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Stochastic expected utility theory

Abstract

A new decision theory is proposed to explain the violations of expected utility theory through the role of

random errors. The main premise of the new theory is that individuals make random errors when they

compute the expected utility of a risky lottery. When being distorted by error, the expected utility of a

lottery should neither exceed the utility of the highest possible outcome nor fall below the utility of the

lowest possible outcome. This crucial assumption implies that the expected utility of a lottery is likely to

be overvalued (undervalued) by random errors, when it is close to the utility of the lowest (highest)

possible outcome. The new theory explains many stylized empirical facts such as the fourfold pattern of

risk attitudes, the common consequence effect (Allais paradox), the common ratio effect and violations

of betweenness. The model fits the data from ten well-known experimental studies at least as well as

cumulative prospect theory.
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Abstract: 

A new decision theory is proposed to explain the violations of expected utility theory 

through the role of random errors. The main premise of the new theory is that individuals make 

random errors when they compute the expected utility of a risky lottery. When being distorted by 

error, the expected utility of a lottery should neither exceed the utility of the highest possible 

outcome nor fall below the utility of the lowest possible outcome. This crucial assumption 

implies that the expected utility of a lottery is likely to be overvalued (undervalued) by random 

errors, when it is close to the utility of the lowest (highest) possible outcome. The new theory 

explains many stylized empirical facts such as the fourfold pattern of risk attitudes, the common 

consequence effect (Allais paradox), the common ratio effect and violations of betweenness. The 

model fits the data from ten well-known experimental studies at least as well as cumulative 

prospect theory. 
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Stochastic Expected Utility Theory 

“Perhaps we should now spend some time on thinking about 
the noise, rather than about even more alternatives to EU?” 

Hey and Orme (1994), Econometrica 62, p.1322 

This paper proposes a new decision theory to describe individual decision making under risk, as 

defined by Knight (1921). A normative theory of choice under risk is expected utility theory, or EUT. 

However, persistent violations of EUT, such as the Allais paradox (Allais, 1953), make EUT a 

descriptively inadequate theory (Camerer, 1995). Many theories have been proposed to improve the 

descriptive fit of EUT (see Starmer (2000) for a recent review). EUT and nearly all non-expected utility 

theories are deterministic theories i.e. they predict that an individual always makes the same decision in 

identical choice situations (unless he or she is exactly indifferent between lotteries). In contrast, this paper 

proposes a stochastic decision theory to explain the violations of EUT through the role of random errors. 

The new model is motivated both by a recent revival of interest among economic theorists in stochastic 

decision theories (Loomes et al. 2002) and by the compelling empirical evidence of random variation in 

individuals’ decisions (Ballinger and Wilcox, 1997). 

For example, Camerer (1989, p.81) reports that 31.6% of the subjects reverse their preference, 

when presented with the same choice decision for the second time. Starmer and Sugden (1989) find that 

the observed preferences are reversed in 26.5% of cases. Wu (1994, p.50) reports that the reveled 

preferences change in 5%-45% of cases when the same binary choice problem is repeated. Hey and Orme 

(1994) find that around 25% of choice decisions are inconsistent, when an individual faces the same 

choice problem twice and he or she can declare indifference. Moreover, Hey (2001) provides experimental 

evidence that the variability of the subjects’ responses is generally higher than the difference in the 

predictive error of various deterministic decision theories. Thus, a model predicting stochastic choice 

patterns can be a promising alternative to the deterministic non-expected utility theories.  

Existing non-expected utility theories typically do not consider stochastic choice patterns (see, 

however, Machina, 1985, and Hey and Carbone, 1995). Only when the theoretical model is estimated are 
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assumptions about error specification introduced. Effectively, the stochastic component plays only a 

secondary role being regarded as unimportant on the theoretical level (Hey, 2005). Camerer and Ho 

(1994) use a stochastic choice model in which the probability of choosing one lottery over another is 

simply a logit function of the difference in their utilities according to the deterministic underlying theory. 

Harless and Camerer (1994) assume that there is a constant probability with which an individual reverses 

his or her deterministic choice pattern. This probability is the same in all choice problems and it reflects 

the possibility of errors such as pure trembles. Hey and Orme (1994) obtain a stochastic choice pattern by 

means of a white noise (normally distributed zero-mean error term) additive on the utility scale. Such an 

error term reflects the average of various genuine errors that might obscure a deterministic choice pattern. 

Hey (1995) and Buschena and Zilberman (2000) go one step further and assume that this error term is 

heteroskedastic. The standard deviation of errors is higher in certain decision problems e.g. when the 

lotteries have many outcomes or when the subjects take more time to make a decision. 

This paper proposes new and more elaborate structure of an error term. The stochastic component 

is introduced as a part of the decision theory, which makes explicit prediction in form of a stochastic 

choice pattern. Thus, econometric estimation of the proposed theory on the empirical data does not require 

any additional assumptions about error specification. Moreover, new theory assumes that individuals have 

a preference relation on the set of risky lotteries, which admits expected utility representation. Thus, the 

proposed theory is essentially a stochastic extension of neoclassical expected utility theory, so that its 

estimation is relatively simple compared to non-expected utility models. 

Individuals are assumed to maximize their expected utility when choosing between risky lotteries. 

However, individuals make random errors when computing the expected utility of a lottery. The errors are 

additive on the utility scale, similarly as in Hey and Orme (1994). The distribution of random errors is 

essentially symmetric around zero with a restriction that the stochastic utility of a lottery cannot be lower 

(higher) than the utility of the lowest (highest) possible outcome for certain. This assumption reflects a 

rather obvious fact that there is a limit to a measurement error that an individual can commit. In particular, 

violations of obvious dominance, when a risky lottery is chosen over its highest possible outcome for sure, 
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or when it is not chosen over its lowest possible outcome for sure, appear to be implausible. Hence, 

computational errors are naturally truncated by the highest and the lowest outcomes in the gamble. 

This restriction implies that lotteries whose expected utility is close to the utility of the lowest 

possible outcome (e.g. unlikely gains or probable losses) are more likely to be overvalued rather than 

undervalued by random errors. Similarly, lotteries whose expected utility is close to the utility of the 

highest possible outcome (e.g. probable gains or unlikely losses) are likely to be undervalued by random 

errors. This offers an immediate explanation for the fourfold pattern of risk attitudes—a risk seeking 

behavior in face of unlikely gains or probable losses and a risk averse behavior in face of probable gains 

or unlikely losses (Tversky and Kahneman, 1992). Stochastic version of expected utility theory can also 

explain other empirical anomalies such as the common consequence effect and the Allais paradox 

(Allais, 1953), the common ratio effect and violations of betweenness (Camerer and Ho, 1994). 

Apart from demonstration that many empirical paradoxes can be attributed to a simple 

stochastic version of expected utility theory, this paper also reexamines the data from ten well-

known experimental studies. The proposed theory accommodates the experimental data with a 

remarkable success. Its goodness of fit is generally at least as good as the fit of such prominent 

non-expected utility models as cumulative prospect theory or rank-dependent expected utility 

theory. This suggests that a careful specification of the stochastic structure of the errors that 

subjects make in the experiments is a promising avenue for constructing a descriptive decision 

theory. Systematic errors that subjects commit when evaluating the expected utility of risky 

lotteries can account for many of the well-known empirical anomalies, which have been 

traditionally attributed to non-linear probability weighting, regret or disappointment aversion etc. 

The remainder of this paper is organized as follows. Stochastic expected utility theory or StEUT is 

described in section 1. Section 2 demonstrates how StEUT explains many stylized empirical facts such as 

the fourfold pattern of risk attitudes and the Allais paradox. Section 3 tests the explanatory power of 

StEUT on the data from ten well-known experimental studies. Section 4 concludes. 
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1. Theory 

Notation ( )nn pxpxL ,;..., 11  denotes lottery L delivering a monetary outcome ix  with probability 

ip , { }ni ,...,1∈ . Let 1x  be the lowest possible outcome and let nx  be the highest possible outcome. The 

expected utility of lottery L according to deterministic preferences of an individual is ( )∑ =
=

n

i iiL xup
1

μ . 

A subjective non-decreasing utility function RR →:u  is defined over changes in wealth rather than 

absolute wealth levels, as proposed by Markowitz (1952) and later advocated by Kahneman and Tversky 

(1979). An individual makes random errors when calculating the expected utility Lμ  of a risky lottery.1  

Random errors are assumed to be additive on the utility scale, similarly as in Hey and Orme 

(1994, p.1301) and Gonzalez and Wu (1999). Thus, instead of maximizing deterministic expected utility 

Lμ , an individual behaves as if he or she maximizes stochastic expected utility 

(1)           ( ) LLLU ξμ += .   

For simplicity it is assumed that an error term Lξ  is independently distributed across lotteries. In other 

words, the error which occurs when an individual calculates the expected utility of one lottery is not 

correlated with an error when calculating the expected utility of another lottery.  

