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Abstract In this paper, we introduce two perturba-

tions in the classical deterministic susceptible-infected-

susceptible epidemic model with two correlated Brow-

nian motions. We consider two perturbations in the

deterministic SIS model and formulate the original

model as a stochastic differential equation with two cor-

related Brownian motions for the number of infected

population, based on the previous work from Gray et al.

(SIAM J Appl Math 71(3):876–902, 2011) and Hening

and Nguyen (J Math Biol 77:135–163, 2017. https://

doi.org/10.1007/s00285-017-1192-8). Conditions for

the solution to become extinction and persistence are

then stated, followed by computer simulation to illus-

trate the results.

Keywords Correlated Brownian motions · Extinction ·
Persistence · Stationary distribution

1 Introduction

Human beings never stop fighting against deadly dis-

ease, and nowadays, epidemic models are the most

common means to study population dynamics in epi-

demic problems. For example, the classic Kermack–

Mckendrick model [1] is a sufficient model to describe

simple epidemics that provide immunity for those
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infected people after recovery, while the classical

susceptible-infected-susceptible (SIS) models (1) can

be used to explain disease transmission.

dI (t) = [β(N − I (t))I (t) − (μ + γ )I (t)] dt, (1)

with initial value I0 ∈ (0, N ). Specifically, S(t) and

I (t) are the numbers of susceptibles and infected at

time t . N is the total size of the population where the

disease is found. μ is the per capita death rate, and

γ represents the rate of infected individuals becoming

cured, while β is the per capita disease contact rate.

Moreover, environmental noises, such as white noise

and telegraph noise, are taken into consideration in

deterministic models to help us understand dynamic

behaviours in epidemic models. There are many exam-

ples studying the behaviour of both deterministic [1,2]

and stochastic [3–6] SIS epidemic models. Different

medical means on controlling the disease are also math-

ematically applied in SIS model such as [7–9]. Also,

Gray et al. [10] apply a perturbation on the disease

transmission coefficient in SIS model.

β̃ dt = β dt + σ1 dB3(t)

However, to the best of our knowledge, there is not

enough work on incorporating white noise with μ + γ

in the SIS epidemic model (1). Here, we suppose that

the variance of estimating μ + γ is proportional to the

number of susceptible population. Consequently, we

then add another perturbation on per capita death rate

and infectious period μ + γ .

(μ̃ + γ̃ ) dt = (μ + γ ) dt + σ2

√

N − I (t) dB4(t)
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We then obtain that

dI (t) = [β(N − I (t))I (t) − (μ + γ )I (t)] dt

+ σ1 I (t)(N − I (t)) dB3(t)

− σ2 I (t)
√

N − I (t) dB4(t) (2)

with initial value I (0) = I0 ∈ (0, N ), B3 and B4 are

two independent Brownian motions.

Moreover, it is necessary to consider if there is a rela-

tionship between these two perturbation. And if we use

the same data in real world to construct these two Brow-

nian motions, they are very likely to be correlated [11].

And there is the previous work focusing on correlation

of Brownian motions in dynamic systems. Hu et al. [12]

consider two correlative stochastic disturbances in the

form of Gaussian white noise in an epidemic determin-

istic model constructed by Roberts and Jowett [13].

Also, Hening and Nguyen [14] construct a stochas-

tic Lotka–Volterra food chain system by introducing n

number of correlated Brownian motions into the deter-

ministic food chain model. n is the total species number

in the food chain and they use a coefficient matrix to

convert the vector of correlated Brownian motions to

a vector of independent standard Brownian motions.

Inspired by Emmerich [11], Hu et al. [12] and Hening

and Nguyen [14], we are going to replace B3 and B4 by

two correlated Brownian motions to introduce correla-

tion of noises in SIS epidemic model. Considering two

correlated Brownian motions, one with linear diffusion

coefficient and the other with Hölder continuous diffu-

sion coefficient, is clearly different from other work

on stochastic SIS model. Though Hölder continuous

diffusion coefficient and correlations of white noises

are often involved in stochastic financial and biological

models [15], there is no related work based on deter-

ministic SIS model. As a result, this paper aims to fill

this gap.

