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Abstract
Responsive, implantable stimulation devices to treat epilepsy are now in clinical trials. New evidence
suggests that these devices may be more effective when they deliver therapy before seizure onset.
Despite years of effort, prospective seizure prediction, which could improve device performance,
remains elusive. In large part, this is explained by lack of agreement on a statistical framework for
modeling seizure generation and a method for validating algorithm performance. We present a novel
stochastic framework based on a three-state hidden Markov model (HMM) (representing interictal,
preictal, and seizure states) with the feature that periods of increased seizure probability can transition
back to the interictal state. This notion reflects clinical experience and may enhance interpretation
of published seizure prediction studies. Our model accommodates clipped EEG segments and
formalizes intuitive notions regarding statistical validation. We derive equations for type I and type
II errors as a function of the number of seizures, duration of interictal data, and prediction horizon
length and we demonstrate the model’s utility with a novel seizure detection algorithm that appeared
to predicted seizure onset. We propose this framework as a vital tool for designing and validating
prediction algorithms and for facilitating collaborative research in this area.

INTRODUCTION
Several years ago, implantable, responsive brain-stimulation devices to treat epilepsy entered
human clinical trials (Kossoff et al. 2004). Preliminary safety and efficacy results are
encouraging, but given responder rates (defined as a >50% reduction in seizures) between 35
and 43% (Worrell et al. 2005), there is still room for improvement. There is evidence that focal
neurostimulation to abort seizures may be more effective when delivered early in seizure
generation (Murro et al. 2003). This potential to improve device efficacy has increased interest
in seizure prediction, now defined as reliably identifying periods of time in which there is
increased probability of seizure onset (Litt and Echauz 2002; Litt and Lehnertz 2002).
Participants in the First International Collaborative Workshop on Seizure Prediction compared
algorithm performance from different laboratories on a shared set of continuous, intracranial
electroencephalogram (IEEG) recordings from five major international epilepsy centers
(Lehnertz and Litt 2005). This collaborative experiment was stimulated by concern that
analyzing incomplete, “clipped” data sets might bias experimental results. In the end, no
method convincingly demonstrated prospective seizure prediction accuracy sufficient for
clinical application. A shortcoming that was identified was a lack of specificity of preictal
(preseizure) changes on the IEEG. This difficulty rendered many methods, which were
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previously reported to herald seizure onset, much less useful. Additional challenges identified
in the published consensus statement were the need to design experiments with increased
statistical rigor and the need for agreement on statistical methods to perform this validation. It
is in response to these issues that we present the following study.

Many early publications on seizure prediction are controversial because of statistical bias
inherent in their study designs. Sources of selection bias in these studies include the use of
clipped EEG segments containing only seizures and the immediate preseizure period, the
exclusion of sleep EEG epochs, and few (or none) randomly chosen “baseline” segments (Le
Van Quyen et al. 2001; Navarro et al. 2002). Without representative interictal periods, a seizure
prediction algorithm may be operating along the low-specificity, high-sensitivity portion of its
receiver-operator characteristic (ROC) curve, reducing the significance of its sensitivity
measure. In addition, post hoc bias resulted from mining these limited EEG segments without
a prospective validation data set to confirm the findings (Le Van Quyen et al. 2001; Martinerie
et al. 1998; Navarro et al. 2002). More recent publications analyzed larger portions of the
interictal EEG and provided false-positive rates (FPRs). However, the FPR measure alone,
without a specified average false-positive duration, is still inadequate for statistical validation.
For example, when comparing two algorithms with the same FPR, the algorithm with a longer
average false-positive duration will cover a larger proportion of the EEG with positive
predictions, resulting in an artificial bias toward higher sensitivity.

