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Abstract 

The aim of this thesis is to price options on equity index futures with an application to 

standard options on S&P 500 futures traded on the Chicago Mercantile Exchange. Our 

methodology is based on stochastic dynamic programming, which can accommodate 

European as well as American options. The model accommodates dividends from the 

underlying asset. It also captures the optimal exercise strategy and the fair value of the 

option. This approach is an alternative to available numerical pricing methods such as 

binomial trees, finite differences, and ad-hoc numerical approximation techniques. Our 

numerical and empirical investigations demonstrate convergence, robustness, and 

efficiency. We use this methodology to value exchange-listed options. The European 

option premiums thus obtained are compared to Black's closed-form formula. They are 

accurate to four digits. The American option premiums also have a similar level of 

accuracy compared to premiums obtained using finite differences and binomial trees with 

a large number of time steps. The proposed model accounts for deterministic, seasonally 

varying dividend yield. In pricing futures options, we discover that what matters is the 

sum of the dividend yields over the life of the futures contract and not their distribution. 
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1. Introduction 

In this paper, we present an alternative methodology for pricing American futures 

options with an application to options on S&P 500 stock-index futures. The proposed 

method, which is based on stochastic dynamic programming, can be used to price options 

on futures, and it accommodates constant as well as seasonally varying dividend payouts 

from the spot asset. Along with the existing spectrum of available methodologies, this 

alternative could help traders in price discovery, especially for over the counter (OTC) 

illiquid contracts. The proposed alternative method respects the true dynamics of the 

underlying asset. It is also competitive with other option valuation methods like finite 

differences and binomial trees. In addition, our method can be extended to accommodate 

high-dimensional pricing problems. The following background information and literature 

review revisit some futures options basics, and previously available pricing 

methodologies. 

An option with a futures contract as an underlying is called an option on a futures 

contract or a futures option. The holder of a call/put futures option has the right, but not 

the obligation, to assume a long/short position in the underlying futures contract upon 

exercise and to claim an amount equal to the difference between the ongoing futures price 

and the strike price of the option, if positive. The option expires worthless otherwise. 

Depending on the style of the option, exercise can occur before or strictly at the maturity 

of the option. Exchange-traded futures options are by and large of American style, which 

may not have the same maturity as the underlying futures contract. 

In the U.S., trading in options on futures contracts can be traced back to 1982 

when the Commodity Futures Trading Commission (CFTC) allowed experimental 

trading in options with futures contracts as the underlying. Although initial option trading 

was limited to only one type of underlying futures contract on each exchange, this 

limitation was lifted and permanent trading was authorized in 1987. Trading in options on 

futures contracts has since proliferated to include a wide variety of futures contracts with 

underlying spot assets such as stock indices, Eurodollars, Treasury instruments, 

currencies, metals and agricultural products, which have been extensively used for 
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position hedging and speculative purposes (Chance and Brooks, 2007). In this paper, we 

value futures options with an application to options on S&P 500 index futures, which are 

actively traded on the largest futures exchange in the world-the Chicago Mercantile 

Exchange (CME). Index-futures and option contracts on the S&P500 were introduced at 

the CME in 1982 and 1983 respectively. Today, the S&P 500 futures contract accounts 

for over 90 percent of all U.S. stock index futures trading, and over the years, it, along 

with the corresponding option contract has experienced remarkable growth in trading 

volume. Thus, the trading volume for the S&P 500 futures and option contracts traded at 

the pit as well as on the electronic platform consisted of 9,346,637 and 10,338,677 

contracts respectively in 2009 (CME Volume Report). Currently, at any given time, there 

are 11 standard S&P 500 futures option contracts listed on the CME. These 11 contracts 

consist of 8 quarterly cycle contracts (March, June, September and December), which 

expire in the same month as the underlying futures; and 3 serial-month contracts (for 

months other than those in the March-December cycle), which expire into the nearest 

quarterly underlying-futures contract. This means that the difference between the 

expiration date of the option and the underlying futures contract could be as great as 

ninety days. 

The popularity of futures options has escalated over the years. There are some 

advantages to trading futures options over options on the underlying spot asset itself. Two 

major advantages are higher liquidity and lower trading costs. Trading futures options is 

often easier than trading spot options because futures prices are quoted on futures 

exchanges and are readily available. Furthermore, the delivery of the underlying is also 

much easier in the case of futures options as it is cheaper and more convenient to deliver 

a futures contract rather than a physical asset, upon exercise. One of the main reasons for 

the popularity of index-futures options, which was recently pointed out by the CME, 

would be the margining advantage. For instance, a financial manager may employ a 

strategy that includes a position in a short index-futures option and a long index-futures 

position for the purpose of cash equitization. In this case, during the market rallies the 

margin due from the futures exchange can easily offset the margin on the short option 

position through the same margin account. Now, if the short option is on the spot then the 

manager would have to withdraw the margin due from the exchange on the futures 
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position and deposit it with the option clearing corporation (OCC). In this example, the 

convenience is obvious. In addition, for some traders, it is important to maintain market 

exposure even after maturity of the option and the serial-month futures option contracts 

offer this type of convenience, as these futures options do not expire simultaneously with 

the underlying futures. 

The European futures options can be priced using Black's (1976) closed-form 

solution, which can also accommodate constant, continuous, interim payouts from the 

underlying spot. On the other hand, American futures options demand special attention. 

Like American options on the spot, pricing American futures options is challenging. The 

challenge arises from the early-exercise feature embedded in the option contract. The 

early-exercise feature adds value to the option in the form of an early-exercise premium, 

which varies in magnitude depending on the moneyness of the option (Ramaswamy and 

Sundaresan, 1985; Whaley, 1986). There is no analytic result for valuing the benefit of 

the early-exercise feature; however, there are approximation techniques that make the 

attempt. 

Over the years, various methodologies have been proposed to price American 

futures options, including numerical methods and analytic approximations. Explicit and 

implicit finite differences, binomial trees as well as ad-hoc methodologies are 

representatives of numerical-approximation methods, while the quadratic-approximation 

(Whaley, 1986) and compound-option approaches (Shastri and Tandon, 1986) are 

representatives of analytic approximation methods. The method proposed in this paper is 

numerical in nature. 

Ramaswamy and Sundaresan (1985) as well as Brenner et al. (1989), in their 

option valuation procedures, assume that the dividends on the stock index are paid at a 

constant proportional rate. Harvey and Whaley (1992) find that such an assumption could 

lead to pricing errors when valuing options on indices. However, given the special 

relationship between spot and futures prices, it is conceivable that this problem might 

appear in index-futures option valuation as well. Consequently, we pre-emptively extend 

the constant-dividend yield assumption and adjust our methodology to accommodate 

deterministic, seasonally varying dividend yield. 
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The rest of this thesis is organized as follows. Section 2 considers some of the 

pertinent existing literature in detail. Section 3 introduces assumptions and describes the 

model. Section 4 presents the stochastic dynamic programming framework. Section 5 

reports the results of numerical investigation, and Section 6 presents the results of an 

empirical investigation. 

2. Literature Review 

Black (1976) provides a thorough characterization of forward and futures 

contracts and, under Black-Scholes (1973) assumptions introduces, a framework for 

pricing European options on futures contracts. If used to price American options, Black's 

(1976) option-pricing model would misprice the premiums because it does not capture 

the early-exercise premium inherent in the American-style options. As shown in the 

literature, and unlike call options on the spot, call options on futures have a positive 

probability of early exercise, independent of payouts from the spot. Consequently-and 

again unlike call options on the spot, where early-exercise is solely related to interim 

payments-the ability to capture early-exercise premiums is much more relevant for 

options on futures. 

In general, most studies on American futures options primarily focus on one or 

more of the following issues: capturing and valuing the early-exercise possibility, 

estimating its significance, examining comparative statics, and evaluating the 

performance of the proposed pricing model with an empirical investigation or simulation. 

In the literature, early-exercise premiums are evaluated against Black's model and 

performance of the proposed model is usually evaluated by comparing the simulation 

results to option market-prices and/or results produced by other pricing methodologies 

such as finite differences, binomial trees, and others. Some also attempt to point out the 

differences between how spot and futures option prices respond to changes in model 

parameters. 

Brenner et al. (1985) use finite differences to price American options on the spot 

and corresponding futures with and without interim payments and they examine the 

difference between the two. They find that, under some scenarios, it might be optimal to 
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exercise a futures option but not an otherwise identical option on the spot. Brenner et al. 

report that, for options based on assets with no interim payments, call options on futures 

have a higher value than call options on the spot. Conversely, put options on futures have 

a lower value than corresponding puts on the spot. They find that the difference in price is 

more pronounced for puts than calls. They also observe that, when interim payments from 

the spot asset are introduced, the observed differences in option price decrease with an 

increase in the magnitude of the payments. As for the early-exercise boundary, Brenner et 

al. find that it is a non-decreasing function of volatility and time to maturity and a non­

increasing function of the interest rate. They also observe that increases in the magnitude 

of interim payments decrease the probability of early-exercise for futures calls and 

increase such a probability for futures puts. The intuition behind this observation is as 

follows: For the calls, the higher the payout from the spot asset the less likely it is that the 

underlying futures price would reach the early-exercise boundary and trigger an early 

exercise. For the puts, a higher payout from the spot would propel the price toward the 

exercise boundary, thus enhancing the probability of an early-exercise. 

Brenner et al. (1989) examine stock-index options and stock-index futures 

options. They find that the greater the difference between the interest rate and the 

dividend yield, the more prominent is the difference between their prices. In fact, this 

observation can be inferred on a theoretical level by noting that the futures price and the 

underlying spot price are identical if the dividend yield is equal to the risk-free interest 

rate. Brenner et al. find that Black's (1976) value is adequate for near-term, out-of-the­

money American calland put futures options. They show that the early-exercise premium 

associated with either an in-the-money option or an option with long maturity contributes 

significantly to the overall option value and must not be neglected. 