We now consider B3 and B4 in our model (2) to be

correlated. Replace B3 and B4 by correlated Brownian

motions E1 and E2.

dI (t) = [β(N − I (t))I (t) − (μ + γ )I (t)] dt

+ σ1 I (t)(N − I (t)) dE1(t)

− σ2 I (t)
√

N − I (t) dE2(t) (3)

Note that E1 and E2 can be written as

(E1, E2)
T = A(B1, B2)

T

(B1, B2) is a vector of independent Brownian motions

and A is the coefficient matrix

A =
[

a1 0

a2 a3

]

, a1, a2, a3 are constants

So we have

dE1(t) = a1 dB1(t),

dE2(t) = a2 dB1(t) + a3 B2(t) (4)

Also

dE1 dE2 = a1a2 dt

which gives the correlation of E1 and E2

ρ = a1a2, 0 < |ρ| < 1

Note that when ρ = 0, B1 and B2 are independent

Brownian motion.

Substituting (4) into (3), we have

dI (t) = [β(N − I (t))I (t) − (μ + γ )I (t)] dt

+ [a1σ1 I (t)(N − I (t))

− a2σ2 I (t)
√

N − I (t)] dB1(t)

− a3σ2 I (t)
√

N − I (t) dB2(t) (5)

with initial value I (0) = I0 ∈ (0, N ) and this is our

new model. Throughout this paper, unless otherwise

specified, we let (�, {Ft }t�0, P) be a complete prob-

ability space with a filtration {Ft }t�0 satisfying the

usual conditions. We also define F∞ = σ(
⋃

t�0 Ft ),

i.e. the σ -algebra generated by
⋃

t�0 Ft . Let B(t) =
(B1(t), B2(t)

T be a two-dimensional Brownian motion

defined on this probability space. We denote by R
2
+ the

positive cone in R
2, that is R

2
+ = {x ∈ R

2 : x1 >

0, x2 > 0}. We also set inf ∅ = ∞. If A is a vector or

matrix, its transpose is denoted by AT. If A is a matrix,

its trace norm is |A| =
√

trace(AT A) while its oper-

ator norm is ||A|| = sup{|Ax | : |x | = 1}. If A is a

symmetric matrix, its smallest and largest eigenvalues

are denoted by λmin(A) and λmax(A). In the following

sections, we will focus on the long-time properties of

the solution to model (5).

2 Existence of unique positive solution

We firstly want to know if the solution of our model

(5) has a unique solution. Also, we need this solution

to be positive and bounded within (0, N ) because it is

123



A stochastic differential equation SIS epidemic model 2177

meaningless for the number of infected population to

exceed the number of whole population. So here we

give Theorem 2.1.

Theorem 2.1 If μ + γ ≥ 1
2
(a2

2 + a2
3)σ 2

2 N, then for

any given initial value I (0) = I0 ∈ (0, N ), the SDE

has a unique global positive solution I (t) ∈ (0, N ) for

all t ≥ 0 with probability one, namely,

P{I (t) ∈ (0, N ), ∀t ≥ 0} = 1

Proof By the local Lipschitz condition, there must be

a unique solution for our SDE (5) for any given initial

value. So there is a unique maximal local solution I (t)

on t ∈ [0, τe), where τe is the explosion time [15]. Let

k0 ≥ 0 be sufficient large to satisfy 1
k0

< I0 < N − 1
k0

.

For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : I (t) /∈ (1/k, N − 1/k)}

Set inf∅ = ∞. Clearly, τk is increasing when k →
∞. And we set τ∞ = limk→∞ τk . It is obvious that

τ∞ ≤ τe almost sure. So if we can show that τ∞ = ∞
a.s., then τe = ∞ a.s. and I (t) ∈ (0, N ) a.s. for all

t ≥ 0.