Underemphasis on evaluation of interictal periods may also indicate an implied assumption on
the part of the investigators: that the putative preictal state occurs only before seizures and
reflects a deterministic, transitional state that inevitably leads to seizure (Andrzejak et al.
2001; Martinerie et al. 1998). However, clinical observation is more compatible with the notion
of a putative preictal state as a “permissive” state for seizure generation (e.g., increased seizure
probability with fever, toxic-metabolic derangements, or natural cycles such as sleep or
menstruation). A permissive state allows periods of increased probability of seizure onset to
evolve back into the interictal state without producing a seizure. In this paradigm, false-positive
detections can be a reflection of underlying stochastic physiological mechanisms and not
simply a short-coming of imperfect detection tools that label distinct events as similar.

A hidden Markov model is a mathematical tool that can be used to model a process that assumes
that a series of observations are emitted from underlying “hidden” states that transition between
each other in a stochastic fashion. The observations are also emitted probabilistically,
conditional on the hidden state. Markovian dynamics have been successfully used to model
the processes of seizure generation in the past, in experimental animals, and to detect
antiepileptic drug compliance (Albert 1991; Hopkins et al. 1985; Le et al. 1992; Sunderam et
al. 2001). The “hidden” feature of HMMs is attractive, in that we assume that observable EEG
signals arise from underlying dynamical brain states. The analogy in the present case is that
EEG signals processed with automated seizure prediction algorithms result in noisy
observation sequences that reflect an underlying preictal state. Furthermore, because of the
stochastic nature of the state transitions, HMMs have the flexibility to incorporate the notion
of a “permissive” preictal period.

Using a discrete three-state HMM (baseline, detected, and seizure), we created a statistical
framework to evaluate seizure prediction algorithms. We derived equations for type I (false-
positive) and type II (false-negative) errors that defined validation thresholds, enabling us to
test the power of predictive algorithms against a null hypothesis. Intuitive notions, such as the
difficulty of statistical validation with small sample sizes or a large number of positive
predictions, were reproduced. We also illustrate the method’s utility in analyzing a seizure
detection algorithm produced in our laboratory that appeared to have seizure predictive ability.
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METHODS
All computation was performed with Microsoft Windows-based PCs equipped with dual-core
Intel Xeon processors, running Matlab R14. Default Matlab programs, programs within the
prepackaged statistical toolbox, and custom-designed programs were used for the analysis.

Data collection and IEEG classification
Data consisted of the binary output of a seizure detection algorithm that classified underlying
IEEG into baseline or detected states (Gardner et al. 2006; see An example validation in
RESULTS). The details of IEEG data collection are described in Gardner et al. (2006). All patient
data were acquired with informed consent, deidentified, and processed under a protocol
approved by the University of Pennsylvania Institutional Review Board (IRB), in accordance
with University human research policy. The channel of IEEG data selected for use in each
patient was the one that most often exhibited the earliest seizure onset, as determined by
standard clinical methods. Two board-certified (American Board of Clinical Neurophysiology)
electroencephalographers marked the period between seizure onset and termination as a third
state. Unequivocal electrographic onsets (UEOs) described in Risinger et al. (1989) were used
to mark the beginning of a seizure. The seizure termination point was defined as the point when
clonic activity ceased or spread to >5 s between bursts.

Hidden Markov model creation and training
We assumed that the data to be validated come in the trinary form (binary detector outputs plus
gold-standard human seizure markings) as outlined above. We trained a three-state HMM, with
states 1, 2, and 3 denoting the baseline, detected, and seizure states, respectively. HMMs are
described by their transition probability matrix (A) and symbol emission probability matrix
(B). In this framework, both A and B are 3 × 3 for a three-state model with three corresponding
observation symbols. Initial values for these probabilities were refined by training on the data
with the Baum-Welch algorithm (Rabiner 1989), an implementation of the more general
expectation-maximization (EM) algorithm, that converges on local probability peaks within
HMMs (Dempster et al. 1977). The following estimations and constraints were imposed during
training

aii = 1 − (1 ∕ Di) (1)

a13 < a23 (2)

b11 > b12 b21 < b22 (3)

b33 = 1 b13 = b23 = b31 = b32 = 0 (4)

where Di is the average duration of state i (in prediction interval time units), aii is the same-
state transition probability, aij is the transition probability from the ith to the jth hidden state,
bij is the emission probability of the ith observation variable while in the jth hidden state, and
bii is the emission probability of the ith observation variable while in the ith hidden state.

