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ABSTRACT. A new stochastic finite element procedure (SFEP) in the tradition of Ghanem’s work
is presented. It allows to deal with any number of input random variables of any type that can
model both material properties and loading. The method makes use of Hermite series expansion
of the input random variables and polynomial chaos expansion of the response, for which an
original implementation is proposed. The link with reliability analysis is also established. Three
application examples in geotechnical engineering are given for the sake of illustration. The
accuracy and efficiency of SFEP is thoroughly investigated by comparison with well-established
approaches.

RÉSUMÉ. On présente ici une nouvelle procédure aux éléments finis stochastiques baptisée SFEP.
Elle permet de traiter des problèmes où l’aléa, portant sur les propriétés matériau et le char-
gement, est représenté par des variables aléatoires de n’importe quel type et en nombre quel-
conque. On utilise le développement des variables aléatoires d’entrée en séries d’Hermite et le
développement de la réponse sur le chaos polynomial, pour lequel une implémentation est pro-
posée. On montre également comment exploiter les résultats pour faire de la fiabilité des struc-
tures. Trois exemples d’application en géomécanique sont présentés. La précision et l’efficacité
de la méthode sont évaluées sur ces exemples par comparaison avec des méthodes standard.

KEYWORDS: stochastic finite elements, polynomial chaos, finite element reliability, parametric
study, foundation.
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1. Introduction

The so-called stochastic finite element analysis has been paid much attention in

the past two decades. All the methods found in the literature under this denomination

have the following common characteristics:

– a finite element model, i.e. the discretized version of the equations governing a

physical phenomenon such as solid mechanics, heat transfer, etc.;

– a probabilistic model of the input parameters: random variables and/or random

fields are introduced for this purpose.

Apart from these common points, the methods referred to as stochastic finite element
analysis are rather different in nature. According to Sudret and Der Kiureghian (Sudret

et al., 2000), they may be classified as follows (see also (Schuëller, G. (Editor), 1997,

Matthies et al., 1997, Kleiber, M. (Editor), 1999) for general reviews on the topic and

(Frangopol D.M., Maute K. (Editors), 2004) for recent advances):

– second moment methods: these methods essentially aim at computing the vari-

ations of the mechanical response around its mean value, i.e. they provide the mean

and standard deviation of response quantities such as displacements or stresses. The

perturbation method applied by (Hisada et al., 1981; 1985, Liu et al., 1986a; 1986b,

Kleiber et al., 1992) falls within this category. So does the weighted integral method
proposed by (Deodatis, 1991, Deodatis and Shinozuka, 1991, Takada, 1991a; 1991b);

– reliability methods: these methods aim at computing the probability of failure

of a mechanical system with respect to a failure criterion represented by a limit state

function (Ditlevsen et al., 1996). In the context of finite element analysis, the pio-

neering work by (Der Kiureghian et al., 1983; 1988) has been followed by many

contributions, e.g. (Lemaire, 1998, Lemaire et al., 2000, Sudret and Der Kiureghian,

2002) . The so-called finite element reliability methods are nowadays applied in vari-

ous industrial contexts, e.g. (Frangopol and Imaia, 2000, Imaia and Frangopol, 2000,

Pendola et al., 2000, Mohamed et al., 2002, Sudret et al., 2005);

– polynomial chaos expansion methods (PCEM): these methods aim at represent-

ing the full probabilistic content of the mechanical response as a polynomial series

expansion in standard normal variables. In this respect, PCEM provide an intrinsic
representation of the response, since each response quantity is characterized as a ran-

dom variable through expansion coefficients. The spectral stochastic finite element

method (SSFEM) proposed by Ghanem and Spanos pertains to this category. This

representation can be used together with Monte Carlo simulation to obtain the prob-

ability density function (PDF) of response quantities or second moment information.

The use of SSFEM for finite element reliability analysis has also been demonstrated

by Sudret and Der Kiureghian (Sudret et al., 2002).

The present paper is related to this third category of so-called stochastic finite

element methods denoted hereinafter by PCEM. Before detailing its objectives, a rapid

review of the specific literature is necessary. The original work by (Ghanem and

Spanos, 1990; 1991) deals with linear stochastic boundary value problems in which
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the spatial variability of a material property (e.g. Young’s modulus) is modeled using

a random field, which is discretized using the Karhunen-Loève expansion. Later on,

the same approach has been applied to transport in porous media (Ghanem, 1998),

heat transfer (Ghanem, 1999b, Xiu et al., 2003) and recently soil-structure interaction

(Ghiocel et al., 2002) and structural dynamics (Van Den Nieuwenhof et al., 2003).

In all these applications, the spatial variability of one or more material properties

is represented by a Gaussian or lognormal random field. Attempts to applying the

approach to non linear problems can be found in Anders and Hori (Anders et al.,
1999, Anders et al., 2001) (bounds on the solution are derived) as well as in Keese and

Matthies (Keese et al., 2002). A general framework for stochastic mechanics based

on these ideas is described by (Ghanem, 1999a). Babuska et al.propose a similar

framework and discuss convergence issues and error estimators (Deb et al., 2001,

Babuska et al., 2002).

In the spirit of many of these papers, the use of polynomial chaos expansion in

order to represent the stochastic mechanical response is related to spatial variabil-

ity and the use of random fields. It is clear though that the use of the polynomial

chaos expansion is only a way of representing the mechanical response. It should

be independent from the way the input uncertainties is represented. Moreover, most

applications in engineering mechanics are concerned with modeling the uncertainties

in model parameters by using random variables instead of random fields. Indeed, the

spatial fluctations of a parameter are often second-order quantities compared to the

uncertainty of the parameter considered as homogeneous (geomechanics may be in

some cases a remarkable exception).

Of course, random variables may be considered as the limit case of random fields

having infinite correlation length. However, the formalism proposed in the papers

presented above is not directly suitable to this situation. Indeed, the random variables

used for instance in structural reliability may have various types of distribution (not

only Gaussian or lognormal), they may be correlated. What is more, loading is of-

ten the principal source of randomness and is rarely taken into account in the above

references (although the possibility of having random loading is mentioned e.g. in

(Ghanem et al., 1991)). Finally, most papers do not address the problems related to

post-processing. Their application examples are often limited to the presentation of

the expansion coefficients of the principal unknowns (e.g. nodal displacement, tem-

perature), sometimes mean and standard deviation of those. The inattentive reader

can then wonder about the point of such complex methods if only mean and standard

deviation of response quantities (which may be obtained easily by crude Monte Carlo

simulation) are sought for. In other words, the great potential of these PCEM meth-

ods is scarcely fully taken advantage of. As a consequence of these observations, the

present paper aims at:

– developing a new framework for stochastic finite element analysis, which allows

to take into account any number of random variables of any type to model the in-

put uncertainties. Thus random Young’s modulus, Poisson’s ratio, initial stress state

and loading may be considered in the analysis. An original implementation of the
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polynomial chaos used to represent the stochastic response and related tools are also

presented;

– deriving useful relationships in order to expand strain or stress response quanti-

ties onto the polynomial chaos;

– developing the specific post-processing for moment analysis (i.e. computing the

first four moments of the response), reliability analysis and PDF representation;

– comparing different numerical solving schemes in terms of accuracy and com-

putational efficiency on application examples, in order to conclude about the “good

practices” in stochastic finite element analysis.

The proposed stochastic finite element procedure (SFEP) presented in the sequel

requires expanding the input random variables (or functions thereof) as Hermite series

of standard normal random variables. This is detailed in Section 2. SFEP is then

presented in Section 3. The various possible post-processings are then described in

Section 4. Finally three application examples in geotechnical engineering illustrate

the method.

2. Hermite series expansion of random variables

2.1. Introduction and notation

Let us denote by L2(Θ, F, P ) the Hilbert space of random variables with finite

variance. Let us consider a random variable X with prescribed probability density

function (PDF) fX(x) and cumulative distribution function (CDF) FX(x). The math-

ematical expectation is denoted by E[·]. The expectation of a function g(X) is defined

by:

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx [1]

Let us denote by ξ a standard normal variable, ϕ(x) = 1√
2π

e−
x2

2 the standard

normal PDF and Φ the standard normal CDF. Let {Hi, i = 0, · · · ,∞} be the Hermite

polynomials defined by:

Hi(x) = (−1)i 1

ϕ(x)

diϕ(x)

dxi
[2]

The set {Hi, i = 0, · · · ,∞} is an orthogonal basis of the Hilbert space L2(ϕ)
of the square integrable functions with respect to the Gaussian measure (Malliavin,

1997). Thus:

E[Hi(ξ)Hj(ξ)] = δij · i! [3]
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where δij is the Kronecker symbol. Classical results (e.g. (Malliavin, 1997)) allow to

expand any random variable X with prescribed PDF as a Hermite polynomial series

expansion:

X =
∞∑

i=0

aiHi(ξ) [4]

where {ai, i = 0, · · · ,∞} are coefficients to be evaluated. Two methods are now

presented for this purpose.