The stochastic expected utility (1) of a lottery is assumed to be bounded from below and above. It 

cannot be less than the utility of the lowest possible outcome for certain (see, however, Gneezy et al., 

2006). Similarly, it cannot exceed the utility of the highest possible outcome for certain. Formally, the 

internality axiom holds i.e. ( ) ( )nLL xuxu ≤+≤ ξμ1 , which imposes the following restriction on the 

cumulative distribution function ( ) ( )vprobv LL ≤=Ψ ξ  of a random error Lξ : 

                                                 
1 Computational errors occur for a variety of reasons (Hey and Orme, 1994). An individual may be not sufficiently 

motivated to make a balanced decision. A subject can get tired during long experiment and lose attention (especially 

if lotteries do not involve losses). A subject can simply press a wrong key by accident or inertia. Wu (1994, p.50) 

suggests that subjects can suffer from fatigue and hurry up with their responses at the end of the experiment. 
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(2)  ( ) ( ) ( ) ( ) LnLLL xuvvxuvv μμ −≥∀=Ψ−<∀=Ψ ,1and     ,0 1 . 

Assumption (2) implies that there is no error in choice between “sure things”. A degenerate lottery 

delivers one outcome for certain, which is simultaneously its lowest possible and its highest possible 

outcome ( nxx =1 ). In this case, equation (2) immediately implies that ( ) 10 ==Lprob ξ  i.e. the utility of 

a degenerate lottery is not affected by random errors.  

For non-degenerate lotteries, the random errors are assumed to be symmetrically distributed 

around zero as long as restriction (2) is not violated i.e. ( ) ( )00 ≤≤−=≤≤ LL vprobvprob ξξ  for every 

( ) ( ){ }[ ]LnL xuxuv μμ −−∈  ;min,0 1 . Formally, this corresponds to the restriction 

(3)  ( ) ( ) ( ) ( ) ( ) ( ){ }[ ]LnLLLLL xuxuvvv μμ −−∈∀Ψ+Γ=−Γ+Ψ  ;min,0,00 1 , 

where ( ) ( )vprobv LL ≥=Γ ξ . Intuitively, random errors are non-systematic if they are within a 

reasonable range so that a lottery is not valued less than its worst possible outcome or more than its best 

possible outcome. In general, the cumulative distribution function of random errors for risky lotteries is 

unknown and it is likely to be lottery-specific (Hey, 1995).  

Equations (1)-(3) complete the description of StEUT. Obviously, when ( ) 10 ==Lprob ξ  for 

every lottery L, StEUT coincides with the deterministic EUT. StEUT resembles the Fechner model of 

stochastic choice e.g. Becker et al. (1963). Both models introduce an error term, which is additive on the 

utility scale. However, they differ in two important aspects. 

First, the error term in the Fechner model is a continuous random variable that is symmetrically 

distributed around zero and unbounded. In practical applications, it is typically assumed to be normally 

distributed (Hey and Orme, 1994; Loomes at al., 2002). In contrast, the error term in StEUT is bounded 

from below and above by a basic rationality requirement of the internality axiom. For practical 

estimations, such an error term can be drawn from a truncated normal distribution (see section  3).  

Second, the error term in the Fechner model affects the difference in the expected utilities of two 

lotteries that are compared. We can think of it as a compound error equal to the difference between two 
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computational errors that occur separately when an individual evaluates the expected utility of lotteries. 

Moreover, if computational errors are normally distributed, their difference is also normally distributed. In 

contrast, the error term in StEUT is a genuine computational error that affects the expected utility of a 

lottery. When two lotteries are compared, two corresponding computational errors are taken into account.  

2. Stylized facts 

2.1. The fourfold pattern of risk attitudes 

The fourfold pattern of risk attitudes is an empirical observation that individuals exhibit risk 

aversion when dealing with probable gains or improbable losses, and risk seeking—when dealing with 

improbable gains or probable losses (Tversky and Kahneman, 1992). One illustration of the fourfold 

pattern of risk attitudes is a simultaneous purchase of insurance and public lottery tickets. Historically, it 

was the first descriptive challenge for the deterministic EUT (Friedman and Savage, 1948).  

A conventional indication of risk averse (seeking) behavior is when the certainty equivalent of a 

lottery is smaller (greater) than the expected value of the lottery. In the context of deterministic decision 

theories, the certainty equivalent of a lottery is defined as a monetary outcome which is perceived exactly 

as good as the lottery itself. For stochastic decision theories, there is no established definition of a 

certainty equivalent in the literature. One can think of at least two intuitive definitions. First, the certainty 

equivalent of a lottery can be defined as a monetary outcome which is perceived exactly as good as the 

average stochastic utility of the lottery. Second, it can be defined as a monetary outcome which is equally 

likely to be chosen or to be rejected, when it is offered as an alternative to a lottery. StEUT is consistent 

with the fourfold pattern of risk attitudes when either of these two definitions is used (as shown below). 

Definition 1 The certainty equivalent of lottery L is an outcome LCE  that is implicitly defined by equation 

(4)     ( ) [ ]LLL ECEu ξμ += ,  

where the expected error [ ]LE ξ  can be spelled out as [ ] ( )
( )

( )
∫

−

−
Ψ= Ln

L

xu

xu
L vvE

μ

μ
ξ

1
Ld  due to assumption (2). 
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Assumption (3) implies that [ ] ( )
( )

( ) ( )
( )

( )

44 344 2144 344 21
0

L

0

L
1

1

1

d d 

≥

−

−

=

−

− ∫∫ Ψ+Ψ= Ln

L

L

L

xu

xu

xu

xu
L vvvvE

μ

μ

μ

μ
ξ  if ( ) ( )1xuxu LLn −≥− μμ  

and [ ] ( )
( )

( ) ( )
( )

( )

44 344 2144 344 21
0

L

0

L d d 
1

=

−

−

≤

−

− ∫∫ Ψ+Ψ= Ln

nL

nL

L

xu

xu

xu

xu
L vvvvE

μ

μ

μ

μ
ξ  if ( ) ( ) LnL xuxu μμ −≥− 1 . Thus, the expected error 

is positive or zero, i.e. ( ) LLCEu μ≥ , when the expected utility of a lottery is close to the utility of the 

lowest possible outcome, i.e. ( ) ( )( ) 21 nL xuxu +≤μ . These are improbable gains or probable losses in 

the terminology of Tversky and Kahneman (1992). The expected error is negative or zero for lotteries 

whose expected utility is close to the utility of the highest possible outcome, i.e. ( ) ( )( ) 21 nL xuxu +≥μ . 

These are probable gains or improbable losses in the terminology of Tversky and Kahneman (1992).  

Let ∑ =
=

n

i iiL xpEV
1

 denote the expected value of lottery L. Jensen’s inequality ( ) LLEVu μ≥  

holds if and only if an individual has a concave utility function. Thus, according to StEUT, the individual 

with a concave utility function exhibits risk averse behavior only when the expected utility of a lottery is 

close to the utility of the highest possible outcome. In this case, ( ) ( )LLL EVuCEu ≤≤ μ  which is 

equivalent to LL EVCE ≤  because utility function ( ).u  is non-decreasing. When the expected utility of a 

lottery is close to the lowest possible outcome, the individual with a concave utility function is not 

necessarily risk averse because it is possible that ( ) ( ) LLL EVuCEu μ≥≥  i.e. LL EVCE ≥ . 

Now consider an individual with a convex utility function ( ).u , which implies that ( ) LLEVu μ≤ . 

He or she exhibits risk seeking behavior, i.e. LL EVCE ≥ , only when the expected utility of a lottery is 

close to the utility of the lowest possible outcome, i.e. when ( ) ( )LLL EVuCEu ≥≥ μ . He or she may be 

risk averse when the expected utility of a lottery is close to the highest possible outcome, in which case it 

is possible that ( ) ( ) LLL EVuCEu μ≤≤  i.e. LL EVCE ≤ . Thus, StEUT is consistent with the fourfold 

pattern of risk attitudes when the certainty equivalent is defined by equation (4). 

Definition 2 The certainty equivalent of lottery L is an outcome 
*

LCE  that is implicitly defined by equation  
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(5)      ( )( ) ( )( )**

LLLLLL CEuprobCEuprob ≥+=+≥ ξμξμ ,  

or, equivalently, by equation  

(6)       ( )( ) ( )( )
LLLLLL CEuCEu μμ −Γ=−Ψ **

.  

Notice that ( )( ) ( )0*

LLLL CEu Ψ≥−Ψ μ  and ( )( ) ( )0*

LLLL CEu Γ≤−Γ μ  if and only if ( ) LLCEu μ≥*
. 

Thus, equation (6) implies that ( ) ( )00 LL Γ≤Ψ  if and only if ( ) LLCEu μ≥*
. At the same time, we can 

show that ( ) ( ) ( )( ) ( ) ( )( ) ( )010100 11 LLLLLLLL xuxu Γ≤−−Ψ+Γ=−−Γ+Ψ=Ψ μμ , with the first equality 

due to assumption (2), and the second equality due to assumption (3), if ( ) ( )( ) 21 nL xuxu +≤μ . Thus, if 

the expected utility of L is close to the utility of its lowest possible outcome, it follows that ( ) ( )00 LL Γ≤Ψ  

and ( ) LLCEu μ≥*
. A similar argument implies that ( ) LLCEu μ≤*

 if the expected utility of lottery L is 

close to the utility of the highest possible outcome. We already established that these two conclusions are 

consistent with the fourfold pattern of risk attitudes both for concave and convex utility functions. 

