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An optimal asset allocation problem for a quite general class of utility functions is discussed in a simple two-stateMarkovian regime-
switchingmodel, where the appreciation rate of a risky share changes over time according to the state of a hidden economy. As usual,
standard 
ltering theory is used to transform a 
nancial model with hidden information into onewith complete information, where
a martingale approach is applied to discuss the optimal asset allocation problem. Using a martingale representation coupled with
stochastic �ows of di�eomorphisms for the 
ltering equation, the integrand in the martingale representation is identi
ed which
gives rise to an optimal portfolio strategy under some di�erentiability conditions.

1. Introduction

	e optimal asset allocation problem has long been an
important topic in 
nancial economics. From the practical
perspective, the problem may be of importance to invest-
ment managers in banks, 
nancial institutions, hedge funds,
insurance companies, and pension funds. 	e problem may
also be of interest to individual investors and policyholders
of de
ned contribution pension funds. A scienti
c approach
to the optimal asset allocation problem was pioneered by
Markowitz [1]. In the Markowitz paradigm, a single-period
model was considered and the problem was formulated
as a mean-variance optimization problem. Merton [2, 3]
pioneered the study of the optimal asset allocation problem
based on the maximization of an expected utility in a
continuous-time economy. Using dynamic programming,
Merton derived a Hamilton-Jacobi-Bellman (HJB) equation
governing the value function of the problem under some
di�erentiability conditions. For a particular class of utility
functions, say a power utility, Merton obtained a closed-form
expression for an optimal portfolio strategy which is known
as the Merton ratio.

Pliska [4], Karatzas et al. [5], and Cox and Huang [6]
pioneered an alternative approach to the optimal asset allo-
cation problem in continuous time. 	is approach is known

as the martingale approach. 	e key idea of the martingale
approach is not unlike that of a risk-neutral valuation of a
contingent claim. Firstly, an equivalent martingale measure
under which the discounted optimal wealth process is a
martingale is determined.	en, the integrand in amartingale
representation of the discounted optimal wealth process is
used to identify an optimal portfolio process. For discussions
on the martingale approach, one may refer to, for example,
Cvitanic andKaratzas [7], Karatzas and Shreve [8], Elliott and
Kopp [9], and Pham [10]. Gerber and Shiu [11] considered an
approach based on a tool used in actuarial science, namely,
the Esscher transform, to discuss the optimal asset allocation
problem.	is approach is related to themartingale approach;
see the discussion by Boyle [12].

Recently, the optimal asset allocation problem in Marko-
vian regime-switching models has received some attention
in the literature. 	e rationale of considering the problem
in Markovian regime-switching models is to incorporate the
impact of structural changes in economic conditions on price
dynamics and investment decision making. Some works on
the optimal asset allocation problem in Markovian regime-
switching models are in, for example, Zhou and Yin [13],
Yin and Zhou [14], Sass and Haussmann [15], Baeuerle and
Rieder [16], Jang et al. [17], Nagai and Runggaldier [18],
Sotomayor and Cadenillas [19], Zhang et al. [20], Elliott
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and Siu [21], Elliott et al. [22], Korn et al. [23], Siu [24–
26], Shen and Siu [27], and others. Both situations where
the modulating Markov chain is observable and where it is
hidden were considered. Di�erent approaches to stochastic
optimal control such as the HJB dynamic programming
approach, the martingale approach (coupled with Malliavin
calculus), and the backward stochastic di�erential equation
approach were adopted.

In this paperwe study an optimal asset allocation problem
for a quite general class of utility functions in a simple two-
state Markovian regime-switching model. We suppose that
the appreciation rate of a risky share changes over time
according to the state of a hidden economy. 	e evolution
of the two-state hidden economy over time is assumed to
be governed by a continuous-time, two-state, hiddenMarkov
chain, where the two statesmay be interpreted as “Expansion”
and “Recession.” As usual, the optimal asset allocation prob-
lem is discussed in two steps. Firstly, standard 
ltering theory
is adopted to turn an economy with hidden information
into one with complete information. 	e latter is called a
“
ltered” economy and is complete. 	at is, in the “
ltered”
economy, there is a unique equivalent martingale measure.
A martingale approach is then used to discuss the optimal
asset allocation problem in the “
ltered” economy. Using a
martingale representation coupled with stochastic �ows of
di�eomorphisms for the 
ltering equation, the integrand in
the martingale representation is identi
ed which gives rise
to an optimal portfolio strategy under some di�erentiability
conditions. A partial di�erential equation for the optimal
wealth conditioning on the values of the underlying state
variables is also obtained. 	is may be called an optimal
wealth function which characterises a functional relationship
between the current optimal wealth and the current values
of the underlying state variables. 	e approach adopted in
this paper can be used in a general �-state case. However,
it seems that, in the two-state case, the results of the 
lters
and the partial di�erential equation for the optimal wealth are
neater than those arising from the �-state case. Indeed, the
two-state case may not be without practical relevance. Taylor
[28, 29] provided some discussions on the practical relevance
of using a two-state Markovian regime-switching process for
modeling 
nancial returns.

	e rest of the paper is structured as follows. 	e next
section presents themodel dynamics in the original economy
with hidden information and in the “
ltered” economy.
In Section 3, the optimal asset allocation problem in the
“
ltered” economy is presented and the martingale approach
is used for solving the problem. 	e use of stochastic �ows
to identify the integrand in the martingale representation in
the 
ltered market is then presented in Section 4. 	e 
nal
section gives a summary and suggests some possible topics
for further research.

