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1. Introduction
During the early part of the war years Pierre Mass6 organized a group for the

purpose of studying optimal procedures of development and management of the
French hydroelectric and steam power system. The problems encountered by
this group included the evaluation of probabilities of excessive discharges, the
evaluation of probabilities of excessive droughts, as well as the development of
optimal management procedures for the big and small hydroelectric reservoirs.
As the studies of the group progressed, the need for a mathematically tractable

description of the random structure of stream flow became more and more im-
perative. To obtain such a description it was found necessary to start with a
description of the random structure of rainfall. The purpose of the present paper
is to give a summary account of such a description.

Tentative descriptions of rainfall behavior at one raingage station were intro-
duced around 1944 by M. Loeve and independently by E. Halphen. Related
formulations have been used more recently by P. A. P. Moran [1] in the study
of dams. See also Gani [2] and D. G. Kendall [3]. A description of the areal
and temporal behavior of precipitation was introduced by the author around
1947 as an aid in the study of peak discharges. This description, which will be
detailed below, does not actually qualify as a stochastic model for precipitation.
A true model should take into account the applicability of the laws of fluid

mechanics and thermodynamics. The description given below does not make any
provision for the introduction of relations between winds, temperature, origin
of air masses, and so forth, and the precipitation itself. Although we have recently
attempted to make use of whatever meteorological considerations were acces-
sible to us, at the time of this writing we have not yet met with any reportable
success. However there is some hope that our goal will become more attainable
in the near future. Also, we hope that the mathematical technique used here
will remain applicable in some realistic studies.

Section 2 gives an informal description of the behavior of rainfall that will
be converted into formulas in section 5. Sections 3 and 4 introduce the mathe-
mathical apparatus necessary for the conversion.

It is to be noted that the model exposed here is essentially a clustering process
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of the type studied by J. Neyman and E. L. Scott [4] and [5]. The results
obtained by these authors are therefore applicable here.

2. An informal description of precipitation

One particular feature of the stochastic structure of rainfall, and a feature
which may be of extreme importance in the study of prolonged droughts or the
study of the effectiveness of cloud seeding, escaped all our attempts to reasonable
description and understanding. We are referring here to the various periodicities,
cycles, and effects of external influences which are exposed in the climatological
literature. The computations we have been able to perform ourselves failed to
give any definite clues on how such long-range fluctuations could be introduced
in the model. For this reason all cycles and periodicities, except of course the
annual one, will be ignored below. If the existence of other "cycles" or external
influences becomes clearly demonstrated, their introduction in the model will
probably not present any particular problem. For the sake of completeness let
us mention that the possibility of "cycles" may not be rejected outright. For
instance, according to some theories, solar activity as measured by sunspot
numbers should be correlated with precipitation amounts, the correlation being
of opposite signs in the winter months and the summer months. Correlations
between sunspot numbers and monthly precipitation at Paris, Helwan, Cape-
town, Darwin, Wellington, and Apia were computed at the suggestion of
E. Halphen on data kindly communicated to us by Miss Frances Clayton.
Roughly speaking, the computed correlations do behave according to theory but
the effect is too small to lead to a statistically significant result. In spite of
positive indications of this nature we shall treat rainfall as a purely random
phenomenon subject only to the yearly periodicity.

For simplicity consider a short period such as a week or a month, during which
the yearly periodicity may be ignored and during which the process of rainfall
production may be regarded as stationary, at least in first approximations. Then
the striking feature of rainfall is its excessive areal and temporal variability.
Even long steady drizzles such as found in Hawaii show definite and abrupt
variations in intensity. The time lag in raingage response does not permit an
accurate view of such variations.

Of course, part of the variation detected by sensitive instruments is simply
due to atmospheric turbulence in the immediate vicinity of the apparatus. On
the other hand "April showers" display this erratic behavior in a manner that
cannot be easily ignored. It appears then that at a given location and provided
no period shorter than, say, one hour be considered, a scheme of the following
type would describe approximately the variations of rainfall intensity. Rainfall
occurs only in instantaneous showers. For a given period, the expected number
of showers is a fixed quantity A. The actual number of showers and their actual
times of occurrence are selected at random according to the familiar Poisson
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process. The amount of precipitation in a shower is a random variable independ-
ent of the time of occurrence of the shower.

This -vastly oversimplified view of the situation already leads to interesting
remarks. Assume that the period under consideration is a week. Then, there is
a nonzero probability exp (-A) that no precipitation at all will occur during
the week. Second, let M(a, b) = AF(a, b) be the expected number of showers
having sizes between a and b. The Laplace transform f(s) = E exp [- sX] of
the total amount X of rainfall occurring during the week may be written

(1) logf(s) = fo [e-- - 1] dM (x) = A J (e-x - 1) dF (x).

Suppose that the mechanism of production of showers is the same for all
locations but that the expected number A varies from place to place. Then F
remains fixed andf depends only on A. The coefficient of variation of X decreases
as A-1/2 as A or EX increases. Furthermore, as A increases the probability of
clear weather becomes smaller and the distribution of X gets closer to a normal
distribution. Such behavior corresponds roughly to observable facts.
To obtain explicit formulas Halphen suggested that F be taken equal to the

exponential distribution

(2) dF a e , x 1 O.
dx - xa

Then the distribution of X has a mass exp (-A) at zero and otherwise admits
the density

(3) p(x) iA2 exp [ A( )] ji [2i (a)1/2] (Ax)

where J1 is the Bessel function of order unity of the first kind.
When a and A vary, the distributions so obtained take various shapes ranging

from negative exponential shapes to the usual unimodal shapes. Unfortunately
the negative exponential distribution cannot be retained in general. For periods
of a week in dry locations the distribution of X is much more skewed than can
be allowed by (3). The situation becomes worse if shorter periods are considered,
and becomes untenable if the number of showers is taken into account.
For a fixed choice of F the above described process has the feature that rain

occurs in sizable instantaneous lumps, so that no drizzle can occur. If, however,
A increases indefinitely and M is modified appropriately, something like a con-
tinuous drizzle may result. This is the case for instance in Moran's formula,
where for x _ 0