Assume that τ∞ = ∞ is not true. Then, we can find

a pair of constants T > 0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T } > ǫ

So we can find an integer k1 ≥ k0 large enough,

such that

P{τk ≤ T } ≥ ǫ ∀k ≥ k1 (6)

Define a function V : (0, N ) → R+ by

V (x) = − log x − log (N − x) + log
N 2

4

and

Vx = − 1

x
+ 1

N − x
, Vxx = 1

x2
+ 1

(N − x)2

Let f (t) = β(N − I (t))I (t)− (μ+γ )I (t), g(t) =
(a1σ1 I (t)(N−I (t))−a2σ2

√
N − I (t)I (t),−a3σ2 I (t)√

N − I (t)) and dB(t) = ( dB1(t), dB2(t)).

By Ito formula [15], we have, for any t ∈ [0, T ] and

any k

EV (I (t ∧ τk)) = V (I0) + E

∫ t∧τk

0

LV (I (s)) ds

+ E

∫ t∧τk

0

Vx g(s) dB(s) (7)

E
∫ t∧τk

0 Vx g(s) dB(s) = 0. Also it is easy to show

that

LV (x) = −β(N − x) + (μ + γ )

+ βx − (μ + γ )
x

N − x

+ 1

2

(

1

x2
+ 1

(N − x)2

)

[

a2
1σ 2

1 x2(N − x)2

+ (a2
2 + a2

3)σ 2
2 x2(N − x)

−2ρσ1σ2x2(N − x)
3
2

]

≤ −β(N − x) + (μ + γ ) + βx

+ 1

2
a2

1σ 2
1 (N − x)2

+ 1

2
a2

1σ 2
1 x2 + μ + γ

N
σ 2

2 (N − x)

≤ C

C is a constant when μ + γ ≥ 1
2
(a2

2 + a2
3)σ 2

2 N and

x ∈ (0, N ).

Then, we have

EV (I (t ∧ τk)) ≤ V (I0) + E

∫ t∧τk

0

C ds

≤ V (I0) + Ct (8)

which yields that

EV (I (T ∧ τk)) ≤ V (I0) + CT (9)

Set �k = {τk ≤ T } for k ≥ k1 and we have P(�k) ≥
ǫ. For every ω ∈ �k , I (τk, ω) equals either 1/k or

N − 1/k and we have

V (I (τk, ω)) = log
N 2

4(N − 1/k)1/k

Hence,

∞ > V (I0) + CT ≥ E[I�k
(ω)V (I (τk, ω))]

≥ P(�k) log
N 2

4(N − 1/k)1/k

= ǫ log
N 2

4(N − 1/k)1/k

letting k → ∞ will lead to the contradiction

∞ > V (I0) + CT = ∞
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So the assumption is not reasonable and we must

have τ∞ = ∞ almost sure, whence the proof is now

complete. Compared to the result from Gray et al. [10],

the condition is now related to (a2
2 + a2

3). The square

root terms are the reasons for us to give initial condi-

tions in this section: when N − I (t) → 0,
√

N − I (t)

changes rapidly. This can also be an explanation to the

readers that the condition is dependent on a2 and a3

instead of ρ = a1a2. ⊓⊔

3 Extinction

The previous section has already provided us with

enough evidence that our model has a unique posi-

tive bounded solution. However, we do not know under

what circumstances the disease will die out or persist

and they are of great importance in study of epidemic

models. In this section, we will discuss the conditions

for the disease to become extinction in our SDE model

(5). Here, we give Theorem 3.1 and we will discuss

persistence in the next section.