2. Model Dynamics and Filtering

	e modelling and 
ltering frameworks presented here are
standard in the literature on optimal asset allocation in a
hiddenMarkovian regime-switchingmodel; see, for example,

Siu [24–26], Korn et al. [23], Wei et al. [30], and Elliott and
Siu [21], amongst others.

A continuous-time economy with two primitive secu-
rities, namely, a bond and a risky share, is considered.
As usual, uncertainty in the economy is described by a
complete probability space (Ω,F,P), whereP is a real-world
probability measure. 	e time parameter set of the economy
is given by a 
nite time horizon T := [0, �], where � < ∞.
	e evolution of the state of a hidden economy over time
is modeled by a continuous-time, two-state, hidden Markov
chain {X(�) | � ∈ T} on (Ω,F,P). 	e state space of the
chain is taken to be {e1, e2}, where e1 = (1, 0)� ∈ R

2 and
e2 = (0, 1)� ∈ R

2. y� is the transpose of a vector or a matrix
y. 	e state space {e1, e2} is called the canonical state space of
the chain and was adopted in Elliott et al. [31]. 	e states “e1”
and “e2” may be interpreted as “Expansion” and “Recession”
of an economy, respectively. As usual, the probability laws of
the chain are speci
ed by its intensity matrix, or rate matrix,
which is de
ned as

A := [−	1 	1	2 −	2] , (1)

where 	1, 	2 > 0.
A two-state Markovian regime-switching model for asset

price dynamicsmay be justi
ed both theoretically and empir-
ically (see Taylor [28, 32]). Indeed, Taylor [29] pointed out
that a two-state Markov chain is su�cient to distinguish a
good economy from an economy experiencing distresses.

Let � be the constant continuously compounded rate of
interest of the bond, where � > 0. 	en the evolution of the
bond price over time is governed by

� (�) = ��, � (0) = 1. (2)

For each � ∈ T, let �(�) be the appreciation rate of
the risky share at time �. Again it is supposed that �(�) is
modulated by the chain as

� (�) = ⟨�,X (�)⟩ , (3)

where � := (�1, �2)� ∈ R
2; �1 and �2 are the appreciation

rates of the risky share when the economy is in an expansion
and when it is in a recession, respectively, where �1 > �2;⟨⋅, ⋅⟩ is the scalar product in R

2; since the chain {X(�) | � ∈
T} is hidden, the appreciation rate �(�) de
ned as above is
unobservable.

Let � be the constant volatility of the risky share, where� > 0, and {�(�) | � ∈ T} is a standard Brownian motion on(Ω,F,P).	en we suppose that underP the evolution of the
price of the risky share over time is governed by

�� (�) = � (�) � (�) + �� (�) �� (�) , � (0) = �0 ∈ (0,∞) .
(4)

Note that if one considers a general situation where the
volatility is modulated by the hidden Markov chain as well,
one may need to take into account some potential issues.
Firstly, standard 
ltering theory may not be conveniently
used to turn the economy with hidden states into one with
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observable states. Secondly, since� is completely identi
ed by
the predictable quadratic variation of the price process of the
risky share, it should be observable. 	irdly, an exact, 
nite-
dimensional 
ltering equation for the hidden Markov chain
may be di�cult, if not impossible, to derive if the volatility is
also modulated by the hidden Markov chain. One may refer
to, for example, Guo [33], Gerber and Shiu [34], Siu [24], and
Elliott and Siu [21], for related discussions.

Note that the price process {�(�) | � ∈ T}of the risky share
is observable. However, both the dri� process {�(�) | � ∈ T}
and the Brownian motion {�(�) | � ∈ T} are unobservable.

In what follows, we will adopt standard 
ltering theory to
turn the economywith hidden states into onewith observable
states.

Firstly the information structure is speci
ed. Let F :={F(�) | � ∈ T} be the right-continuous and P-complete

ltration generated by the price process {�(�) | � ∈ T} of
the risky share. 	is describes the �ow of observable market

information. Let FX := {FX(�) | � ∈ T} be the right-
continuous, P-complete 
ltration generated by the chain X.
For each � ∈ T, let

G (�) := F
X (�) ∨F (�) , (5)

where A ∨ B is the minimal �-
eld containing both �-

elds A andB. Write G := {G(�) | � ∈ T}.

For any integrable, G-adapted, process, {�(�) | � ∈ T}, let
{�̂(�) | � ∈ T} be its F-optional projection under P. 	en, for
each � ∈ T,

�̂ (�) = � [� (�) | F (�)] , P-a.s. (6)

Here � is the expectation operator under P. It is known that
the optional projection takes into account the measurability
in (�, �) ∈ T × Ω.