(4) ~~~dM
(4) ddM= ofe- x-l.
The resulting distribution for X is then a Gamma distribution. Note that in
such a case the probability of rain is unity, for every interval of time, however
small.
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The most essential defect of the processes just described is that the amounts
of precipitation occurring in disjoint periods of time are independent random
variables. To remedy this defect one may suppose for instance that the amount
of rain per shower is still independent of everything else and has a fixed distribu-
tion but that A itself is subject to random fluctuations. More precisely one may
suppose that there is a random function A such that, when A has been selected,
the expected number of showers in the interval (t1, t2) is equal to .L A(t) dt.
A hump in the function A would then correspond to the passage of a storm, a
trough to a period of clear weather. A discretized scheme of this nature was
communicated to the author by E. Halphen in the spring of 1946. Note that in
Moran's process, variations of A are not feasible since A has become infinite.
However, the same effect can be achieved by multiplying the Paul Levy measure
M by a random function. One may even go further and make the measure M
itself a random variable, thus changing both the number and the size of the
showers.
An extension of such considerations to obtain a description of the areal dis-

tribution of rainfall does not present any major difficulty. However, physical
considerations, which were notoriously absent in the foregoing, should play a
decisive role in the elaboration of an areal model. In the following we have used
some words borrowed from the meteorological terminology although we are well
aware of the fact that our meteorological friends register amusement, horror, or
both, at the sight of such abuse.
The basic element in the construction of an areal model will again be the

shower or more exactly the shower cell. By analogy with thunderstorms or
"April showers" this may be taken to be a convective cell moving horizontally
along a fairly straight path. The direction of the path, the velocity of the cell,
the diameter of the cell and its strength can all be considered random, although
for simplicity we may for instance want to assume that all cells have the same
diameter, say 30 km.
One may assume that, at a given time, the cell distributes its rain uniformly

over the area it covers at that time. On the contrary, one may want to assume
that the rain distributes itself on this area according to a process which does
areawise what Moran's process does timewise.
The next assumption is that cells occur in clusters. Such a cluster could con-

ceivably correspond to a front, the shape of the front determining the shape of
the cluster. The number of cells on the front is a random variable. The position
of the cells along the front is also determined by some random process. To
explain the observed correlations between distant locations it is necessary to
assume that the cell clusters move and dissipate after a certain length of time.
Furthermore a cell cluster should cross over a given location in a relatively short
period of time, a few hours on the average. In such a system, to explain day-to-
day observed correlations, it is necessary to assume that the cell clusters them-
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selves occur in bunches. A bunch of cell clusters may correspond to what is
commonly called a storm. However, the correspondence between the structure
just described and natural storms is tenuous and needs further elaboration.
Fortunately for applications, in many regions the physical fronts become so
confused that the above description may not lead to entirely erroneous con-
clusions.

If in a "storm" the "fronts" are placed independently of each other, if in a
front the "cells" are placed independently of each other and, further, if motions
are disregarded, the process just described is plainly a two-stage clustering
process in the sense of [4]. It will be shown in section 4 that motions can be
allowed for by introducing the time as a supplementary coordinate. Independent
positioning of cells may lead to overlap of two or more convective cells. If only
geographical position is taken into account overlapping cells may be construed
as cells placed at different altitudes. Processes in which overlap of cells or fronts
is prevented or controlled can be constructed. Unfortunately such processes are
much more difficult to handle. They do not fall naturally in the domain of clus-
tered processes described in the next section.
The influence of geographical structures such as mountain ranges has not

been mentioned above. Some ad hoc procedures permitting their introduction
will be briefly expounded in section 5.

3. Stochastic processes whose index set is a vector space

The stochastic processes used in the construction of the precipitation model
to be described here are random set functions of the kind studied in [6]. For the
present purposes it appears more convenient to replace the fields or rings of
sets used for indices in [6] by linear spaces of numerical or complex-valued func-
tions. To this effect the following definitions will be used.

Suppose a fundamental probability space {Q, a, P} is given. Let V be the
space of all a-measurable numerical functions defined on U.

DEFINITION. A linear stochastic process on F is a linear map u -4 X(u) from
F to V.

It is occasionally convenient though hardly necessary in what follows to use
complex linear spaces instead of real linear spaces. A linear process would then
be a complex linear map from F to the space of complex-valued random variables
on {Q, a}.

Let F* be the algebraic dual of the vector space F. For v E F* and u E F let
(v, u) be the value of v at u. Let 6 denote the smallest a-field of the subsets of
F* with respect to which for every u E F the function v -* (v, u) is measurable.
A linear stochastic process on F can also be identified to a measurable

map from {Q, a} to {F*, MB}. The distribution of the process is the probability
measure induced by this map on the a-field 63. Such a distribution is uniquely
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determined by a Fourier transform or characteristic function definable as fol-
lows. The characteristic function of the linear process {x(u); u C F} is simply
the complex-valued function s defined on F by the formula

(5) so(u) = E{exp [iX(u)]}.
A characteristic function possesses the properties
(a) so is of positive type, that is, for every complex-valued function c defined

on F and vanishing everywhere except for a finite subset of F the following
inequality holds

(6) E E c(u)c(v)(u - v) _ 0.
uEF vEF

(b) The function <p is continuous along the rays of F. In other words for every
fixed u C F the function a -- <(au) is a continuous function of a.

(c) 'o(0) = 1.
Conversely a slight modification of a theorem of Bochner ([6], theorem 5.44),

gives the following result.
PROPOSITION 1. Let p be a complex function defined on the real linear space F.

If s satisfies conditions (a), (b), and (c) there is one and only one probability
measure P on {F*, B} such that (u) = J exp {i(x, u)}P(dx) for every u C F.
From a given linear process one can obtain new linear processes by linear

transformations and by completion of F (see [6]).
Let X = {X(u); u C F} be a linear process on F. Let G be another linear

space and let T be a linear map from G into F. For each v C G let Y(v) = X(Tv).
Then {Y(v); v E G} is a linear process on G. If so is the characteristic function of
X then v --+ o(Tv) is the characteristic function of Y.