Ramaswamy and Sundaresan (1985) derive rational pricing restrictions and use 

finite differences to value American options on stock-index futures. They examine and 

compare the response in the early-exercise frontier to changes in the risk-free rate for 

both options on the spot and options on the futures. They also examine the magnitude of 

option mispricing due to the constant risk-free interest-rate assumption by introducing a 

mean-reverting square-root diffusion process instead. They find that Black's formula 
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works best for at-or in-the-money options. Moreover, they find that the early-exercise 

frontier for spot and futures options is affected in a different way by changes in the level 

of the risk-free interest rate under a constant risk-free interest-rate assumption. They 

conclude that the optimal exercise frontier is a decreasing function of the risk-free interest 

rate for call options on futures and an increasing function for call options on the spot. 

They report, that under a constant risk-free interest-rate assumption, the early-exercise 

frontier is an increasing function of time to maturity for both types of options. They 

discover that the constant risk-free interest-rate assumption creates a mispricing error that 

varies between 7% and -5%, depending on the scenario, when compared to· prices 

simulated under a stochastic interest-rate assumption. Ramaswamy and Sundaresan 

conclude that the price differences are due to the location of the current interest rate with 

respect to the long-run mean. 

Shastri and Tandon (1986a) conduct a two-step analysis of American options on 

futures. As a first step in their analysis, Shastri and Tandon adapt the Geske and Johnson 

(1984) compound-option approach for pricing American spot options to American futures 

options valuation and evaluate the significance of the early-exercise premium under 

various scenarios. Their findings are consistent with those in the existing literature. For 

instance, they observe that, for out-of-the-money options, both the European and 

American options values are almost identical. They observe a divergence in prices for at­

or in-the-money options that increases with time to maturity. They also find that Black's 

formula works best in conjunction with low volatility and risk-free interest-rate levels 

irrespective of the moneyness of the option. This result is consistent with theory since the 

early-exercise feature has a relatively low value under low risk-free interest rate-levels. In 

the second step of their analysis, Shastri and Tandon evaluate the performance of their 

American futures option pricing model and Black's model by comparing their results to 

option market-prices on the S&P 500 and the West German Mark futures, traded on the 

CME. They find that the predictive ability of Black's model is comparable to their 

American option pricing model. In their subsequent study Shastri and Tandon (1986b) 

conduct an empirical test of their adapted Geske and Johnson modeL Both historical and 

implied volatilities are used. They discover that the market premiums substantially 

deviate from the prices predicted by the modeL Shastri and Tandon show that the 
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mispricing is related to the moneyness and time to maturity of the option. They conclude 

that abnormal profits can be earned by exploiting such mispricing but that transaction 

costs would be too high to sustain the strategy. 

Whaley (1986) evaluates American futures options using an adaptation of the 

Barone-Adesi and Whaley quadratic-approximation technique for pricing American spot 

options. Whaley finds that the early-exercise premium contributes meaningfully to the 

overall option premium. Whaley also performs a comparative empirical investigation 

against market prices on S&P 500 futures options. He determines the moneyness and 

maturity biases. In particular, he observes that out-of-the-money calls are underpriced 

and in-the-money calls are overpriced relative to the model. Out-of-the-money puts are 

overpriced and in-the-money puts are underpriced relative to the model. He finds that the 

maturity bias is identical for both types of options-short-term options are underpriced 

and long-term options are overpriced; however, the bias is more severe for the puts. Like 

Shastri and Tandon (1986), Whaley (1986) confirms the possibility of abnormal profits 

due to mispricing by employing a riskless hedging strategy. He also notes that due to 

transaction costs, the strategy cannot be sustained by a retail investor. 

Using Whaley's quadratic approximation model, Cakici et al. (1993) evaluate 

options on T-Note and T-Bond futures contracts. They find that the prices obtained using 

Black (1976) and quadratic approximation models are identical. They show that the 

market overprices in-the-money calls relative to both models; however, no mispricing is 

detected for out or at-the-money calls. Statistically significant mispricing is observed 

only for short-term in-the-money options. Systematic put-mispricing tendencies are 

identical to those found by Whaley (1986). These results however must be interpreted 

with caution for, as Overdahl (1988) points out, Whaley's model systematically 

underestimates the critical futures price for calls and overestimates it for puts. He 

observes that the bias thus created varies across maturities, and that its direction is 

consistent to those found by Whaley and Cakici. 

Kim (1994) builds on the Kim (1990) result and proposes an analytic 

approximation to value American futures options. Kim identifies the optimal exercise 

boundary by using a two-stage regression and then arrives at the futures options values by 

7 



implementing numerical integration. He reports that his approach provides more accurate 

values for longer-maturity options in comparison to the quadratic-approximation 

approach. 

As a rule, researchers and practitioners rely on numerical methods for quantifying 

the early-exercise premium of American options. The option prices obtained by using 

these methods are considered to be extremely accurate. The finite differences approach is 

looked at by Schwartz (1977), Brenner, Courtadon and Subrahmanyam (1985) as well as 

Ramaswamy and Sundaresan (1985) and the lattice approach is looked at by Parkinson 

(1977), Cox, Ross, and Rubinstein (1979). These are the two main frameworks for 

numerical methods. Within these two frameworks, the time to maturity of the option is 

fragmented into minute intervals and, using backward induction by applying the 

boundary condition at every decision point, a fair value of the option is obtained at 

inception. It is the methodology used to evaluate an option over those small intervals that 

sets the lattice and finite difference framework apart. In the lattice approach, a discrete, 

higher-order distribution is used to approximate the evolution of the stochastic process 

and the value of the option at every node is the discounted risk-neutral expected payoff at 

the end of each interval. The finite difference approach estimates continuous partial 

derivatives in the differential equation and solves for the option values at each interval, 

such that the differential equation is satisfied at each decision point. 

3. The Model 

3.1 Assumptions 

The stock index level St is a Markov process modeled as a geometric Brownian 

motion. Thus St satisfies 

where r is a constant riskless rate; g ( .) is a deterministic function of time and represents 

a continuous proportional dividend yield on the index; 0" is the volatility of the index 
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returns, which is assumed to be constant; and Zt is the standard Brownian process. Under 

these assumptions 

(r-~fT O(W)dW-~)(T-t)+CTJiCiZ 
S = S (T t) t 2 

T Ie 

where t ~ T and Z is a random drawing from N ( 0, 1). 

It must be noted that additional assumptions such as complete markets, impossibility of 

arbitrage, continuous trading, no restriction on short selling, an equal borrowing and 

lending rate, as well as the absence of transaction costs and taxes are standard and 

assumed to hold throughout. We also extend the traditional assumption of a constant 

proportional dividend yield to a deterministic function of time. Table 1 presents the 

monthly dividend yields for the year 2009. In this table the dividends are extracted using 

the methodology in Cornell and French (1983). The dividends are measured by taking the 

difference between the daily-value-weighted returns on S&P 500 including dividends and 

value-weighted returns excluding dividends (available from CRSP), which are then 

converted to annualized continuously compounded yields. In Table 1, the variability is 

obvious and justifies our extension. 

Table 1 2009 Monthly Dividend Yields For the S&P 500 Index 

January February March April May June 

1.07% 3.61% 3.51% 1.45% 2.78% 2.33% 

July August September October November December 

1.03% 2.49% 2.04% 0.89% 2.92% 2.03% 

When the underlying asset pays dividends at a constant proportional dividend rate, we 

have 

F = S (r-o)(T-t) 
I Ie , 

where F; is the price of a forward contract at t for delivery at T . 

Now, assuming that the dividend yield is a deterministic function of time, then the 

relationship between the spot and the corresponding forward can be restated as follows: 
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(1) 

This formulation is inferred from the results presented in Duffie and Stanton (1992). This 

relationship holds even for the futures prices as long as the risk-free interest rate is non­

stochastic (Cox, Ingersoll, and Ross, 1981). A stochastic dividend-yield assumption 

would also break down this relationship (Lioui, 2006). Since our assumptions about the 

risk-free interest rate and dividend rate are deterministic in nature, we henceforth hold 

this relationship to be true for the purposes of subsequent futures option pricing. 

Clearly, the futures price depends on the dividend stream only through the following: 

r o (w}dw. 

This is true no matter how the dividends are distributed over the life of the futures 

contract. We investigate this question for European as well as American futures option 

contracts. 

3.2 European Case for Futures Options 

Black (1976) was the first to tackle the problem of futures option pricing. Black 

proposes a framework to price a European option on futures under the following 

assumptions. The risk-free rate is a fixed constant; futures prices are log normally 

distributed; and markets are perfect, promote liquidity and support continuous trading. 

Black's model simply combines the Black-Scholes option-pricing model with the cost-of­

carry futures pricing model. In particular, given the current futures price F;, stock price 

St' and exercise price K , Black solves for the European call and put option as follows: 

for a call, and 

c = E* [e-r(T-t) max (O,F
T 

- K) ] 

= e -r(T-t) [F;N (d
1

) - KN (d
2

) J, 
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p = E* [e-r(T-t) max (O,K - FT ) ] 

= e-r(T-t) [KN( -d
2
)- ~N( -d

1
)] 

for a put respectively, where r is the constant risk-free rate, N(.) is the cumulative 

univariate normal distribution, 

and 

Black effectively replaces St withe -r(T-t) ~ in the Black and Scholes pricing formula. Thus 

if F; in the above formula is replaced by Ster(T-t) then, under a constant proportional risk­

free rate Black's formula would collapse into the Black-Scholes (1973) pricing formula 

for a European option on the spot. It must be noted that Black's formula also works for 

European options on futures with constant proportional payout from the spot. To see this, 

one needs to replace F; in the above formula with Ste(r-o)(T-t) , where 0 is the continuous 

payout from the spot. As a result, Black's formula would collapse into Merton's (1973) 

formula for European options on the spot with continuous payout. This has to be true if 

the no-arbitrage condition is to be satisfied. 