Equation 1 is derived in Rabiner (1989); published average state durations (e.g., the length of
a typical seizure) can be used to estimate these quantities. Equation 2 indicates that the detected
state has a tendency to precede seizures. Equation 3 arises from the assumption that the
prediction algorithm makes more correct than incorrect classifications of the underlying state.
Equation 4 arises from the fact that the “gold-standard” electroencephalographer’s markings
are noiseless. In practice, because of the Baum-Welch algorithm’s convergence on local
optima, uniform or random initial parameters are used and the models produced are tested with
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the forward algorithm to find the global optimum (Rabiner 1989). Equations 2 and 3 reduce
the number of mathematically symmetrical models produced by training.

Finally, let S∞ denote the 3 × 1 vector of values s1, s2, and s3 (where s1 + s2 + s3 = 1), which
represent the proportion of time spent in each state, at steady state. These values can be found
by assuming steady state, which means that the probability of being in a particular state is
invariant over time (e.g., by setting s1 = s1a11 + s2a21 + s3a31), and solving the resultant system
of linear equations.

Null hypothesis testing
Traditional statistical validation of an HMM involves calculating the ratio of the probabilities
that the data originated from the trained HMM versus a null HMM. Null models can be created
by mathematical manipulation of the trained HMM matrices; e.g., a null model in which the
detector does not detect anything is created by setting b12 = b11 and b21 = b22. The null model
of interest here is one in which detections bear no relationship to seizures. Unfortunately, this
null HMM could not be created without introducing other unwanted differences in other
parameters that would inevitably count as differences in log-odds scoring.

Instead, we chose to use the Viterbi algorithm (Rabiner 1989; Viterbi 1967) to recover the
single most likely state sequence from a sequence of observations associated with the trained
HMM. By using the state sequence rather than the observation sequence, we can determine
whether there is a larger-than-expected number of transitions from the detected state into the
seizure state. Under the assumption of stationarity, the expected proportion of transitions from
the detected into the seizure state is: s2/(s1 + s2). If n states are used, and the mth state is thought
to be the preictal state, this expected proportion would be sm/(s1 + s2+ ... + sn), where m < n.

Type I and type II error derivations
Based on the above, we derived the following equations for significance testing (see
APPENDIX for derivations):

Type I error—

Error ≥ ∑
i=x

N (Ni )( S2
S1 + S2

)i( S1
S1 + S2

)N−1
(5)

where N is the total number of 2→3 and 1→3 transitions and x is the minimum number of
2→3 transitions that satisfies the equation and causes us to reject H0 in favor of H1; the left-
hand side of the equation is typically set to the α = 0.05 significance level.

Type II error—

Error = ∑
i=0

x−1 (Ni )y i(1 − y)N−i (6)

where x is the value found from Eq. 5 for a significance level of α = 0.05, N is the total number
of seizures, and y is the minimum number of 2→3 transitions divided by N, which satisfies the
equation and causes us to erroneously reject H1 in favor of H0; the left hand-side of the equation
is typically set to the β = 0.2 type II level.

Figure 1 shows a schematic of the entire validation process.
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RESULTS
Graphing parameter space: type I error

The surfaces corresponding to the limits of statistical validation under standard values of type
I errors (α = 0.05) are found by exploring parameter space. The results are shown in Fig. 2A.
The region of a validateable parameter space is the volume above the surface.