2.2. Computation of the expansion coefficients

2.2.1. Projection method

This method was used by (Puig et al., 2002, Xiu and Karniadakis, 2002, Field and

Grigoriu, 2004). Due to the orthogonality of the Hermite polynomials with respect to

the Gaussian measure, it comes from Equation [4]:

E[XHi(ξ)] = ai E[H2
i (ξ)] [5]

where E[H2
i (ξ)] = i!. By using the transformation to the standard normal space

X → ξ: FX(X) = Φ(ξ), one can write:

X(ξ) = F−1
X (Φ(ξ)) [6]

Thus:

ai =
1

i!
E[X(ξ)Hi(ξ)] =

1

i!

∫

R

F−1
X (Φ(t))Hi(t)ϕ(t)dt [7]

When X is a normal, lognormal or uniform random variable, coefficients {ai, i =
0, · · · ,∞} can be evaluated analytically:

X ≡ N(µ, σ) a0 = µ, a1 = σ, ai = 0 for i ≥ 2

X ≡ LN(λ, ζ) ai =
ζi

i!
exp [λ +

1

2
ζ2] for i ≥ 0

X ≡ U[a, b] a0 =
a + b

2
, a2i = 0 , [8]

a2i+1 =
(−1)i(b − a)

22i+1
√

π i! (2i + 1)

For other types of distribution, the integral in Equation [7] can be evaluated numeri-

cally using Gaussian quadrature (Sudret et al., 2003).
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2.2.2. Regression method

This method was introduced by (Webster et al., 1996) and (Isukapalli, 1999). It is

based on a least square minimization of the discrepancy between the input variable X
and its truncated approximation X̃:

X̃ =

p∑

i=0

aiHi(ξ) [9]

Let {ξ(1), · · · , ξ(n)} be n outcomes of ξ. Equation [6] (resp. [9]) yields n outcomes

{X(i), i = 1, · · · , n} (resp. {X̃(i), i = 1, · · · , n}). The least square method consists

in minimizing the following quantity with respect to { ai , i = 0 , · · · , p }:

∆X =

n∑

i=1

(X(i) − X̃(i))2

=

n∑

i=1


F−1

X (Φ(ξ(i)) −
p∑

j=0

ajHj(ξ
(i))




2 [10]

This leads to the following linear system yielding the expansion coefficients

{ ai , i = 0 , · · · , p }:




n∑

i=1

H0(ξ
(i))H0(ξ

(i)) · · ·
n∑

i=1

H0(ξ
(i))Hp(ξ

(i))

...
. . .

...
n∑

i=1

Hp(ξ
(i))H0(ξ

(i)) · · ·
n∑

i=1

Hp(ξ
(i))Hp(ξ

(i))







a0

...

ap




=




n∑

i=1

X(i)H0(ξ
(i))

...
n∑

i=1

X(i)Hp(ξ
(i))




[11]

Both methods are illustrated in Figure 1 and in Table 1 in case of a lognormal

distribution LN(0.6501, 0.2936) with a mean value of 2 and a standard deviation of

0.6.

Note that there are several methods for selecting regression points. First, they

can be chosen as roots of the Hermite polynomial of order p + 1 (Webster et al.,
1996, Isukapalli, 1999). They can also be chosen randomly. This question is addressed

in details in (Berveiller et al., 2004b).
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Figure 1. Theoretical and third-order approximated PDF of a lognormal distribution
LN(0.6501, 0.2936)

Table 1. Coefficients of the third-order expansion of a lognormal distribution
LN(0.6501, 0.2936)

Method a0 a1 a2 a3

Projection 2.0000 0.5871 0.0862 0.0084

Regression 1.9986 0.5869 0.0872 0.0085

2.3. Error estimators

In order to qualify the accuracy of the polynomial series expansion, two error

estimators are proposed. Note that the first coefficient a0 is the mean of the random

variable X under consideration. Thus it is supposed to be known. The mean square

error estimator is defined as:

ǫ1 = E

[(
X − X̃

)2
]

/σ2 [12]
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where X̃ is the p-th order approximation of X and σ2 is the variance of X . From

Equations [4],[9], one gets:

E

[(
X − X̃

)2
]

= E




∑

i≥p+1

∑

j≥p+1

aiajHi(ξ)Hj(ξ)





=
∑

j≥p+1

a2
j · j!

[13]

Moreover, the variance σ2 may be cast as:

σ2 = E
[
(X − a0)

2
]

= E



∑

i≥1

∑

j≥1

aiajHi(ξ)Hj(ξ)




=
∑

j≥1

a2
j · j!

[14]

From the above equations, it finally comes:

σ2 =

p∑

j=1

a2
j · j! + E

[
(X − X̃)2

]
[15]

Thus:

ǫ1 = 1 − 1

σ2

p∑

j=1

a2
jj! [16]

The CDF error estimator is defined as:

ǫ2 = sup
X

|FX(x) − FX̃(x)| [17]

In this expression, FX(x) is supposed to be known and FX̃(x) is computed from

the isoprobabilistic transformation: FX̃(x) = Φ(ξ). Tables 2 and 3 gather the values

of both error estimators for selected random variables with prescribed mean value and

standard deviation.

Table 2. Mean square error estimator ǫ1 (%) (Equation [16])

Projection method Regression method

Distribution ∗ order 2 order 3 order 4 order 2 order 3 order 4

Lognormal (2, 0.6) 0.00 0.00 0.00 −0.07 −3.10−4 5.10−4

Weibull (1, 0.36) 0.01 0.01 0.01 0.09 0.01 0.01

Gamma (2, 1.41) 0.75 0.75 0.75 0.73 0.75 0.75
∗ Bracketed parameters are mean value and standard deviation

It appears from these examples that 1% accuracy “in the mean region” (estima-

tor ǫ1) is obtained in all cases as soon as p ≥ 2. As far as the global accuracy is

concerned (estimator ǫ2), order p = 3 or 4 is required to obtain a 1% accuracy.
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Table 3. CDF error estimator ǫ2 (Equation [17])

Projection method Regression method

Distribution ∗ order 2 order 3 order 4 order 2 order 3 order 4

Lognormal (2, 0.6) 0.08 0.01 0.01 0.05 0.01 0.01

Weibull (1, 0.36) 0.06 0.02 0.01 0.04 0.01 0.01

Gamma (2, 1.41) 0.18 0.07 0.01 0.10 0.04 0.01
∗ Bracketed parameters are mean value and standard deviation

2.4. Functions of random variables

In the sequel, it will be required to expand functions of random variables that

appear in the mechanical model (e.g. elastic coefficients as functions of the Poisson’s

ratio in the Hooke law). Both methods allow to expand non linear functions of random

variables. Let us denote by h(x) the function under consideration. The coefficients of

the expansion of h(X) are obtained by projection as:

ai =
1

i!

∫

R

h[F−1
X (Φ(t))]Hi(t)ϕ(t)dt [18]

Using the regression method, the coefficients should minimize the following quan-

tity:

∆X =
n∑

i=1



h(X(i)) −
p∑

j=0

ajHj(ξ
(i))




2

[19]

where notation (ξ(i), X(i)) has been given above. This leads to a linear system

similar to Equation [11], where the right hand side is replaced by:




n∑

i=1

h(X(i))H0(ξ
(i))

...
n∑

i=1

h(X(i))Hp(ξ
(i))




[20]

As an example, let us consider a random variable ν (e.g. Poisson’s ratio) with

uniform distribution U [0.2, 0.4] and the non linear function h(ν) = 1/2(1 + ν). The

coefficients obtained by the two methods are listed in Table 4. It appears that the

expansion coefficients are close to one another in this example.
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Table 4. Coefficients of the third order expansion of the function 1
2(1+ν) where ν =

U [0.2, 0.4]
Method a0 a1 a2 a3

Projection 0.3854 -0.0167 0.0004 0.0014

Regression 0.3852 -0.0167 0.0003 0.0017

2.5. Joint expansion of several independent random variables

In the sequel, various input parameters of the finite element model will be ex-

panded onto the Hermite polynomial basis. Suppose M variables are used, each of

them being expanded by means of a standard normal variable ξi at order ni:

X i =

ni∑

k=0

xi
kHk(ξi) i = 1, · · · , M [21]

All these expansions are cast in a common basis called the polynomial chaos,

which is the set of multi-dimensional Hermite polynomials (Ghanem et al., 1991).