Suppose now that F is a topological vector space with topology 3. Let F be
the completion of F for the uniform structure induced by 3. If the characteristic
function s of the process X is 3-continuous at the origin of F then the map
u -+ X(u) from F to the space V of random variables on {J, t, P} is continuous
in probability. To see this, note that if {u,} converges to zero in F then {'p(au,)}
converges to unity uniformly on bounded sets of values of the real variable a.
Therefore {X(u,)} converges in distribution, hence in probability to zero. The
map u -+ X(u) being linear is then automatically uniformly continuous. There-
fore it can be extended by continuity to the whole of F. The extended process
is defined only up to a set of probability zero so that, a priori, it may not be a
linear process.

In some cases the map u - X(u) is only sequentially continuous for the
topology 3. In such a case it may not be possible to extend X to the whole of P
but only to a part of F as follows. If X is sequentially continuous at the origin
of F and if {u.} is a Cauchy sequence in F then X(u.) - X(um) converges to
zero in probability as min (m, n) tends to infinity. Therefore {X(uX)} is a
Cauchy sequence which has a limit in probability in V. Let F1 be the subset of
F formed by the limits of Cauchy sequences of F (this is the first Baire hull of
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F). It is easily verified that if {u,} and {uQ} are two Cauchy sequences converging
to the same u E Pi then the limits of {X(u.)} and {X(u')} are equivalent.
Whether an extension has been performed to PI or to the whole of P one can,

by changing the underlying probability space, transform the extension into a
linear process on P1 or on P as the case may be. This follows for instance from
proposition 1.

Besides constructions by linear transformations and completion we shall use
an operation which in particular cases has received the names "branching,"
"clustering," or "subordination." To describe it we shall have to open a paren-
thesis on "processes with independent increments" or "additive processes."

Let S be an arbitrary set. Let GR be a ring of subsets of S and let F be the vector
lattice of numerical functions u of the form
(7) = aj IAi,
where the a, are real numbers, the summation is taken over a finite set, and where
IA, is the indicator of a set Aj E (R.
A linear process X defined on F is called a process of additive type if for every

finite set {uj; j = 1, 2, * * *, n} of elements of F, two by two disjointness (that
is, ujuk = 0 forj $ k) implies that the random variables {X(uj);j = 1, 2, *-- ,n}
form an independent system.
A process of additive type X will be called decomposable if for every A E (R

and every f > 0 there is a partition fAj;j = 1, 2, , n} of A by elements of
61 and real numbers {ai} such that

(8) P{lX(IAS) - al > e) < e

for every j = 1, 2, i,t.
If the numbers aj can be takeii equal to zero, the process will be called quasi-

centered.
If X is a decomposable process, then for every A EE ( the distribution of

X(IA) is infinitely divisible. Therefore, there exist numbers m(A), and a2(A) _ 0
and a Paul Levy measure M(A) on the real line deprived of its origin such that

(9) log E eitX(IA) = itm(A(A) - A) + Ieitt - I + t2 M(Ad1)12 JL1
It follows easily that the three functions m, a2, and M are additive functions of
the set A C at. If u E F has the form u = E ajIA, for disjoint sets Aj then

(10) log E eix(u)

= iaimn(Aj) _ a' a2(Aj) + | eiait-1 -1a,~ M(Aj, di)}

Equivalently, in integral notationi and for every u C F one can write

(11) log E eiX(lL)

= Jt u(s)m(ds)- J u2(,)a2(ds) + f] [etu( - - iUGs)+ ] AI(ds, d)
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In the last integral, the integration operation is performed first on t and then
on s E S. However, since only finite sums are involved in the second step, the
order of operation is irrelevant.
The subordination operation consists simply in giving a distribution to the

triplet of additive set functions {m, a2, M}. For the additive set function m this
does not present any particular difficulty. For M the following considerations
may be helpful. First note that instead of randomizing 'a2 and M one can just
as well randomize the Khinchin measure K defined by

(12) K = S26+ +2 M,

where a is the mass unity at zero on the real line. The advantage of this transfor-
mation is that the only requirement to be imposed on K is that K be additive on
(R and that for fixed A the measure K(A) be a bounded positive measure on the
real line.
The following properties are special cases of more general results adapted for

use in the present circumstances.
PROPOSrrION 2. Let 'S be a vector lattice having a unit element I. Let x be the

space of all relatively bounded linear functionals on ') and let 9C+ be the space of
positive linear functionals on W1. Let 6( be the a-field induced by 9J on 9C+.
In order that a complex-valued function (p defined on yJ be the characteristic func-

tion of a probability measure on JOC+, 6B} it is necessary and sufficient that so satisfy
the requirements

(1) p is of positive type, Xp(O) = 1 and sp is continuous on the rays of y.
(2) For every y in the positive cone 9J+ of 'y the function t -- sp(ty) of the real

variable t is the characteristic function of a measure carried by R+ = [0, co).
PROOF. The necessity of the requirements is obvious. To prove this suffi-

ciency one may proceed as follows. Let ff = X {R+; y E WJ+} the topological
product of positive parts of real lines corresponding to lg+. Consider first a
countable subset D of cy+ and the corresponding product VD = X {R+; y E D}.
Assume that D contains the unit of 4y. One can identify 9C+ to a subset of W.
Let FD be the projection of X+ on 5FD. The set ED is closed in 5D. Indeed let B
be the space spanned by D in 9y. Every positive linear form on B can be extended
to a positive linear form on cy (since D contains the unit of 9y). Therefore FD
can be identified to the space of restrictions to D of positive linear functionals
on B. Consequently FD is closed in FFD. More precisely, FD is a subset of 5D de-
fined by a family of "closed" relations of the form E ajf(y,) = 0 or E ac,f(y,) 2 0.

According to Kolmogorov's theorem there exists on TD a probability measure
PD defined on the Borel sets of 5YD and having on B the required characteristic
function. Furthermore PD is tight [7] on the compacts of 5D. If S is a subset of
oFD defined by a finite number of relations of the type just described, then
PD(S) = 1. Therefore since PD is tight and since FD is the intersection of a

decreasingly directed family of closed sets of the type S the measure PD(FD) is
also equal to unity. It follows from this that in 5 the set 9C+ has outer measure
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uniity so that the measure P constructed by Kolmogorov's procedure can be
restricted to {X+, 6M}.