Two qualitative findings that formalize intuitive notions regarding statistical validation can be
inferred from the graphs. In particular, validation becomes difficult when the ratio of detected
versus baseline state increases. This reinforces the intuitive notion that it is the false-positive
proportion of EEG—not the false-positive rate—that is important for validation. The other
regime where validation becomes difficult is when the number of seizures is very small. This
is again intuitive: given a low sample size, statistical validation becomes difficult.

The sensitivity threshold for the α = 0.05 significance level varies considerably with the
proportion of detected state. This reflects the potential for selection bias to severely affect the
sensitivity measure were one to use samples in which positive detections were more or less
prevalent. As mentioned in the INTRODUCTION, early publications on seizure prediction claimed high
sensitivity when comparing algorithm output between segments of data “distant” in time from
seizures to a far lower proportion than data segments immediately before seizure onset. Later
studies using longer segments of continuous IEEG data invalidated many of these early claims
(Aschenbrenner-Scheibe et al. 2003; Mormann et al. 2005). This highlights the need to use
representative proportions of interictal and preictal data, in addition to other benchmarks of
performance, such as false-positive rates, false-positive durations, and P values calculated from
quantitative comparisons with null models like the one provided here.

Crafting a clinical study: type II error
Once the type I error and sensitivity are known, power calculations for clinical trial enrollment
are done in the usual manner. Figure 2B shows the minimum type II error for the value of β =
0.2, based on the minimal sensitivities required to meet the α = 0.05 significance level as seen
in Fig. 2A.

An example validation
We tested this framework with a seizure detection algorithm produced in our laboratory based
on a support vector machine (SVM) (Gardner et al. 2006), which has promising potential for
implementation in second-generation responsive stimulation devices for epilepsy. SVMs are
statistical machine-learning algorithms commonly used as data classifiers. In this application,
the SVM was crafted to detect local outliers (1-s IEEG frames with a 0.5-s advance) in an array
of energy-based features derived from the IEEG. The system was retrained every 15 minutes.
In addition to being an accurate and clinically useful seizure detector, the algorithm was able
to detect seizures on average 7 s before human unequivocal electrographic seizure onset (UEO)
markings. Because of this predictive performance, we chose to analyze it in this framework.

The IEEG data analyzed by the SVM-based detector consisted of nearly continuous recordings
of IEEG activity from the electrographic seizure focus in five patients with mesial temporal
sclerosis, with a combined total of 29 seizures in 515 h of recording. The raw detector output
consisted of on-line, binary classifications as to whether each 0.5-s of IEEG was in the baseline
or detected state. We used our HMM framework to analyze this raw detector output. A seizure
was considered “predicted” if it arose during the detected state after HMM-Viterbi processing.
The numbers of predicted versus unpredicted seizures were then substituted into our derived
equations for significance testing. Note that in the original work by Gardner et al. (2006), the
raw SVM outputs were further filtered by the following rule: if 16 or more of the prior 20
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outputs were positive, then the detector would declare that frame, as well as the frames in the
next 3 min, to be in the detected state; otherwise, that frame’s output would be negative.

Using random starting points, the trained HMM with the highest probability of producing the
raw SVM observation sequence (as calculated by the forward algorithm) is shown in Table 1.
This HMM was found 78% of the time after training (39 of 50 trials), when random initial
emission matrix probabilities were estimated according to the guidelines outlined in the
METHODS section. This is consistent with prior observations that accurate estimation of the
emission, rather than transition, probabilities plays a larger role in determining the final model
(Rabiner 1989).