 Intuitively, the underlying assumptions about the distribution of random errors imply that errors 

are more likely to overvalue than undervalue the expected utility of lotteries, when the latter is close to the 

utility of the lowest possible outcome (e.g. improbable gains or probable losses). The stochastic utility of a 

lottery cannot be lower than the utility of its lowest possible outcome. Due to this constraint, it is 

relatively difficult to undervalue the expected utility of a lottery by mistake, when it is already close to the 

utility of the lowest possible outcome. At the same time, it is relatively easy to overvalue the expected 

utility of such lottery. Thus, in this case, random errors reinforce a risk seeking behavior.  

Similarly, when the expected utility of a lottery is close to the utility of the highest possible 

outcome (e.g. probable gains or improbable losses), it is more likely to be undervalued by random errors. 

The stochastic utility of a lottery cannot be higher than the utility of its highest possible outcome. Thus, 

the overvaluation of the true expected utility by mistake is constrained when the latter is already close to 

the utility of the highest possible outcome. At the same time, there is plenty of room for random errors to 

undervalue the expected utility of a lottery. In this case, random errors reinforce a risk averse behavior.  
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2.2. Common consequence effect (Allais paradox) 

There exist outcomes 321 xxx <<  and probabilities 0>> qp  such that lottery ( )1,21 xS  is 

preferred to lottery ( )qxpxqpxR ,;1,;, 3211 −−  and at the same time lottery ( )qxqxR ,;1, 312 −  is 

preferred to lottery ( )pxpxS ,;1, 212 −  (Slovic and Tversky, 1974; MacCrimmon and Larsson, 1979). 

This choice pattern is frequently found in the experimental data and it is known as the common 

consequence effect. The most famous example of the common consequence effect is the Allais paradox 

(Allais, 1953), which is a special case when 11.0,105,10,0 6

3

6

21 =⋅=== pxxx  and 1.0=q  

(Starmer, 2000). Intuitively, when the probability mass is shifted from the medium outcome to the lowest 

possible outcome, the choice of a riskier lottery R becomes more probable. 

Four lotteries in the common consequence effect are constructed so that 
2211 SRSR μμμμ −=−  

and let us denote this difference by δ . Since the expected utilities of a riskier and a safer lottery always 

differ by the same amount δ , EUT cannot explain why the choice of the riskier lottery becomes more 

likely. In contrast, StEUT is compatible with the common consequence effect. 

Lottery 1S  is a degenerate lottery and random errors do not affect its utility ( )21
xuS =μ . In a 

binary choice, ( ) ( ) ( )δξμμ −Ψ=+≥=− 111111 RRRSprobRSprob f . Similarly, 1R  is (weakly) preferred to 

1S  with probability ( ) ( )δ−Γ=− 111 RSRprob f . Choice probabilities ( )11 RSprob −f  and ( )11 SRprob −f  

depend only on the properties of the cumulative distribution function of a random error 
1Rξ  that distorts 

the expected utility of 1R . In the previous subsection we established that ( ) ( )00
11 RR Γ≥Ψ , whenever the 

expected utility of 1R  is close to the utility of the highest possible outcome.2 In addition, if the cumulative 

                                                 
2 For example, in the Allais paradox, this condition is satisfied when the gain of one million starting from zero 

wealth position brings a higher increase in utility than the gain of additional four million. 
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distribution function of 
1Rξ  is continuous, it is always possible to find small 0≥δ  such that 

( ) ( )δδ −Γ≥−Ψ
11 RR , i.e. ( ) ( )1111 SRprobRSprob −≥− ff .  

The probability that lottery 2S  is (weakly) preferred to lottery 2R  is given by ( )=− 22 RSprob f  

( ) ( )
( )

( ) ( )vvprob S

xu

xu
RRRSS

S

S
2

23

21
22222

d Ψ−Ψ=+≥+= ∫
−

−

μ

μ
δξμξμ  and it depends on the properties of the 

cumulative distribution functions of random errors 
2Rξ  and 

2Sξ . In general, these two errors can be drawn 

from different distributions. In the simplest possible case when 
2Rξ  and 

2Sξ  are drawn from the same 

distribution, ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) 5.0d d 
2

23

21
22

23

21
222 =ΨΨ≤Ψ−Ψ=− ∫∫

−

−

−

−
vvvvRSprob S

xu

xu
RS

xu

xu
R

S

S

S

S

μ

μ

μ

μ
δf  where the 

inequality holds if and only if 0≥δ . By analogy, we can also show that ( ) 5.022 ≥−SRprob f . 

To summarize, it is possible to find a small 0≥δ  such that ( )11 RSprob −f  is higher or equal to 

( )11 SRprob −f  (if the expected utility of 1R  is close to the utility of the highest possible outcome) and at 

the same time ( )22 SRprob −f  is higher or equal to ( )22 RSprob −f  (if random errors that distort the 

expected utilities of 2S  and 2R  are drawn from the same or similar distributions). Thus, under fairly 

plausible assumptions, StEUT is consistent with the common consequence effect. 

Intuitively, when the probability mass is allocated to the medium outcome, which is close to the 

highest possible outcome in terms of utility, an individual prefers a degenerate lottery 1S  to risky lottery 

1R  even when the expected utility of 1R  is (slightly) higher. Utility of 1S  is not affected by random errors 

but random errors are likely to undervalue the expected utility of 1R  because it is close to the utility of the 

highest possible outcome. When probability mass is shifted to the lowest possible outcome, random errors 

distort the expected utility of both 2S  and 2R . If the distorting effect of random errors is similar for both 

lotteries, an individual opts for the lottery with higher expected utility i.e. lottery 2R .  
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StEUT predicts that the common consequence effect can disappear if lottery 1S  is not degenerate. 

Conlisk (1989) and Camerer (1992) find experimental evidence confirming this prediction. StEUT is also 

compatible with the so called generalized common consequence effect (Wu and Gonzalez, 1996) but the 

theoretical analysis is rather cumbersome and hence it is omitted (see working paper Blavatskyy, 2005). 

2.3. Common ratio effect  

The common ratio effect is the following empirical finding. There exist outcomes 321 xxx <<  

and probability ( )1,0∈θ  such that ( )1,23 xS  is preferred to ( )θθ ,;1, 313 xxR −  and at the same time 

( )rxrxR θθ ,;1, 314 −  is preferred to ( )rxrxS ,;1, 214 −  when probability r is close to zero (Starmer, 2000). 

Intuitively, when the probabilities of medium and highest possible outcome are scaled down in the same 

proportion (hence the name of the effect), the choice of a riskier lottery R becomes more probable. Notice 

that ( )
3344 SRSR r μμμμ −=−  and EUT cannot explain the common ratio effect. StEUT explains the 

common ratio effect by analogy to its explanation of the common consequence effect.  

On the one hand, ( )=− 33 RSprob f ( )=+≥
333 RRSprob ξμμ ( )Δ−Ψ

3R , where 
33 SR μμ −=Δ . 

When 5.0≥θ  the expected utility of lottery 3R  is close to the utility of the highest possible outcome, i.e. 

( ) ( )31 5.05.0
3

xuxuR +≥μ , and ( ) ( )00
33 RR Γ≥Ψ . If  the  cumulative  distribution  function  of  a random 

error 
3Rξ  is continuous, it is possible to find small 0≥Δ  such that ( ) ( )Δ−Γ≥Δ−Ψ

33 RR , i.e. 

( )≥− 33 RSprob f ( )33 SRprob −f . On the other hand, ( ) ( )=+≥+=− 444444 RRSSprobRSprob ξμξμf  

( )
( )

( ) ( )vrv S

xu

xu
R

S

S
4

43

41
4

d ΨΔ−Ψ= ∫
−

−

μ

μ
. If random errors 

4Rξ  and 
4Sξ  are drawn from the same distribution and 

Δ  is non-negative, we can conclude that ( ) ( )4444 5.0 SRprobRSprob −≤≤− ff .  

In summary, an individual chooses 3S  more often than 3R  even though 3R  has a (slightly) higher 

expected utility because random errors are more likely to undervalue than overvalue the expected utility of 

3R , when 5.0≥θ . In contrast, utility of 3S  is not affected by random errors. In binary choice between 
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4R  and 4S , the expected utility of both lotteries is affected by random errors. If random errors 
4Rξ  and 

4Sξ  are drawn from the same or similar distribution, an individual chooses the lottery with a higher 

expected utility ( 4R ) more often. Thus, the common ratio effect is observed. Notice that StEUT cannot 

explain the common ratio effect if 5.0<θ , which is consistent with the experimental evidence.3  

2.4. Violation of betweenness 

According to the betweenness axiom, if an individual is indifferent between two lotteries then any 

probability mixture of these lotteries is equally good e.g. Dekel (1986). Systematic violations of the 

betweenness have been reported in Coombs and Huang (1976), Chew and Waller (1986), Battalio et al. 

(1990), Prelec (1990) and Gigliotti and Sopher (1993). There exist lotteries S, R and a probability mixture 

( ) RSM ⋅−+⋅= θθ 1 , ( )1,0∈θ , such that significantly more individuals exhibit a quasi-concave 

preference RSM −− ff  than a quasi-convex preference MSR −− ff , or vise versa. Preferences are elicited 

from a binary choice between S and R and a binary choice between S and M. Asymmetric split between 

quasi-concave and quasi-convex preferences is taken as evidence of a violation of the betweenness.  