De
ne, for each � ∈ T,

 (�) := ⟨X̂ (�) , e1⟩ = P (X (�) = e1 | F (�)) . (7)

	is is the conditional, or posterior, probability that the
hidden economy is in an expansion at time � given the
observable information up to time �. We suppose that  (0) = 0, where  0 is a given constant taking a value in (0, 1).

De
ne the process {�̂(�) | � ∈ T} by putting

�̂ (�) := � (�) + ∫�
0
(� (-) − �1 (-) − �2 (1 −  (-))� )�-.

(8)

	en it was shown in Lipster and Shiryaev [35] that {�̂(�) |� ∈ T} is an (F ,P)-standard Brownian motion. 	is is called
the innovations process.

	en the following lemma was due to, for example,
Lipster and Shiryaev [35] and Elliott [36] (see Chapter 18
therein).

Lemma 1. Let 2 := (�1−�2)/�.�en, underP, the conditional
probability process { (�) | � ∈ T} is governed by the following
stochastic di�erential equation:

� (�) = [−	1 (�) + 	2 (1 −  (�))] ��
+ 2 (1 −  (�))  (�) ��̂ (�) ,
 (0) =  0 ∈ (0, 1) .

(9)

Under P, the price process {�(�) | � ∈ T} of the risky
share can be expressed in terms of {�̂(�) | � ∈ T} as follows:
�� (�) = [�2 + (�1 − �2)  (�)] � (�) �� + �� (�) ��̂ (�) . (10)

Note that

�̂ (�) = ⟨�, X̂ (�)⟩ = �1 (�) + �2 (1 −  (�)) . (11)

	en, under P,

�� (�) = �̂ (�) � (�) �� + �� (�) ��̂ (�) . (12)

	is is used as the price process of the risky share in a
“
ltered” economywith complete observations. It is clear that
the 
ltered economy is complete.

3. Martingale Approach for Asset Allocation

	e aim of this section is to adapt the martingale approach to
optimal asset allocation in the “
ltered” economy described
in the last section. 	e martingale approach to optimal asset
allocation was pioneered by Pliska [4], Karatzas et al. [5],
and Cox and Huang [6]. 	e mathematical basis of this
approach is the martingale method for stochastic optimal
control which was pioneered by Rishel [37], Duncan and
Varaiya [38, 39], and Davis [40]. 	e martingale approach
has been used to discuss optimal asset allocation problems in
some 
ltered 
nancial models (see, e.g., Sass and Haussmann
[15], Korn et al. [23], and Siu [24] and the relevant references
therein). In this section, the classical convex dual arguments
in, for example, Karatzas and Shreve [8], Pham [10], and
Cvitanic and Karatzas [7], will be used. Unlike the Lagrange
multiplier arguments, the classical convex dual arguments
do not require the change of order of di�erentiation and
integration (	e author would like to thank the referee for
pointing out this.). 	e developments here are standard and
follow those in Cvitanic and Karatzas [7] (Section 7 therein).

Recall that, in the “
ltered”model, the price process of the
risky share under P is given by

�� (�) = �̂ (�) � (�) �� + �� (�) ��̂ (�) . (13)

Furthermore, under P, the 
ltering equation is given by

� (�) = [−	1 (�) + 	2 (1 −  (�))] ��
+ 2 (1 −  (�))  (�) ��̂ (�) , (14)

where  (0) =  0 ∈ (0, 1).
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Let {4(�) | � ∈ T} be a portfolio process, where 4(�) is
the amount of money invested in the risky share held at time�. Suppose that {4(�) | � ∈ T} is self-
nancing. 	en, under
P, the wealth process {5�(�) | � ∈ T} corresponding to the
self-
nancing portfolio process {4(�) | � ∈ T} is governed by

�5� (�) = [�5� (�) + 4 (�) (�̂ (�) − �)] �� + 4 (�) ���̂ (�) .
(15)

To simplify the notation, the superscript 4 is suppressed and
write5(�) for5�(�) unless otherwise stated.	e initial wealth5(0) = V0 ∈ (0,∞).

	en, as usual, an admissible portfolio process is de
ned
as follows.

De�nition 2. A portfolio process {4(�) | � ∈ T} is said to be
admissible with respect to the initial wealth V0 ∈ (0,∞) and
the initial state  0 ∈ (0, 1) (i.e., {4(�) | � ∈ T} ∈ A(V0,  0)), if
it satis
es the following conditions:

(1) {4(�) | � ∈ T} is self-
nancing;
(2) {4(�) | � ∈ T} is a measurable, F-adapted process

such that

∫�
0
|4(�)|2 �� < ∞, P-a.s; (16)

(3) for each � ∈ T, 5(�) := 5(�, �) ≥ 0, for almost all(�, �) ∈ T × Ω;
(4) hence

∫�
0

7777�5 (�) + 4 (�) (�̂ (�) − �)7777 �� < ∞, P-a.s; (17)

(5) the stochastic di�erential equation governing the
wealth process {5(�) | � ∈ T} has a unique strong
solution.