Precisely, the M -th dimensional p-th order polynomial chaos is the set of multi-

dimensional Hermite polynomials in {ξi}M
i=1 whose degree does not exceed p. Let

us denote by P the size of this set (its analytical expression in terms of M and p is

given in Appendix I). Each polynomial is denoted by:

Ψα =
M∏

i=1

Hαi
(ξi) , αi ≥ 0,

M∑

i=1

αi ≤ p [22]

An implementation of the polynomial chaos based on symbolic calculus is pro-

posed by (Ghanem et al., 1991). In this paper we propose an original implementation

based on the generation of relevant integer sequences α (see also (Sudret et al., 2000)).

The detail is given in Appendix I. As the uni-dimensional Hermite polynomials are

contained in the polynomial chaos, Equation [21] may be rewritten as:

X i =

P−1∑

j=0

x̃i
jΨj({ξk}M

k=1) [23]

The positioning algorithm that links coefficients {xi
k} (Equation [21]) and {x̃i

k}
(Equation [23]) is detailed in Appendix II.

2.6. Conclusions

In this section, two methods have been presented for the computation of a series

expansion of random variables with prescribed PDF or functions thereof. Two error
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estimators have been developed to qualify the accuracy of these expansions. Note

the following interpretation of the methods. The projection method gives the best

approximation of X at any order. The values of the coefficients do not depend on the

cut-off order p. However, errors are introduced in the numerical calculation of the

coefficients. On the contrary, the regression method selects the best set of coefficients

for a given order p. If p is changed to p′ > p, all the set of coefficients {a0, · · · , ap′}
will change. It is seen in Tables 2 and 3 that the error is always slightly greater in the

projection method than in the regression scheme.

As a conclusion it seems that both methods are almost equivalent in terms of ac-

curacy. The third order of expansion (p = 3) seems to be the best compromise be-

tween accuracy and efficiency. Correlated random variables can also be expanded

onto the polynomial chaos. They are decorrelated by using a Nataf transformation

(Der Kiureghian et al., 1986). Then the regression method allows to jointly expand

the uncorrelated random variables onto the polynomial chaos.

3. Stochastic finite element procedure (SFEP) in linear mechanics

Using classical notations (Zienkiewicz et al., 2000), the finite element method for

static problems in linear elasticity yields a linear system of size Ndof , where Ndof

denotes the number of degrees of freedom of the structure:

K · U = F [24]

In the above equation, K is the global stiffness matrix, U is the basic response

quantity (e.g. vector of nodal displacements) and F is the vector of nodal forces.

In SFEP, due to the introduction of input random variables, the basic response quantity

is a random vector of nodal displacements U(θ). In this expression and in the sequel,

θ denotes the random characteristics of each quantity. Each component is a random

variable expanded onto the polynomial chaos:

U(θ) =

∞∑

j=0

U jΨj({ξk(θ)}M
k=1) [25]

where {ξk(θ)}M
k=1 denotes the set of standard normal variables appearing in the dis-

cretization of all input random variables and {Ψj, j ≥ 0} are multidimensional Her-

mite polynomials that form an orthogonal basis of L2(Θ, F, P ). In the sequel, the

dependency of Ψj in {ξk(θ)}M
k=1 will be omitted for the sake of clarity.

3.1. Taking into account randomness in material properties

In the deterministic case, the global stiffness matrix reads:

K =
⊕

e

ke =
⊕

e

∫

Ωe

BT · D · B dΩe [26]



836 Revue européenne de mécanique numérique. Volume 15 – n˚7-8/2006

where B is the matrix that relates the components of strain to the element nodal

displacement, D is the elasticity matrix and
⊕

e

is the assembly procedure over all

elements. When material properties are described by means of random variables, the

elasticity matrix hence the global stiffness matrix become random. The latter may be

expanded onto the polynomial chaos as follows:

K =
∞∑

j=0

KjΨj [27]

where

Kj = E[KΨj ] =
⊕

e

∫

Ωe

BT · E[DΨj ] · BdΩe [28]

Note that B is a deterministic matrix while D is random. In case of an isotropic

elastic material with random independent Young’s modulus E and Poisson’s ratio ν,

the latter may be written as:

D = E(λ̃(ν)D1 + 2µ̃(ν)D2) [29]

where λ̃(ν), µ̃(ν) are function of ν which depend on the modeling (plane strain,

plane stress or three-dimensional problem) and D1, D2 are deterministic matrices.

Random Young’s modulus E is expanded as in Equation [23]. Functions of the ran-

dom Poisson’s ratio {λ̃(ν), µ̃(ν)} (which should be mixed up with the Lamé’s coeffi-

cients of the material) may be expanded in the same way, using either the projection

or the regression method:

E =

∞∑

i=0

eiHi(ξE)

λ̃(ν) =

∞∑

j=0

λjHj(ξν)

µ̃(ν) =

∞∑

j=0

µjHj(ξν)

[30]

Note that the same standard normal variable ξν is used to expand both functions

λ̃(ν) and µ̃(ν). By substituting for Equation [30] in Equation [29], one finally gets:

D =

∞∑

i=0

∞∑

j=0

eiλjHi(ξE)Hj(ξν)D1

+

∞∑

i=0

∞∑

j=0

eiµjHi(ξE)Hj(ξν)D2

[31]

Products Hi(ξE)Hj(ξν) may be injected into the polynomial chaos (Section 2.5),

finally yielding:

D =
∞∑

k=0

(αkD1 + βkD2)Ψk [32]
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If the structure under consideration is made of several materials, the above pro-

cedure is applied using different random variables in each element group having the

same material properties.

3.2. Taking into account randomness in loading

The vector of nodal forces may be written as:

F =

Nq∑

i=1

qiF i [33]

where Nq is the number of load cases, {qi}Nq

i=1 denote random loading parameters

and F i “load pattern" vectors corresponding to a unit value of qi. Note that this

formulation equally applies to pinpoint forces, pressure or initial stresses. Coefficients

qi can be expanded onto the polynomial chaos (see Equation [23]):

qi =

∞∑

j=0

qi
jHj(ξi) ≡

∞∑

j=0

q̃i
jΨj [34]

Thus the random vector of nodal forces reads:

F =

Nq∑

i=1

∞∑

j=0

q̃i
jΨjF i =

∞∑

j=0

F̃ jΨj [35]

3.3. Global linear system

By using Equations [25],[27],[35], the discretized stochastic equilibrium equation

reads:

( ∞∑

i=0

KiΨi

)
·




∞∑

j=0

U jΨj


 =

∞∑

j=0

F̃ jΨj [36]

After a truncature of the series appearing in Equation [36] at order P , the residual

in the equilibrium equation is:

ǫP =

(
P−1∑

i=0

KiΨi

)
·




P−1∑

j=0

U jΨj


−

P−1∑

j=0

F̃ jΨj [37]

Coefficients {U0, · · · , UP−1} are computed using the Galerkin method minimiz-

ing the residual defined above, which is equivalent to requiring that this residual be

orthogonal to the space spanned by {Ψj}P−1
j=0 (Ghanem et al., 1991):

E[ǫP Ψk] = 0 , k = {0, · · · , P − 1} [38]
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This leads to the linear system:




K0,0 · · · K0,P−1

K1,0 · · · K1,P−1

...
...

KP−1,0 · · · KP−1,P−1


 ·




U0

U1
...

UP−1


 =




F̃ 0

F̃ 1
...

F̃P−1


 [39]

denoted hereinafter by K · U = F . In this expression, Kj,k =

P−1∑

i=0

Kidijk and

dijk = E[ΨiΨjΨk]. Coefficients dijk may be calculated analytically (see details in

Appendix I). The number of unknows in the above linear system is Ndof × P , where

Ndof is the number of degrees of freedom of the mechanical model, and P is the order

of expansion of each response quantity. Note that the global stiffness matrix K in

Equation [39] is a block matrix. The diagonal blocks represent the contribution of the

mean value. When the scattering of the input parameters (i.e. the standard deviation of

the input random variables) increases, the weight of the out-diagonal blocks increases.