In the context of stochastic choice, an individual reveals the quasi-concave preference RSM −− ff  

with probability ( ) ( ) ( ) ( )( )MSprobRSprobRSprobSMprob −−⋅−=−⋅− ffff 1 . Similarly, the same 

individual reveals the quasi-convex preference MSR −− ff  with probability ( ) ( )=−⋅− MSprobSRprob ff  

( ) ( )( )RSprobMSprob −−⋅−= ff 1 . Thus, a quasi-concave preference is observed more (less) often than a 

quasi-convex preference if and only if ( )RSprob −f  is greater (smaller) than ( )MSprob −f . According to 

StEUT, ( ) ( )RRSSprobRSprob ξμξμ +≥+=−f  and ( ) ( )MMSSprobMSprob ξμξμ +≥+=−f . 

                                                 
3 Bernasconi (1994) finds the common ratio effect when 8.0=θ  and 75.0=θ . Loomes and Sugden (1998) find 

evidence of the common ratio effect when { }8.0,32,6.0∈θ , and no such evidence when 4.0=θ  and 5.0=θ . 
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Notice that ( ) ( )RSMS μμθμμ −⋅−=− 1  because lottery M is a probability mixture of S and R. In the 

simplest possible case when random errors Rξ  and Mξ  are drawn from the same distribution, we can 

write ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
∫∫

−

−

−

−
≥Ψ−+Ψ=Ψ−+Ψ=−

Sn

S

Sn

S

xu

xu
RSM

xu

xu
RSR vvvvRSprob

μ

μ

μ

μ
μμμμ

11
SS d d f  

( ) ( )( ) ( )
( )

( ) ( )MSprobvv
Sn

S

xu

xu
RSM −=Ψ−⋅−+Ψ≥ ∫

−

−
f

μ

μ
μμθ

1
Sd 1  when RS μμ > . Similarly,  

( ) ( )MSprobRSprob −≤− ff  when RS μμ < . Thus, an individual is more (less) likely to reveal quasi-

concave preferences when the expected utility of S is higher (lower) than the expected utility of R.  

The intuition behind the asymmetric split between quasi-concave and quasi-convex preferences is 

very straightforward. By construction, mixture M is located between lotteries S and R in terms of expected 

utility. Two cases are possible. If the expected utility of S is higher than the expected utility of R, random 

errors  are  more  likely to reverse  preference MS −f  than RS −f . To reverse  preference MS −f , random 

errors only need to overcome the difference between the expected utility of S and the expected utility of 

M. This difference is smaller than the difference  between the expected utility of S and the expected utility 

of R. Hence, an individual is more likely to exhibit preference RS −f  than MS −f , which implies a higher 

likelihood of the quasi-concave preference RSM −− ff . Similarly, if the expected utility of R is higher than 

the expected utility of S, random errors are more likely to reverse preference SM −f  than preference 

SR−f . In this case, an individual is more likely to exhibit preference MS −f  than RS −f , which implies a 

higher likelihood of the quasi-convex preference MSR −− ff .  

StEUT can also explain the violation of the betweenness documented in Camerer and Ho (1994) 

and Bernasconi (1994) who elicited preferences from three binary choices: between S and R, between S 

and M and between M and R. In fact, Blavatskyy (2006a) shows that the violations of the betweenness are 

compatible with any Fechner-type model of stochastic choice with error term additive on the utility scale.  
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3. Fit to experimental data 

This section presents a parametric estimation of StEUT using the data from ten well-known 

experimental studies. Experimental datasets do not allow for non-parametric estimation of StEUT. StEUT 

admits the possibility that the distribution or random errors is lottery-specific. Thus, many observations 

involving the same lotteries are required to estimate the cumulative distribution function of random errors 

for every lottery. Parametric estimation allows reducing the number of estimated parameters.   

3.1. Parametric form of StEUT 

A natural assumption for an economist to make is that an error Lξ  in equation (1) is drawn from 

the normal distribution with zero. To satisfy assumption (2), normal distribution of Lξ  must be truncated 

so that ( ) ( )nLL xuxu ≤+≤ ξμ1 . Specifically, the cumulative distribution function of Lξ  is given by 

(7)      ( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( ) LnL

LLLnL

LLL
L xuvxu

xuxu

xuv
v μμ

μμ
μ

−≤≤−
−Φ−−Φ

−Φ−Φ
=Ψ 1

1

1 ,  

where ( ).LΦ  is the cumulative distribution function of the normal distribution with zero mean and 

standard deviation Lσ . Obviously, the cumulative distribution function (7) satisfies equation (3).  

The standard deviation Lσ  is lottery-specific (Hey, 1995). It captures the fact that for some 

lotteries the error of miscalculating the expected utility is more volatile than for the other lotteries. First of 

all, it is plausible to assume that Lσ  is higher for lotteries with a wider range of possible outcomes. In 

other words, when possible outcomes of a lottery are widely dispersed, there is more room for error. 

Second, since there is no error in choice between “sure things”, it is natural to assume that Lσ  converges 

to zero for lotteries converging to a degenerate lottery, i.e. { }niL
pi

,...,1,0lim
1

∈∀=
→
σ . A simple function 

that captures these two effects (and fits very well the empirical data) is  

(8)    ( ) ( )( ) ( )∏
=

−−⋅=
n

i

inL pxuxu
1

1 1σσ . 
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where σ  is constant across all lotteries. Coefficient σ  captures the standard deviation of random errors 

that is not lottery-specific. For example, in the experiments with hypothetical incentives, σ  is expected to 

be higher than in the experiments with real incentives because real incentives tend to reduce the number of 

errors (Smith and Walker, 1993; Harless and Camerer, 1994). In the limiting case when coefficient 

0→σ  we obtain a special case of the expected utility theory: ( ) ,0→> εξLprob  for any 0>ε . 

Finally, a subjective utility function is defined over changes in wealth by  

(9)              ( ) ( )
( )⎩

⎨
⎧

≤−−
≥−+=

0,11

0,11

xx

xx
xu β

α

 

where 0>α  and 0>β  are constant. Coefficients α  and β  capture the curvature of utility function 

correspondingly for positive and negative outcomes. Utility function (9) resembles the value function of 

prospect theory proposed by Kahneman and Tversky (1979). However, unlike the value function, utility 

function (9) is constructed so that the marginal utility of a gain (loss) of one penny does not become 

infinitely high (low), which appears as a counterintuitive property for a Bernoulli utility function. Since 

none of ten experimental datasets reexamined below includes mixed lotteries involving both positive and 

negative outcomes, we abstract from the possibility of loss aversion (Kahneman and Tversky, 1979).  

Equations (7)-(9) complete the description of the parametric form of StEUT. This parametric form 

is estimated below on the data from ten well-known experimental studies. For every dataset, the fit of 

StEUT is also compared with the fit of cumulative prospect theory or CPT (Tversky and Kahneman, 

1992), which coincides with the rank-dependent expected utility theory (Quiggin, 1981) when lotteries 

involve only positive outcomes. A detailed discussion why rank-dependent expected utility theory is a 

good representative non-expected utility theory is offered in Loomes et al. (2002). 

3.2. Experiments with certainty equivalents 

This section presents the reexamination of experimental data from Tversky and Kahneman (1992) 

and Gonzalez and Wu (1999). Both studies elicited the certainty equivalents of two-outcome lotteries to 

measure individual risk attitudes. Tversky and Kahneman (1992) recruited 25 subjects to elicit their 
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certainty equivalents of 28 lotteries with positive outcomes and 28 lotteries with negative outcomes4. The 

obtained empirical data provides strong support for the fourfold pattern of risk attitudes.  

Definition (4) is used to calculate the certainty equivalent of every lottery. Specifically, for 

cumulative distribution function (7), the certainty equivalent of lottery L is implicitly defined by 

(10)   ( )
( )( ) ( )( )

( )( ) ( )( )LLLnL

xuxu

L
LL

xuxu

ee
CEu

L

Ln

L

L

μμπ
σ

μ
σ
μ

σ
μ

−Φ−−Φ
−

+=

−
−

−
−

1

22 2

2

2

2
1

2
 

where Lσ  has functional form (8) and utility function ( ).u  is given by equation (9). Thus, the predicted 

certainty equivalent LCE  is in fact a function of two parameters: coefficient α  (or β ) of the power 

utility function and the standard deviation of random errors σ . For every subject, these two parameters 

are estimated to minimize the weighted sum of squared errors ( )∑ −=
L

LL CECEWSSE
2

1 , where 

LCE  is the certainty equivalent of lottery L that was actually elicited in the experiment.5  

For comparison, the prediction of a parametric form of CPT proposed by Tversky and Kahneman 

(1992) is also calculated.6 For every subject, two parameters of CPT (power coefficient α  (or β ) of the 

value function and coefficient γ  (or δ ) of the probability weighting function) are estimated to minimize 

the weighted sum of squared errors ( )∑ −=
L

L
CPT

L CECEWSSE
2

1 , where 
CPT

LCE  is CPT’s prediction. 

                                                 
4 Tversky and Kahneman (1992) also used 8 decision problems involving mixed lotteries with positive and negative 

outcomes. Unfortunately, Richard Gonzalez, who conducted the experiment for Tversky and Kahneman (1992) 

could not find the raw data on these mixed lotteries and no reexamination was possible. 

5 Non-linear unconstrained optimization was implemented in the Matlab 6.5 package (based on the Nelder-Mead 

simplex algorithm).  