Consider now a utility function 8 : (0,∞) → R such
that it satis
es the following standard conditions:

(1) 8 ∈ C
1((0,∞)), where C

1((0,∞)) is the space of
continuously di�erentiable functions on (0,∞);

(2) 8 is strictly increasing and strictly concave;

(3) the derivative 8� of 8 is such that

lim
V→∞8� (V) = 0, lim

V→0+
8� (V) = ∞. (18)

De
ne

A1 (V0,  0) := {4 ∈ A (V0,  0) | � [8− (5 (�))] < ∞} ,
(19)

where 8− is the negative part of 8.
	en for each portfolio process 4 ∈ A1(V0,  0), initial

wealth V0 ∈ (0,∞), and initial information state  0 ∈ (0, 1),
the performance functional A(4; V0,  0) is de
ned by

A (4; V0,  0) := � [8 (5 (�))] . (20)

	e objective of an economic agent is to select 4 ∈ A1(V0,  0)
so as to maximize A(4; V0,  0), that is, to solve the following
optimization problem:

Φ(V0,  0) := sup
�∈A1(V0 ,
0)

A (4; V0,  0) , (21)

where Φ(V0,  0) is the value of the optimization problem.

Let {Ĉ(�) | � ∈ T} be a bounded, F-predictable process
de
ned by

Ĉ (�) := (� − �1� ) (�) + (� − �2� ) (1 −  (�)) . (22)

Consider the F-adapted process {Λ(�) | � ∈ T} de
ned by
putting

Λ (�) := exp(∫�
0
Ĉ (-) ��̂ (-) − 1

2 ∫
�

0
Ĉ2 (-) �-) . (23)

Since {Ĉ(�) | � ∈ T} is bounded, {Λ(�) | � ∈ T} is an (F ,P)-
exponential martingale. Consequently, �[Λ(�)] = 1.

A new probability measure Q equivalent to P on F(�)
can then be de
ned by setting

�Q
�P

77777777F(�) := Λ (�) . (24)

By Girsanov’s theorem, the process {�̂Q(�) | � ∈ T} de
ned
by

�̂Q (�) := �̂ (�) − ∫�
0
Ĉ (-) �- (25)

is an (F ,Q)-standard Brownian motion.
Let {5̃(�) | � ∈ T} be the discounted wealth process,

where 5̃(�) := −��5(�) for each � ∈ T. 	en, underQ,

5̃ (�) = V0 + ∫
�

0
4 (-) −�����̂Q (-) . (26)

	is is an (F ,Q)-(local)-martingale. Indeed it is an (F ,Q)-
martingale.

Note that 4 ∈ A1(V0,  0) ⊂ A(V0,  0), so {5̃(�) | � ∈ T} is
bounded from below. Consequently, using the Fatou lemma,

{5̃(�) | � ∈ T} is an (F ,Q)-supermartingale (see Karatzas and
Shreve [8], Page 92 therein). 	en

�Q [5̃ (�)] ≤ V0, (27)

where �Q is the expectation operator underQ.
Since 8 is strictly concave, 8� is strictly decreasing.

Consequently, there is an inversemap O : (0,∞) → (0,∞) of8� which is also strictly decreasing. Furthermore, O(0+) = ∞
and O(∞) = 0. De
ne, for each P ∈ (0,∞),

Q (P) := � [−��Λ (�) O (PΛ (�) −��)] . (28)

Suppose that, for each P ∈ (0,∞), Q(P) < ∞. 	en the
function Q : (0,∞) → (0,∞) is continuous and is strictly
decreasing such that Q(0+) = ∞ and Q(∞) = 0. Let T be
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the inverse of Q. De
ne a positive, F(�)-measurable, inte-
grable random variable U by putting

U := O (T (V0) Λ (�) −��) . (29)

	en the following lemma is a standard result and is a
particular case of Lemma 7.2 in Cvitanic and Karatzas [7].We
state the result without giving the proof.

Lemma 3. �e random variable U de�ned in (29) satis�es

� [−��Λ (�) U] = V0,
� [8− (U)] < ∞, (30)

and, for all 4 ∈ A1(V0,  0),
A (4; V0,  0) ≤ � [8 (U)] . (31)

	e following theorem is a standard result and is a
particular case of Proposition 7.3 in Cvitanic and Karatzas
[7]. Note that the form of an optimal portfolio process is
identi
ed in the proof of the theorem, so we present the proof
following that in Cvitanic and Karatzas [7].

�eorem 4. LetV be a positive,F(�)-measurable, integrable
random variable such that

� [−��Λ (�)V] = �Q [−��V] = V0 < ∞. (32)

�en there exists a portfolio process 4 such that 4 ∈ A(V0,  0)
and 5V0 ,�(�) = V, P-a.s.