Figure 2 shows that the block matrix is symmetric and sparse, i.e. it contains a large

number of zeros.

0 200 400 600 800 1000 1200 1400 1600 1800

0
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400
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800

1000

1200

1400

1600
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nz = 74964

Figure 2. Representation of the global stiffness matrix K (Dots are non zeros values)

The linear system Equation [39] may be solved directly (Ghanem et al., 1996)

by linear solvers suitable to large sparse systems (for instance, using pre-conditioned

conjugate gradient techniques). A hierarchical solving scheme has also been proposed

by (Ghanem, 1999a, Ghanem, 2000).
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3.4. Object-oriented implementation

The implementation of the proposed stochastic finite element procedure has been

made within the Matlab environment (Mathworks, 2001) in an object-oriented way.

The main objects are:

– the polynomials chaos. The detail of its implementation is given in Appendix I;

– the class RANDOM_VARIABLE contains the type and parameters of each random

variable, the method of approximation, the order of expansion, and the obtained ex-

pansion coefficients;

– the class MATERIAL contains all the information about material properties which

may be random or deterministic. Note that a deterministic parameter may be consid-

ered as a random variable which is expanded at order 0 onto the Hermite polynomial

basis. This allows a common treatment of deterministic parameters and random vari-

ables;

– the class LOADS contains all information about loading: load patterns and coeffi-

cients of load parameters expansion onto the polynomial chaos.

As presented above, the resolution of Equation [39] can be made by two ways: the

direct method and the hierarchical method. Figure 3 shows an implementation scheme

for the direct method.

The hierarchical method computes response coefficients by successive resolutions

of systems of smaller size. Let us denote indeed by l = {0, · · · , Q−1, Q < P−1} the

lower order indices and u = {Q, · · · , P − 1} the upper order indices of the unknown

vector. Equation [39] may rewritten as:

(
Kl,l Kl,u

Ku,l Ku,u

)
·
(

U l

Uu

)
=

(
F l

Fu

)
[40]

Due to the hierarchical properties of the polynomial chaos, note that K l,l ·Ũ l = F l

is exactly the linear system to be solved when the response is expanded at order Q.

If this lower order expansion is accurate enough, it is supposed that Ũ l is a good

approximation of U l in Equation [40]. Thus Equation [40] can be solved as follows:

Ul = Ũl = K−1
l,l · Fl [41]

Uu = K−1
u,u · (Fu − Ku,l · Ũl) [42]

[43]

In practice, order of expansion Q is related to a maximal degree q < p of the multidi-

mensional Hermite polynomials based on the M input random variables.
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Figure 3. Implementation scheme of the direct resolution scheme

4. Post-processing of the results

Solving the linear system Equation [39] yields the expansion coefficients of the

vector of nodal displacements:

U =

P−1∑

j=0

U jΨj [44]

In this section, several results on quantities of interest are derived from the set of

expansion coefficients. These results are not limited to the proposed SFEP, but apply
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more generally to any stochastic finite element method based on the polynomial chaos

expansion of the response.

4.1. Expansion of all response quantities

4.1.1. Strain tensor

In each element Ωe of the finite element mesh, the strain tensor in a given point x
reads:

ε(x) = B(x) · ue [45]

where ue denotes the vector of nodal displacements of element e. The expansion

[44] restricted to vector ue is:

ue =

P−1∑

j=0

ue,jΨj [46]

Thus:

ε(x) =
P−1∑

j=0

εj(x)Ψj

with εj(x) = B(x) · ue,j

[47]

4.1.2. Stress tensor

When Young’s modulus E is random, whereas Poisson’s ratio ν is deterministic,

the elasticity matrix may be rewritten as:

D =




P−1∑

j=0

ejΨj


D0 [48]

where {ej} are the coefficients of the expansion of E. The stress tensor σ(x) in a

given point x ∈ Ωe is:

σ(x) = D · ε(x) =

P−1∑

i=0

P−1∑

k=0

eiD0 · εk(x)ΨiΨk [49]

To simplify this expression, products ΨiΨk are injected into the polynomial chaos

basis:

ΨiΨk =
P−1∑

j=0

dijk

E[Ψ2
j ]

Ψj [50]
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One finally gets:

σ(x) =
P−1∑

j=0

σjΨj

with σj(x) =

P−1∑

i=0

P−1∑

k=0

dijk ei D0 · εk(x)

[51]

When both Young’s modulus E and Poisson’s ratio ν are random, the elasticity

matrix is:

D =
P−1∑

i=0

(αiD1 + βiD2)Ψi [52]

where coefficients (αi, βi) have been given in section 3.1. Then the stress tensor

becomes:

σ(x) =

P−1∑

j=0

σjΨj

with σj(x) =

P−1∑

i=0

P−1∑

k=0

dijk (αiD1 + βiD2) · εk(x)

[53]

As a conclusion, it appears that the mechanical response of the system S (i.e. the

set of all nodal displacements, nodal strain or stress components) may be written as:

S =

P−1∑

j=0

SjΨj . [54]

4.2. Moment analysis

From Equation [54], the statistical moments of any response quantity can be easily

computed. The mean of the response quantity S (nodal displacement, strain or stress

component) is given by:

E[S] = s0 [55]

The variance of S is:

Var[S] = σ2
S =

P−1∑

i=1

E[Ψ2
i ]s

2
i [56]

The skewness and the kurtosis coefficients of S are:

δS =
1

σ3
S

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

dijk sisjsk dijk = E[ΨiΨjΨk] [57]
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κS =
1

σ4
S

P−1∑

i=1

P−1∑

j=1

P−1∑

k=1

P−1∑

l=1

dijkl sisjsksl dijkl = E[ΨiΨjΨkΨl] [58]

Note that coefficients (dijk, dijkl) are known analytically (See Appendix I).

4.3. Finite element reliability analysis

In reliability analysis (Ditlevsen et al., 1996), the failure criterion of a structure is

defined in terms of a limit state function g(X, S(X)) which may depend both on basic

random variables X and response quantities S(X). The domain {g(X, S(X)) > 0}
defines the safe state and {g(X, S(X)) ≤ 0} defines the failure state. Using this

notation, the aim of reliability analysis is to compute the probability of the failure

event:

Pf = Prob [g(X, S(X)) ≤ 0]
=

∫
g(X,S(X))≤0

fX(x)dx
[59]

where fX(x) is the joint probability density function of the random variables X .

The computation of this integral is not possible directly because the failure domain

depends implicitly on S(X), which is computed using a finite element code.

The First Order Reliability Method (FORM) has proven efficiency together with

finite element analysis for approximating the probability of failure (Der Kiureghian et
al., 1988, Lemaire, 1998). However, this approach, which is based on an iterative op-

timization algorithm that provides the design point (most probable failure point in the

standard normal space) may be computationally expensive. It requires indeed succes-

sive deterministic finite element runs until convergence of the algorithm is obtained.

By the way, any parametric study requires rerun the full coupled model, without being

able to reuse the previous finite element calculations.

The SFEP developed in the above section offers an attractive alternative for finite

element reliability analysis. It has been shown indeed that any response quantity can

be cast as a series expansion, whose coefficients results from Equations [44],[47],[53].

Thus any limit state function may be approximated as follows, once a stochastic finite

element analysis has been carried out:

g(X, S(X)) ∼= g


{ξk}M

k=1,
P−1∑

j=0

SjΨj({ξk}M
k=1)


 [60]

Then the reliability problem, which is already formulated in the standard normal

space by construction, may be solved by any available method including Monte-Carlo

Simulation, FORM/SORM, Importance Sampling, etc. (Ditlevsen et al., 1996).
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4.4. Representation of the response PDF

Three methods for representating the probability density function of response

quantities are presented in this section.

4.4.1. Histograms

The first method is the classical Monte-Carlo simulation, which generates an his-

togram from n samples. The number of bins nbin of the histogram can be computed

using the Stuge’s rule:

nbin = 1 + log2(n) [61]

This requires only simulating samples of the standard normal vector ξ =
{ξ1, · · · , ξM}. Note that the simulation is inexpensive in our case since each response

quantity is a polynomial function of ξ.