The trained HMM had mathematical properties consistent with an algorithm that was able to
predict seizures. Specifically, there was more than a 10-fold greater probability for the detected
state over the baseline state to give rise to seizures (10-4 vs. 8.08 × 10-6). The a32 transition
probability indicated that seizures were three times as likely to return to the detected state rather
than the baseline state (3.5 × 10-3 vs. 10-3), reflecting possible seizure clustering, a common
clinical phenomenon (Haut 2006), by remaining in a high-probability state. Interestingly, in
accord with the hypothesis of a permissive preictal state, the a21 transition probability indicated
that a detected state was far more likely to transition back into the baseline state than into the
seizure state (0.2489 vs. 10-3). Last, given the 1-s frame duration with 0.5-s advances, the value
of the same-state transition probability for the detected state (0.7511) indicated that the SVM-
detected state was of brief duration, on the order of seconds. This implied that the detected
state was not the same preictal state of >10-min duration found by other techniques (Federico
et al. 2005; Litt et al. 2001; Weinand et al. 1997). Instead, it suggested that it was either a
distinct, brief preictal state seen by this particular technique or, more likely, that the SVM was
able to detect quantitative changes in the IEEG associated with seizure onset in advance of
human UEO markings.

Table 2 shows the results of significance testing after determining the state sequence with
Viterbi analysis. The SVM-HMM-Viterbi output was able to detect seizures within seconds
before their onset in a statistically significant manner, with 17 of the 29 seizures arising from
the detected state, corresponding to a P value of 3 × 10-8. Eight early detections constituted
the threshold required for statistical significance (α = 0.041579). For comparison, the
performance of the SVM detector using the filtered output rule as originally implemented by
the author is also shown.

The SVM detector using the filtered output rule was not able to forecast seizures with statistical
significance for two reasons: 1) the filtering rules substantially reduced the false-positive rate
at the expense of inducing a delay in response time, causing most detection points to occur
after the UEO, and 2) the rules also used a refractory period of 3 min after detector firing, which
increased the proportion of detected state. Although the refractory period increased the
sensitivity for early detections (Gardner et al. 2006), the larger increase in false positives
resulted in overall poorer statistical performance compared with the HMM-Viterbi-decoded
output. Figure 3 shows both the raw and the filtered SVM outputs versus the HMM-Viterbi
output for two typical seizure onsets. Although statistical significance was obtained, the brevity
of the detected state highlights the fact that the algorithm was most likely detecting seizure
onsets (as designed) earlier than the human-marked UEOs, rather than a preictal state.

It is important to note that retrospective bias exists in both the human gold standard as well as
the HMM-Viterbi output itself. This is because expert readers have access to the entire EEG
record when marking where the UEO occurs and the Baum-Welch training algorithm entails
recurrent sweeps across the entire data set for parameter optimization. With this in mind, the
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above findings might represent the differences in change point detection between on-line/
prospective and off-line/retrospective methods.

DISCUSSION
The HMM-based statistical framework outlined here is novel compared with existing statistical
frameworks for seizure prediction (Andrzejak et al. 2003; Kreuz et al. 2004; Winterhalder et
al. 2003) in that it is the first to incorporate an underlying stochastic model for seizure
generation. The full connectedness of HMMs readily allows for modeling of a “permissive”
preictal state that is able to return to the baseline state without giving rise to a seizure, in
agreement with clinical observation, and suggests that events labeled as “false-positive” in
EEG analyses may actually reflect physiologic dynamics intrinsic to the seizure generation
process. Deterministic preictal states, if they exist, are also easily modeled because training
may result in near-zero transition probabilities from the baseline to the seizure state.

Derivation of type I error within this framework allows performance benchmarking for
comparison between algorithms validated on a standardized data set. Furthermore, derivations
of type II error can also be used to calculate minimal enrollment and data collection
requirements such that a prospective clinical trial, involving a specific seizure prediction
algorithm, will be able to demonstrate efficacy.

The visualization of statistically valid parameter space derived from this framework highlights
the difficulty of validation with small sample sizes or with disproportionate amounts of detected
states versus interictal state data. Both of these intuitive notions are expected from any
validation model and are reassuringly seen here. This statistical framework allows for
evaluation even of clipped EEGs containing larger proportions of preictal EEG; the minimal
required sensitivity simply rises accordingly, as seen on the graphs. However, accurate
description of real-world performance requires the use of continuous EEG data because
selection bias with clipped segments can alter sensitivity and specificity as shown in Fig. 2.
This emphasizes the need to develop seizure prediction algorithms on long-term, continuous
data, to ensure that published sensitivities and FPRs provide good estimates of real-world
performance.