6 Specifically, the utility of lottery ( )nn pxpxL ,;..., 11  with outcomes nmm xxxx <<≤<<< + ...0... 11  is 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )∑ ∑∑∑ ∑∑ += +=
+

=
++

=

−

=
−

=
−− −+−=

n

mi

n

ij j

n

ij ji

m

i

i

j j

i

j ji pwpwxupwpwxuLu
1 11

1

11

~ , where  

( ) ( )βλ xxu −−=−
, ( ) α

xxu =+
, ( ) ( )( ) γγγγ 1

1 ppppw −+=+
 and ( ) ( )( ) δδδδ 1

1 ppppw −+=−
. 
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[Insert Table 1 and Table 2 here] 

Table 1 and Table 2 present the best fitting parameters of StEUT and CPT for all 25 subjects, as 

well as the achieved minimum weighted sum of squared errors. Table 1 presents the results for lotteries 

with positive outcomes and Table 2 — for lotteries with negative outcomes. For 19 out of 25 subjects, the 

utility function of StEUT has the same shape as the value function of prospect theory: concave for positive 

outcomes i.e. ( )1,0∈α  and convex for negative outcomes i.e. ( )1,0∈β . Standard deviation of random 

errors σ  varies from 0.0125, which indicates that an individual behaves according to EUT, to 3.4419, 

which indicates that an individual assigns certainty equivalents essentially at random. For 16 out of 25 

subjects, standard deviation of random errors σ  is lower when lotteries have negative outcomes than 

when lotteries have positive outcomes. One interpretation of this finding might be that the subjects are 

more diligent (less vulnerable to error) when making decisions involving losses.                                                                     

The prediction of StEUT and CPT are very similar (correlation coefficient is 0.95 for lotteries 

with positive outcomes and 0.93 for lotteries with negative outcomes). Nevertheless, Table 1 shows that 

StEUT fits better than CPT for 15 out of 25 subjects, in the dataset where lotteries involve gains. 

Similarly, Table 2 shows that StEUT achieves a lower weighted sum of squared errors for 14 out of 25 

subjects, in the dataset where lotteries involve losses.  

[Insert Table 3 here] 

Gonzalez and Wu (1999) conducted a similar experiment to Tversky and Kahneman (1992). They 

recruited 10 subjects to elicit their certainty equivalents of 165 lotteries with positive outcomes. For this 

dataset, the prediction of StEUT is estimated along the procedure already outlined above. Gonzalez and 

Wu (1999) estimated CPT with a probability weighting function ( ) ( )( )γγγ δδ ppppw −+⋅⋅=+ 1  and I 

use this functional form as well to estimate the prediction of CPT. For every subject, three coefficients of 

CPT (power coefficient α  of the value function, curvature coefficient γ  and elevation coefficient δ  of 

the probability weighting function) are estimated to minimize the corresponding weighted sum of squared 

errors. The results of parametric fitting for StEUT and CPT are presented in Table 3. StEUT fits better 



 20

than CPT for all 10 subjects in the sample. A possible explanation for such superior explanatory power of 

StEUT is that the dataset is quite noisy. Gonzalez and Wu (1999) report themselves that weak 

monotonicity is violated in 21% of the pairwise comparisons of the elicited certainty equivalents. 

Therefore, it is not really surprising that the model with an explicit noise structure fits the data very well. 

3.3. Experiments with repeated choice 

This section reexamines the experimental data from Hey and Orme (1994) and Loomes and 

Sugden (1998). In both studies the subjects faced a binary choice under risk and every decision problem 

was repeated again after a short period of time. Hey and Orme (1994) recruited 80 subjects to make 2x100 

choice decisions between two lotteries with a possibility of declaring indifference. Hey and Orme (1994) 

constructed the lotteries using only four outcomes: £0, £10, £20 and £30. This convenient feature of the 

dataset allows us to estimate the utility function of StEUT without committing to a specific functional 

form (9). Since von Neumann-Morgenstern utility function can be arbitrary normalized for two outcomes, 

we can fix ( ) 00£ =u  and ( ) 110£ =u . The remaining parameters ( )20£1 uu =  and ( )30£2 uu =  capture 

the curvature of utility function and they are estimated from the observed choices. 

The probability that lottery S with the lowest outcome 
S

x1  and the highest outcome 
S

nx  is 

preferred to lottery R with the lowest outcome 
SR

xx 11 ≤  and the highest outcome 
S

n

R

n xx ≥  is equal to 

(11)        ( )

( ) ( )
( )
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f . 

Explicit derivation of equation (11) can be found in the working paper Blavatskyy (2005). For every 

subject, three parameters of StEUT (σ , 1u  and 2u ) are estimated to maximize log-likelihood 

(12) ( ) ( )( ) ( ) ( )( )∑ ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+

⋅+−⋅+⋅
S R
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  2

 1 log log
 1 log log

ff
ff , 
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where a is the number of times the subject has chosen lottery S over lottery R, b is the number of times the 

subject preferred R to S and c is the number of times the subject declared that he or she does not care 

which lottery to choose.  

An individual, who expresses indifference, is assumed to be equally likely to choose either lottery 

S or lottery R (i.e. each lottery is chosen with probability one-half). This interpretation of indifference is 

motivated by popular experimental procedures. For subjects, who reveal indifference, a choice decision is 

typically delegated to an arbitrary third party (e.g. a coin toss or a random number generator). Thus, if 

individuals reveal no preference for either lottery S or lottery R, they typically end up facing a 50%-50% 

chance of playing either lottery S or lottery R, which is equivalent to the situation when they deliberately 

choose each lottery with probability one-half. Alternatively, indifference in revealed choice can be treated 

as an event when the difference in stochastic utilities of two lotteries does not exceed the threshold of a 

just perceivable difference as modeled in Hey and Orme (1994).  

The utility of a lottery according to CPT is calculated using the probability weighing function 

( ) ( )( ) γγγγ 1

1 ppppw −+=+
 and the value function ( ) 00£ =+

u , ( ) 110£ =+
u ,  ( )20£1

+= uu  and 

( )30£2

+= uu . Since CPT is a deterministic theory, it has to be embedded into a stochastic choice model 

to yield a probabilistic prediction. Similar as Hey and Orme (1994), I estimate CPT embedded in the 

Fechner model.7 Specifically, the probability that lottery S is preferred to lottery R according to CPT is  

(13)      ( ) ( ) ( )( )SuRuRSprob ~~1 ,0 −Φ−= ρf , 

where ( ).,0 ρΦ  is the cumulative distribution function of the normal distribution with zero mean and 

standard deviation ρ , and ( ).~u  is the utility of a lottery according to CPT. For every subject, four 

parameters of CPT ( 1u , 2u , γ  and ρ ) are estimated to maximize the corresponding log-likelihood (12). 

                                                 
7 I also estimated CPT with a stochastic choice model ( ) ( ) ( )( ){ }( )SuRuRSprob ~~exp11 −⋅+= τf , 

const=τ , proposed by Luce and Suppes (1965, p.335) and used by Camerer and Ho (1994) and Wu and Gonzalez 

(1996). The result of this estimation was nearly identical to the estimation of CPT with the Fechner model. 
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For all 80 subjects, the estimated best fitting parameters of StEUT satisfy weak monotonicity, i.e. 

112 ≥≥ uu . However, for 14 subjects the estimated parameters are 112 == uu , which suggest that these 

subjects simply maximize the probability of “winning at least something”. For 19 subjects the estimated 

parameter γ  of a probability weighting function of CPT is greater than one, which contradicts to the 

psychological foundations of CPT (Tversky and Kahneman, 1992). Additionally, for one subject the 

estimated value function of CPT violates weak monotonicity. For these 20 subjects, whose unconstrained 

best fitting parameters of CPT are inconsistent with the theory, the parameters of CPT are estimated 

subject to the constraints 1≤γ  and 112 ≥≥ uu .  

StEUT and CPT are non-nested models that can be compared through Vuong’s adjusted likelihood 

ratio test (Vuong, 1989). Loomes et al. (2002, p.128) describe the application of Vuong’s likelihood ratio 

test to the selection between stochastic decision theories. Vuong’s statistic z has a limiting standard 

normal distribution if StEUT and CPT make equally good predictions. A significant positive value of z 

indicates that StEUT fits the data better and a significant negative value—that CPT makes more accurate 

prediction. Figure 1 demonstrates that for the majority of subjects the predictions of StEUT and CPT 

(embedded into the Fechner model) are equally good. The number of subjects for whom the prediction of 

CPT is significantly better (worse) than the prediction of StEUT appears to be higher if we use Akaike 

(Schwarz) information criterion to adjust for the lower number of parameters in StEUT. 

[Insert Figure 1 here] 

Loomes and Sugden (1998) recruited 92 subjects and asked them to make 2x45 binary choice 

decisions designed to test the common consequence effect, the common ratio effect and the dominance 

relation. The subjects faced a choice between lotteries with only three possible outcomes. For 46 subjects 

these outcomes were £0, £10 and £20, and for the other 46 subjects—£0, £10, and £30. Therefore, the 

utility function of StEUT is normalized so that ( ) 00£ =u , ( ) 110£ =u  and the remaining utility 

( )20£1 uu =  or ( )30£1 uu =  (as appropriate) is estimated from the observed choice decisions. The same 

normalization is used for the value function of CPT. For every subject, two parameters of StEUT (σ  and 
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1u ) and three parameters of CPT embedded in the Fechner model ( 1u , γ  and ρ ) are estimated to 

maximize the log-likelihood (12) as already described above.  