4.4.2. Averaged shifted histograms

The idea behind this method is to generate several histograms, which have the

same bin width ∆x but different origins, and to average them in order to obtain a

smoother histogram (Yu, 2003). Let us consider m histograms {h1(x), · · · , hm(x)},

whose origin are respectively:

x′
0 = x0, x0 +

∆x

m
, x0 +

2∆x

m
, · · · , x0 +

(m − 1)∆x

m
[62]

The mean histogram is then obtained by:

hmoy =
1

m

m∑

i=1

hi(x) [63]

4.4.3. Parametric FORM analysis

Let us consider a component S of the random response vector S whose PDF fS(x)
is looked after. The CDF FS(x) may be considered as the solution of a reliability

problem. Indeed:

FS(x) = P (S ≤ x)

= P




P−1∑

j=0

SjΨj({ξk}M
k=1) − x ≤ 0





= P
(
gS(ξ, x) ≤ 0

)
[64]

where

gS(ξ, x) =

P−1∑

j=0

SjΨj({ξk}M
k=1) − x [65]
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Suppose that β(x) is the reliability index associated with the above reliability prob-

lem, and Pf (x) = Φ(−β(x)) is the corresponding FORM approximation. Straight-

forward algebra yields:

fS(x) =
dFS(x)

dx

=
dΦ(−β(x))

dx

= −ϕ(β(x)) · dβ(x)

dx

[66]

The quantity
dβ(x)

dx
may be now be considered as the sensitivity of β(x) with

respect to parameter x. Analytical results for this kind of problem have been given in

(Ditlevsen et al., 1996):

dβ(x)

dx
=

1∥∥∥∇ξgS(ξ, x)
∥∥∥

ξ=ξ∗

∂gS(ξ, x)

∂x
[67]

where the gradient appearing in the denominator is evaluated at the design point

ξ = ξ∗ (most likely failure point in the standard normal space). Due to Equation [65],

∂gS(ξ, x)

∂x
= −1. Thus:

fS(x) =
ϕ(β(x))∥∥∥∇ξgS(ξ, x)

∥∥∥
ξ=ξ∗

[68]

As a conclusion, the PDF of any response quantity S may be obtained by succes-

sive FORM analysis with different values of threshold x, using Equation [68]. Note

that this method provides a smooth representation of fS(x), in contrary to histograms.

The FORM analysis are inexpensive since the underlying limit state function is ana-

lytical (Equation [64]) and already formulated in the standard normal space.

5. Application examples in geotechnical engineering

5.1. Example #1: homogeneous soil layer

5.1.1. Deterministic problem statement

Let us consider an elastic soil mass made of an isotropic linear elastic material

lying on a rigid substratum. A foundation on this soil mass is modeled as a uniform

pressure load P applied over a length 2B of the free surface (Figure 4). Due to the

symmetry, half of the structure is modeled by finite element. The mesh of half of the

foundation comprises 99 nodes and 80 4-node elements which allows a 1%-accurate

evaluation of the maximal settlement compared to a reference solution (Figure 5).
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Figure 4. Homogeneous soil layer: scheme of the fondation

Figure 5. Mesh of the foundation

The model parameters are listed in Table 5. As the soil mass has an elastic behav-

ior, the maximal settlement is given by:

U i0 = χ
P

E
[69]

The numerical value of χ is 13.575 m for the mesh under consideration, corre-

sponding to a maximal settlement Umax=0.0543 m (the “exact” solution obtained with

a refined mesh is χ = 13.744 m).

Table 5. Homogeneous soil layer: parameters of the foundation

Parameter Notation Mean Value

Young’s Modulus E 50 MPa

Poisson’s Ratio ν 0.3

Load P 0.2 MPa

Width of the foundation 2B 10 m

Mesh size L 60 m

Soil thickness t 30 m
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5.1.2. Stochastic problem

In this first example, we consider that there are only two random variables: the

Young’s modulus E and the applied load P . The Young’s modulus is represented by

a lognormal random variable with a mean value µE = 50 MPa and a coefficient of

variation of 20%. The load is represented by a lognormal variable with mean µP =
0.2 MPa and a coefficient of variation of 20%. As P and E are lognormal random

variables, U i0 is also a lognormal random variable with parameters λU = ln(χ) +
λP − λE = −2.9022 and ζU =

√
ζ2
P + ζ2

E = 0.2801.

Table 6. Homogeneous soil layer: coefficients of the polynomial chaos expansion of
U i0

Direct Hierarchical

p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)
-5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02 -5.64E-02

-1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02 -1.12E-02

1.11E-02 1.12E-02 1.12E-02 1.11E-02 1.11E-02 1.12E-02

-5.32E-04 -5.53E-04 -5.53E-04 -5.32E-04 -5.32E-04 -5.53E-04

2.13E-03 2.21E-03 2.21E-03 2.13E-03 2.13E-03 2.21E-03

-1.02E-03 -1.11E-03 -1.11E-03 -1.02E-03 -1.02E-03 -1.11E-03

-1.17E-05 -1.22E-05 -1.17E-05 -1.17E-05 -1.17E-05

1.05E-04 1.09E-04 -4.06E-04 -4.06E-04 1.05E-04

-2.11E-04 -2.19E-04 -1.16E-05 -1.16E-05 -2.11E-04

7.34E-05 7.28E-05 2.44E-05 2.45E-05 7.34E-05

-1.45E-07 -1.45E-07 -1.45E-07

2.32E-06 7.73E-05 -2.01E-05

-1.04E-05 -3.65E-05 -7.29E-07

1.39E-05 7.13E-07 -6.74E-06

-3.32E-06 1.44E-06 1.46E-06

Table 6 collects the expansion coefficients of the settlement U i0 obtained by SFEP

at different orders with the two methods of resolution (direct and hierarchical). Note

that p is the degree of the polynomial chaos expansion. The notation p = 3(2) means

"hierarchal resolution at order 3 with a pre-resolution at the order 2". It is observed that

the values of the lower order (six first) coefficients computed at order 3 or 4 are close

to the values computed at order 2. This is a justification of the use of the hierarchical

approach.

5.1.3. Statistical analysis

The statistical moments obtained from Equations [55]-[58] after SFEP analysis

are collected in Table 7. Since U i0 is a lognormal random variable whose parameters

have been computed above, exact values of these moments are also available (Table 7,

column #2).
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Table 7. Homogeneous soil layer: moments of the maximal settlement U i0

Theoretical Direct

values p = 2 p = 3 p = 4
mean/Umax 1.0286 1.0273 1.0278 1.0278

coeff. var. 0.2857 0.2837 0.2846 0.2846

skewness -0.8803 -0.6831 -0.7573 -0.7599

kurtosis 4.4088 3.6366 4.0050 4.0373

Hierarchical

p = 3(2) p = 4(2) p = 4(3)
mean/Umax 1.0278 1.0278 1.0280

coeff. var. 0.2838 0.2838 0.2846

skewness -0.6517 -0.6493 -0.7565

kurtosis 3.4233 3.4713 3.9884

One can note that for the mean and the coefficient of variation, all solving schemes

provide accurate results (about 1% discrepancy compared to the exact values). The

estimation of the skewness and kurtosis coefficients becomes accurate with increasing

order of the polynomial chaos. The direct resolution method gives better results than

the hierarchical method but the difference is often unsignificant.

Table 8. Homogeneous soil layer: computer processing time (s)
Deterministic Direct Hierarchical

p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)
0.82 3.74 8.43 53.76 5.9 7.7 10.88

Computer processing time (CPT) associated to each scheme is reported in Table 8

(the simulations were run on Pentium 4 PC at 1.7 GHz, the results are given in sec-

onds). It is observed that the CPT increases fast when the direct approach is used.

The hierarchical resolution allows to decrease the CPT by a factor of 5 or more. This

shows the relevance of such schemes, since the results obtained by those are quite

close to the results obtained by the direct approach, as explained above.

