArray[iPos];
dResult = ((dPrice - cObj->get_refiningCost()) * cObj-
>get_refiningCapacity()) - (cObj->get_millingCapacity() *
cObj->get_millingCost()) - (cObj->get_miningCapacity() *
cObj->get_miningCost()) - cObj->get_annualFixedCost();
dResult = round(dResult * 100) / 100;
return dResult;

}

double CNPVMiningDlg::dgetNPV(double dMinelife, double
dAnnualProfit)
}

double dResult = 0.0;
dResult = (dAnnualProfit * ((round(pow(1 + cObj-
>get_discountedRate(), dMinelife) * 1000) / 1000) - 1)) /
((round(pow(1 + cObj->get_discountedRate(), dMinelife) *
1000) / 1000) * cObj->get_discountedRate());
dResult = round(dResult * 100) / 100;

return dResult;
}     �

�

228 VOLUME 119     