Estimated best fitting parameter 1u  of StEUT satisfies strong monotonicity, i.e. 11 >u , for all 92 

subjects. However, 38 subjects have S-shaped probability weighting function of CPT, i.e. the estimated 

best fitting parameter γ  is greater than one, which is at odds with the psychological foundations of the 

prospect theory. Among these 38 subjects, 4 individuals also have a non-monotone value function, i.e. 

11 <u . For these 38 subjects, the best fitting parameters of CPT are estimated subject to the constraints 

1≤γ  and 11 ≥u . The predictive power of StEUT and CPT (embedded in the Fechner model) is compared 

based on Vuong’s adjusted likelihood ratio test. Figure 2 demonstrates that for the majority of subjects the 

predictions of StEUT and CPT are not significant different from each other. Thus, StEUT fits the 

experimental data in Loomes and Sugden (1998) and Hey and Orme (1994) at least as good as CPT.  

[Insert Figure 2 here] 

3.4. Other experiments 

This section reexamines the experimental results reported in Conlisk (1989), Kagel et al. (1990), 

Camerer (1989, 1992), Camerer and Ho (1994) and Wu and Gonzalez (1996). In these experimental 

studies subjects were asked to make a non-repeated choice between two lotteries without the possibility to 

declare indifference8. For every binary choice problem, the prediction of StEUT is calculated through 

equation (11) using functional forms (8)-(9) and the prediction of CPT—through equation (13) using 

functional form proposed by Tversky and Kahneman (1992) (see footnote 6). For every experimental 

dataset, two parameters of StEUT (either α  or β , and σ ) and three parameters of CPT embedded into 

the Fechner model (either α , γ  and ρ  or β , δ  and ρ ) are estimated to maximize the corresponding 

                                                 
8 Kagel et al. (1990) allowed the subjects to express indifference but do not report how many subjects actually used 

this possibility. Camerer (1989) allowed indifference in one experimental session. Camerer (1989) reports that three 

subjects revealed indifference in almost every decision problem, and the rest never expressed indifference. 
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log-likelihood (12), where a now denotes the number of individuals who have chosen lottery S over R and 

b denotes the number of individuals who preferred R to S. Since there is no possibility of declaring 

indifference, c is set to zero for every dataset. Of course, individuals do not share identical preferences. 

However, a single-agent stochastic model is a simple method for integrating data from many studies, 

where individual estimates have low power, e.g. when one subject makes only a few decisions (Camerer 

and Ho, 1994, p.186). Such approach is also relevant in an economic sense because it describes the 

behavior of a “representative agent” (Wu and Gonzalez, 1996).9 

[Insert Table 4 here] 

Table 4 presents 5 binary choice problems from Conlisk (1989). Conlisk (1989) replicates the 

Allais paradox in problems #1 and #2. Problems #3 and #4 constitute a common consequence problem 

without a degenerate lottery that delivers one million for certain. Table 4 shows that the incidence of the 

Allais paradox completely disappears in problems #3 and #4. Finally, problems #1 and #5 constitute a 

variant of the Allais paradox, when a probability mass is shifted from the medium to the highest (not 

lowest) outcome. Table 4 shows that the switch in preferences between lotteries S and R across problems 

#1 and #5 is comparable to that in problems #1 and #2 (the original Allais paradox).  

Maximum likelihood estimates of the parameters of StEUT are 0.6711=α  and 0.8764=σ . 

The best fitting parameters of CPT are 0.4882,=α  0.4713=γ  and 208.0832=ρ . CPT predicts very 

well the original Allais paradox; however, it also predicts the common consequence effect for problems #3 

and #4, which is not found in the data. StEUT makes a less accurate prediction for the original Allais 

paradox but it predicts no common consequence effect for problems #3 and #4. Vuong’s likelihood ratio 

statistic adjusted through Schwarz criterion is -1.0997z = , which suggests that the predictions of CPT 

and StEUT are not significantly different from each other according to conventional criteria. 

                                                 
9 There is also a practical constraint why the reexamination of individual choice patterns is not feasible. Many of the 

experimental studies reexamined in this section were conducted over a decade ago and several authors, whom I 

contacted, could not find raw experimental data. 
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[Insert Table 5 here] 

Table 5 presents experimental results for human subjects from Kagel et al. (1990). The upper 

number in every cell shows the number of subjects who revealed each of four choice patters that are 

theoretically possible in the experiment. Kagel et al. (1990) found frequent violations of EUT that are 

consistent with both fanning-out (higher risk aversion for stochastically dominating lotteries) and fanning-

in (higher risk seeking for stochastically dominating lotteries) of indifference curves.  

The second number in the second row of every cell shows the prediction of StEUT. Maximum 

likelihood estimates of StEUT parameters are 0.7112,=α  and 0.2549=σ . StEUT predicts fanning-out 

in the first set of lotteries, fanning-in—in the second set of lotteries and non-systematic violations of 

EUT—in the third set of lotteries. In contrast, CPT explains these choice patterns only when its 

probability weighting function has an atypical S-shaped form (estimated parameter 1>γ ). The first 

number in the second row of every cell in Table 5 shows the prediction of unrestricted CPT. When the 

parameters of CPT are restricted, i.e. 1≤γ , its fit (log likelihood -125.839) is worse than the fit of StEUT 

(log likelihood -125.095) even though CPT embedded in the Fechner model has more parameters. 

 [Insert Table 6 here] 

Table 6 presents the results of estimation of CPT and StEUT on the experimental data reported in 

Camerer (1989, 1992). In both studies, binary choice problems are constructed to test the betweenness 

axiom, the common consequence effect and the fourfold pattern of risk attitudes. The important feature of 

the experimental design in Camerer (1992) is that all lotteries have the same range of possible outcomes 

(lotteries are located inside the probability triangle e.g. Machina, 1982). Camerer (1992) finds no 

significant evidence of the common consequence effect. This result is apparent in Table 6. For Camerer 

(1992) dataset, the best fitting parameter σ  of StEUT is close to zero, which is a special case when 

StEUT coincides with EUT. When lotteries involve small outcomes, the parameter of probability 

weighting function of CPT is close to one, which is a special case when CPT coincides with EUT.  
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We compare the fit of CPT and StEUT, as before, using Vuong’s adjusted likelihood ratio statistic 

z (significant positive values indicate that StEUT explains better the observed choice patterns). Table 6 

shows that CPT explains significantly better than StEUT the choices over lotteries with large positive 

outcomes from Camerer (1989). StEUT explains significantly better than CPT the choices over lotteries 

with small positive and negative outcomes from Camerer (1992). For the remaining experimental data, the 

predictions of CPT and StEUT are not significantly different. Interestingly, for experimental data from 

Camerer (1989), parameter σ  of StEUT is lower when real rather than hypothetical incentives are used 

suggesting that monetary incentives reduce random variation in the experiments (Hertwig and Ortmann, 

2001). It is also lower when lotteries involve negative outcomes suggesting that subjects are more diligent 

when faced with the possibility of losses. These observations support the interpretation of parameter σ  as 

the standard deviation of random errors, which are specific to the experimental treatment. 

[Insert Table 7 here] 

Camerer and Ho (1994) designed an experiment to test for the violations of the betweenness 

axiom. Table 7 presents the frequency with which all theoretically possible choice patterns are actually 

observed in their experiment, as well as the predicted frequencies according to CPT (embedded into the 

Fechner model) and StEUT. The predictions of CPT and StEUT are correspondingly the first and the 

second number in the second line of every cell. Estimated CPT parameters are 0.5555,=α  0.9324=γ  

and 1.0689=ρ , and estimated StEUT parameters are 0.4812=α  and 0.1178=σ .  

Table 7 shows that the predictions of CPT and StEUT are remarkably similar. Vuong’s adjusted 

likelihood ratio statistic is -0.4521z =  based on Akaike Information Criterion and 0.636z +=  based on 

Schwarz Criterion. Although both theories fit the experimental data in Camerer and Ho (1994) quite well, 

they fail to explain a modal quasi-concave preference in the last lottery triple, which is a replication of a 

hypothetical choice problem originally reported in Prelec (1990). Apparently, the parameterizations of 

StEUT (and CPT) compatible with an asymmetric split between quasi-concave and quasi-convex 
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preferences, when a modal choice pattern is consistent with the betwenness axiom, cannot explain such 

asymmetric split when a modal choice pattern violates betwenness. 

Wu and Gonzalez (1996) study the common consequence effect using 40 binary choice problems 

grouped into 5 blocks (“ladders”). Eight problems grouped within one block can be derived from each 

other by shifting the same probability mass from the lowest to the medium outcome. Wu and Gonzalez 

(1996) find that the fraction of subjects choosing a more risky lottery R first increases and then decreases 

when the probability mass is shifted from the lowest to the medium outcome (Figure 3 and Figure 4).  

[Insert Figure 3 and Figure 4 here] 

Figure 3 and Figure 4 demonstrate the predictions of CPT (embedded in the Fechner model) and 

StEUT about the fraction of subjects who choose a more risky lottery R. The predictions of CPT and 

StEUT replicate the generalized common consequence effect, though the predicted effect appears to be not 

as strong as in the actual experimental data. According to Vuong’s likelihood ratio test adjusted though 

Akaike Information Criterion, the predictions of CPT and StEUT are not significantly different from each 

other. Vuong’s likelihood ratio test adjusted though Schwarz Criterion shows that the prediction of StEUT 

is closer to actual choice data than the prediction of CPT in ladders 2 and 5. 