This HMM framework has the unique advantage that Viterbi-decoding of raw outputs provides
a method for nonarbitrary autosegmentation of noisy observations into variable-length
detection periods, which are consistent with a stochastic model of seizure generation. They are
also compatible with the observation that the detection period length varies with the particular
detector used, as well as other inconsistencies such as the electrode position relative to the
signal generator. Nonarbitrary autosegmentation also provides the ability to aid in the
interpretation of what might be occurring physiologically with a higher degree of confidence
than with particular detector implementations, although in practice this is a complex procedure
when one is ignorant of any meaning of the detected brain states. A straightforward approach
would be to scrutinize the periods of time corresponding to the autosegmented states for
electrophysiological or behavioral correlates. In addition, autosegmentation provides guidance
for creation of rules for clustering of raw observations that can be tuned toward desired
performance characteristics for prospective studies with the algorithm.

Caveats of this statistical framework
Validation by itself does not necessarily guarantee that a particular algorithm can detect and
characterize a preictal state, or that a preictal state even exists. For example, this framework
validates the SVM-based detection algorithm, which was not originally designed for seizure
prediction. Although one interpretation is that a preictal brain state has been detected, on closer
inspection, the detected state was brief in duration and at times began within the period between
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earliest electrographic change (EEC) and unequivocal electrographic onset (UEO) time periods
(which is thought to be ictal). It is well known that a fair amount of subjectivity is involved in
“gold-standard” human markings of seizure onsets, with a small degree of “jitter” surrounding
the true event onset time. Because the EEC to UEO period is typically brief, the “predictive”
findings seen here may be entirely explained by marking inaccuracies. In addition, the SVM
algorithm functions by detecting sudden energetic departures from a previous 15 minute
baseline. Given that the SVM-based detector treated any direction of change in the distribution
its three energy-related features as a positive detection, it seemed unclear that it was identifying
a consistent preictal state. These observations imply that the SVM was functioning as an early
seizure detector (as it was originally designed to do), and not as a seizure predictor, despite its
ability to identify seizure onsets before two expert human readers. This highlights the somewhat
semantic distinction between seizure detection versus prediction and its fragile dependency on
our knowledge (or ignorance) of the underlying neurophysiological process.

HMMs are able to flexibly accommodate additional states. Three is the minimum number
required to model a permissive state that gives rise to seizures. This is the number we suggest
using because we assume that human expert markings (seizures) and prediction algorithm
outputs (baseline or detected) combine to produce a total of three states. The question is, how
does one determine how many states are best? An increased number of states would be
interesting if the additional states matched known physiological brain states, although this is
not guaranteed. What we observed when fitting additional states (data not shown) was that
additional states either split the baseline and detected states into similar states with modest
difference or resulted in states that could be interpreted as detector noise with no known
physiological consequence. Given our limited knowledge about the underlying brain states and
the enormous data reduction imposed by limited sampling of the brain’s activity through
intracranial EEG, this is a precarious undertaking and is unnecessary for the general statistical
validation of a binary detector.

Another limitation of this work is that the relationship between the detections and the period
when seizures are more likely to occur must be known for evaluation of a seizure prediction
algorithm in this framework. For example, if an algorithm detects the “early preictal” state,
and the period from which seizures immediately arise is indistinguishable from baseline,
validation may fail despite possible substantial predictive power. This limitation is not unique
to this framework, but is present in all published validation schemes; some schemes do not
directly address this issue (Kreuz et al. 2004) and others use predetermined preictal horizon
durations after detection (Winterhalder et al. 2003). It is possible to modify our framework to
accommodate these detection offsets, but the burden of the modifications falls on the algorithm
designer. A screen for detection offsets can be performed by examining the temporal
distribution of detections with respect to aligned seizure onset. A detection peak that coincides
with seizure onset can be evaluated in the manner outlined herein. However, if the detection
peak consistently occurs before seizure onset, an offset exists. In this case, one suggestion is
to count the period from each detection onward as detections (regardless of whether they return
to baseline), until an optimal number of seizures are “captured” within this period. Validation
will then be determined by the amount of seizures captured in this manner versus the increase
in detected state proportion.