Consider now a locally compact space A which is countable at infinity. Let
3C he the space of continuous numerical functions having compact support on E.
L-et R be a ring of subsets of a set S. Assume that there exists a sequence {An}
of elements of iR such that every A C (R is contained in one A.. Let H be the
vector lattice of functions defined on S X 4 by finite sums of the type
(13) h(s, ) = uj(s)vj(),

i

with Utj E F and vj E 3C. Let H* be the space of linear functionals on H and let
Q be the cone of positive elements of H*. Finally, let W, be the o-field induced
by H on Q.
THEOREM 1. Let Ibe a comiplex.fnction defined on II. In order that so be the

characteristic function of a probability nteasure on {Q, (B} it is necessary and suffi-
cient that so satisfy the requirements

(1) <p is of positive type, continuous on the rays of H and <p(0) = 1.
(2) For every fixed h in the positive cone H+ of H the function a -* sp(ah) is,

as function of the real-valued a, the characteristic function of a nonnegative random
variable.

If these conditions are satisfied there exists a uniquely determined probability
measure having characteristic function p which is tight on the w[H*, H] compact
subsets of Q.

PROOF. Let {gn} be an increasing sequence of elemenets of x+ such that
sup gn = I and such that gn+i be equal to unity on a neighborhood of the sup-
port of gn. Let hn be the function defined on S X by hn = IA.gn. For each
integer n let fIn be the space of funetions y of the type y = h,ou for u C HI. The
map u -* Tnu = lvou is a positive linear map of H onto Hn. Let L (resp. Ln) be
the space of relatively bounded linear functionals on H (resp. HI). The operation
1" has transpose Tn defined by Kp, T'u) = (TLi, u) for A C Ln and u E H. This
transpose Tn is a positive linear map of Ln into L. Since IIi, is a subspace of H
the function so satisfies (1) anid (2) on H,,. However HIL is a vector lattice having
hn for unit element. Thus proposition 2 is applicable to sp on Hn.

Therefore, there exists a probability measure Pn which is tight on the w[Ln, H.]
compact subsets of Ln+ and has on H. characteristic function p. The map T.
transforms Pn' into a probability measure P,n= TlnPn' which is tight on the
w[L, H] compact subsets of L+. The characteristic function y,n of Pn on H is
simply given by
(14) p(7(inu)= (hU)= )-
For each u E II let X,n (ut) be a random variable having characteristic function

a fn(au) E{exp [aiXn(u)]!.
Let X(u) have characteristic function a .' s(au). For every e > 0 there exists

a numl)er b(E, n) sueh that

(15) IJ{X(h,/) _ b(1E, n)} < 2E
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This implies P{X(hnahn) _ b(E, n)} < /2n. Equivalently, P{Xm(hn) _ b(e, n)} _
e/2n . Finally, this implies

(16) P{sup Xm(hn) < b(e, n)} > 1 - E.
n

Let then Bn(e) be the subset of L+ defined by the inequalities {,s: (;A, hn) <
b(E, n)} and let B(e) = nn Bn(e)
The set B(e) is a w[L, H] compact subset of L+. The preceding argument

shows that Pm[B(e)] 2 1 -fE for every integer m. In other words, the set
{Pm; m = 1, 2, - - } is w[L, H] tight on L+. It follows that the closure of this
set for the usual definition of convergence of probability measures is a compact
set. Finally, since *pm tends to so as m tends to infinity, the sequence {Pm} has
a unique cluster point P which is therefore a tight probability measure on L+.
This concludes the proof of the theorem.
The elements of the set Q (equal to L+) can be described as follows. If q C Q

then for each A CE 6 the function -y -* (q, IA,y) defined on X is a positive linear
functional, hence representable as an integral with respect to a positive measure
defined on the Borel sets of 2 and attributing finite measures to relatively
compact Borel sets. For a fixed -y 3C+ the function A -- (q, IA-Y) is a positive
additive set function on the ring (R.

Returning to the construction of processes of additive type, take for Z the
real line deprived of its origin. A Paul L6vy set function M of the type occurring
in formula (9) is an element of Q subject to the restriction that for each A C a
the integral

(17) f 1 2M(A, d)

is finite. A characteristic function so of a probability measure P on {Q, (} must
be subjected to further requirements to insure the validity of (17). To describe
these requirements it is convenient to enlarge the domain of definition of (p.
Since for u C H+ the random variable (q, u) is a nonnegative random variable,
the expectation E{exp [z(q, u)]} is well defined (by so) not only for values of z
which are purely imaginary but also for values of z = a + iI3 where ,B is real
and a is negative. Therefore the domain of y can be extended to all complex
functions of the type w = -u + iv with u C H+ and v C H. The extension so
obtained will be called the Laplace transform of P. In fact, this Laplace transform
is already well defined by its values on H+.

For u C H+ let f(U) = E{exp [-(q, u)]} = so(-iu). Let {gn,} be the sequence
of numerical functions defined on E which was used in the proof of theorem 1.
Let y. be the function

(18) 7Rn() = MO 1 + t2
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If so is the characteristic function of a random element taking values in Q and
satisfying (17), then for each A E aii the random variables (q, IA2n) must in-
crease to a limit random variable. For this to be true it is necessary that the
ordinary Laplace transform a -f4(a) = f(aIA'Y), defined for a 2 0, converge,
as n increases, to the Laplace transform of a probability measure. In other
words, the f,, must be equicontinuous at the origin. However, if the condition
holds, then for every u E H+ the Laplace transforms a -* f(au-y.) are equicon-
tinuous at the origin. Conversely, if such a condition is satisfied, the increasing
sequence of random variables {(q, uy,n)} converges (pointwise) to a limit which
is a random variable. Finally, this gives