Proof. With a slight abuse of notation, we de
ne a positive,
continuous process {5(�) | � ∈ T} by putting

−��5 (�) = �Q [−��V | F (�)] , � ∈ T. (33)

	en, from its de
nition, 5(0) = V0 and 5(�) = V, P-a.s.
De
ne the following (F ,Q)-martingale {W(�) | � ∈ T} by

setting

W(�) := �Q [−��V | F (�)]
= −��5 (�) = 5̃ (�) , � ∈ T. (34)

By the martingale representation theorem (see, e.g., Elliott
[36], 	eorem 12.33 therein), there exists an F-progressively
measurable, real-valued process {X(�) | � ∈ T} satisfying
∫�0 |X(�)|2��, P-a.s., such that

W(�) = 5̃ (�) = V0 + ∫
�

0
X (-) ��̂Q (�) , P-a.s. (35)

Comparing (26) and (35), the process {5(�) | � ∈ T} is
the wealth process corresponding to the portfolio process4 ∈ A(V0,  0), where the portfolio process4 := {4(�) | � ∈ T}
is given by

4 (�) = X (�)
�−�� , � ∈ T. (36)

	e following corollary is a particular case of 	eorem
7.4 in Cvitanic and Karatzas [7]. It is a direct consequence of
Lemma 3 and	eorem 4.

Corollary 5. Suppose U is de�ned in (29). �en there exists
a portfolio process 4∗ := {4∗(�) | � ∈ T} such that

4∗ ∈ A1(V0,  0), 5V0 ,�∗(�) = U, P-a.s., and Φ(V0,  0) =A(4∗; V0,  0).
From Corollary 5, it is clear that the optimal terminal

wealth is given by U de
ned in (29) and the corresponding
admissible optimal portfolio process is given by 4∗, where 4∗
is given in the proof of 	eorem 4; that is,

4∗ (�) = X (�)
�−�� , � ∈ T. (37)

Consequently to determine the optimal portfolio process{4∗(�) | � ∈ T}, the integrand {X(�) | � ∈ T} in martingale
representation (35) must be determined. In the next section
the integrand {X(�) | � ∈ T} will be identi
ed using the
concept of stochastic �ows of di�eomorphisms.

4. Stochastic Flows and Optimal Portfolio

In this section the stochastic �ows of di�eomorphisms for
the 
ltering equation will be 
rst discussed. 	en under
some mild di�erentiability conditions the integrand in the
martingale representation for the discounted optimal wealth
process is identi
ed which, in turn, gives rise to an expression
for the optimal portfolio. 	e concept of stochastic �ows
of di�eomorphisms has been used for option pricing and
hedging; see, for example, Colwell et al. [41], Colwell and
Elliott [42], Elliott and Kopp [9], and Elliott et al. [43],
amongst others.

For each Z ∈ (0, 1), let \,�(Z) be the unique, strong
solution of the 
ltering equation underP for � ≥ �with initial
condition \,(Z) = Z. 	at is,

�\,� (Z) = [−	1\,� (Z) + 	2 (1 − \,� (Z))] ��
+ 2 (1 − \,� (Z)) \,� (Z) ��̂ (�) ,

\, (Z) = Z.
(38)

	en using similar arguments in Kunita [44, 45] and Bismut
[46] (see also, e.g., Elliott and Kopp [9]), there exists a �ow of
di�eomorphisms Z → \,�(Z) corresponding to the 
ltering
equation. Write

^,� (Z) := _\,� (Z)_Z , (39)

for the derivative of the map Z → \,�(Z).
	en ^,�(Z) satis
es the following linearized stochastic

di�erential equation:

�^,� (Z) = − (	1 + 	2)^,� (Z) ��
+ 2 (1 − 2\,� (Z))^,� (Z) ��̂ (�) , (40)

with initial condition^,(Z) = 1.
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Again using similar arguments in Kunita [44, 45] and
Bismut [46] (see also, e.g., Elliott and Kopp [9]), the inverse^−1,� (Z) of ^,�(Z) exists. Furthermore, ^−1,� (Z) satis
es the
following equation:

�^−1,� (Z) = ^−1,� (Z) (	1 + 	2) ��
− ^−1,� (Z) 2 (1 − 2\,� (Z)) ��̂ (�)
+ ^−1,� (Z) 22 (1 − 2\,�(Z))2 ��,

(41)

with initial condition^−1, (Z) = 1.
Write, for each ` = 1, 2,

C� := � − ��� , (42)

and, for each �, � ∈ T with � ≤ �, Z ∈ (0, 1),
Θ,� (Z) := C1\,� (Z) + C2 (1 − \,� (Z)) , (43)

so that

_Θ,� (Z)_Z = (C1 − C2)^,� (Z) . (44)

Consider now the stochastic exponentialM,�(Z) de
ned
by

M,� (Z) = 1 + ∫
�


Θ,� (Z)M,� (Z) ��̂ (-) . (45)

	en

M,� (Z) = exp(∫�

Θ,� (Z) ��̂ (-) − 1

2 ∫
�


Θ2,� (Z) �-) .

(46)

	is is an (F ,P)-martingale.
	e following lemma gives an expression for the deriva-

tive _M�,�(Z)/_Z.
Lemma 6. Consider

_M�,� (Z)_Z = M�,� (Z) ∫
�

�
(C1 − C2)^�,� (Z) ��̂Q (-) . (47)

Proof. Using similar arguments in Elliott et al. [43], Propo-
sition 3.1, for example, the result can be veri
ed by di�er-
entiation. Firstly, from the di�erentiability of the solution of
stochastic di�erential equation (45),

_M�,� (Z)_Z = ∫�
�
(C1 − C2)^�,� (Z)M�,� (Z) ��̂ (-)

+ ∫�
�
Θ�,� (Z) _M�,� (Z)_Z ��̂ (-) .