5. Conclusion 

New decision theory—stochastic expected utility theory (StEUT)—is proposed to describe 

individual decision making under risk. Existing experimental evidence demonstrates that individuals often 

make inconsistent decisions when they face the same binary choice problem several times. This empirical 

evidence can be interpreted that individual preferences over lotteries are stochastic and represented by a 

random utility model e.g. Loomes and Sugden (1995). Alternatively, an observed randomness in revealed 

choice under risk can be due to errors that occur when individuals execute their deterministic preferences. 

This paper follows the latter approach. Individual preferences are fully captured by a non-decreasing 

Bernoulli utility function defined over changes in wealth rather than absolute wealth levels. However, 

individuals make random errors when calculating the expected utility of a risky lottery.  



 28

Simple models of random errors have already been proposed in the literature when the probability 

of an error (Harless and Camerer, 1994) or the distribution or errors (Hey and Orme, 1994) was assumed 

to be constant for every choice problem. Such assumptions are clearly too simplistic because individuals 

obviously make no errors when choosing between “sure things” (degenerate lotteries) and very few 

errors—when one of the lotteries (transparently) first-order stochastically dominates the other lottery 

(Loomes and Sugden, 1998). On the other hand, when individuals choose between more complicated 

lotteries they switch their revealed preferences in nearly one third of all cases (Camerer, 1989). 

StEUT assumes that although individuals make random errors when calculating the expected 

utility of a lottery, they do not make transparent errors and always evaluate the lottery as at least as good 

as its lowest possible outcome and at most as good as its highest possible outcome. In other words, the 

internality axiom is imposed on the stochastic expected utility of a lottery, which is defined as expected 

utility of the lottery plus an error additive on the utility scale. Apart from this restriction, the distribution 

of random errors is assumed to be symmetric around zero.  

These intuitive assumptions about the distribution of random errors immediately imply that the 

lotteries whose expected utility is close to the utility of its lowest (highest) possible outcome are likely to 

be overvalued (undervalued) by random errors. Therefore, on the one hand, random errors reinforce risk-

seeking behavior when the utility of a lottery is close to the utility of its lowest outcomes (e.g. unlikely 

gains or probable losses). On the other hand, random errors reinforce risk averse behavior when the utility 

of a lottery is close to the utility of its highest outcomes (e.g. probable gains or unlikely losses). Thus, 

StEUT can explain the fourfold pattern of risk attitudes. The paper also shows that StEUT is consistent 

with the common consequence effect, the common ratio effect, and the violations of the betweenness. 

To assess the descriptive merits of StEUT, the experimental data from ten well-known empirical 

studies are reexamined. Ten selected studies are Conlisk (1989), Kagel et al. (1990), Camerer (1989, 

1992), Tversky and Kahneman (1992), Camerer and Ho (1994), Hey and Orme (1994), Wu and Gonzalez 

(1996), Loomes and Sugden (1998) and Gonzalez and Wu (1999). Within-subject analysis shows that for 

the majority of individual choice patterns there is no significant difference between the predictions of 
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StEUT and CPT. Between-subject analysis shows that StEUT explains the aggregate choice patterns at 

least as well as does CPT (except for the experiment with large hypothetical gains reported in Camerer, 

1989). Thus, a descriptive decision theory can be constructed by modeling the structure of an error term 

rather than by developing deterministic non-expected utility theories. For the brevity of exposition, StEUT 

is contested only against CPT (or rank-dependent expected utility theory), similar as in Loomes et al. 

(2002). A natural extension of this work is to evaluate the goodness of fit of several decision theories as it 

is done, for example, in Carbone and Hey (2000) and to compare their performance with the fit of StEUT. 

StEUT does not explain satisfactorily all available experimental evidence such as the violation of 

betweenness when a modal choice pattern is inconsistent with the betweenness axiom (see the last column 

of Table 7). Interestingly, CPT does not explain this phenomenon either, though it is able to predict such 

violations theoretically (Camerer and Ho, 1994). StEUT and CPT embedded into the Fechner model also 

predict too many violations of transparent stochastic dominance than are actually observed in the 

experiment. Loomes and Sugden (1998) argue that any stochastic utility model with an error term additive 

on the utility scale predicts, in general, too many violations of dominance. Thus, a natural extension of the 

present model is to incorporate a mechanism that reduces error in case of a transparent first-order 

stochastic dominance. Blavatskyy (2006b) develops such model by reducing the standard deviation of 

random errors in decision problems where one choice option transparently dominates the other alternative.  

To summarize, there is a potential for constructing even a better descriptive model than StEUT 

(and CPT) that explains the above mentioned choice patterns. The contribution of this paper is to 

demonstrate that this hunt for a descriptive decision theory can be successful with modeling the effect of 

random errors. The latter approach makes clear prediction about the consistency rates (test-retest 

reliability) when an individual faces the same decision problem on two different occasions. This is a 

promising avenue for future research, which received little attention so far (see, however, Hey, 2001). 
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1 1.0512 0.9710 1.2543 1.0971 0.0125 1.2376 
2 0.9627 0.7428 0.7066 0.9572 0.4039 0.4868 
3 0.9393 0.6804 1.1799 0.8863 0.5443 1.1507 
4 0.7633 0.4858 2.1941 0.4722 1.5406 2.9207 
5 0.7204 0.6943 1.0540 0.6248 0.5401 0.8587 
6 0.9673 0.6630 1.2134 0.7776 0.8996 1.1326 
7 0.7566 0.5566 0.7596 0.5539 0.9143 1.4563 
8 0.7291 0.5759 1.3861 0.5821 0.7226 1.6746 
9 0.6791 0.7646 0.9218 0.6386 0.3194 0.6807 

10 0.4994 0.3079 11.789 -0.0040 3.2733 8.3627 
11 1.2238 0.6344 0.7594 1.0124 0.9579 0.7094 
12 0.9941 0.6921 0.7624 0.8420 0.7252 0.7563 
13 0.6588 0.4210 4.2171 0.2738 1.8278 3.7672 
14 0.8643 0.5843 1.9677 0.6772 0.9226 1.9173 
15 0.4802 0.4000 6.7237 0.0387 1.4860 6.8369 
16 0.6632 0.7258 1.2451 0.5406 0.4920 1.1556 
17 0.7527 0.6830 3.2389 0.5497 0.8728 3.0933 
18 1.0497 0.6088 1.0080 0.8656 0.9472 1.0523 
19 0.6222 0.6908 3.1512 0.4823 0.5230 3.1211 
20 0.7973 0.5264 1.3734 0.5413 1.2739 1.5855 
21 1.0185 0.4987 1.2101 0.7265 1.2014 1.9130 
22 0.8550 0.6057 1.0114 0.6337 1.1372 0.7605 
23 1.1555 0.7893 2.3968 1.4594 0.0127 2.5917 
24 0.5399 0.5205 3.7401 0.2231 1.0190 4.7727 
25 0.7559 0.4530 1.3065 0.3818 1.3125 2.6873 

Table 1 Tversky and Kahneman (1992) dataset (lotteries with 

positive outcomes) 
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1 0.7629 0.7027 1.1354 0.7568 0.4104 0.7768 
2 0.7797 0.6996 1.2220 0.6040 0.7227 1.2889 
3 0.8269 0.7415 1.0416 0.6150 0.7351 1.1325 
4 0.9189 0.9458 2.4068 0.9259 0.1821 2.1180 
5 0.7982 0.7517 0.6756 0.7262 0.4417 0.6646 
6 0.8449 0.6817 1.9138 0.5873 1.0136 1.7034 
7 0.7053 0.6314 1.0289 0.5187 0.8566 0.8882 
8 0.8753 0.7742 1.3920 0.7922 0.4488 1.3531 
9 0.7893 0.8257 0.6382 0.8132 0.2324 0.2464 

10 0.5341 0.3220 11.191 0.1034 3.4419 7.1512 
11 0.8241 0.4502 1.4381 0.4549 1.2060 2.6437 
12 0.8769 0.6459 0.7200 0.8937 0.4759 0.6199 
13 0.7339 0.6012 1.8306 0.5225 0.9917 1.5751 
14 0.5424 0.7152 4.0507 0.4466 0.3131 4.6246 
15 0.5127 0.4544 4.7260 0.0834 1.2485 5.1786 
16 0.5113 0.3275 11.438 0.0858 3.1535 7.7726 
17 0.7617 0.6792 1.0847 0.5815 0.7726 1.1324 
18 0.8759 0.7498 1.7615 0.6140 0.8818 1.7514 
19 0.7251 0.7260 2.6886 0.6438 0.4799 2.5950 
20 0.9872 0.5670 1.1429 0.8858 0.7376 1.6388 
21 0.9205 0.8139 1.7946 0.6580 0.7205 1.9273 
22 1.4422 0.5445 0.5073 1.2752 0.8179 0.7485 
23 0.9146 0.4978 1.1196 0.6455 0.9473 1.8291 
24 0.5043 0.3730 3.6980 -0.0680 1.4884 5.6860 
25 0.6932 0.5648 4.5404 0.4262 1.2306 3.8524 

Table 2 Tversky and Kahneman (1992) dataset (lotteries with 

negative outcomes)
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Table 3 Gonzalez and Wu (1999) dataset 

( )RSprob f  predicted by 
# Lottery S Lottery R 

Choice 

of S CPT StEUT 

1 (106,1) (0,0.01;106,0.89;5*106,0.1) 0.5127 0.5012 0.4225 
2 (0,0.89;106,0.11) (0,0.9; 5*106,0.1) 0.1441 0.1714 0.2403 
3 (0,0.01;106,0.89;5*106,0.1) (0,0.02;106,0.78;5*106,0.2) 0.4651 0.5334 0.4904 
4 (0,0.71;106,0.19;5*106,0.1) (0,0.72;106,0.08;5*106,0.2) 0.4651 0.4269 0.4947 
5 (0,0.01;106,0.11;5*106,0.88) (0,0.02; 5*106,0.98) 0.2500 0.2275 0.2805 

Log-likelihood 0 -689.7011 -697.7902 

Table 4 Conlisk (1989) dataset: the fraction of subjects choosing S over R in the experiment and the 

prediction of CPT ( 133.3810.4553,0.4628, === ργα ) and StEUT ( 1.83670.5314, == σα ). 