3.1 Theorem and proof

Theorem 3.1 Given that the stochastic reproduction

number of our model

RS
0 := βN

μ+γ
− a2

1σ 2
1 N 2+(a2

2+a2
3 )σ 2

2 N−2ρσ1σ2 N
3
2

2(μ+γ )
< 1, then

for any given initial value I (0) = I0 ∈ (0, N ), the

solution of SDE obeys

lim sup
t→∞

1

t
log I (t) < 0 a.s. (10)

if one of the following conditions is satisfied

• 1
2
(a2

2 + a2
3)σ 2

2 ≥ β and −1 < ρ < 0

• 1
2
(a2

2 + a2
3)σ 2

2 ≥ β + 3
2
ρσ1σ2

√
N − a2

1σ 2
1 N 2 and

3a2σ2 ≥ 4
√

Na1σ1

• 1
2
(a2

2 + a2
3)σ 2

2 < β ∧ (β + 3
2
ρσ1σ2

√
N − a2

1σ 2
1 N )

• 1
2
(a2

2 + a2
3)σ 2

2 ≥ β + 9
16

a2
2σ 2

2 and 0 < ρ < 1

namely, I(t) will tend to zero exponentially a.s. And the

disease will die out with probability one.

Proof Here, we use Ito formula

log I (t)

t
= log I0

t
+ 1

t

∫ t

0

LṼ (I (s)) ds

+1

t

∫ t

0

1

I (s)
g(I (s)) dB(s) (11)

and according to the large number theorem for martin-

gales [15], we must have

lim sup
t→∞

1

t

∫ t

0

1

I (s)
g(I (s)) dB(s) = 0

So if we want to prove lim supt→∞
1
t

log I (t) < 0

almost sure, we need to find the conditions for LṼ (x)

to be strictly negative in (0, N ). LṼ is defined by

LṼ = 1

x
[β(N − x) − (μ + γ )]x

− 1

2x2

[

a2
1σ 2

1 x2(N − x)2

+ (a2
2 + a2

3)σ 2
2 x2(N − x)

−2ρσ1σ2x2(N − x)
3
2

]

= β(N − x) − (μ + γ ) − 1

2
a2

1σ 2
1 (N − x)2

− 1

2
(a2

2 + a2
3)σ 2

2 (N − x) + ρσ1σ2(N − x)
3
2

(12)

And it is clear that

LṼ (N ) = − (μ + γ ) < 0

and

LṼ (0) < 0

is ensured by RS
0 < 1. However, we do not know the

behaviour of LṼ in (0, N ) and it is no longer quadratic

as [10], which is very easy to analyse. As a result, we

derive the first derivative of LṼ .

dLṼ

dx
= −β + a2

1σ 2
1 (N − x) + 1

2
(a2

2 + a2
3)σ 2

2

−3

2
ρσ1σ2

√
N − x (13)

This is a quadratic function of z =
√

N − x . So by

assuming D(z) = dLṼ
dx

, we have

D(z) = a2
1σ 2

1 z2 − 3

2
ρσ1σ2z + 1

2
(a2

2 + a2
3)σ 2

2 − β(14)

where z ∈ (0,
√

N ). The axis of symmetry of (14) is

ẑ = 3a2σ2
4a1σ1

Here, we are going to discuss different cases for (14).

Case 1 If 1
2
(a2

2 + a2
3)σ 2

2 ≥ β and −1 < ρ < 0 (ẑ < 0)

From the behaviour of the quadratic function (14),

we know that the value of this function will be always

positive in (0, N ). This means LṼ increases when x
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increases. As LṼ (N ) < 0, We have LṼ ≤ LṼ (N ) <

0. This leads to extinction.

Case 2 If 1
2
(a2

2 + a2
3)σ 2

2 ≥ β, D(
√

N ) ≥ 0 and ẑ =
3a2σ2
4a1σ1

≥
√

N

In this case, the value of D(z) is always positive

within z ∈ (0,
√

N ), which leads to the similar result

in Case 1. So we have

1

2
(a2

2 + a2
3)σ 2

2 ≥ β + 3

2
ρσ1σ2

√
N − a2

1σ 2
1 N

with ẑ >
√

N

Case 3 If 1
2
(a2

2 + a2
3)σ 2

2 < β and D(
√

N ) < 0

This condition makes sure that the value of D(z) is

strictly negative in (0,
√

N ), which indicates that LṼ

decreases when x increases. With LṼ (N ) < 0 and

LṼ (0) < 0, this case results in extinction and we have

1

2
(a2

2 + a2
3)σ 2

2 < β ∧
(

β + 3

2
ρσ1σ2

√
N − a2

1σ 2
1 N 2

)

Case 4 If � = 9
4
(a1a2σ1σ2)

2 −4a2
1σ 2

1 [ 1
2
(a2

2 +a2
3)σ 2

2 −
β] ≤ 0

We have 1
2
(a2

2 + a2
3)σ 2

2 ≥ β + 9
16

a2
2σ 2

2 . In this case,

D(z)will be positive in (0,
√

N ), so LṼ increases when

x increases. Similarly, extinction still maintains in this

case.