To gain insight into European-option valuation, consider a European option on a 

futures contract with stock/index as the underlying. Let {S} be a Markov stochastic 

process for the stock price, T2 be the maturity of the futures contract, and tE [to,tn =~] 

be any date between inception and maturity of the futures option (~ ~ T2 ) • Let F; ( s) be 

the futures price at t for index level St = s. Here, F; (.) is a function of s which is 

determined by the arbitrage-free relationship in (1). 

It is important to note that it is quite reliable to use the mathematical relationship 

between the spot and the futures price due to the fact that the state variable, here the stock 
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price, is an investment-grade asset. Investment-grade assets generally lack a convenience 

yield, hence forcing associated futures prices to obediently adhere to arbitrage-free 

futures price bounds. On the other hand, futures prices on certain commodity assets 

generally fail to have lower bounds due to the existence of the convenience yield. The 

convenience yield precludes arbitrage, thus neutralizing the market forces responsible for 

arbitrage-free futures prices. This is precisely why, in the case of some commodities, the 

above relationship does not hold and the log-normal assumption imposed on futures 

prices breaks down. 

The holder of the European futures option pays the premium at the inception of 

the option contract and exercises the option at maturity if it is in-the-money; otherwise, 

the option expires worthless. From the perspective of an investor at time tm , define 

s = Si
m 

and F ( s) = F:
m 

( Si
m 
). The exercise value of European futures option holder on 

date tm for m = n is given by 

{

max ( 0, F ( s ) - K) , 
{ (F ( s ) ) = Vim (F ( s ) ) = max ( 0, K _ F ( s ) ) , 

The holding value at date to is given by 

where F (s) = F:o (Slo ). The holding value at tn is given by 

V~ ( F ( s ) ) = 0, 

for a call 

for a put 

where F (s) = F:n (Sin) . The expectation in (2) is computed under risk-neutral probability 

measure. Consequently, the option premium paid by the option holder at inception is the 

discounted expected payoff of the option at maturity under risk-neutral probabilities. It is 
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clear that the payoff is determined by the position of the stock at maturity, as intermediate 

price levels do not matter. On the other hand the picture is quite different when the option 

is American and can be exercised prior to maturity. 

3.3 American Case for Futures Options 

Consider an identical option, as above, except that it is American. As before, the 

option holder pays the premium at inception. Only this time, he may choose to exercise 

the option and obtain exercise proceeds on any decision datetm ' form = O, ... ,n. The 

exercise value is given by 

( ) {
max(O,F(S)-K), v: F(s) = 

m max(O,K -F(s)), 

for a call 

for a put 

The holding value of the option at tm is 

where Pt
m 

= e -r(tm+1-tm
) • A rational option holder would formulate his optimal strategy as 

follows. Throughout the life of the option, the option holder evaluates the benefit of 

immediate exercise compared to the benefit of holding the option for at least until the 

subsequent decision instant. It is optimal to exercise the option only if the exercise value 

exceeds the holding value of the option. As a result, any excess in exercise proceeds over 

the holding value would trigger an immediate exercise of the option. Otherwise, the 

holder would postpone the exercise until the optimality condition is met, or else let the 

option expire worthless. 

The overall value function is given by 

{

max ( v:m ( F ( s ) ) , < (F ( s ) ) ) , 

vtj F ( s ) ) = {( F ( s ) ) , 

And the optimal exercise region is defined as follows: 

for m = O, ... ,n-l 
(4) 

form=n 
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{ (tm' s) such that { (F ( s) ) > < (F ( s ) )} . 

There are two possible scenarios: 

1. When T; = Tz, the price of the futures contract converges to the spot price of the 

underlying, resulting in 

v;' (F(s))=max(O,s-K). 

This is a typical situation for standard CME options on S&P 500 futures contracts 

expiring in the quarterly March-December cycle. As noted earlier, these option contracts 

expire in the same month as the underlying futures. 

2. WhenT; < T2 , the exercise-value function at tn is given by 

v;' (F ( s ) ) = max ( 0, F ( s ) - K). 

This situation is true in the case of the standard CME serial month options on the S&P 

500 futures. These option contracts expire into the nearest futures contract, which in tum, 

expire in one of the March-December quarterly months. 

From the perspective of an investor at maturity, s is known and Vtn (F ( s ) ) can be 

easily computed for all s. However, vt)s usually unknown for m = 0, ... , n -1. We 

approximate the overall value function using a piecewise linear interpolation over a finite 

grid. Our methodology in approximatingv
tm 

is identical to Ben-Ameur et al. (2004), with 

adaptations to fit the case of futures contracts as the underlying asset. The approximation 

details are discussed in Section 4 and are built on the assumptions discussed in section 

3.1. 

3.4 Treatment of Dividends 

Consistent with our assumptions the dividends throughout the life of the futures 

contract are treated as follows. A desired collection of annualized, continuously 

compounded dividend yields OJ' for j = 1, ... , N, along with the corresponding incidence 
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points t j' for j = 1, ... , N, are superimposed on a time line. The number ( N), the 

magnitude and the frequency (.M = t j+1 - t J of the selected dividend yields are pre­

specified and fixed to fit a particular scenario. The timeline either spans the period from 

inception to maturity of the option in the case of tN = ~ = T2 or from inception of the 

option to maturity of the futures contract in the case of ~ < T2 = tN. Thus by construction, 

~ is a piecewise linear function of time and, for any point in time t, the corresponding 

dividend yield is given by 

where Yj and Aj are the intercept and slope of the piecewise linear segment defined on 

[tj'tj+1J and can be obtained as follows: 

8, xt '+1 - 8'+1 xt, 
Y =" , , 

j , 

tj+1 -tj 
(5) 

(6) 

At this point, it is trivial to compute the annualized accumulated divided yield between 

any two points on the time line. Thus, the accumulated annualized dividend yield on 

[t,u] can be evaluated in closed form as follows: 

For tj ~ t < u ~ tj+l' we have 

u~t r 8 ( w) dw = Yj + -!- Aj (u + t) , (7) 

and for tj < t < tj+1 < U ~ t j+2, we have 

u~t r 8( w)dw = u~t [( Yj (t j +1 -t) +-!- Aj (t~+l _t
2
)) +( Yj+1 (u -tj+1) +-!- Aj+1 (u2 -t~+l)) J. (8) 

These computations are employed at various stages while solving the DP equation. 
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4. Dynamic Programming Framework 

Except for particular cases, American options cannot be priced in closed form. 

Here, we use a dynamic program for pricing American futures options, which is as 

follows. 

Let G = {ao = 0, a1 ••• , ap ' ap+1 = +oo} be a grid of points representing the stock 

index. Assume the availability of a piecewise linear approximation vt (.) for the overall 
m+! 

value function vt (.), seen as a function of the stock index s = St through the futures 
m+l m+l 

price F; -at time tm+1• This assumption is not a strong one since we do know the true 
m+l 

value function vt (.) at the maturity of the option ~. The approximation vt (.) can be 
n m+l 

expressed as follows: 

(9) 

where s = St . The relationship between St and F; comes from the cost-of-carry 
m+l m+l m+l 

relationship: 

Here, T2 is the maturity of the futures contract (T2 ~ ~) and 

where J(.) is a deterministic function of time for the continuous proportional dividend 

rate on the index. 

The local coefficients ai
m

+
1 and ftim+l, for i = 0, ... , p, are 
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V (F (a· 1))-v (F (a.)) /3;,m+ 1 = tm+l tm+l 1+ tm+l tm+l I 

F (a· 1)-F (a.) 
tm+l 1+ tm+l I 

V (F (a· 1))-v (F (a.)) 
tm+l tm+l 1+ Im+1 tm+l I 

= 

and 

V (F (a.))F (a. 1)-V (F (a· 1))F (a.) m+ 1 tm+l tm+! I tm+l 1+ tm+l tm+l 1+ tm+l I a. = . 
Z F (a. 1)-F (a.) 

tm+l 1+ tm+l I 

Here, /3;,m+l is the slope on [ai' ai+1] , and is analogous to the delta of the option, as 

approximated by finite differences. 

The slope and intercept at i = p are 

a"'+1 = a"'+1 and pm+l = pm+l. 
p p-l P p-l 

The no-arbitrage pricing gives the holding-value function v; (.) at tm as an average 
m 

under the risk-neutral probability measure of the overall value function Vtm+l (.), 

discounted back from time tm+l to time tm as follows: 

where 

The holding value of the option, like the overall value of the option, cannot be obtained in 

closed form. The idea is to approximate it over the finite grid G: 

p 

= PtmL(a;+IA~ + Pim+lB~), 
i=O 
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where 

and 

The coefficients A;;; and B;;; can be interpreted as transition parameters. They 

characterize the dynamics of the stock index. Our numerical procedure can be 

implemented efficiently as long as the transition parameters are derived in closed form. 

Under the geometric Brownian motion hypothesis, we have A;;; and B;;; in closed-form 

as follows: 

for i = P 

and 

B;;; = E[ake(r-H'm -(h2)Ilt+u.JAiZ J(!!l < e(r-H'm -rr/2)Ilt+u.JAiz $; ai+1 )] 

ak ak 

( 
~) (r-H, )Ilt 

akN Ck,l -(J'vLJ.tm em, for i =0 

ak[N(ck,i+l -(J'~L\tm)- N(Ck,i -(J'~L\tm )]e(r-H'm)l!.t, for 1 $; i $; p-l, 

for i = P 

where 

The futures option pricing DP algorithm runs as follows: 
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2. Interpolate Vtn (.) defined on G to Vtn (.), which is defined on the overall state 

space, as in (9). 