(48)

	en applying Itô’s di�erentiation rule to the product

M�,� (Z) ∫
�

�
(C1 − C2)^�,� (Z) ��̂Q (-) (49)

and using (45) give

M�,� (Z) ∫
�

�
(C1 − C2)^�,� (Z) ��̂Q (-)

= ∫�
�
M�,� (Z) (C1 − C2)^�,� (Z) (��̂ (-) − Θ�,� (Z) �-)

+ ∫�
�
(M�,� (Z) ∫

�

�
(C1 − C2)^�, (Z) ��̂Q (�))

⋅ Θ�,� (Z) ��̂ (-)
+ ∫�
�
M�,� (Z) (C1 − C2)^�,� (Z)Θ�,� (Z) �-

= ∫�
�
M�,� (Z) (C1 − C2)^�,� (Z) ��̂ (-)

+ ∫�
�
(M�,� (Z) ∫

�

�
(C1 − C2)^�, (Z) ��̂Q (�))

⋅ Θ�,� (Z) ��̂ (-) .
(50)

If

_M�,� (Z)_Z = M�,� (Z) ∫
�

�
(C1 − C2)^�, (Z) ��̂Q (�) , (51)

then

M�,� (Z) ∫
�

�
(C1 − C2)^�,� (Z) ��̂Q (-)

= ∫�
�
M�,� (Z) (C1 − C2)^�,� (Z) ��̂ (-)

+ ∫�
�

_M�,� (Z)_Z Θ�,� (Z) ��̂ (-) .

(52)

	e result follows by noting that (48) has a unique solution.

De
ne a function b : T×(0,∞)×(0, 1) → R by putting

b (�, c, Z) := � [M�,� (Z) −��
× O (T (V0) cM�,� (Z) −��) | F (�)] , (53)

for each (�, c, Z) ∈ T × (0,∞) × (0, 1).
	en we have the following lemma.

Lemma 7. IfM0,�(Z0) = c and\0,�(Z0) = Z, (c, Z) ∈ (0,∞)×
(0, 1), then the discounted optimal wealth −��5∗(�) at time � is
given by

−��5∗ (�) = b (�, c, Z) . (54)

Proof. 	e proof is standard. Note that

M0,� (Z0) = M0,� (Z0)M�,� (Z) . (55)
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	en by a version of Bayes’ rule and the martingale property
of {M0,�(Z0) | � ∈ T},
−��5∗ (�) = �Q [−��U | F (�)]

= �Q [−��O (T (V0) Λ (�) −��) | F (�)]
= �Q [−��O (T (V0)M0,� (Z0) −��) | F (�)]
= � [M0,� (Z0) −��

× O (T (V0)M0,� (Z0) −��) | F (�)]
⋅ (� [M0,� (Z0) | F (�)])−1

= � [M�,� (Z) −��
× O (T (V0)M0,� (Z0) −��) | F (�)]

= � [M�,� (Z) −��
× O (T (V0) cM�,� (Z) −��) | F (�)] .

(56)

	is gives the result.

For each (�, c, Z) ∈ T × (0,∞) × (0, 1), let
b∗ (�, c, Z) = b (�, c, Z)

−�� . (57)

	en ifM0,�(Z0) = c and \0,�(Z0) = Z,
b∗ (�, c, Z) = 5∗ (�) . (58)

	is is the optimal wealth at time �, and, hence, the functionb∗(�, c, Z)may be called an optimal wealth function.
	e following theorem is the main result which gives a

partial di�erential equation for the optimal wealth functionb∗(�, c, Z) and an expression for the optimal portfolio strat-
egy 4∗.
�eorem 8. Given that M0,�(Z0) = c and \0,�(Z0) = Z,
suppose that b∗(�, c, Z) ∈ C

1,2,2((0, �) × (0,∞) × (0, 1)). �en
the optimal wealth function b∗(�, c, Z) satis�es the following
partial di�erential equation:

_b∗
_� + _b∗

_Z (−	1Z + 	2 (1 − Z))
+ _b∗
_c_Z2 (C1Z + C2 (1 − Z)) c (1 − Z) Z

+ 1
2
_2b∗
_c2 (C1Z + C2 (1 − Z)) c2

+ 1
2
_2b∗
_Z2 22 (1 − Z)2 Z2 − �b∗ = 0,

(59)

with terminal condition

b∗ (�,M0,� (Z0) , \0,� (Z0)) = 5∗ (�) = U. (60)

Furthermore, the optimal portfolio strategy 4∗(�) is given by

4∗ (�) = (_b_c (C1Z + C2 (1 − Z)) c + _b
_Z 2 (1 − Z) Z) �−1��,

(61)

where

_b
_c = M

−1
0,� (Z0) �Q [T (V0)M0,� (Z0) −2��

× O� (T (V0)M0,� (Z0) −��) | F (�)] ,
_b
_Z = −���Q [(∫�

�
(C1 − C2)^0,� (Z0) ��̂Q (-))

⋅ (O (T (V0)M0,� (Z0) −��)
+M0,� (Z0) T (V0) −��

× O� (T (V0)M0,� (Z0) −��)) | F (�) ]
⋅ ^−10,� (Z0) .