PROPOSITION 3. Let Z-: be the real line deprived of its origin. Let 'p be a complex
function defined on H and satsifying conditions (1) and (2) of theorem 1. Let
(g.} be a sequence of elements of X+ such that sup gn = 1 and such that gn+i be
unity on a neighborhood of the support of g9. Let -n be defined by (18). For sP to
be the characteristic function of an element of Q satisfying requirement (17) it is
necessary and sufficient that for every A E a the sequence of characteristic functions
a -- (p(aIA'yR) be equicontinuous at a = 0.
Assuming this further requirement satisfied, the domain of so can be extended

to all functions of the form w = -u + iv with u _ 0 and both u and v of the
form E ,pj(s)r,(Q) with pi E F and r, continuous on : and bounded by a mul-
tiple of t2/(1 + t2). The random variables undergo a corresponding extension.
This extension mayrdepend on the particular choice of the sequence {gn} but
only by modifications on sets of measure zero.
A formulation of the conditions to be satisfied by a function s to be the charac-

teristic function of a system (m, oa, M} as occurs in formula (11) presents now
no special difficulty and will be left to the care of the reader. Such a function
would initially be defined on the product F X F X H but its domain can be
extended to F X F X 71 where 71 is the space of functions of the type Eu1v1
with Uj E F and vj continuous, bounded by a multiple of '2/(1 + t2). Finally
the domain of y can be extended to cover complex functions, thus giving a
Laplace transform f defined for triplets {W1, W2, W3} with wj = + u; + ivi and
u, = 0 such that the (- u,) be positive and such that ui, u2, Vl, V2 belong to F
while u3 and v3 belong to H. The domain of f is then {iF, F- X iF, H- X i7}
and f is defined by

(19) f(wI, W2, W3)
= E{sup [fwi(s)m(ds) + fw2(s)o.2(ds) + ffw(s, t)M(ds, d{)]}-

Let then f be the Laplace transform of such an {m, o2, M} process. To each
choice of m, a2, and M corresponds a process of additive type on the ring (R.
Its characteristic function is given by (11) when m, o2, and M are given. It
follows that the subordinated process Z obtained when {m, o2, M} is random
has a characteristic function
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(20) E eiz(u) f(wl, w2, W3),
(21) -w(s) = iu(s),
(22) W2(S) =-2 u2(s),2

(23) W3(S, t) eitu(8) - 1-

In the present paper we shall be particularly interested in the case where the
decomposable process associated with a triplet {m, a2, M} is itself a positive
process. For this to be true it is necessary that a-2 = 0 and that for each A the
measure M(A, *) be carried by the interval (0, oo) of the line. Furthermore,
m itself must then be positive and M must satisfy the requirement that

(24) f 14 2M(A, d() < -

That o2 must vanish and that M must be carried by the positive part of the line
results from the unboundedness of random variables having an infinitely divis-
ible distribution. That m(A) must be positive and that (24) must hold results
from the fact that for every f > 0 the random variable whose characteristic
function is

(25) exp {f (ei- - 1)M(A, dt)}
has a positive nonzero probability of being equal to zero. Hence, for every
f > 0 the function

(26) ict[m(A)-f1-+ 2M(A, d{)]+ f[eia - 1 _ l i% M(A, d~)
must be the logarithm of the characteristic function of a nonnegative variable.
Letting f tend to zero it follows that

(27) m(A)-Jo 1+ t 2M(A d() _ O.

In such a case formula (11) can be written in the simple form

(28) log E eiX(u) = if u(s)m(ds) + ff [ei(s) - 1]M(ds, d().

Formulas (20) to (23) inclusive can be simplified accordingly.
One of the most common examples of subordination is the one in which the

random measure M is always concentrated at unity on the line and where m
vanishes altogether. The resulting process on 6R can then be roughly described
as follows. One chooses at random, according to a prescribed distribution, a
positive finitely additive set function M on 6(. For each set A C 61 one chooses
a random variable N(A) having a Poisson distribution with expectation M(A).
The choice is made in such a way that to disjoint sets correspond independent
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variables. Oiie can then select in A exactly N(A) points independenitly of one
another, the probability that a point falls in B C A being M(B)/M(A). It is
also possible to give each of the selected points a mass selected at random, accord-
ing to a fixed distribution and independently of everything else.

It is to be noted that the random set functions whose existence is implied by
theorem 1 need not be countably additive on the ring (R. So far as this author
knows, there is no simple requirement insuring the countable additivity of a
random set function. The problem is of the same nature as the problem of ex-
istence of regular conditional probabilities and can often be handled in a similar
manner.
Suppose for instance that S is a locally compact space which is countable at

infinity or that S is a Borel set in a Polish space. In the first instance let K be
the space bounded continuous numerical functions having compact support on S.
In the second instance let K be a vector lattice of bounded Borel functions such
that pointwise convergence to zero of decreasing sequences of elements of K
implies their uniform convergence. Suppose in addition that u E K implies
u A 1 E K and that K induces the a-field of Borel sets of K. Replacing F by K
the arguments of theorem 1 are still directly applicable. The sample values of
the resulting random element are then automatically representable as integrals
with respect to positive countably additive measures. Further, note that under
the assumptions of theorem 1, it is not obvious that separate countable additivity
on (R and 3C would imply countable additivity on H itself. That this is indeed
the case can be shown by making use of the locally compact structure of :.
The proof will not be given here.

Since countably additive measures are often more convenient to handle than
finitely additive set functions it may be desirable to modify the framework used
for the description of decomposable processes, and thus the related framework
of theorem 1, to insure automatic countable additivity whenever possible. For
this purpose, assume that S itself is a locally compact space which is countable
at infinity and replace the lattice F used previously by the lattice K of con-
tinuous numerical functions with compact support. One could also take for S
a Borel set in a Polish space and then take for K a suitable vector lattice of
Borel functions.
The space H is then replaced by the space of functions which are finite sums

Y_u,vi with uj E K and vj Ez C. A complex-valued function (p satisfying the
conditions of theorem 1 is automatically the characteristic function of a random
positive linear functional on H. A sample value is automatically representable
as an integral with respect to a countably additive measure. This countably
additive measure is obtainable by extension of the domain of the linear functional
to a space which includes at least all bounded Baire functions having compact
support on S X E. The extension is uniquely defined by the properties of
linearity, positivity, and countable additivity.

Whenever random measures on a set S will be considered in the sequel, it will be
assumed that they are obtained by the extension process just described.
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When the lattice F of step functions on a ring R is replaced by K the definition
of processes of additive type can be modified accordingly. However the notion
of decomposable processes and the arguments leading to formula (11) needs
further comment.
A simple way of reducing the problem to the previous case is the following.