3. For m=n-l, ... ,O, do; 

a) Compute Vt: (.) on G, as in (10); 

b) Compute Vtm (.) = max ( Vt: (.), { (.)) on G, as in (4); 

c) Interpolate Vtm+l (.) defined on G to Vtm (.) defined on the overall state 

space, using (9). 

At time to' we obtain the value function Vto (.) defined on the overall state space, and the 

optimal exercise strategy defined over the time period [to'~]. The latter is as follows: 

Exercise at the first observation date tm and stock index level s = St , where 
m 

{(F(s)) >v~ (F(s)). 

The DP procedure does respect the true dynamics of the underlying asset through the 

transition parameters A;:: and B;::. This is the major advantage when compared to 

competing methodologies. 

5. Numerical Investigation 

The following numerical investigation assesses the degree of comparability of our 

results with those available in the existing literature. In particular, we compare the 

American futures option prices obtained using the DP approach to those obtained using 

other methodologies such as the finite differences, the binomial trees, the analytic 

approximation approach (Whaley, 1986) and others. The European futures option prices 

obtained using the DP approach are also compared to those obtained using Black's 

formula for the purposes of observing convergence. 
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In Tables 2-6, presented below, the call option is on the stock/index futures 

contract with exercise price K = 100. The inception and maturity for the option and the 

futures contracts are identical (~ = T2). The decision dates are equally spaced and their 

number is fixed to the number of days left until the maturity of the option contract. 

Specific sets of time to maturity, volatility, risk-free interest rate, and dividend yield are 

used for comparison purposes. In most tables, the initial futures prices vary from deeply 

out-of-the-money to deeply in-the-money within each scenario. The values reported 

under the DP approach are obtained by setting the grid size to 2000 (p = 2000) points, 

unless otherwise stated. For each specific scenario, each table presents the American 

option values obtained using the DP approach and other alternative methodologies, as 

well as the corresponding European option values. The early-exercise premium, which is 

measured against Black's values and the computation (CPU) time in seconds are also 

reported. Our code lines are executed using a 2.13 GHz Windows PC. 

In Table 2, the underlying futures price ranges between 80 and 120, and the 

remaining time to maturity is either 3 or 6 months. The volatility parameter is either 20% 

or 40%, and the risk-free interest rate is either 8% or 12%. In the case of European option 

prices, convergence to Black's prices is evident as grid size increases from 400 to 1600 

points. American option prices converge from above as the grid size p increases. In 

Table 2, our American option prices are compared to those reported in Chamberlain and 

Chiu (1990). They report the prices obtained using three different methods, namely 

binomial trees, explicit and implicit finite differences. Our results are comparable to those 

obtained using the binomial-tree method. The results obtained using the explicit finite 

differences are close to those obtained using the DP and the binomial approaches. 

However, the results obtained using the implicit finite differences approach show 

divergence from both. It is evident from Table 2 and consistent with theory that the 

deeper the option is in-the-money, the higher is the early-exercise premium; and, the 

higher the volatility and time to maturity, the higher is the fair value of the option. 
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Table 2 European American 
--- --

DP Black's DP Chamberlain and Chiu (1990) 
F Grid 400 Grid 800 Grid 1600 Formula Grid 400 Grid 800 Grid 1600 ExPrem Binomial ExpFD ImpFD 

Scenario 1 80 0.0409 0.0398 0.0393 0.0391 0.0413 0.0399 0.0394 0.0003 0.04 0.05 0 
T=0.25 90 0.6997 0.6986 0.6984 0.6983 0.7009 0.6999 0.6996 0.0013 0.7 0.77 0.03 
r=0.08 100 3.9103 3.9092 3.9089 3.9088 3.9247 3.9236 3.9233 0.0145 3.93 4.18 1.07 
0"=0.20 110 10.7387 10.7375 10.7371 10.7370 10.8190 10.8178 10.8175 0.0805 10.82 11.21 10 

i5=0 120 19.7513 19.7491 19.7486 19.7484 20.0279 20.0268 20.0265 0.2781 20.03 20.32 20 

Scenario 2 80 1.1657 1.1633 1.1627 1.1624 1.1677 1.1652 1.1646 0.0022 1.17 1.37 0 
T=0.25 90 3.5210 3.5188 3.5182 3.5180 3.5298 3.5277 3.5271 0.0091 3.53 3.92 0.03 
r=0.08 100 7.8107 7.8086 7.8080 7.8078 7.8396 7.8374 7.8369 0.0290 7.85 8.47 1.13 
0"=0.40 110 14.0119 14.0097 14.0092 14.0090 14.0856 14.0834 14.0829 0.0738 14.09 15.25 10 

i5=0 120 21.7117 21.7095 21.7089 21.7088 21.8696 21.8674 21.8668 0.1581 21.86 22.21 20 

Scenario 3 80 1.1540 1.1517 1.1511 1.1509 1.1571 1.1548 1.1542 0.0033 1.16 1.36 0 
T=0.25 90 3.4859 3.4837 3.4832 3.4830 3.5001 3.4980 3.4975 0.0144 3.5 3.89 0.03 
r=0.12 100 7.7330 7.7309 7.7303 7.7301 7.7794 7.7772 7.7767 0.0465 7.79 8.41 1.13 
0"=0.40 110 13.8725 13.8703 13.8698 13.8696 13.9912 13.9891 13.9885 0.1189 14 15.16 10 

i5=0 120 21.4958 21.4935 21.4929 21.4927 21.7509 21.7486 21.7481 0.2553 21.74 22.04 20 

Avg.CPU 8 33 133 12 49 210 

Scenario 4 80 0.2994 0.2976 0.2972 0.297 0.3003 0.2985 0.298 0.001 0.29 0.4 0 
T=0.5 90 1.7048 1.7034 1.7031 1.703 1.7132 1.7118 1.7115 0.0085 1.7 1.96 0.03 
r=0.08 100 5.4182 5.4167 5.4163 5.4162 5.4641 5.4626 5.4622 0.046 5.47 5.91 1.07 
0"=0.20 110 11.7347 11.733 11.7326 11.7324 11.8998 11.8982 11.8977 0.1653 11.9 12.9 10 

i5=0 120 19.9106 19.9086 19.9081 19.908 20.356 20.3542 20.3538 0.4458 20.36 20.51 20 

Scenario 5 80 0.2954 0.2923 0.2914 0.2911 0.2969 0.2936 0.2928 0.0016 0.29 0.39 0 
T=0.5 90 1.6728 1.6701 1.6695 1.6692 1.6864 1.6837 1.6831 0.0139 1.68 1.92 0.03 
r=0.12 100 5.3130 5.3099 5.3092 5.3089 5.3873 5.3843 5.3835 0.0746 5.39 5.81 1.07 
0"=0.20 110 11.5048 11.5013 11.5004 11.5001 11.7729 11.7693 11.7685 0.2683 11.77 12.68 10 

i5=0 120 19.5195 19.5152 19.5141 19.5137 20.2447 20.2413 20.2404 0.7266 20.24 20.29 20 

Avg. CPU 13 56 253 18 73 323 

21 



Table 3 reports prices for American futures options under similar scenarios as in 

Table 2. The objective is to compare the prices obtained using the analytic approximation 

(Whaley, 1986) to prices obtained using the DP approach. The grid size is fixed at 2000 

points with futures prices varying between 80 and 120. The volatility is either 15% or 30% 

and time to maturity is either 3 or 6 months. Table 3 also reports the early-exercise 

premium and computation time in seconds. According to Table 3 the prices obtained using 

the DP approach behave in a similar manner to those in Table 2. In particular, as the 

moneyness of the option increases, the early-exercise premium consistently increases under 

each scenario. Tendencies such as the increase in the fair price of the option due to increase 

in volatility and increase in the exercise premium due to increase in the risk-free interest 

rate are identical to those found in Table 2. 

Table 3 Whaley(1986) Black's DP 
F American ExPrem European American ExPrem CPU(sec) 

Scenario 1 80 0.0029 0.0002 0.0027 0.0028 0.0001 307 
T=0.25 90 0.2547 0.0018 0.2529 0.2533 0.0004 300 
r=0.08 100 2.9458 0.0137 2.9321 2.9429 0.0108 307 
0"=0.15 110 10.2627 0.0875 10.1752 10.2715 0.0963 306 

<l=0 120 20 0.3761 19.6239 20 0.3761 307 

Scenario 2 80 0.003 0.0003 0.0027 0.0028 0.0001 303 
T=0.25 90 0.2533 0.0029 0.2504 0.2510 0.0006 301 
r=0.12 100 2.9257 0.0227 2.9030 2.9204 0.0174 300 
0"=0.15 110 10.2205 0.1465 10.0740 10.2300 0.1561 297 

<l=0 120 20 0.5714 19.4286 20 0.5714 304 

Scenario 3 80 0.3986 0.0030 0.3956 0.3962 0.0006 305 
T=0.25 90 1.9913 0.0096 1.9817 1.9862 0.0045 302 
r=0.08 100 5.8878 0.0277 5.8601 5.8819 0.0217 308 
0"=0.30 110 12.3237 0.0710 12.2527 12.3253 0.0725 312 

<l=0 120 20.647 0.1694 20.4776 20.6639 0.1863 294 

Scenario 4 80 0.0603 0.0020 0.0583 0.0587 0.0004 462 
T=O.5 90 0.8256 0.0106 0.8150 0.8186 0.0036 453 
r=0.08 100 4.1099 0.0463 4.0636 4.0984 0.0348 469 
0"=0.15 110 10.8584 0.1752 10.6832 10.8621 0.1790 461 

<l=0 120 20.0018 0.5913 19.4105 20.0075 0.5970 451 

Table 4 presents the option prices obtained using implicit finite differences, Kim's 

(1994) approach and the DP approach. The futures prices vary between 90 and 110, the 

interest rate is either 8% or 12% and the volatility is either 20% or 30%. Time to maturity 

is either 6 months or 3 years. The prices obtained using the DP approach are identical to 
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those obtained using the finite differences approach and Kim's approximation technique. 