5.1.4. Reliability analysis

The aim of this section is to compute the reliability index associated with the max-

imum settlement of a foundation. The limit state-function is:

g(U) = uS − U i0 [70]

where uS denotes the threshold. Since U i0 is lognormal, it can be written as (ξ
denotes a standard normal random variable):

U i0 = exp [λU + ζU ξ] [71]
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Thus the limit state function is equivalent to:

g2(ξ) = ln(uS) − (λU + ζUξ) [72]

The associated reliability index straightforwardly reads:

β =
ln(uS) − λU

ζU

=
ln(uS) − ln(χ) − λP + λE√

ζ2
P + ζ2

E

[73]

and the exact value of the probability of failure is:

Pf = Φ(−β) [74]

On the other hand, by using the SFEP solution for having the polynomial chaos

expansion of U i0 , Equation [70] becomes:

g(U) = uS −
P−1∑

j=0

U i0
j Ψj(ξE , ξP ) [75]

An efficient way of accurately compute the probability of failure associated with

such a limit state function is the so-called importance sampling technique. First

FORM analysis is applied in order to find the design point. Then Monte Carlo simula-

tion is applied by concentrating samples around the design point. In the present study,

importance sampling is applied using 1,000 simulations. The estimated probability of

failure Pf,IS is obtained with a coefficient of variation of less than 5%. The equivalent

reliability index βIS = −Φ−1(Pf,IS) obtained by the analytical solution and various

approximations using SFEP are given in Table 9.

Table 9. Homogeneous soil layer: reliability index βIS

Threshold Theoretical Stochastic Finite Element Procedure (Eq. [75] + FORM)

(m) Eq. [73] Direct Hierarchical

p = 2 p = 3 p = 4 p = 3(2) p = 4(2) p = 4(3)

0.07 0.8626 0.8704 0.8841 0.8848 0.8650 0.8684 0.8828

0.08 1.3394 1.3724 1.3752 1.3769 1.3731 1.3808 1.3726

0.09 1.7599 1.8331 1.8148 1.8162 1.8478 1.8561 1.8119

0.10 2.1361 2.2612 2.2137 2.2132 2.2971 2.3000 2.2116

0.12 2.7871 3.0421 2.9185 2.9090 3.1389 3.1075 2.9217

0.15 3.5838 4.0768 3.8099 3.7766 4.2973 4.1494 3.8292

0.17 4.0307 4.7002 4.3257 4.2713 5.0146 4.7484 4.3606

0.20 4.6110 5.5610 5.0149 4.9231 6.0202 5.5272 5.0787

The theoretical reliability index is computed using Equation [73]. As expected, the

accuracy in the computed reliability indices increases with the order p of the response

expansion in the direct solving scheme. The gain between orders 2 and 3 is always

greater than the gain between orders 3 and 4. Order p = 3 thus appears to be a
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good compromise between accuracy and efficiency. It allows to get accurate results

(e.g. within 5-10% discrepancy compared to the exact solution) in a broad range of

reliability indices β = [0.8 − 4.6].

By comparing the hierarchical vs. the direct results (e.g. p = 3(2) vs. p =
2), one can see that the hierarchical step does not degrade much the results in this

case, whereas the computation time has been divided by 2-5 compared to the direct

resolution effort (see Table 8).

5.1.5. Probability density function of the maximal displacement

The PDF of the maximal displacement is plotted in Figure 6 with the method

presented in Section 4.4.3. The reference PDF is plotted from the analytical expression

of the PDF of a lognormal random variable. PDFs that are closest to the reference PDF

are those computed by SFEP at an order p ≥ 3.
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Figure 6. Homogeneous soil layer: PDF of the maximal settlement

5.2. Example #2: two-layer soil mass submitted to two loads (Sudret et al., 2004)

5.2.1. Deterministic problem statement

Let us consider an elastic soil mass made of two layers of different isotropic linear

elastic materials lying on a rigid substratum (Figure 7). A foundation on this soil mass

is modeled by two uniform pressures P1 and P2 applied over a length 2B of the free

surface (Figure 5).
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Figure 7. Two-layer soil layer mass: scheme of the foundation

Due to the symmetry, half of the structure is modeled by finite element. The mesh

is the same as in section 5.1 (Figure 5). The model parameters are listed in Table 10.

Table 10. Two-layer soil layer mass: parameters of the foundation

Parameter Notation Mean

Upper layer Young’s Modulus E1 50 MPa

Lower layer Young’s Modulus E2 70 MPa

Upper layer Poisson’s Ratio ν1 0.3

Lower layer Poisson’s Ratio ν2 0.3

Load #1 P1 0.2 MPa

Load #2 P2 0.2 MPa

Width of the foundation 2B 10 m

Mesh size L 60 m

Upper layer soil thickness t1 7.75 m

Lower layer soil thickness t2 22.25 m

5.2.2. Stochastic problem

The upper (resp. lower) layer Young’s modulus is represented by a lognormal

random variable with a mean value µE1
= 50 MPa (resp. µE2

= 70 MPa) and a co-

efficient of variation CoVE1
= 20%. Both layers’ Poisson’s ratio are represented by

uniform random variables defined on [0.28, 0.32]. The applied loads are represented

by a Weibull random variable (mean value µP1
= 0.2 MPa, coefficient of variation

CoVP1
= 20%) and a lognormal random variable (mean value µP2

= 0.2 MPa and

coefficient of variation of CoVP2
= 20%) respectively. All six random variables are

supposed independent.

In this example, no analytical results are available. Reference re-

sults presented in the sequel are obtained by coupling the probabilistic code

PROBAN (Det Norske Veritas, 2000) and the finite element code Code_Aster

[http://www.code-aster.org].
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5.2.3. Statistical analysis

In this section, the statistical moments of the maximal settlement of the foundation

are computed. The reference solution is obtained using Monte Carlo simulation with

10,000 samples. Using SFEP, the direct solving scheme at order p = 2 (resp. p = 3)

is considered. Since the problem involves 6 random variables, the number of response

coefficients for each degree of freedom is 28 (resp. 84). The hierarchical scheme

p = 3(2) is also considered. Table 11 gathers the results.

Table 11. Two-layer soil layer mass: moments of the maximal settlement

Monte Carlo direct hierarchical

Simulation∗ p = 2 p = 3 p = 3(2)

mean/Umax 1.04 1.04 1.04 1.04

Coeff. Var. 0.23 0.22 0.23 0.22

skewness -0.45 -0.42 -0.45 -0.42

kurtosis 3.39 3.28 3.39 3.28
∗ 10,000 samples

Here again it is observed that p = 2 is sufficient to get accurately the mean and

standard deviation of the response. The order p = 3 is required to obtain also an

accurate estimation of the skewness and kurtosis coefficients, either by direct or hier-

archical analysis.

Table 12. Two-layer soil layer mass: computer processing time (s)

Deterministic SFEP SFEP

Direct Hierarchical

p = 0 p = 2 p = 3 p = 3(2)

Number of coefficients 1 28 84 84

CPT 1 83 2003 174

Table 12 gathers the CPT for this second example (the time unit corresponds to a

deterministic finite element run). Due to the number of variables, the computational

effort is 25 times greater for a third order analysis compared to a second order analysis.

Note that this factor is reduced to 2 when the hierarchical approach is selected. This

makes the latter attractive as a compromise between accuracy and efficiency.

5.2.4. Reliability analysis

The limit state function under consideration is identical to that used in the first

example, see Equation [70]. The reliability index is computed by various methods for

different admissible maximal settlement and compared. The results are gathered in

Table 13. Note that more accurate results could be obtained by importance sampling
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after SFEP. However, these results would not be directly comparable to the FORM

results obtained by the coupling PROBAN/Code_Aster.

Table 13. Two-layer soil layer mass: reliability index β.

Threshold βref βSFEP

(m) FORM p = 2 p = 3 p = 3(2)
0.10 0.3353 0.3195 0.3286 0.3175

0.12 1.1683 1.1553 1.1662 1.1434

0.15 2.2471 2.2634 2.2496 2.2390

0.20 3.7040 3.8483 3.7334 3.8061

0.25 4.8633 5.2171 4.9510 5.1560

0.30 5.8171 6.4388 5.9911 6.3546

The reference results are obtained by FORM analysis using a coupling between

PROBAN and the finite element code Code_Aster.

The other results are obtained by applying FORM after SFEP analysis. The con-

clusions drawn in the first example are still valid: the accuracy of the approach is

satisfactory (less than 3% discrepancy compared to the reference) for a large range

of reliability indices β = [0.3, 5.8], and even better than in the first example. In the

present case, the hierarchical scheme p = 3(2) allows to improve results compared to

the scheme p = 2.