Suppose that s defined on K is the characteristic function of a process of additive
type. Suppose further that if a sequence {u,j) of elements of K converges point-
wise to zero and remains bounded by a fixed element of K, then (p(u%) converges
to unitv. Then, by the completion procedure described at the beginning of this
section, the domain of p can be extended to all Baire functions of the first class
which are bounded and have compact support on S. We shall call the process
decomposable if the extended process so obtained is decomposable.

4. Operations on positive random measures

In the present section S will be a locally compact space with countable base.
For the applications S will ordinarily be the intersection of an open set with

a closed set in a Euclidean space. For theoretical purposes the results could be
extended to cover the case where S is a Borel set in a Polish space or other ab-
solutely measurable spaces. Measures on S will be assumed to be defined by
their values on the space K of continuous numerical functions with compact
support.

Let j be a positive measure on S. Such a measure can be subjected to trans-
formations among which the following four occur quite frequently. The first
operation is the subordination operation. The other three will be described in
quasi-mechanical terms.

(a) Subordination. Let L be a Paul Levy measure in the interval v = (0, oc).
Let MA L be the product of ,I and L on S X S. This product determines a
decomposable process X on K. The sample values of the process are positive
a-additive integrals, and the characteristic function of the process is given by

(29) So(u) = E{exp [iX(u)]} = exp {ff(eiu(s)t -),u(ds)L(d#)

The Poisson process associated with ju corresponds to the particular case where
L is entirely concentrated at the point t = 1.

In some cases one may want to make L depend on the point s C S. Instead
of a product ,A 0 L one must then consider a measure on H as in theorem 1.
The other three operations are easily described if , is a mass carried by a single
point s of S.

(b) Deterministic transfer. Let f be a map from S into itself (or more generally
into another space S'). The mass IA situated at s is transferred to the point f(s).
If IA is a general measure having an image through this operation, said image
will often be denoted f(,u).

(c) Random transfer. A mass ,u situated at s is replaced by a mass ; situated
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at a point t which is chosen at random according to some probability measure
T(s, dt). Distinct points are transferred independently of one another.

(d) Smoothing or spreading. A mass ui situated at s is replaced by an equal
mass spread on S in such a way that the mass of a set A is ,uT(s, A).

Note that the operations (a), (c), and (d) just described are essentially dif-
ferent. In particular (c) and (d) are entirely different. On the contrary (b) is a
particular case of (d).

In operation (a) the only requirement to be imposed on L is that L be positive,

carried by (0, 0o) and such that both f t(1 + t2)-1L(d() and f 42(1 + t2)-1L(d{)
be finite. In operations (b), (c), and (d) care has to be taken that the transfor-
mation does not lead to an infinite pileup within a compact. Thus we shall
ordinarily require that f and T in (b) and in (c), (d), respectively, be proper
Baire functions. That is, f is a Baire function for which the inverse images of
compacts are relatively compact. Similarly, for every u E K the integral
J u(t)T(s, dt) is a Baire function of s having compact support. In many cases,
homogeneity or stationarity restrictions on the measures ,u permit relaxation of
these conditions.
The spreading operation described by a kernel T gives rise to a linear operation,

again called T, which maps the space K onto the space B of bounded Baire
functions with compact support. If s is the characteristic function of a random
measure X the characteristic function s6 of the process spread by T is simply

(30) ,p(u) = so(Tu)
for u E K and for the extension by sequential continuity of p to B.

Similarly, if X is a positive random measure and if for u C K- + iK one has
sp(u) = E exp [X(u)], then the process Y subordinated to X and L has charac-
teristic function

(31) 4,(u) = E exp [iY(u)] = p [f (eiu(- - 1)L(d{)].

What may correspond for general measures to the random transfer operation
(c) is harder to see. However one can argue as follows. Suppose that a meas-
ure ,u consists of a large number N of small masses {5j} carried by points {sj}.
After transferring each of the points independently of the others one would
have masses Sj at points tj, and tj would have distribution T(sj, dtj). The Laplace
transform of the resulting measure is, for u E K-, equal to

(32) s(u) = E exp [ #ju(t,)] = Iff exp [Sju(t,)]T(sj, dtj).

Under natural conditions, a passage to the limit for N increasing indefinitely
and bj tending to zero shows that the point masses of u. would be transferred
randomly but that the diffuse part of j. is transferred deterministically by the
spreading operation T. This indicates that operations (a), (b), (c), and (d) do
not represent accurately what happens, for instance, in the motion of a turbulent
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fluid, the reason for this being that interactions of particles are ignored. To ob-
tain a more reasonable representation of turbulent motion by linear operations
it becomes necessary to work in the phase space of the fluid.

Equations (30) and (31) will be used repeatedly in the next section. However,
since only positive random variables will be considered, it will be convenient to
use instead of Fourier transforms the corresponding Laplace transforms defined
on K- only. In this case the subordination formula (31) becomes simply the
following. If X has Laplace transform w and Y is subordinated to X and L then
the Laplace transform of Y is given by

(33) 4P(u) = Eexp [Y(u)] = s [J (e-(-A - 1)L(dS)]
with u C K- and p(u) = E exp [X(u)].

Finally, note that since the Fourier transform can be extended to the space B
of bounded Baire functions with compact support, the domain of a Laplace
transform, such as u, in (33), cail be enlarged to B-.

5. Formal description of the precipitation model

Let W be a locally compact subset of a plane or of the surface of a sphere.
Consider a space S which is the product S = W X R X V of W by a real line
and an auxiliary locally compact space with countable base V.
A point s = (w, t, v) of S will receive the following interpretation. The geo-

graphical location of s is indicated by w. The time of the event is given by t.
The set V is used as a parameter set to indicate what kind of event occurred
at w at time t.

In the following, ju will be a fixed positive measure on S. For j = 1, 2, 3, the
letter Tj will denote a smoothing or spreading operation from S to S. Explicitly,
let B denote the space of bounded Baire functions having compact support on S.
The map Tj is a positive linear map from B to itself. The value Tju for u E B
will also be denoted

(34) [Tju](s) = f u(o)7'j(s, dar).
For reasons of convenience, it will not be assumed that TJ is normalized. How-
ever, it will be assumed that the values Tju for u E B are obtained by extension
of the domain of T. from K to B as explained in sections 3 and 4.
For j = 1, 2, 3 the letter Lj will denote a function assigning to each s E S a

Paul L6vy measure Lj(s, d{) on the interval (0, oo). It will be assumed that L3
corresponds to positive variables, that is, Lj(s, d() is a positive measure and

(35) + 42 Lj(s, d{) <o.