The values obtained by DP correspond with Kim's results. In particular, the early-exercise 

premium tends to increase with the moneyness and volatility of the underlying. Prolonging 

the time to maturity increases the early-exercise premium. 

Table 4 Kim (1994) Black's DP 
F ImpFD American ExPrem European American ExPrem CPU(sec) 

Scenario 1 90 1.7100 1.7100 0.0070 1.703 1.7116 0.0086 460 
T=0.5 95 3.2400 3.2400 0.0183 3.2217 3.2430 0.0213 465 
r=0.08 100 5.4600 5.4600 0.0438 5.4162 5.4626 0.0464 471 
0=0.20 105 8.3700 8.3700 0.0899 8.2801 8.3716 0.0915 474 

0=0 110 11.9000 11.9000 0.1676 11.7324 11.8985 0.1661 471 

Scenario 2 90 3.8600 3.8600 0.0266 3.8334 3.8565 0.0231 475 
T=0.5 95 5.7800 5.7800 0.0398 5.7402 5.7816 0.0414 477 
r=0.08 100 8.1800 8.1800 0.0642 8.1158 8.1854 0.0696 465 
0=0.30 105 11.0500 11.0500 0.1112 10.9388 11.0501 0.1113 483 

0=0 110 14.3400 14.3400 0.1725 14.1675 14.3371 0.1696 546 

Scenario 3 90 7.2500 7.2500 0.4406 6.8094 7.2521 0.4427 2366 
T=3 95 9.3300 9.3300 0.6359 8.6941 9.3309 0.6368 2269 

r=0.08 100 11.7000 11.7000 0.8831 10.8169 11.7054 0.8885 1981 
0=0.20 105 14.3700 14.3700 1.2074 13.1626 14.3701 1.2075 2180 

0=0 110 17.3200 17.3200 1.6066 15.7134 17.3170 1.6036 2150 

Scenario 4 90 12.5200 12.5200 0.8280 11.692 12.5189 0.8269 2094 
T=3 95 14.8900 14.8900 1.0600 13.83 14.8896 1.0596 2285 

r=D.08 100 17.4600 17.4600 1.3351 16.1249 17.4588 1.3339 2130 
0=0.30 105 20.2200 20.2200 1.6542 18.5658 20.2188 1.6530 2171 

8=0 110 23.1600 23.1600 2.0183 21.1417 23.1619 2.0202 2103 

Scenario 5 90 1.6800 1.6800 0.0108 1.6692 1.6830 0.0138 463 
T=0.5 95 3.1900 3.1900 0.0321 3.1579 3.1919 0.0340 477 
r=0.12 100 5.3800 5.3800 0.0711 5.3089 5.3834 0.0745 486 
0=0.20 105 8.2600 8.2600 0.1439 8.1161 8.2635 0.1474 469 

0=0 110 11.7700 11.7700 0.2699 11.5001 11.7684 0.2683 468 

Scenario 6 90 3.7900 3.7900 0.0325 3.7575 3.7943 0.0368 472 
T=0.5 95 5.6900 5.6900 0.0635 5.6265 5.6927 0.0662 482 
r=0.12 100 8.0700 8.0700 0.1149 7.9551 8.0668 0.1117 464 
0=0.30 105 10.9000 10.9000 0.1778 10.7222 10.9011 0.1789 478 

0=0 110 14.1600 14.1600 0.2730 13.887 14.1604 0.2734 465 

In Table 5, only the futures price varies within each scenario. The DP futures option 

prices are compared to prices obtained using the implicit finite differences. The interest rate 

and the dividend yield are fixed at 10% and 5% respectively. Although in their paper 

Ramaswamy and Sundaresan report that volatility of 25% was used to compute the option 

values, their European option values are close to Blacks's values at the volatility level of 
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15%. Hence, we use 15% volatility to compute our values. The option values computed 

using DP are comparable to those reported by Ramaswamy and Sundaresan. 

Table 5 Ramaswamy and Sundaresan DP Black's DP 
F American European ExPrem American European ExPrem CPU(sec) 

80.9924 0.0054 0.0054 0 0.0050 0.0049 0.0001 296 
86.0544 0.0577 0.0577 0 0.0577 0.0575 0.0002 302 

Scenario 1 91.1165 0.3542 0.3535 0.0007 0.3627 0.3619 0.0008 298 
T=0.25 96.1785 1.3577 1.3535 0.0042 1.3854 1.3808 0.0046 302 
r=0.10 101.2405 3.5692 3.551 0.0182 3.6095 3.5899 0.0196 299 
0=0.15 106.3025 7.0703 7.0107 0.0596 7.1062 7.0438 0.0624 302 
0=0.05 111.3646 11.4961 11.3411 0.155 11.5222 11.363 0.1592 300 

116.4266 16.4266 16.087 0.3396 16.4465 16.1022 0.3443 299 
121.4886 21.4886 20.9772 0.5114 21.5094 20.9902 0.5192 309 

81.9971 0.1073 0.107 0.0003 0.1101 0.1096 0.0005 443 
87.1219 0.422 0.4202 0.0018 0.4336 0.4316 0.0021 444 

Scenario 2 92.2468 1.2341 1.2265 0.0076 1.2618 1.2535 0.0082 451 
T=0.5 97.3716 2.8403 2.8419 -0.0016 2.8848 2.8580 0.0268 447 
r=O.lO 102.4964 5.4089 5.3396 0.0693 5.4627 5.3907 0.072 448 
0=0.15 107.6212 8.9023 8.7408 0.1615 8.9563 8.7901 0.1662 448 
0=0.05 112.746 13.1367 12.8054 0.3313 13.1859 12.8473 0.3386 450 

117.8709 17.9011 17.2874 0.6137 17.9456 17.3214 0.6242 451 
122.9957 22.9957 21.9931 1.0026 23.0378 22.0213 1.0165 447 

83.0143 0.3683 0.3659 0.0024 0.3799 0.3771 0.0028 593 
88.2027 0.9953 0.9865 0.0088 1.021 1.0114 0.0096 593 

Scenario 3 93.3911 2.2075 2.1808 0.0267 2.2506 2.2224 0.0282 619 
T=0.75 98.5795 4.176 4.1076 0.0684 4.2343 4.1631 0.0712 619 
r=0.10 103.7679 6.9619 6.8089 0.153 7.0292 6.8712 0.158 618 
0=0.15 108.9563 10.5127 10.2063 0.3064 10.5825 10.268 0.3145 610 
0=0.05 114.1447 14.7079 14.1475 0.5604 14.7763 14.2038 0.5725 611 

119.3331 19.4167 18.4649 0.9518 19.4826 18.5141 0.9685 614 
124.5215 24.5215 23.0169 1.5046 24.5854 23.0593 1.5261 615 
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6. Empirical Investigation 

6.1 Data 

In our empirical investigation, we implement the DP approach to value four 

standard CME S&P 500 futures options, which traded on the CME in 2009. The results are 

compared to the corresponding closing prices quoted on the CME at the end of the first 

trading day. The underlying for the selected options is the S&P 500 December 2009 futures 

contract. The inception dates for all four options span the period between June and August 

2009. Options 1 and 4 have roughly 4 months remaining to maturity. Options 2 and 3 have 

roughly 6 months as the remaining time to maturity. Options 1, 2 and 3 are quarterly 

options and expire in the same month as the underlying futures contract (I;. = T2 ). Option 4 

is a serial-month option and expires in November 2009, which is prior to the expiry of the 

underlying futures (I;. < T2 ). This enables us to test the model under cases 1 and 2, which 

were discussed in Section 3.3. Options 1 and 3 are out-of-the-money. Options 2 and 4 are 

at-the-money and in-the-money, respectively. The daily closing prices of the selected 

options and the corresponding underlying futures contracts along with the corresponding 

inception and maturity dates are provided by Datastream. Our state variable, which is the 

S&P 500 index level on the day of inception, is provided by CRSP. The risk-free interest 

rate inputs for each option are constructed from the discount yields on Treasury Bills, that 

are available from the Federal Reserve website. Hull (2009) states that, when the cost of 

carry and the convenience yield (dividend yield) are functions only of time, it can be shown 

that the volatility of the futures price is the same as the volatility of the underlying asset. 

Therefore for our volatility parameter we use historical volatility estimated using the value­

weighted log-returns on the S&P 500 index, which are also available from CRSP. As a 

separate case, we also value the options using implied volatility measures, which are 

provided by Datastream. In our experiment, we employ a seasonally varying dividend 

yield, which varies month to month throughout the life of the underlying futures contract. 

The dividend yield is measured using the Cornell and French (1983) methodology, as 

discussed Section 3.1. The monthly annualized dividend yields employed herein are 

presented in Table 1. For the sake of exposition, the dividend flow for options 2 and 3 with 
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an inception date in June 2009 is 2.33%, 1.03%, 2.49%, 2.04%, 0.89%, 2.92% and 2.03% 

for June, July, August, September, October, November and December, respectively. 

6.2 Results 

As we proceed with the empirical investigation we value each option under various 

volatility estimates. When it comes to volatility parameters for the purpose of option 

valuation, Hull (2009) recommends the daily historical volatility estimates based on the 

most recent 90 to 180 days, annualized by the square root of 252 days per year. Hull also 

recommends a rule of thumb for a volatility parameter. He suggests estimating historical 

volatility over the number of days to which this volatility would be applied, i.e., using the 

estimation window equal to the remaining time to maturity of the option.· In our experiment 

we evaluate the selected options under historical volatility estimates based on 30, 60, 90 

and 180 day estimation windows. We also evaluate the options under an implied volatility 

measure based on Black's formula. The historical volatility, as estimated following Hull, 

somewhat agrees with the implied volatility provided by CRSP for the estimation window 

of 60 and 90 days. When we enlarge the estimation window to 180 days, the historical 

volatility no longer agrees with the implied volatility measure. Indeed this would be the 

case since it is a well-known fact that the S&P500 index was extremely volatile at the end 

of 2008, and beginning of 2009. Our model is a constant volatility model and therefore 

cannot capture this change in the volatility structure. Table 7 presents the results of our 

empirical investigation. 