The simplifying assumption of stationarity was used to derive the type I and type II error
equations. IEEG records are unlikely to be stationary because all human data are acquired from
patients in inpatient epilepsy monitoring units, most of whom undergo active titration of
antiepileptic drugs. If the detection algorithm is sensitive to such changes (e.g., a detector that
detects spikes can be rendered useless if an antiepileptic drug suppresses spikes), statistical
validation cannot be guaranteed under all conditions. New data that could be made available
from nonhospitalized patients with chronically implanted responsive antiepileptic devices may
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make this less of an issue. In addition, data can be selectively used from patients who are
admitted to inpatient epilepsy units but did not require medication adjustment.

Finally, the Markov assumption, implicit in the framework above, states that the probability
of a certain state at a time t depends only on what the state was at a time t - 1. Although this is
an open question, the probability of entry into a distinct brain state likely exhibits longer-term
dependencies, with probabilities of entering particular states dependent on the particular
sequences of a number of past states. For example, if a postictal antiseizure effect exists, a
long-duration seizure state may lower the probability for subsequent entry into the preseizure
state from the baseline state.

In summary, the presented framework is useful in several concrete ways: 1) it allows
investigators to quantify the performance of a seizure prediction algorithm against a null
hypothesis, in such a way that outputs of a seizure prediction algorithm can be analyzed in a
transparent fashion, and 2) it yields measures that readily facilitate the process of calculating
data requirements in clinical trials involving seizure prediction algorithms, an eminently useful
and practical application in the clinical setting. Finally, this model redefines the preictal period
as a stochastic, probabilistic state out of which seizures might arise. It is this last contribution
that distinguishes the above work from other recent papers on statistical validation of seizure
prediction. The notion of a permissive preictal state in seizure generation modeling has the
potential to improve implanted clinical antiepileptic devices. For example, a measure of the
magnitude of the probability of seizure onset can be used to control dosages of therapeutic
interventions such as focal brain stimulation or focal drug delivery.

As the field of seizure prediction has begun incorporating clearer, statistically driven methods
into its studies, it appears to have been retreating from initial claims of success in what is turning
out to be a very difficult but tantalizing problem. Far from engendering pessimism, we interpret
this call for rigor as validation of the importance of this research, with the even greater potential
to result in new and effective therapies for our patients.
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APPENDIX

Derivation of type I and type II errors
Let p be the probability of making a transition from the detected state to the seizure state. In
N seizures the probability P(t | N, p) of obtaining t transitions from the detected state to the
seizure state as a function of the parameters N and p is governed by the binomial distribution

p(t ∣ N , p) = (Nt )p t(1 − p)N−t (A1)

We want to test the null hypothesis H0: P ≤ p0 versus the alternative H1: P > p0. We should
therefore reject the null hypothesis if the number of transitions from detected state to seizure
is at least x. Because we want to control the probability of a type I error (rejecting the null
hypothesis when it is true) at level α this amounts to finding x that satisfies
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∑
t=x

N
p(t ∣ N , p) = ∑

t=x

N (Nt )p t(1 − p)N−t ≥ α (A2)

The general approach is to find the smallest x, denoted by x0, that satisfies Eq. A2.