In the deterministic SIS model, we have the result

that if RD
0 < 1, the disease will die out. However, from

our results in this section, we can see that our stochastic

reproduction number RS
0 is always less that the deter-

ministic reproduction number RD
0 = βN

μ+γ
, which indi-

cates that the noise and correlation in our model help

expand the conditions of extinction. For those param-

eters that will not cause the dying out of disease in the

deterministic SIS model as well as Gray’s model [10],

extinction will become possible if we consider the new

perturbation and the correlation. ⊓⊔

3.2 Simulation

In this section, we use Euler–Maruyama Method [10,

16] implemented in R to simulate the solutions in those

4 cases. For each case, we initially give a complete set

of parameter to satisfy not only the extinction condi-

tions, but also μ + γ ≥ 1
2
(a2

2 + a2
3)σ 2

2 N to make sure

the uniqueness and boundedness of solutions. Also,

both large and small initial values are used in all 4

cases for better illustration. We then choose the step

size � = 0.001 and plot the solutions with 500 itera-

tions. Throughout the paper, we shall assume that the

unit of time is one day and the population sizes are

measured in units of 1 million, unless otherwise stated

(Figs. 1 2, 3, 4).

Case 1

N = 100, β = 0.4 μ + γ = 45,

σ1 = 0.02, σ2 = 0.95

a1 = 2, a2 = −0.4, a3 = 0.9,

RS
0 < 1, ρ = −0.8 ∈ (−1, 0)

Case 2

N = 100, β = 0.4 μ + γ = 45,

σ1 = 0.02, σ2 = 0.95

a1 = 1.4, a2 = 0.4, a3 = 0.9,

RS
0 < 1, ρ = 0.54 ∈ (0, 1)

Case 3

N = 100, β = 0.4 μ + γ = 45,

σ1 = 0.02, σ2 = 0.05

a1 = 0.8, a2 = 0.5, a3 = 1.6, RS
0 = 0.852638 < 1

Case 4

N = 100, β = 0.4 μ + γ = 45,

σ1 = 0.02, σ2 = 0.9

a1 = 3, a2 = −0.3, a3 = 1, RS
0 < 1

The simulation results are clearly supporting our

theorem and illustrating the extinction of the disease.

Note that these conditions are not all the conditions for

extinction. We only consider the situation that D(z) is

either strictly positive or strictly negative. Otherwise,

there will be much more complicated cases when LṼ

is not monotonic in (0, N ).

4 Persistence

In this section, we firstly define persistence in this paper

as there are many definitions in stochastic dynamic

models to define persistence [3,4,10,15,17–20]. How-

ever, our model (5) is based on [10]. As a result, we

want to give a similar definition of persistence in our

model (5). So here we give Theorem 4.1 to give a condi-

tion for the solution of (5) oscillating around a positive

level.
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Fig. 1 Extinction case 1
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Fig. 2 Extinction case 2

4.1 Theorem and proof

Theorem 4.1 If RS
0 > 1, then for any given initial

value I (0) = I0 ∈ (0, N ), the solution of (5) follows

lim sup
t→∞

I (t) ≥ ξ and lim inf
t→∞

I (t) ≤ ξ a.s. (15)

ξ is the only positive root of L̃V = 0 in (0, N ). I (t)

will be above or below the level ξ infinitely often with

probability one.