In Table 7, the volatility parameters are reported in the first row, the DP option 

values in index points are reported in the second row, the European (Black's) values are 

reported in the third row and the early-exercise premiums in the fourth. Black's model does 

not require that the option contract and the underlying futures contract mature at the same 

time (Hull, 2009); therefore, we report Black's European option values for option 4 as well. 

The sensitivity of the option values and the early-exercise premiums to varying 

volatility estimates is evident from the table. For options 2 and 3, the table reports the 

highest early-exercise premiums, which correspond to relatively higher volatility estimates. 

Table 8 further summarises the results of the empirical investigation. 
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For each option, Table 8 presents the closing price, maturity in days, closest prices 

obtained using the DP approach with historical and implied volatility, corresponding 

volatility estimation windows (EW) in days and the pricing errors as a percentage of the 

closing price. The pricing errors reported are as high as 4.04% and as low as 0.20% under 

the historical volatility measure. 

Table 7 Volatility Estimation Window (Days) 
Closing 
Price 30 60 90 180 IMP VOL 

Option 1 1=26/08/09 

8=1028.12 28.2 0.1820 0.1900 0.2290 0.3162 0.2305 

F=1022.3 18.2338 19.8829 27.7726 46.4914 28.0830 

K=1085 18.2280 19.8767 27.7651 46.4807 28.0754 

r=0.0015 0.0058 0.0062 0.0075 0.0107 0.0076 

T 1=0.31 

Option 2 1=30106/09 

8=919.32 63.4 0.2278 0.2591 0.3366 0.4705 0.2634 

F=91 1.3 55.7222 63.5241 82.8091 115.9950 64.6054 

K=915 55.7007 63.4996 82.7771 115.9497 64.5805 

r=0.0035 0.0215 0.0245 0.0321 0.0453 0.0249 

T 1=0.47 

Option 3 1=24/06/09 

8=900.94 63.8 0.2346 0.2747 0.3437 0.4864 0.2791 

F=893.8 53.4030 63.3858 80.5585 115.9107 64.4934 

K=905 53.3812 63.3599 80.5257 115.8631 64.4671 

r=0.0035 0.0219 0.0259 0.0328 0.0476 0.0263 

T 1=0.49 

Option 4 1=27/07/09 

8=982.18 

F=975.5 85.6 0.2262 0.2358 0.2851 0.4039 0.2668 

K=925 77.2369 79.1415 89.0609 113.5526 85.3536 

r=0.0027 77.2211 79.1252 89.0426 113.5291 85.3361 

T j =0.32 0.0159 0.0163 0.0183 0.0235 0.0175 

T 2 =0.40 

Pricing errors, as high as 1.90% and as low as -0.29%, are reported for the implied 

volatility measure. In this case, our results are almost perfect. For the best performance 

among historical volatility measures, the relative error is as high as 4.04% and as low as 

0.20% of the closing prices. Now, if options 2 and 3 were priced with a 180-day volatility 
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estimate, the pricing errors would have been around 83% and 82% respectively. This result 

underscores the importance of the volatility measure used in the model. 

Table 8 

Option 1 
Option 2 
Option 3 
Option 4 

Price 
28.2 
63.4 
63.8 
85.6 

7. Conclusion 

Maturity EW 
111 90 
170 60 
176 60 
143 90 

Historical Volatility Implied Volatility 

Price Error % Price Error % 
27.7726 -1.52% 28.0830 0.42% 
63.5241 0.20% 64.6054 1.90% 
63.3858 -0.65% 64.4934 1.09% 
89.0609 4.04% 85.3536 -0.29% 

In this paper, we propose a methodology based on stochastic dynamic programming 

for valuing options on stock index futures. Our numerical investigation demonstrates 

convergence and robustness when used to value both the European as well as the American 

options on futures contracts. Our results are comparable to those available in the existing 

literature obtained using alternative numerical methodologies and approximation 

techniques. The early":exercise premium mimics the behaviour observed in the existing 

literature. In our empirical investigation, we use the DP approach to value the standard 

S&P 500 futures option contracts under various estimates of volatility and an assumption 

of a seasonally varying dividend yield. The selected futures options contracts are traded in 

a very liquid and efficient environment. We consider both the case where the option and 

the underlying futures contract mature in the same month and the case where the option 

expires prior to the underlying futures. The results of the empirical investigation are almost 

perfect and produce accurate futures options prices. Further avenues of research may 

include extensions to accommodate stochastic volatility, or modelling volatility as a 

deterministic function of time. As long as the transition parameters can be computed in 

closed form, these extensions would not interfere with the efficiency of the model. The 

accuracy of the technique can also be improved by extending linear interpolations to high­

order polynomial approximations (Ben-Ameur et aI., 2002). The dynamic program can be 

further extended to accommodate stochastic volatility and jump-diffusion processes. It can 

also be combined with Monte Carlo simulation to accommodate high-dimensional 

problems (Longstaff and Schwartz, 2001). 
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Appendix I 
Numerical Example 

Let to and tl be the inception and maturity of the option respectively. Consider a European 

option on stock-index futures, with Sto = 100, K = 100, a = 0.25, r = 0.08, 0 = 0, and 

~ = Tz =0.25. Since the maturity of the option contract and the futures contract are the 

same, the futures price converges to the stock-index level at maturity. Given these 

parameters, let G={ao =O,~ =89.70, a2 =95.92,~ =101.23, a4 =106.83, as =114.24, 

a6 = +oo} be a grid of points representing the possible stock-index levels at maturity. 

Compute the transition parameters A;;: and B;;: under the geometric Brownian motion as 

discussed in the paper from to to t1. The transition parameters A;;: and B;;: are reported in 

tables 9 and 10 respectively. 

Table 9 [ aO,al] [~,a2] [a2,a3] [a3,a4] [a4,aS] [as,a6] 

~ 0.46 0.21 0.14 0.10 0.06 0.03 

az 0.26 0.20 0.17 0.15 0.13 0.10 

a3 0.14 0.16 0.16 0.17 0.18 0.19 

a4 0.07 0.10 0.13 0.16 0.21 0.33 

as 0.02 0.05 0.08 0.12 0.20 0.54 

Table 10 [ao'~] [~,azl [a2,a3] [~,a4] [a4,aS] [as,a6] 

al 37.70 19.34 13.59 9.91 7.00 3.97 

a2 21.91 18.41 16.69 15.28 13.85 11.73 

a3 12.09 14.43 16.02 17.61 19.56 23.56 

a4 5.73 9.44 12.82 16.91 23.03 41.05 

as 1.81 4.32 7.52 12.45 21.92 68.53 

The value of the option at maturity on individual points of the grid is set to the exercise 

value vt, (ak ) = v: (ak ) = max ( 0, ak - K). The grid points with corresponding exercise 

values are presented in Table 11. 
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Table 11 

o o o 1.23 6.83 14.24 

o 89.70 95.92 101.23 106.83 114.24 

Now, interpolate vt on G and join vt with linear pieces. The computations are shown for 
I I 

the interval [ a2 , ~] and are as follows: 

Rtl = 1.23-0 = 023 
P2 101.23-95.92 ., 

atl = Ox101.23-1.23x95.92 = -22.24. 
2 101.23-95.92 

The intercept and slope for all intervals are presented in Table 12. 

Table 12 a; 
[ao'~] 0 

[~,a2] 0 

[a2,a3] -22.24 

[~,a4] -100.01 

[a4,aS] -99.96 

[as,a6] -99.96 

/3;n 

0 

0 

0.23 

1.00 

1.00 

1.00 

Once we interpolate piece-wise linearly, we have v
t 

defined on the overall state space. vt is 
I I 

the approximation of the overall value of the option, V
t 

• Now, that we have vt ,we set the 
I I 

program to to and use the transition parameters A;:; and B;:; to compute the holding value 

on the grid points ~, ... ,a5. We use equation 10 to make the necessary computations. For 

the purpose of exposition we show the computation for Vt~ (a1 ), which is as follows: 
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Vt: (~) = e-O·08XO.25 [( Ox0.46+0x37.70) + (OxO.21 +OxI9.37) + 

+ (-22.24xO.14+0.23x13.59)+ (-100.0IxO.1O+ 

+ lx9.91)+ (-99.96xO.06+ lX7) + (-100xO.03+ 

+ lx3.97) ] = 1.71 

The holding values for other grid points are presented in Table 13. 