Note that only the FORM reliability indices are presented in Table 13 in order to

compare with the reference FORM analysis. It is of course possible to post-process at

low cost the SFEP results using crude Monte Carlo simulation or accelerated methods

such as importance sampling.

5.3. Example #3: fragility curve of the foundation (Sudret et al., 2003)

Let us consider an elastic soil mass made of two layers of different isotropic linear

elastic materials lying on a rigid substratum (Figure 7). A foundation on this soil mass

is modeled as a uniform pressure λP0 applied over a length 2B of the free surface

(where P0 denotes the unit pressure). There are four random variables, namely the

Young’s modulus and Poisson’s ratio of each layer. The model parameters are listed

in Table 14.

The reliability of the foundation with respect to the maximum admissible settle-

ment uS is investigated as a function of the applied pressure denoted hereinafter by λ.

The result is the so-called fragility curve. Hence the parametric limit state function:

g(X, λ) = uS − λU i0(E1, ν1, E2, ν2) [76]
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Table 14. Two-layer soil mass - parameter study: parameters of the foundation

Parameter Notation Type Mean Coef. of Var.

Upper layer Young’s Modulus E1 Lognormal 50 MPa 20%

Lower layer Young’s Modulus E2 Lognormal 70 MPa 20%

Upper layer Poisson’s Ratio ν1 Beta [0, 0.5] 0.3 20%

Lower layer Poisson’s Ratio ν2 Beta [0, 0.5] 0.3 20%

Width 2B Deterministic 10 m -

Mesh width L Deterministic 60 m -

Upper layer soil thickness t1 Deterministic 7.75 m -

Lower layer soil thickness t2 Deterministic 22.25 m -

Threshold uS Deterministic 0.1 m -

where U i0(E1, ν1, E2, ν2) is the maximal displacement obtained for a unit pres-

sure (i.e. λ = 1). The reliability index is computed by FORM for different values of

λ using the two strategies, namely:

– a direct coupling between the finite element code Code_Aster and the proba-

bilistic code PROBAN using the “parametric study” feature;

– a single SFEP analysis leading to a polynomial chaos approximation of

U i0(E1, ν1, E2, ν2) followed by a parametric FORM reliability analysis. These tools

are implemented in a Matlab package.

Table 15. Two-layer soil mass - parameter study: reliability index vs. load
parameter λ

λ (MPa) Direct Coupling SFEP

p = 2 p = 3 p = 3(2)
0.100 9.4605 12.0038 10.7559 10.7350

0.150 6.9900 7.9454 7.6122 7.6175

0.200 5.1135 5.4536 5.4004 5.4047

0.250 3.6212 3.7013 3.7412 3.7228

0.300 2.3963 2.3674 2.4322 2.4024

0.350 1.3637 1.2971 1.3622 1.3377

0.400 0.4732 0.4054 0.4612 0.4536

0.450 -0.3084 -0.3589 -0.3183 -0.3037

0.500 -1.0022 -1.0285 -1.0091 -0.9723

0.550 -1.6268 -1.6257 -1.6351 -1.5799

0.600 -2.1942 -2.2657 -2.2133 -2.1463

Results are reported in Table 15. Column #2 corresponds to the reference solution

(direct coupling between Code_Aster and PROBAN), columns #3-5 correspond to

different strategies of resolution in the SFEP analysis, namely a complete resolution
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at order 2 or 3 and a hierarchical resolution at order 3 with pre-resolution at order 2.

The evolution of the reliability index (resp. the probability of failure) is plotted in

Figures 8-9 as a function of the load parameter.
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Figure 8. Two-layer soil mass - parameter study: reliability index vs. load parameter

As in the previous sections, a good agreement is observed for a large range of

reliability indices, namely β = [−2, 5]. In this example, the results obtained with

a second order polynomial chaos expansion are rather satisfactory (less than 10%

discrepancy in β).

Table 16. Two-layer soil mass - parameter study: total computer processing time
required by the direct coupling and by SFEP at various orders

Direct SFEP

Coupling p = 0 p = 2 p = 3 p = 3(2)
CPT 1280 1 56 1291 105

Table 16 reports the computer processing time for the complete parametric study

in each case, where the unit time corresponds to one single deterministic analysis

(i.e. p = 0 in the SFEP context). It appears that the direct coupling is about as

computationally expensive as SFEP at third order. However the same accuracy is

obtained for SFEP (p = 3(2)) hierarchical solution at about one tenth of the cost. As

a conclusion, the hierarchical solution p = 3(2) offers a good compromise between

accuracy and efficiency in this third example.
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Figure 9. Two-layer soil mass - parameter study: probability of failure vs. load pa-
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6. Conclusion

An original stochastic finite element procedure in the tradition of Ghanem’s work

has been proposed. The method is based on a) the representation of input random

variables in terms of Hermite series expansions of standard normal variates b) the

polynomial chaos expansion of the response by means of multi-dimensional Hermite

polynomials. The method allows to include any number of random variables of any

type for modeling the uncertainties in material parameters (Young’s modulus, Pois-

son’s ratio) and loading.

An original implementation of the polynomial chaos and related tools is proposed.

This should allow new researchers to take over the technique more easily.

A great amount of work has been devoted to clarify the post-processing of the

response coefficients obtained by SFEP. The expansion of derived quantities such as

strain or stresses is presented. The post-processing of SFEP for moment analysis has

been detailed: analytical expressions of the first four moments of response quantities

are given. The post-processing of SFEP for reliability analysis has been presented.

Finally an efficient method based on sensitivity FORM analysis has been given for

plotting smooth PDFs of response quantities.

The proposed SFEP is applied to three geotechnical problems related to the settle-

ment of a foundation. The first truly simple problem (which involves only two random
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variables) is presented as a validation example since an analytical solution of the re-

sponse moments (resp. the probability of failure or equivalently, the reliability index)

is available. The second problem is more general and involves six random variables.

The third problem deals with the fragility curve of the foundation, i.e. the evaluation

of the probability of failure by exceeding an admissible settlement as a function of the

applied loading.

Through these three examples, several numerical schemes have been tested,

namely a direct solver at different orders and a so-called hierarchical solver. It fol-

lows from this investigation that the second-order polynomial chaos expansion of the

response should be used when only mean and standard deviation of the response are

sought (this is the common practice in the literature). However, when higher order mo-

ments are sought, or when reliability analysis (which involves the tails of the variables’

PDFs) is concerned, the third-order expansion has to be used. A quicker computation

of the third-order response coefficients by a hierarchical solver (called p = 3(2) in

the above section) appears a good compromise between accuracy and efficiency. The

SFEP post-processing for parametric reliability study (fragility curve) is an example

in which the proposed method is faster than usual techniques (e.g. repeated FORM

analysis).

Finally, it is believed that the systematic link between polynomial chaos expan-

sions (PCEM) and random field representations, which is commonly implicit in many

papers related to stochastic finite element analysis should be broken, as demonstrated

in the paper. This may help these PCEM come out the circle of university labora-

tories and become mature for true industrial applications which do not always need

to include spatial variability. Note that the use of random fields together with ran-

dom variables is straightforward using the presented framework provided the field has

been previously discretized, e.g. using the Karhunen-Loève expansion (Ghanem et
al., 1991), the Orthogonal Series Expansion (OSE) method (Zhang et al., 1994) or the

Expansion Optimal Linear Estimation (EOLE) method (Li et al., 1993).

Again within the framework of polynomial chaos expansion of the response, al-

ternative methods for computing the response coefficients may be considered in the

future: the non intrusive method used by (Ghiocel and Ghanem, 2002, Choi et al.,
2004a;2004b) or the regression method (Berveiller et al., 2006). These methods have

been investigated and compared to the present SFEP by (Berveiller et al., 2004a;

2004b). A summary of these investigations can be found in (Sudret, 2005). These

approaches appear already attractive, since they transform the stochastic finite element

problem into a succession of deterministic analysis, which can of course be carried out

by any commercial finite element code without intrusive implementation. Moreover,

the assembling and inversion of a large linear system such as Equation [39] is avoided.