Proof When RS
0 > 1, recall that

LṼ = β(N − x) − (μ + γ ) − 1

2
a2

1σ 2
1 (N − x)2

−1

2
(a2

2 + a2
3)σ 2

2 (N − x) + ρσ1σ2(N − x)
3
2

We have LṼ (0) > 0 which is guaranteed by RS
0 >

1, LṼ (N ) = −(μ + γ ) < 0. As LṼ (x) is a continu-

ous function in (0, N ), there must be a positive root of

LṼ (x) = 0 in (0, N ). Moreover, from the behaviour
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of D(z), it is clear that LṼ will either increase to max

value and then decrease to minimum, or increase to

maximum, decrease to minimum and then increase to

LṼ (N ) < 0. So In both cases, LṼ (x) = 0 will only

have one unique positive root ξ in (0, N ).

Here, we recall (11)

log I (t)

t
= log I0

t
+ 1

t

∫ t

0

LṼ (I (s)) ds

+1

t

∫ t

0

1

I (s)
g(I (s)) dB(s)
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According to the large number theorem for martin-

gales [15], there is an �2 ⊂ � with P{�2} = 1 such

that for every ω ∈ �2

1

t

∫ t

0

1

I (s)
g(I (s)) dB(s) = 0

Now we assume that lim supt→∞ I (t) ≥ ξ a.s. is

not true. Then, there must be a small ǫ ∈ (0, 1) such

that

P

{

lim sup
t→∞

I (t) ≤ ξ − 2ǫ

}

> ǫ (16)

Let �1 = {lim supt→∞ I (t) ≤ ξ − 2ǫ}, then for

every ω ∈ �1, there exist T = T (ω) large enough,

such that

I (t, ω) ≤ ξ − 2ǫ + ǫ = ξ − ǫ, when t ≥ T (ω)

which means when t ≥ T (ω), LṼ (I (t, ω)) ≥ LṼ (ξ −
ǫ). Then, we have for any fixed ω ∈ �1 ∩ �2 and

t ≥ T (ω)

lim inf
t→∞

1

t
log I (t, ω)

≥ 0 + lim
t→∞

1

t

∫ T (ω)

0

LṼ (I (s, ω)) ds

+ lim
t→∞

1

t
LṼ (ξ − ǫ)(t − T (ω))

≥ LṼ (ξ − ǫ) > 0

which yields

lim
t→∞

I (t, ω) = ∞ (17)

and this contradicts with the assumption (16). So we

must have lim supt→∞ I (t) ≥ ξ almost sure.

Similarly, if we assume that lim inf t→∞ I (t) ≤
ξ a.s. is not true, then there must be a small δ ∈ (0, 1)

such that

P

{

lim inf
t→∞

I (t) ≥ ξ + 2δ
}

> δ (18)

Let �3 = {lim inf t→∞ I (t) ≥ ξ + 2δ}, then for

every ω ∈ �3, there exist T ′ = T ′(ω) large enough,

such that

I (t, ω) ≥ ξ + 2δ − δ = ξ + δ, when t ≥ T ′(ω)

Now we fix any ω ∈ �3 ∩ �2 and when t ≥ T ′(ω),

LṼ (I (t, ω)) ≤ LṼ (ξ + δ) and so we have

lim sup
t→∞

1

t
log I (t, ω)

≤ 0 + lim
t→∞

1

t

∫ T ′(ω)

0

LṼ (I (s, ω)) ds

+ lim
t→∞

1

t
LṼ (ξ + δ)(t − T ′(ω))

≤ LṼ (ξ + δ) < 0

which yields

lim
t→∞

I (t, ω) = 0 (19)

and this contradicts the assumption (18). So we must

have lim inf t→∞ I (t) ≤ ξ almost sure. ⊓⊔

4.2 Simulation

In this section, we choose the values of our parameter

as follows:

N = 100, β = 0.5, μ + γ = 45,

σ1 = 0.02, σ2 = 0.05

In order to prove the generality of our result, we use

two different ρ, one positive and the other negative.