Table 13 

ak Vt: (ak ) 

a1 
1.71 

a2 
3.93 

a3 
6.81 

a4 
10.73 

as 16.96 

Now, we can approximate the value of the European option. Since, Sto E [a2 , a3 ] ,we 

interpolate on the segment as follows: 

Pto = 6.81-3.93 . =053 
2 eO.08xO.25 (101.23-95.92) ., 

ato = 2.20xl01.23-4.81x95.92 = -48.09. 
2 101.23-95.92 

The approximation of the option value is given by 

So, we compute as follows: 

-48.09+ 0.53x100xeo.o8xo.25 = 5.98 

This is the approximated value of the option with grid size of 5 points (p = 5) . The Black's 

formula gives us 5.99. The discrepancy is due to limited grid-size and rounding. 
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Appendix II 
Code lines written in VBA - Excel 2007 
Option Explicit 
Sub NewProjectO 
Dim S As Double, r As Double, X As Double, sigma As Double, OM As Double, FM As 
Double, dd As Integer 
Dim aO As Double, p As Double, increment As Double, Z As Double, prob As Double, 
TholdO As Double, TholdlO As Double 
Dim TPO As Double, BiO As Double, SettlementDay As Integer, rho As Double, vO As 
Double, yeO As Double 
Dim vhO As Double, alphaO As Double, waO As Double, interceptO As Double, slopeO 
As Double 
Dim opt As Double, d As Double, Div As Double, to As Date, tl As Date, td As Double 
Dim TiO, m As Integer, N As Integer, i As Integer, j As Integer, k As Integer, I As Integer, 
Optype As Integer 
Dim DivFreq As Integer, DivYieldO As Double, DateLineO As Double, CurrentDay As 
Double 
Dim DaysInYear As Integer, StepSize As Double, DivCurveO As Double 
Dim c As Integer, Db As Double, Dbar As Double, BlacksValue As Double, Request As 
Variant, RequestHO As Double, RequestEO As Double, RequestOO As Double 
Dim FuturesPricesO As Double, NumIntervals As Double, NumDiv As Integer, 
DivWindow As Double, Length As Integer, caseA As Integer, caseB As Integer 
Dim caseC As Integer, divO_fm As Double, divOM_FM As Double 
W orksheets("FuturesOption ").Activate 
S = Range("B 1 ") 
sigma = Range("B2") 
OM = Range("B3 ") 
r = Range("B4 ") 
p = Range("B5") 
X = Range("B6") 
FM = Range("B7") 
DivFreq = Range("BS") 
N = Range("B9") 
Optype = Range("BI0") 
Request = Range("B 11 ") 
SettlementDay = 0 
DaysIn Y ear = 360 
CurrentDay = OM I DaysIn Y ear 'Current Day =Maturity for loop 
c = 0 111111 captures OM on dateline 
d=O 
Div=O 
Blacks Value = 0 
DivWindow = DivFreq 
caseA =0 
caseB = 0 
caseC = 0 
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increment = 1 / (p + 1) 
prob = increment 
StepSize = (OM / N) / DaysIn Year 
rho = Exp( -r * StepSize) 
If VarType(Request) <> vbString And Request> N Then 

MsgBox ("Request date is outside decision scope") 
Exit Sub 

End If 
If FM < OM Then 

MsgBox ("Option Maturity cannot exceed Futures Maturity") 
Exit Sub 

End If 
ReDim a(O To p), TP(1 To p, 0 To p), Bi(1 To p, 0 To p) 
ReDim ve(O To p), v(O To p), vh(O To p), wa(l To p), alpha(O To p) 
ReDim intercept(O To p), slope(O To p) 
ReDim RequestH(l To p), RequestE(1 To p), RequestO(l To p) 
ReDim FuturesPrices(1 To p) As Double 
ReDim DivCurve(O To N), Thold(O To N) 
"""""""'"''''''''''''''''''''''''''''''''''''''''''''''""""'''''''''''''''''''''''''' 
If FM > OM Then """"""""'"'''''''''''''''''''''''' Construction of TimeLine 

NumIntervals = FM I DivWindow 
Else 

NumIntervals = OM / DivWindow 
End If 
If FM > OM Then 

If NumIntervals <> Fix(NumIntervals) Then 
NumDiv = Fix(NumIntervals) + 2 
caseA = 1 

EIseIf NumIntervals = Fix(NumIntervals) Then 
NumDiv = Fix(NumIntervals) + 1 
caseB = 1 

End If 
Else 

If NumIntervals <> Fix(NumIntervals) Then 
NumDiv = Fix(NumIntervals) + 2 
caseC = 1 

EIseIf NumIntervals = Fix(NumIntervals) Then 
NumDiv = NumIntervals + 1 
c = NumDiv - 1 

End If 
End If 
OM = OM / DaysIn Y ear 
FM = FM / DaysIn Y ear 
DivWindow = DivFreq / DaysIn Y ear 
ReDim DivYield(O To NumDiv - 1) As Double "'numdiv-l because starting point is zero 
accounts for 1 div 
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ReDim DateLine(O To NumDiv - 1) As Double 
For i = 0 To NumDiv - 1 

DivYield(i) = Cells(i + 1, 10) 
DateLine(i) = i * DivWindow 

Next i """'"''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''""""""'''''''''''''''''''' 
""""""'''''''''''''''''''''''''''''cut the divline at either OM or FM 
If caseA = 1 Then ""caseA FM>OM & +2 div 

DivYield(NumDiv - 1) = inter(DivYield(NumDiv - 2), DivYield(NumDiv - 1), 
DateLine(NumDiv - 2), DateLine(NumDiv - 1» +_ 

slp(DivYield(NumDiv - 2), DivYield(NumDiv - 1), DateLine(NumDiv - 2), 
DateLine(NumDiv - 1» * FM 

DateLine(NumDiv - 1) = FM 
For i = 1 To NumDiv - 1 

If DateLine(i) > OM Then Exit For 
Nexti 
If (DateLine(i - 1) * DaysInYear = OM * DaysInYear) Then GoTo here 
DivYield(i - 1) = inter(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» + _ 

slp(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» * OM 
DateLine(i - 1) = OM 
c = i-I 

Eiself caseB = 1 Then ""caseB FM>OM & + 1 div 
For i = 1 To NumDiv - 1 

If DateLine(i) > OM Then Exit For 
Nexti 
If (DateLine(i - 1) * DaysIn Year = OM * DaysIn Year) Then GoTo here 
DivYield(i - 1) = inter(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» + _ 

slp(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» * OM 
DateLine(i - 1) = OM 
c = i-I 

ElseIf caseC = 1 Then ""caseC OM=FM & +2 div 
DivYield(NumDiv - 1) = inter(DivYield(NumDiv - 2), DivYield(NumDiv - 1), 

DateLine(NumDiv - 2), DateLine(NumDiv - 1» +_ 
slp(DivYield(NumDiv - 2), DivYield(NumDiv - 1), DateLine(NumDiv - 2), 

DateLine(NumDiv - 1» * OM 
DateLine(NumDiv - 1) = OM 
c = NumDiv -1 

End If 
here: c = i-I 
''''''''''''''''''''''''''''''''''''''''''ready for integration 
For i = c To 1 Step -1 """"""""'''''''''''''Div integration to to OM 

Div = Div + inter(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» * 
(DateLine(i) - DateLine(i - 1» + _ 

0.5 * slp(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i» * «DateLine(i» " 
2 - (DateLine(i - 1» " 2) 
Nexti 
Div = Div * (l / OM) 
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For i = 1 To P "'Grid construction 
Z = Application.WorksheetFunction.NormSInv(prob) 
a(i) = S * grider, sigma, Div, OM, Z) 
prob = prob + increment 

Nexti 
a(O) = 0 
'a(O) = S * grider, sigma, Div, OM, -3.5) "'Set aO to -3.5 std dey 
Div=O 
If PM > OM Then """"Integrating dividend OM to FM 

For i = NumDiv - 1 To c + 1 Step -1 
Div = Div + inter(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i)) * 

(DateLine(i) - DateLine(i - 1)) + _ 
0.5 * slp(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i)) * «DateLine(i)) A 

2 - (DateLine(i - 1)) A 2) 
Nexti 

Div = Div * (1 / (FM - OM)) 
End If 
to = Timer ""'Start Time 
Fori = 1 To p 

ve(i) = Application.WorksheetFunction.Max«a(i) * Exp«r - Div) * (PM - OM)) - X), 0) 
"'Computing Exercise Values at maturity 

alpha(i) = ve(i) 
Nexti 
For i = 0 To P - 1 

intercept(i) = inter(alpha(i), alpha(i + 1), a(i), a(i + 1)) "'Piecewise 
slope(i) = slp(alpha(i), alpha(i + 1), a(i) * Exp«r - Div) * (PM - OM)), a(i + 1) * Exp«r­

Div) * (FM - OM))) 
Nexti 
intercept(p) = intercept(p - 1) 
slope(p) = slope(p - 1) 
'ReDim Thold1(0 To N) 
Thold(N) =X 
'Thold1 (N) = X 
ReDim Ti(O To N) 'Requirement for inflation factor 
For i = N - 1 To 0 Step -1 

Ti(i) = StepSize * (N - i) """"(OM / N)=stepsize 
Nexti 
Ti(N) = 0 
CurrentDay = CurrentDay - StepSize 
""'''''''''''''''''''''''''''''MAIN" LOOP""""""""'''''' 
For m = N - 1 To 0 Step -1 

Ifm = o Then 
CurrentDay = SettlementDay 

End If 
d=O 
For i = 0 To NumDiv - 1 
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If DateLine(i) > CurrentDay Then Exit For "'Decision day position with respect to 
div timeline 

Nexti 
If «CurrentDay + StepSize) <= DateLine(i» Then ""'Dividend Integration tm-

tm+ 1 Annualized 
d = Case1(DivYield(i - 1), DivYield(i), DateLine(i - 1), DateLine(i), CurrentDay, 

(CurrentDay + StepSize» 
Elself «CurrentDay + StepSize) > DateLine(i» Then 

d = Case2(DivYield(i - 1), DivYield(i), DivYield(i + 1), DateLine(i - 1), 
DateLine(i), DateLine(i + 1), CurrentDay, (CurrentDay + StepSize), StepSize) 

End If 
For k = 1 To p "'Computing transitional probability (Stock) 

Fori = OTo p 
Ifi = 0 Then 

TP(k, i) = cl(r, sigma, d, a(k), a(i + 1), OM / N) 
Elself i < p Then 

TP(k, i) = Trans(r, sigma, d, a(k), a(i + 1), a(i), OM / N) 
Else 
TP(k, i) = 1 - c1(r, sigma, d, a(k), a(i), OM / N) 