Furthermore, it will be assumed that s -* Lj(s) is a Baire function on S and that
the integral (35) remains bounded whenever s stays in a compact of S.
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The process describing rainfall is a linear process X on the space K (or B by
extension) obtained as follows. Let X1 be the process subordinated to u and L,.
Let X2 = X1Ti be the process obtained by smoothing Xi through Ti. Let X3 be
subordinated to X2 and L2. Let X4 = X3T2 be X3 smoothed through T2. Finally,
let X6 be subordinated to X4 and L3 and let X = X6 = X5T3 be X5 smoothed
through T3.
The interpretation of the processes X, is the following. The measure ,u describes

general climatological conditions. For a set A C S, the measure u(A) is propor-
tional to the expected number of storms "centered" in A. Since ,u is nonrandom,
the process Xi is a decomposable process. When LI has total mass equal to unity
one can describe Xi as follows. Points {Sk; k = 1, 2, * * ,} are chosen in S
according to a Poisson process, the number of points falling in A having ex-
pectation p(A). Each point Sk is then attributed a positive mass Nk independently
of everything else and according to the probability measure Li. The chosen
chosen points Sk are considered centers of storms. The strength or energy of the
storm centered at Sk is proportional to Xk.
The spreading operation T1 is used to give storm extent and velocity. A par-

ticular smoothing kernel used by the author in preliminary studies can be used
to describe the effect of T1. If a point s = (w, t, v) is chosen by the process Xi,
then the point (w, t) in three-dimensional space is taken as the center of an
ellipsoid. The directions of the axes of the ellipsoid depend on v and so do their
magnitudes. The total mass attributed to the ellipsoid is equal to XTi(s, S) if X
is chosen as explained above.
A section of the ellipsoid at time t gives an ellipse which represents a geographi-

cal area of instability. As t increases this elliptical area moves, the direction and
velocity of motion being determined by the direction of the axes of the ellipsoid.
The total mass attributed to the ellipsoid is spread uniformly over its volume.
The process X2 is simply the superposition of all the ellipsoidal masses so

obtained. It describes "storms."
The process X3 is constructed from X2 as XI was from 1u. If L2 is of total mass

unity the description of X3 could be given in terms quite similar to the above.
The interpretation used will be the following. Given a sample measure m of X2
one selects points to be centers of fronts according to the Poisson process defined
by m. These functions are then attributed extent and velocity by the smoothing
operation T2. The strength of the front is selected according to L2.
The interpretation of X6 and X is now clear: given a sample function of X4,

that is, given the position and energy of the fronts one selects at random,
Poissonwise, centers of convective cells in the area covered by the front. These
cells are then given extent and motion through T3. Finally, the amount of water
precipitated by a cell is selected according to L3.
The introduction of the set V gives to the model a very great degree of arbi-

trariness. This arbitrariness is further enhanced by the arbitrariness in the total
mass of Tj and Li. Indeed so much redundancy is introduced in this fashion that
in the case where L, is of finite total mass no generality is lost by concentrating
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L, at unity. To put it in different words, the elements Tj and Lj of the model are
not necessarily identifiable. We shall indicate later why this redundancy was in-
troduced in the model. However, before proceeding to specification problems
let us mention that the Laplace transform of the process X can be written
immediately following the rules established in sections 3 and 4.

Let u be a function belonging to the negative cone B- of the space of Baire
functions with compact support on S. For u E B let Tju and Qju be the trans-
forms obtained by the formulas

(36) [Tju](s) = f u(a)Ti(s, da),

(37) [Qju](s) = f [e(-)E - 1]L;(s, d ).

Under the conditions imposed on T, and Lj the images Tju and Qju are also
elements of B-. Note that Tj is linear but that Qj is definitely nonlinear. Ac-
cording to formulas (20) to (23) the Laplace transforms 3pj(u) = E{exp [Xj(u)]}
can be computed recursively as follows.

(38) P1(u) = exp {f [Qiu] (ds)}2

(39) 502(u) = soi(Tiu),
(40) (P3(U) = 'P2(Q2U),

(41) p4(U) = P3(T2U),
(42) s°6(U) = 'P4(Q3U),
(43) p6(U) = so6(T3U).

In other words, the Laplace transform of the process X = X6 can be written

(44) so(u) = exp {f [QiT,Q2T2Q3T3u]M(ds) },

the operations Q and T being performed from right to left, as usual, in the order
indicated.
The above formulas were originally developed to obtain a Laplace transform

for stream flow. Once rainfall has reached the ground, it is further subjected to
complicated processes of evaporation, infiltration, and runoff. Since our present
object is not a discussion of the processes, let us assume for convenience that
the amount of water subject to surface runoff is proportional to the amount
reaching the ground. The immediate subsurface flow could also be included in
the following considerations.

Surface runoff of the water is controlled by the Navier-Stokes equations. Since
these equations are nonlinear it is difficult to introduce them directly in the
construction of a Laplace transform. Fortunately for our purposes, a linear
method called the unit hydrograph method was introduced into hydrology by
L. K. Sherman in 1932 [8] (see [9] for some more recent references). Reduced to
its simplest expression the method consists simply in assuming that the intensity
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X7(r) of runoff at time r produced at a particular point of a stream by the rain
X can be written
(45) X7(T) = f T4(T, s)X(ds),

where L4 is still another smoothing kernel. The Laplace transform of X7 may then
be obtained directly from (44).
An interpretation of formula (45) can be given in the following manner. The

value T4(T, s) is the density of probability that a "molecule" of water falling
at s = (w, t, v) will arrive at the measuring station at time T. If the watershed
considered is small and rough and if the rain is not excessive, runoff occurs in
small rivulets in a manner fairly analogous to the motion of a ball on a pinball
machine. The various particles of water do not have too much chance of inter-
action. Since they are very numerous, the circumstances are fairly well described
by operation (c), section 4, applied to a diffuse measure. According to the elabora-
tion given there, this is simply a smoothing process of the type illustrated by
(45).
For large watersheds, where the runoff has had time to collect itself in sizable

streams, interactions become important and the argument is no longer valid.
It is well known, however, that the unit hydrograph method cannot be applied
directly to large watersheds.
Up to now we have taken advantage of the linear structure of the transforma-

tions involved to work only with Laplace transforms. It should be pointed out
that the Laplace transform of X can be used to derive the distribution of the
number of rainy days in a week or a month, even though the passage from X
to these numbers is not linear. A rather cumbersome but effective procedure
can be described as follows.