a1 = 1, a2 = 0.7, a3 = 1.6, ρ1 = 0.5 > 0,

RS
0 = 1.0581944

and

a1 = −0.1, a2 = 0.5, a3 = 0.8, ρ2 = −0.46 < 0,

RS
0 = 1.108194

In both cases, we firstly use Newton–Raphson

method [21] in R to find a approximation to the roots ξ

of both LṼ , which are 7.092595 and 9.680572, respec-

tively. Then, we use Euler–Maruyama method [10,16]

implemented in R to plot the solutions of our SDE with

both large and small initial values, following by using

red lines to indicate the level ξ . The step size is 0.001,

and 20000 iterations are used in each example. In the

following figures, Theorem 4.1. is clearly illustrated

and supported (Figs. 5, 6).

5 Stationary distribution

To find a stationary distribution of our SDE model (5)

is of great important. From the simulation of the last

section, we can clearly see that the results strongly indi-

cate the existence of a stationary distribution. In order

to complete our proof, we need to initially use a well-

known result from Khasminskii as a lemma. [22]
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Fig. 5 Persistence case 1: ρ > 0
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Fig. 6 Persistence case 2: ρ < 0

Lemma 5.1 The SDE model (1.3) has a unique sta-

tionary distribution if there is a strictly proper subin-

terval (a,b) of (0,N) such that E(τ ) < ∞ for all

I0 ∈ (0, a] ∪ [b, N ), where

τ = inf{t ≥ 0 : I (t) ∈ (a, b)}

also,

sup
I0∈[ā,b̄]

E(τ ) < ∞

for every interval [ā, b̄] ⊂ (0, N ).

Now we give the following Theorem 5.1 and the

proof by using Lemma 6.

5.1 Theorem and proof

Theorem 5.1 If RS
0 > 1, then our SDE model (5) has

a unique stationary distribution.
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Proof Firstly, we need to fix any (a, b) such that,

0 < a < ξ < b < N

recall the discussion of ˜LV in last section, we can see

that

LṼ (x) ≥ LṼ (0) ∧ LṼ (a) > 0, if 0 < x ≤ a (20)

LṼ (x) ≤ LṼ (b) ∨ LṼ (N ) < 0, if b ≤ x < N (21)

also, recall (11)

log I (t) = log I0 +
∫ t

0

LṼ (I (s)) ds + 1

t

∫ t

0

1

x
g(x)

and define

τ = inf{t ≥ 0 : I (t) ∈ (a, b)}

Case 1 For all t ≥ 0 and any I0 ∈ (0, a], use (20) in

(11), we have

E log I (t ∧ τ) = E log I0 + E

∫ t∧τ

0

LṼ (I (s)) ds + 0

≥ log I0 + E(LṼ (0) ∧ LṼ (a))(t ∧ τ)

From definition of τ , we know that

log a ≥ E log I (t ∧ τ) when I0 ∈ (0, a]

Hence, we have

E(t ∧ τ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)

when t → ∞

E(τ ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)
< ∞,∀I0 ∈ (0, a]

Case 2 For all t ≥ 0 and any I0 ∈ (b, N ), use (21) in

(11), we have

E log I (t ∧ τ) = E log I0 + E

∫ t∧τ

0

LṼ (I (s)) ds + 0

≤ log I0 + E(LṼ (b) ∨ LṼ (N ))(t ∧ τ)

From definition of τ , we know that

log b ≤ E log I (t ∧ τ) when I0 ∈ (b, N ]

Hence, we have

log b ≤ log I0 + (LṼ (b) ∨ LṼ (N ))E(t ∧ τ)

E(t ∧ τ) ≤ −
log ( b

I0
)

| (LṼ (b) ∨ LṼ (N )) |

when t → ∞

E(τ ) ≤ −
log ( b

I0
)

| ( ˜LV (b) ∨ ˜LV (N )) |
< ∞ ∀I0 ∈ (b, N ]

Combine the results from both Case 1 and Case 2,

and we complete the proof of Theorem 5.1. Now we

need to give the mean and variance of the stationary

distribution. ⊓⊔

Theorem 5.2 If RS
0 > 1 and m and v are denoted as

the mean and variance of the stationary distribution of

SDE model (5), then we have

βv = (βN − μ − γ )m − βm2 (22)