End If 
Nexti 

Nextk 
For k = 1 To p "'Computing trunkated means (Stock) 

Fori =OTo p 
Ifi = o Then 

Bi(k, i) = betaO(r, sigma, d, a(k), a(i + 1), OM / N) 
Elself i < p Then 

Bi(k, i) = beta(r, sigma, d, a(k), a(i + 1), a(i), OM / N) 
Else 

Bi(k, i) = betap(r, sigma, d, a(k), a(i), OM / N) 
End If 

Nexti 
Nextk 

d = d * StepSize 'disannualizing 
Fork= 1 Top 

waCk) = 0 
Fori =OTo p 

waCk) = waCk) + TP(k, i) * intercept(i) + slope(i) * Bi(k, i) * Exp«r - Div) * (Ti(m 
+ 1) + (PM - OM») "'Computing expected payoff at + 1dd 

Nexti 
vh(k) = waCk) * rho '" Discounting expected payoff 
Div = (l / (FM - CurrentDay» * (Div * (FM - (CurrentDay + StepSize» + d) 

"'unwinding annualization tm+ I-OM and annualizing tm-OM 
If Optype = 1 Then 

ve(k) = Application.WorksheetFunction.Max(a(k) * Exp«r - Div) * (Ti(m) + (FM­
OM») - X, 0) '" Computing exercise values -1 decision date if American 

38 



v(k) = Application.WorksheetFunction.Max(ve(k), vh(k» It, Setting overall value 
for at a decision point at specific grid point 

Else 
v(k) = vh(k) '" For European option overall value is 

discounted payoff no exercise as -1 
End If 

If m = Request Then 
Fori = 1 To p 

FuturesPrices(i) = a(i) * Exp«r - Div) * (Ti(m) + (FM - OM») 
Nexti 

End If 
If (k < p) Then """"""""", 

Ifm=N -1 And OM = FMThen 
Div = (Div * (OM - CurrentDay) - d) 

Else 
Div = (Div * (PM - CurrentDay) - d) * (1 / (PM - CurrentDay - StepSize» 

""resetting the dividend to tm+ I-OM 
End If 

End If 
Nextk 
If m = Request Then 

Fork = 1 Top 
RequestH(k) = vh(k) 
RequestE(k) = ve(k) 
RequestO(k) = v(k) 

Nextk 
End If 

If Optype <> 0 Then 
For i = 1 To P ""'''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

If veCi) > vh(i) Then Exit For 
Nexti 
Ifi > p Then 

Thold(m) = 0 
Else 

Thold(m) = (-inter(vh(i - 1), vh(i), a(i - 1), a(i» - X) / (slp(vh(i - 1), vh(i), a(i - 1) * 
Exp«r - Div) * (Ti(m) + (FM - OM»), a(i) * Exp«r - Div) * (Ti(m) + (PM - OM»» - 1) 

End If 
End If 

For i = 1 To p 
alpha(i) = v(i) "'Setting values for each grid point for dd 

Nexti 
For i = 0 To P - 1 

intercept(i) = inter(alphaCi), alpha(i + 1), a(i), aCi + 1)) '" Interpolation 
slope(i) = slp(alpha(i), alpha(i + 1), a(i) * Exp«r - Div) * (Ti(m) + (PM - OM»), a(i 

+ 1) * Exp«r - Div) * (Ti(m) + (PM - OM»» 
Nexti 
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intercept(p) = intercept(p - 1) 
slope(p) = slope(p - 1) 
CurrentDay = CurrentDay - StepSize 

Nextm 
"""'''''''''''''''''''''''''''''''''''''''''''''''''''''' 
CurrentDay = CurrentDay + StepSize 
For i = 0 To P 

If a(i) > S Then Exit For "'Locating initial stock price 
Nexti 

"'Interpolating for corresponding futures option price 
opt = inter(alpha(i - 1), alpha(i), a(i - 1), a(i)) + slp(alpha(i - 1), alpha(i), a(i - 1) * Exp«r­
Div) * FM), a(i) * Exp«r - Div) * FM)) * S * Exp«r - Div) * FM) 
t1 = Timer """"""'Stop Time 
td = t1 - to 
'''''''''''''''''''''''''''''''''''''''''''''''''Printing to screen 
Call Blacks(S, X, Div, r, sigma, OM, FM, BlacksValue) 
Sheets.Add After:=Sheets(Sheets.Count) 
Range("Al ") = "S" """""""""""""Checking the Inputs 
Range("B 1 ") = S 
Range("A2") = "sigma" 
Range("B2") = sigma 
Range("A3 ") = "OM" 
Range("B3 ") = OM 
Range("A4") = "r" 
Range("B4") = r 
Range("A5") = "p" 
Range("B5") = p 
Range("A6") = "X" 
Range("B6") = X 
Range("A7") = "FM" 
Range("B7") = FM 
Range("AS") = "DivFreq" 
Range("BS") = DivFreq 
Range("A9") = "dd" 
Range("B9") = N 
Range("AlO") = "Optype" 
Range("B 10") = Optype 
Range("All ") = "Request" 
Range("B 11 ") = Request """"""""""""""""""""""'" 
Range("Dl ") = "Option Value" 
Range("El ") = opt 
Range("D2") = "Blacks Value" 
Range("E2 ") = Blacks Value 
Range("D3") = "CPU" 
Range("E3") = td 
If (VarType(Request) <> vbString) Then 
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Call GraphV(RequestH, RequestE, RequestO, FuturesPrices, p) 
End If 
If Optype <> 0 Then 

Call GraphT(Thold, N) 
End If 
End Sub 
"'Grid Function'" 
Function grid(r As Double, sigma As Double, Diy As Double, T As Double, Z As Double) 
As Double 

grid = Exp«r - Diy - (sigma A 2) / 2) * T + sigma * Sqr(T) * Z) 
End Function 
"'Transition Probability Function'" 
Function Trans(r As Double, sigma As Double, Diy As Double, ak As Double, cAs 
Double, _ 
B As Double, T As Double) As Double 
Dim q 1 As Double 
Dim q2 As Double 

q 1 = (Log(B / ak) - (r - Diy - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 
q2 = (Log(c / ak) - (r - Diy - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 

Trans = Application.WorksheetFunction.NormSDist(q2)_ 
- Application. W orksheetFunction.N ormSDist( q 1) 

End Function 
Function c1(r As Double, sigma As Double, Diy As Double, ak As Double, a As Double, T 
As Double) As Double 

Dim q 1 As Double 
q 1 = (Log(a / ak) - (r - Diy - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 
c1 = Application.WorksheetFunction.NormSDist(q1) 

End Function 
"'Trunkated Mean Function'" 
Function beta(r As Double, sigma As Double, Diy As Double, ak As Double, B As Double, 

a As Double, T As Double) As Double 
Dim q 1 As Double 
Dim q2 As Double 
q 1 = (Log(a / ak) - (r - Diy - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 
q2 = (Log(B / ak) - (r - Diy - (sigma A 2) /2) * (T» / (sigma * Sqr(T» 
beta = ak * (Application.WorksheetFunction.NormSDist(q2 - sigma * Sqr(T»_ 

- Application.WorksheetFunction.NormSDist(q1 - sigma * Sqr(T») * Exp«r - Diy) 
* T) 
End Function 
Function betaO(r As Double, sigma As Double, Diy As Double, ak As Double, _ 
B As Double, T As Double) As Double 

Dim q 1 As Double 
q 1 = (Log(B / ak) - (r - Diy - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 

betaO = ak * (Application.WorksheetFunction.NormSDist(q1 - sigma * Sqr(T») * Exp«r 
- Diy) * T) 

41 



End Function 
Function betap(r As Double, sigma As Double, Div As Double, ak As Double, _ 
a As Double, T As Double) As Double 

Dim q I As Double 
q I = (Log(a / ak) - (r - Div - (sigma A 2) / 2) * (T» / (sigma * Sqr(T» 

betap = ak * (l - (Application.WorksheetFunction.NormSDist(ql - sigma * Sqr(T»» * 
Exp((r - Div) * T) 
End Function 
"'Intercept Function'" 
Function inter(vO As Double, vI As Double, aO As Double, al As Double) As Double 

inter = (vO * al - vI * aO) / (al - aO) 
End Function 
"'Slope Function'" 
Function slp(vO As Double, vI As Double, aO As Double, al As Double) As Double 

sIp = (vI - vO) / (al - aO) 
End Function 
"'Dividend Integration Fuctions'" 
Function Case I (DivYieldO As Double, DivYieldl As Double, DateLineO As Double,_ 
DateLinel As Double, CurrentDay As Double, CurrentDayPlusStep As Double) As Double 

Casel = (inter(DivYieldO, DivYieldl, DateLineO, DateLinel) +_ 
.. 0.5 * slp(DivYieldO, DivYieldl, DateLineO, DateLinel) * (CurrentDayPlusStep + 

CurrentDay» 
End Function 
Function Case2(DivYieldO As Double, DivYieldl As Double, DivYield2 As Double,_ 
DateLineO As Double, DateLine I As Double, DateLine2 As Double, CurrentDay As 
Double, CurrentDayPlusStep As Double, StepSize As Double) As Double 

Case2 = (inter(DivYieldO, DivYieldl, DateLineO, DateLinel) * (DateLine I -
CurrentDay) +_ 

0.5 * slp(DivYieldO, DivYieldl, DateLineO, DateLinel) * (DateLine I A 2 -
CurrentDay A 2) + _ 

inter(DivYieldl, DivYie1d2, DateLine I , DateLine2) * (CurrentDayPlusStep­
DateLine I) + _ 

0.5 * (slp(DivYieldl, DivYield2, DateLinel, DateLine2» * (CurrentDayPlusStep A 

2 - DateLinel A 2» * _ 
(l / StepSize) 

End Function 
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