(62)

Proof. 	e results are proved using similar arguments in
Elliott et al. [43], for example, Proposition 3.1. Firstly, applying
Itô’s di�erentiation rule to b(�, c, Z) gives

b (�, c, Z) = b (0, c0, Z0) + ∫
�

0

_b
_-�- + ∫

�

0

_b
_c �M0,� (Z0)

+ ∫�
0

_b
_Z �\0,� (Z0)

+ 1
2 ∫
�

0

_2b
_c2 � ⟨M0,⋅ (Z0) ,M0,⋅ (Z0)⟩ (-)

+ ∫�
0

_2b
_c_Z� ⟨M0,⋅ (Z0) , \0,⋅ (Z0)⟩ (-)

+ 1
2 ∫
�

0

_2b
_Z2 � ⟨\0,⋅ (Z0) , \0,⋅ (Z0)⟩ (-) .

(63)

Here {⟨d1, d2⟩(�) | � ∈ T} is the predictable quadratic
covariation of the processes {d1(�) | � ∈ T} and {d2(�) |� ∈ T}.

Rearranging then gives

b (�, c, Z) = b (0, c0, Z0)
+ ∫�
0
(_b_- + _b

_Z (−	1\0,� (Z0)
+ 	2 (1 − \0,� (Z0)))
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+ 1
2
_2b
_c2 Θ20,� (Z0)M20,� (Z0)

+ 1
2
_2b
_Z2 22 (1 − \0,�(Z0))

2 \20,� (Z0)

+ _2b
_c_Z2Θ0,� (Z0)M0,� (Z0)

⋅ (1 − \0,� (Z0)) \0,� (Z0)) �-

+ ∫�
0
(_b_cΘ0,� (Z0)M0,� (Z0)

+ _b
_Z 2 (1 − \0,� (Z0))

⋅ \0,� (Z0)) ��̂Q (-) .
(64)

From Lemma 7 and the martingale representation for the
discounted optimal wealth described in Section 3,

b (�, c, Z) = −��5∗ (�) = V0 + ∫
�

0
X (-) ��̂Q (-) , P-a.s.

(65)

Consequently, {b(�, c, Z) | � ∈ T} is an (F ,Q)-(local)-
martingale, and, hence, it must be an (F ,Q)-special semi-
martingale.

By the unique decomposition of a special semimartingale,
the predictable term of 
nite variation in (64) must be
indistinguishable from the zero process. Consequently,

_b
_� +

_b
_Z (−	1\0,� (Z0) + 	2 (1 − \0,� (Z0)))

+ _2b
_c_Z2Θ0,� (Z0)M0,� (Z0) (1 − \0,� (Z0)) \0,� (Z0)

+ 1
2
_2b
_c2 Θ20,� (Z0)M20,� (Z0)

+ 1
2
_2b
_Z2 22 (1 − \0,�(Z0))

2 \20,� (Z0) = 0.
(66)

	en

_b
_� +

_b
_Z (−	1Z + 	2 (1 − Z))
+ _2b
_c_Z2 (C1Z + C2 (1 − Z)) c (1 − Z) Z

+ 1
2
_2b
_c2 (C1Z + C2(1 − Z))

2 c2

+ 1
2
_2b
_Z2 22 (1 − Z)2 Z2 = 0.

(67)

	erefore, (59) follows by noting that b∗(�, c, Z) = b(�, c, Z)/−�� and by di�erentiation.
Again by the unique decomposition of a special semi-

martingale, the integrand processes of the stochastic integrals
in (64) and (65) must be indistinguishable. Consequently,

X (�) = _b
_c (C1Z + C2 (1 − Z)) c + _b

_Z 2 (1 − Z) Z. (68)

Di�erentiating with respect to c inside the expectation and
using a version of Bayes’ rule give

_b
_c = � [T (V0)M2�,� (Z) −2��

× O� (T (V0) cM�,� (Z) −��) | F (�)]
= M
−1
0,� (Z0) �Q [T (V0)M0,� (Z0) −2��

× O� (T (V0)M0,� (Z0) −��) | F (�)] .
(69)

Furthermore,

_b
_Z = � [_M�,� (Z)_Z −��O (T (V0) cM�,� (Z) −��) | F (�)]

+ � [M�,� (Z) −��O� (T (V0) cM�,� (Z) −��)
⋅ T (V0) c−�� _M�,� (Z)_Z | F (�)] .

(70)

Di�erentiating with respect to Z inside the expectation and
using a version of Bayes’ rule and Lemma 6 give

_b
_Z = �Q [−�� (∫�

�
(C1 − C2)^�,� (Z) ��̂Q (-))

⋅ O (T (V0)M0,� (Z0) −��) | F (�) ]
+ �Q [O� (T (V0) cM�,� (Z) −��) T (V0) c−2��M�,� (Z)

× (∫�
�
(C1 − C2)^�,� (Z) ��̂Q (-)) | F (�)] .