Proof For any I0 ∈ (0, N ), we firstly recall (5) in the

integral form

I (t) = I0 +
∫ t

0

[β(N − I (s))I (s) − (μ + γ )I (s)] ds

+
∫ t

0

[a1σ1 I (s)(N − I (s))

− a2σ2 I (s)
√

N − I (s)] dB1(s)

−
∫ t

0

a3σ2 I (s)
√

N − I (s) dB2(s)

Dividing both sides by t and when t → ∞, applying

the ergodic property of the stationary distribution [22]

and also the large number theorem of martingales, we

have the result that

0 = (βN − μ − γ )m − βm2

where m, m2 are the mean and second moment of the

stationary distribution. So we have

0 = (βN − μ − γ )m − β(v + m2)

βv = (βN − μ − γ )m − βm2

We have tried to get other equations of higher-order

moment of I (t) in order to solve m and v but fail to get

a result. Though we do not have an explicit formulae of

mean and variance of stationary distribution like [10],

simulations can still be effective to prove (22). ⊓⊔

5.2 Simulation

In this section, we use the same values of our parameters

in the last section
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Fig. 7 Stationary: case 1

N = 100, β = 0.5, μ + γ = 45,

σ1 = 0.02, σ2 = 0.05

and also two cases with different values of ρ

a1 = 1, a2 = 0.7, a3 = 1.6, ρ1 = 0.5 > 0,

RS
0 = 1.0581944

and

a1 = −0.1, a2 = 0.5, a3 = 0.8, ρ2 = −0.46 < 0,

RS
0 = 1.108194

Now we simulate the path of I (t) for a long run

of 200,000 iterations with step size 0.001 by using the

Euler–Maruyama method [10,16] in R. And we only

reserve the last 10,000 iterations for the calculations.

These 10,000 iterations can be considered as stationary

in the long term, so the mean and variance of this sample

are the mean and variance of the stationary distribution

of our solution. In both cases, the results of left side

and right side of the equation (22) are 10.84587 and

10.68102, 1.743753 and 1.848107, respectively, so we

can conclude that the mean and variance of the station-

ary distribution satisfy Eq. (22). Figures 7 and 8 are the

histograms and empirical cumulative distribution plots

for each case of last 10000 iterations.

6 Conclusion

In this paper, we replaced independent Brownian

motions in our previous model by correlated Brownian

motions which leads to not only the increasing num-

ber of noises compared to Greenhalgh’s work [4,10],

but also turning the drifting coefficient into a nonlinear

term. Then, we prove that the stochastic reproduction

number RS
0 is the Keynes to define the extinction and

persistence of the solution. Similar to the determinis-

tic SIS model, with RS
0 < 1 and extra conditions, the

disease will die out. When RS
0 > 1, we prove that the

solution will oscillate around a certain positive level.

Compared to [10], our LṼ is not linear, which results

in more general and complicated conditions to both

extinction and persistence sections. Moreover, com-

pared to [23], this paper assumes that the Brownian

motions are correlated, and hence, the effects of the cor-

relations on the behaviours of our SIS system are stud-

ied. The analytical results including the form of RS
0 and

the additional restrictions indicate that the correlations

between the Brownian motions do make a significant

difference. Though we do not know the explicit expres-

sion of that level, numerical method are then used to

find the exact value under certain circumstance. More-

over, when RS
0 > 1, there is a unique stationary distri-

bution of the solution. On the other hand, we have tried

to get the explicit expression of the mean and variance

123



2186 S. Cai et al.

histogram of I

F
re
q
u
e
n
c
y

4 6 8 10 12 14 16

histogram

4 6 8 10 12 14 16

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

empirical cdf plot

e
c
d
f

ecdf

Fig. 8 Stationary: case 2

by deducing higher moments of I (t), but we seems not

able to get results at this time. Consequently, we will

leave this as a future work.
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