This is of crucial importance for being able to deal with a larger number of random

variables. Finally, non linear stochastic finite element problems can be solved without

additional trouble using these non intrusive approach, provided the finite element code

at hand allows to solve the related deterministic problem. An application example in

non linear fracture mechanics can be found in (Berveiller et al., 2005).
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Appendix I: description of the polynomial chaos and implementation

Introduction and notation

Let us denote by L2(Θ, F, P ) the Hilbert space of random variables with finite

variance. {Hi, i = 0, · · · ,∞} are Hermite polynomials defined by:

Hi(x) = (−1)i 1

ϕ(x)

diϕ(x)

dxi
[77]

where ϕ(x) = 1√
2π

e−
x2

2 . The set {Hi, i = 0, · · · ,∞} is an orthogonal basis of

the Hilbert space L2(ϕ) of the square integrable functions with respect to the Gaussian

measure (Malliavin, 1997):

dHn(x)

dx
= n Hn−1(x) [78]

and:

Hi(x)Hj(x) =
∑

k≥0

Cijk Hk(x) [79]

with:

Cijk =






i!j!(
i+j−k

2

)
!
(

j+k−i
2

)
!
(

k+i−j
2

)
!

if

{
(i + j + k) even
k ∈ [|i − j|, i + j]

0 otherwise

[80]

Using these properties, deriving the expectation of products of two, three or four

Hermite polynomials of a standard normal variable ξ is straightforward:

Dij = E[Hi(ξ)Hj(ξ)] = δijj! [81]
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where δij is the Kronecker symbol.

Dijk = E[Hi(ξ)Hj(ξ)Hk(ξ)]

=





i! j! k!(
i+j−k

2

)
!
(

j+k−i
2

)
!
(

k+i−j
2

)
!

if

{
(i + j + k) even
k ∈ [|i − j|, i + j]

0 otherwise

[82]

and finally:

Dijkl = E[Hi(ξ)Hj(ξ)Hk(ξ)Hl(ξ)] =
∑

q≥0

Dijq Cklq [83]

Let us denote by {ξi}M
i=1 M standard normal variables and by {Ψj} the so-called

polynomial chaos basis. The M -th dimensional p-th order polynomial is the set of

multidimensional Hermite polynomials in {ξi}M
i=1, whose degree does not exceed p.

Each polynomial is completely defined by a sequence of M non-negative integers

α = {α1, · · · , αM} (whose sum is smaller or equal than p):

Ψα =

M∏

i=1

Hαi
(ξi) , αi ≥ 0 [84]

Let us denotes by ∂α =

M∑

i=1

αi the degree of the sequence α. The implementation

of the polynomial chaos requires:

– computing and storing the coefficients of the one-dimensional Hermite polyno-

mials (Equation [78]);

– generating all sequences α, whose degree is less or equal to p. These se-

quences are labeled from 0 to P − 1 and the corresponding polynomials are denoted

by {Ψj, j = 0, · · · , P − 1}.

Implementation of the polynomial chaos basis

For each degree q = {1, · · · , p}, the goal is to compute all sequences of M non

negative integers whose sum equals q. This problem is equivalent to that of filling

(M + q − 1) boxes with (M − 1) balls (Figure 10], see also (Sudret et al., 2000).

The correspondence between the integer sequence and the box samples is described

below:

– for each integer αi of the sequence, skip αi empty boxes and put a ball in the

next one;



A stochastic finite element procedure 863

– conversely, for each ball sample, each integer αi of the sequence equals the

number of empty boxes (possibly 0) between two consecutive balls.

From this equivalence, the number of sequences α of degree ∂α = q is the num-

ber of corresponding ball samples, i.e. the binomial factor

(
M + q − 1

M − 1

)
=

(
M + q − 1

q

)
.

ball sample integer sequence

1 0 1 0

0 0 0 2

Polynomial basis

H1(ξ1) · H1(ξ3) = ξ1ξ3

H2(ξ4) = ξ2
4 − 1

Figure 10. Equivalence of the balls samples and the integers sequence α for
(M = 4, p = 2)

The algorithm which generates all filling of (M + q − 1) boxes with (M − 1) ball

in the case (q = 2, M = 4) is described in Figure 11 and reads as follows (note that

only polynomials of degree 2 are represented):

– for a given q, the initial sample is obtained by putting all balls in the (M − 1)
first boxes and corresponds to the sequence α = {0, · · · , 0, q}.

– from the current sample, the next one is recursively obtained by shifting the

rightmost ball by one box to the right. If this is not possible (i.e. the right most ball

is already in the rightmost box), then the rightmost ball that can be shifted by one box

to the right is found. This ball is shifted, and all the balls lying to its right are brought

back to its immediate left.

Note that, for each degree q, the integer sequences are labeled in reverse order in

order to get the Ψj basis in the same order as that originally presented in (Ghanem et
al., 1991). The number of polynomials in M variables having a degree lower than or

equal to p is given by:

P =

p∑

k=0

(
M + k − 1

k

)
[85]

Expectation of products of Hermite polynomials

By extension of Equation [81], the polynomials {Ψj, j = 0, · · · , P − 1} are or-

thogonal and satisfy:

E[Ψα · Ψβ] = δαβ ·
M∏

i=1

αi! [86]
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integer sequence

0 0 0 2

0 0 1 1

0 0 2 0

0 1 0 1

0 1 1 0

0 2 0 0

1 0 0 1

1 0 1 0

11 0 0

2 0 0 0

ball sample

⑦

⑦

⑦ ✰

⑦

⑦

⑦ ✰ ✰

⑦

⑦

⑦

Reverse order

0 0 0 2

0 0 1 1

0 0 2 0

0 1 0 1

0 1 1 0

0 2 0 0

1 0 0 1

1 0 1 0

11 0 0

2 0 0 0

Polynomial basis

ξ2
4 − 1

ξ3ξ4

ξ2
3 − 1

ξ2ξ4

ξ2ξ3

ξ2
2 − 1

ξ1ξ4

ξ1ξ3

ξ1ξ2

ξ2
1 − 1

Figure 11. Recursive generation of the polynomial chaos (q = 2, M = 4)

where δαβ is the Kronecker symbol, whose value is 1 if sequences α and β are

identical and 0 otherwise.

In Equation [39], the expectation of three polynomials is needed. Following Equa-

tion [84], let us denote:






Ψi =
M∏

m=1

Hαm
(ξm) , αm ≥ 0

Ψj =
M∏

m=1

Hβm
(ξm) , βm ≥ 0

Ψk =

M∏

m=1

Hγm
(ξm) , γm ≥ 0

[87]

where {α1, · · · , αM}, {β1, · · · , βM}, {γ1, · · · , γM} denote M non-negative in-

teger sequences. From Equations [82],[87], it comes:

dijk = E[ΨiΨjΨk] =

M∏

m=1

Dαm βm γm
[88]
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Similarly, the expectation of products of four multi-dimensional Hermite polyno-

mials used in Equation [58] is:

dijkl = E[ΨiΨjΨkΨl] =

M∏

m=1

Dαm βm γm δm
[89]

where Dαm βm γm δm
is given in Equation [83].

The Matlab implementation of the polynomial chaos as described above can be

download for free at: [http://www.ce.berkeley.edu/haukaas/

FERUM/ferum.html]

Appendix II: positioning of coefficients in the polynomial chaos basis

Let us denote by {X1, · · · , XM} M independent random variables expanded

separately onto the Hermite polynomial basis of standard normal random variables

{ξ1, · · · , ξM} at the order ni , i = {1, · · · , M}:

X i =

ni∑

k=0

xi
kHk(ξi) [90]

Input

. (xi
k) i = {1, · · · , M}, k = {0, · · · , ni}

Initialisation

. x̃i
0 = xi

0 i = {1, · · · , M}
. x̃i

j = 0 i = {1, · · · , M} j = {1, · · · , P − 1}
Positioning

. for j = {1, · · · , P − 1}

. if αj has only one non zero term αj(q) at q-th position:

. if αj(q) ≤ nq then x̃q
j = xq

αj(q)

. end if

. end for j

Figure 12. Positioning algorithm for injection Hermite series expansion into the poly-
nomial chaos

These variables can be expanded onto the polynomial chaos basis of degree

p = max
i=1,··· ,M

ni as follows:

X i =

P−1∑

j=0

x̃i
jΨj({ξk}M

k=1) [91]
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where P is related to p and M by Equation [85]. The positioning consists in estab-

lishing the correspondence between x̃i
j and xi

k . For each variable X i, the coefficient

of order 0 (the mean value) is the same in both basis. Moreover, all coefficients x̃i
j

corresponding to a truly multidimensional polynomial Ψj (i.e., Ψj depends on more

than one variable ξk) are zero. Thus the positioning algorithm described in Figure 12.