Let A be a subset of S partitioned into n disjoint sets {Aj; j = 1, 2, * , n}.
Let Xi = X(IA,). The joint Laplace transform of the Xi can be read from <(u),
with u = aa,IA, and a,j _ 0.

Consider a sequence e = {Ej; j = 1, 2, * *, n} where ej is equal either to zero
or to unity and take the product

n
(46) p(e, a) = JE{j exp (aXi) + (1 - ei)[l - exp (aXi)]).

j=1

The expectation of p(e, a) can be expressed in terms of so. Furthermore, if a
tends to (-cx) this expectation converges to the probability that the Aj for
which ej = 1 receive positive rain while the A j for which Ej = 0 receive no rain
at all. The generating function of the number of Aj receiving rain can be obtained
by taking the expectation of

n
(47) E I ZEi {ej exp (aX i) + (1 - ej) [1 - exp (aXi)]}

e j=1
n

il {z + (1 z) exp (aXi)}
j=1

and letting a tend to-
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Joint Laplace transforms for numbers of rainy sets and total amount of raill
can be obtained similarly. Even for moderately large values of n the expressions
so obtained become rapidly very complicated. However, for a week divided into
days, that is, for n = 7, the work involved is not excessive.
To conclude, let us give some indication of the problems of specification of

the model. To simplify, let us first make the obviously inadequate assumption
that the shower cells have sizes, velocities, and strength which are affected only
by the geographical location and time of occurrence of their centers. Make
similar assumptions on the characteristics of fronts and storms, so that, for
instance, the energy of a front is independent of the energy of the storm where
it occurs. Under these conditions one can dispense with V altogether and take
for T, normalized smoothing kernels. The set S is simply S = W X R.

Let A = A1 X A2 be a subset of W X R. The measure ,u(A) of A must reflect
the yearly periodicity of meteorological phenomena so that ,u(A) depends on
the time of the year covered by A2. Similarly, some parts of the world are more
prone to instability than others. A rough indication of the variations of A could
be obtained through counting the cloudy days in the area A1 for a long period
of time.

Indications on T1 can be obtained by a study of the duration, geographical
extent, and prevailing direction of storms.

If our ficticious cell systems did actually correspond to natural fronts, indica-
tions on L1 and T2 could be obtained through a study of the number, extent,
and motion of fronts in storms. Otherwise one would obtain some information
simply by counting the number of breaks in the storms and following their
geographical travels.

Another type of information on the Tj and Li is supplied by the computation
of correlations between amounts of rainfall in different periods and different
locations. The theoretical formulas for such correlations can easily be derived
from (44). Correlations between numbers of rainy days and total amount of
rain, which can be obtained from formulas of the type (46), (47) provide a dif-
ferent type of information. For instance, the regression of the total amount of
rain in a week on the number of rainy days in this week, which would be linear
for a pure Poisson process, is here a complicated convex function in qualitative
agreement with the observation. Finally, the actual distribution of rainfall and
number of rainy days can also be taken into account.
The great arbitrariness inherent in the choice of the operators Q and L will

at first prevent the application of any but the crudest estimation procedures.
However, the moments of the distribution of rainfall can easily be derived from
(44). Since they depend only on certain integrals involving Tj and Lj these
integrals may be estimated.
Once enough information is obtained through the use of such crude methods

one may attempt to give Tj and Li parametric forms and use more reasonable
estimation procedures.
The main comment to be made at this point on the applicability of purely
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statistical methods is that they should not be applied to X alone, but, in the
event that the system of storirs, fronts, and cells used to describe X would
correspond to some actual meteorological events, the joint distribution of the
processes X2, X4, X6 should be used.

Observed joint distributions of numbers of rainy days and total amounts of
rain in two successive short periods at the same location computed by this author
do not seem to require for their explanation any dependence of the amount of
rain in a shower on the other characteristics of fronts and storms. However,
this should not hold true in general. For instance, the amount of rain in a shower
should depend on the type of air mass in which the shower cell occurs. To take
such dependence into account the introduction of the auxiliary set V becomes
necessary.
The introduction of the set V is also necessary to take proper care of the effect

of geographical accidents such as mountain ranges. An ad hoc procedure, which
has the merit of simplicity if not of accuracy, would be to avoid the introduction
of V and simply give to mountain ranges larger and more numerous showers.
More numerous showers can be obtained by making L2 depend on geographical

location. Larger showers can be obtained by making L3 depend on location. For
instance, by varying L3 only, we can pass from a few enormous showers to a
continuous drizzle as explained in section 2. Modifying L2 in a similar manner
one can pass from geographically isolated cells to a continuum of instability
in which the smoothing afforded by Ta appears rather unnecessary.

Similar arguments apply to the seasonal variations of the characteristics of
rainfall. By making L3 depend on time one can obtain spring showers and winter
drizzles.
For the effect of mountain ranges, a more realistic procedure would be to

introduce in V a parameter describing the direction and velocity of the masses
of air which carry the fronts and make L3 depend on the relative orientation of
the range with respect to the motion of the air. One can also make the velocity
of the "front" depend on the location and orientation.
The main difficulty in such circumstances is that, in a model of this complexity,

it becomes more and more difficult to estimate or test anything through purely
statistical methods. It is then necessary to specify some of the elements of the
model through purely physical arguments. We hope to present, in the near
future, a modification of the model in which this will be possible.
The basic features of the model described in the present paper were elaborated

while the author was a statistician at Electricite de France in Paris, where we
had numerous and lengthy discussions with G. Morlat. While attempting to
relate the model to meteorological phenomena we had the benefit of advice and
criticism of Dr. A. Court, to whom we would like to extend our heartiest thanks.
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