(71)

Consequently,

_b
_Z = �Q [−�� (∫�

�
(C1 − C2)^0,� (Z0) ��̂Q (-))

⋅ O (T (V0)M0,� (Z0) −��) | F (�) ]^−10,� (Z0)
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+ �Q [(M0,� (Z0) ∫
�

�
(C1 − C2)^0,� (Z0) ��̂Q (-))

⋅ T (V0) −2��

× O� (T (V0)M0,� (Z0) −��) | F (�) ]^−10,� (Z0) .
(72)

Expression (61) for the optimal portfolio then follows by
noting that

4∗ (�) = X (�) �−1��. (73)

Remark 9. 	e partial di�erential equation for the optimal
wealth function arising from the two-state situation is neater
than that from a general�-state case (	e author would like
to thank the referee for pointing out this.). 	e former may
also have some more numerical advantages than the latter.
	is may represent an advantage of considering the two-state
situation.

Remark 10. It is known that the martingale approach to
optimal asset allocation and the risk-neutral pricing and
hedging of a contingent claim are related to each other. 	e
partial di�erential equation for the optimal wealth function
may provide some further insights into the link between
them. In particular, if the optimal terminal wealth U is
considered the terminal payo� of the claim, the optimal
wealth function may be considered the value function of a
self-
nancing replicating portfolio of the claim and hence the
price function of the claim under the no-arbitrage principle.
In this case, the partial di�erential equation for the optimal
wealth function may be interpreted as the partial di�erential
equation for the price function of the claim.

Remark 11. 	ere are some advantages of using the stochas-
tic �ows approach comparing to the Malliavin calculus
approach and the Hamilton-Jacobi-Bellman (HJB) dynamic
programming approach. Comparedwith theMalliavin calcu-
lus approach, the stochastic �ows approach does not involve
the use of in
nite-dimensional calculus and may be more
intuitively appealing than the Malliavin calculus approach.
	is advantage of the stochastic �ows approach in a general
context has also been discussed in, for example, Elliott
and Kohlmann [47, 48], amongst others. Furthermore, the
stochastic �ows approach gives rise to a partial di�erential
equation for the optimal wealth function, whereas this result
may not be obtained using the Malliavin calculus approach.
Of course, the Malliavin calculus approach does have some
advantages over the stochastic �ows approach. One advan-
tage is that the former can be used in the non-Markovian
situation while the latter can only be used in the Markovian
situation. In this sense, the Malliavin calculus approach is
more general than the stochastic �ows approach. Neverthe-
less, in the 
lteredmarket considered here, the wealth process
and the state probability process are jointly Markovian with
respect to the observed 
ltration, so the stochastic �ows

approach is applicable in the current set up. Compared with
the HJB dynamic programming approach, the stochastic
�ows approach provides a way to justify some di�erentiability
conditions. In particular, some di�erentiability conditions
for the optimal wealth function in 	eorem 8 may be
justi
ed by the stochastic �ows of di�eomorphisms, whereas
the HJB dynamic programming approach itself may not be
used to justify some di�erentiability conditions required in
the veri
cation theorem and viscosity solutions to the HJB
equation may be required. Furthermore, the veri
cation the-
orem arising from the HJB dynamic programming approach
requires the uniform integrability condition for the value
function, which may be uneasy to verify in some situations.
Using the stochastic �ows approach, the optimal portfolio
process depends on the optimalwealth function instead of the
value function. Consequently, the veri
cation of the uniform
integrability of the value function is not required in the
stochastic �ows approach. (	e author would like to thank
the referee for stimulating the discussion.)

5. Conclusions

An approach based on a martingale representation and
stochastic �ows of di�eomorphisms was adopted to discuss
an optimal asset allocation problem in a simple two-state
Markovian regime-switching market. 	is approach may be
able to accommodate quite a general class of utility functions
under some di�erentiability conditions. As usual, standard

ltering theorywas 
rst used to transform the originalmarket
into one with complete observations, where the latter is
complete. When the values of the underlying state variables
were given, using stochastic �ows of di�eomorphisms for the

ltering equation and the unique decomposition of a special
semimartingale, the integrand of a martingale representation
for the discounted optimal wealth process was identi
ed
which gave rise to an optimal portfolio strategy. A partial
di�erential equation for the optimal wealth function was
also provided. 	e results may be generalized to the case of
an �-state hidden Markov chain though some complicated
notation may be involved.

	e approach considered here may pave a way for some
potentially interesting topics for future research. Firstly,
one may consider incorporating portfolio constraints in the
optimal asset allocation problem. Secondly, one may extend
the current model to a Markovian regime-switching jump-
di�usion model. 	irdly, as relating to the second topic,
one may consider the application of the approach to study
an optimal investment problem of an insurer. In this case,
one needs to take into account insurance liabilities which
may be modeled by Markov-modulated compound Poisson
processes.	e papers by Elliott and Siu [21] and Siu [26] may
provide some clues along this direction.
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