Pairs of lotteries 

Choice 

pattern 

Pattern 

consistent 

with 

S1(-$14,1)  
R1(-$20,0.7;$0,0.3) 
S2(-$14,0.2;$0,0.8)  

R2(-$20,0.14;$0,0.86) 

S1(-$20,0.74;-$14,0.2;$0,0.06) 
R1(-$20,0.88;$0,0.12) 

S2(-$14,0.9;$0,0.1)  
R2(-$20,0.63;$0,0.37) 

S1(-$20,0.6;-$14,0.4)  
R1(-$20,0.88;$0,0.12) 

S2(-$14,0.9;$0,0.1)  
R2(-$20,0.63;$0,0.37) 

11 RS f , 

22 RS f  
EUT 

10 
4  4 

7 
5  7 

3 
4  4 

11 SR f , 

22 SR f  
EUT 

5 
10  11 

11 
12  10 

17 
12  13 

11 SR f , 

22 RS f  

Fanning 
Out 

10 
10  9 

1 
6  6 

5 
6  8 

11 RS f , 

22 SR f  

Fanning 
In 

4 
5  5 

15 
11  11 

7 
10  7 

 N=29 N=34 N=32 

Table 5 Kagel et al. (1990) dataset: the upper number in every cell is the number of subjects who 

revealed a corresponding choice pattern in the experiment; the lower numbers in every cell are the 

predicted numbers of subjects according to CPT (first number) with best fitting parameters 0.4,=α  

1.61652.0127, == ργ  and StEUT (second number) with parameters 0.7112,=α  0.2549=σ .

CPT StEUT 

Subject 
Value 

function 
parameter 

(α) 

Curvature of 
probability 
weighting 

function (γ) 

Elevation of 
probability 
weighting 

function (δ) 

Weighted 
sum of 
squared 
errors 

Utility 
function 

parameter 
(α) 

Standard 
deviation 
of random 
errors (σ) 

Weighted 
sum of 
squared 
errors 

1 0.5426 0.2253 0.3799 44.774 0.0955 2.1386 37.392 
2 0.4148 0.3314 1.0153 27.241 0.3305 1.5108 19.162 
3 0.5575 0.2665 1.4461 10.145 0.7155 1.7907 10.126 
4 0.6321 0.2058 0.1523 40.382 -0.056 3.3712 26.255 
5 0.3853 0.2351 0.915 17.368 0.2052 2.0611 13.435 
6 1.3335 1.1966 0.4634 14.621 0.7546 0.3539 12.229 
7 0.5306 0.2349 0.4106 25.176 0.1123 3.382 17.076 
8 0.5184 0.4773 0.1263 61.97 -0.171 1.4185 37.992 
9 1.1011 0.9363 0.2209 15.747 0.3776 0.6134 10.165 

10 0.5991 0.5634 0.4315 36.291 0.2197 0.8115 28.311 
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Cumulative Prospect Theory  

(embedded into Fechner model) 
Stochastic Expected Utility 

Theory 

Vuong’s adjusted 

likelihood ratio  

Experiment Incentives 
Value 

function 
parameter 
(α or β) 

Probability 
weighting 
function 

parameter 
(γ or δ) 

Standard 
deviation 
of random 
errors (ρ) 

Log 
likelihood 

Utility 
function 

parameter 
(α or β) 

Standard 
deviation  
of random 
errors (σ) 

Log 
likelihood

Akaike 
Infor-
mation 

Criterion 

Schwarz 
Criterion 

 Camerer (1989), large 
positive outcomes 

Hypothetical 0.4316 0.7101 13.7896 -883.842 0.2949 0.5065 -895.551 -2.629 
** 

-1.986 
* 

Camerer (1989), small 
positive outcomes 

Random lottery 
incentive scheme

0.9881 0.9975 0.0516 -945.091 0.5190 0.3383 -947.523 -0.4985 +0.4155

Camerer (1989), small 
negative outcomes 

Random lottery 
incentive scheme

0.0000 0.8285 0.4141 -908.124 0.8772 0.0433 -911.541 -1.1949 +0.1041

 Camerer (1992), large 
positive outcomes 

Hypothetical 0.0141 0.6177 0.3508 -502.552 0.585 0.0868 -505.623 -0.7238 +0.2034

Camerer (1992), small 
positive outcomes 

Hypothetical 0.9847 0.9981 0.1063 -490.652 0.8729 0.0914 -490.618 +3.248 
***

+10.47 
***

Camerer (1992), small 
negative outcomes 

Hypothetical 0.9520 0.9912 0.1236 -521.269 0.6951 0.0917 -522.543 +4.407 
***

+6.544 
***

*    Significant at 5% (one-sided test) 
**    Significant at 1% (one-sided test) 
***  Significant at 0.1% (one-sided test) 

Table 6 Camerer (1989, 1992) dataset 
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Lottery triples 

Choice 

pattern 

Revealed 

preference 
S($0,0.3;$80,0.4;$200,0.3) 
M($0,0.4;$80,0.2;$200,0.4)

R($0,0.5;$200,0.5) 

S($0,0.4;$80,0.6) 
 M($0,0.5;$80,0.4;$200,0.1) 
R($0,0.6;$80,0.2;$200,0.2) 

S($0,0.5;$80,0.4;$200,0.1) 
M($0,0.6;$80,0.2;$200,0.2) 

R($0,0.7;$200,0.3) 

S($0,0.66;$120,0.34) 
M($0,0.67;$120,0.32;$200,0.01)

R($0,0.83;$200,0.17) 

,RS f  

,MS f  

RM f  

Betweenness 
37 

26  22 

29 

20  24 

33 

23  21 

17 

46  46 

,RS f  

,MS f  

MR f  

Quasi-convex 
9 

15  14 

6 

13  15 

10 

13  14 

0 

5  6 

,SR f  

,SM f  

MR f  

Betweenness 
14 

3  4 

10 

4  3 

8 

3  3 

3 

0  0 

,SR f

,SM f  

RM f  

Quasi-
concave 

1 

5  6 

7 

7  5 

1 

5  6 

4 

4  3 

,RS f  

,SM f  

RM f  

Quasi-
concave 

6 

15  15 

21 

15  14 

6 

14  14 

76 

42  41 

,RS f  

,SM f  

MR f  

Intransitive 
9 

9  10 

8 

9  9 

13 

9  9 

4 

4  5 

,SR f  

,MS f  

MR f  

Quasi-convex 
6 

5  6 

2 

6  5 

9 

5  5 

1 

1  1 

,SR f  

,MS f  

RM f  

Intransitive 
4 

8  9 

0 

9  8 

1 

9  9 

1 

4  4 

 N = 86 N = 83 N = 81 N = 106 

Table 7 Camerer and Ho (1994) dataset: the upper number in every cell is the number of subjects who revealed a corresponding choice 

pattern in the experiment; the lower numbers in every cell are the predicted numbers of subjects according to CPT (first number) with 

best fitting parameters 1.06890.9324,0.5555, === ργα  and StEUT (second number) with parameters 0.11780.4812, == σα .
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Figure 1 Hey and Orme (2004) dataset (N=80) 
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Figure 2 Loomes and Sugden (1998) dataset (N=92) 
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Choice of lottery R ($0,0.95-p ;$200,p ;$240,0.05) over lottery S ($0,0.93-p ;$200,p +0.07)
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Vuong's adjusted LR z =-0.5608 (AIC), z =+0.8125 (SC)
 

Choice of lottery R($0,0.95-p;$50,p;$100,0.05) over lottery S($0,0.9-p;$50,p+0.1)
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Choice of lottery R ($0,0.99-p ;$150,p ;$300,0.01) over lottery S ($0,0.98-p ;$150,p +0.02)
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Choice of lottery R ($0,0.97-p ;$200,p ;$320,0.03) over lottery S ($0,0.95-p ;$200,p +0.05)
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Figure 3 Wu and Gonzalez (1996) dataset (ladders 1-4)
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Choice of lottery R ($0,0.97-p ;$200,p ;$320,0.03) over lottery S ($0,0.95-p ;$200,p +0.05)
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Figure 4 Wu and Gonzalez (1996) dataset (ladder 5) 