The probability of a type II error (retaining the null hypothesis when it is false) can be calculated
as a function of p as

∑
t=0

x−1
p(t ∣ N , p) = ∑

t=0

x−1 (Nt )p t(1 − p)N−t (A3)

One way to proceed is to fix a value of p, say p1 > p0, and evaluate Eq. A3, thereby producing
the probability of a type II error. Another approach is to fix the probability of a type II error
that we are willing to tolerate at β and find the value of p that achieves this value. This is
tantamount to solving the equation

∑
t=0

x−1
p(t ∣ N , p) = ∑

t=0

x−1 (Nt )p t(1 − p)N−t = β (A4)

The value of p that satisfies Eq. A4 is denoted by y in the paper.

REFERENCES
Albert PS. A two-state Markov mixture model for a time-series of epileptic seizure counts. Biometrics

1991;47:1371–1381. [PubMed: 1786324]
Andrzejak RG, Mormann F, Kreuz T, Rieke C, Kraskov A, Elger C, Lehnertz K. Testing the null

hypothesis of the nonexistence of a preseizure state. Phys Rev E 2003;67:010901.
Andrzejak RG, Widman G, Lehnertz K, Rieke C, David P, Elger CE. The epileptic process as nonlinear

deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy.
Epilepsy Res 2001;44:129–140. [PubMed: 11325569]

Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, Voss HU, Timmer J, Schulze-Bonhage A. How
well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain 2003;126:2616–
2626. [PubMed: 14506067]

Dempster AP, Laird N, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J
R Stat Soc B 1977;39:1–38.

Federico P, Abbott DF, Briellmann RS, Harvey AS, Jackson GD. Functional MRI of the pre-ictal state.
Brain 2005;128:1811–1817. [PubMed: 15975948]

Gardner AB, Kreiger AM, Vachtsevanos G, Litt B. One-class novelty detection for seizure analysis from
intracranial EEG. J Machine Learn 2006;7:1025–1044.

Haut SR. Seizure clustering. Epilepsy Behav 2006;8:50–55. [PubMed: 16246629]
Hopkins A, Davies P, Dobson C. Mathematical models of patterns of seizures: their use in the evaluation

of drugs. Arch Neurol 1985;42:463–467. [PubMed: 3888154]
Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD, Bergey GK. Effect

of an external responsive neurostimulator on seizures and electrographic discharges during subdural
electrode monitoring. Epilepsia 2004;45:1560–1567. [PubMed: 15571514]

Kreuz T, Andrzejak RG, Mormann F, Kraskov A, Stögbauer H, Elger CE, Lehnertz K, Grassberger P.
Measure profile surrogates: a method to validate the performance of epileptic seizure prediction
algorithms. Phys Rev E 2004;69:161915.

Le ND, Leroux BG, Puterman ML. Exact likelihood evaluation in a Markov mixture model for seizure
counts. Biometrics 1992;48:317–323. [PubMed: 1581489]

Lehnertz K, Litt B. The first international workshop on seizure prediction: summary and data description.
Clin Neurophysiol 2005;116:493–505. [PubMed: 15721063]

Le Van Quyen M, Martinerie J, Navarro V, Boon P, D’Have M, Adam C, Renault B, Varela F, Baulac
M. Anticipation of epileptic seizures from standard EEG recordings. Lancet 2001;357:183–188.
[PubMed: 11213095]

Wong et al. Page 10

J Neurophysiol. Author manuscript; available in PMC 2008 February 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Litt B, Echauz J. Prediction of epileptic seizures. Lancet Neurol 2002;1:22–30. [PubMed: 12849542]
Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter

M, Vachtsevanos G. Epileptic seizures may begin hours in advance of clinical onset. Neuron
2001;30:51–64. [PubMed: 11343644]

Litt B, Lehnertz K. Seizure prediction and the preseizure period. Curr Opin Neurol 2002;15:173–177.
[PubMed: 11923631]

Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela FJ. Epileptic
seizures can be anticipated by non-linear analysis. Nature Med 1998;4:1173–1176. [PubMed:
9771751]

Mormann F, Kreuz T, Rieke C, Andrzejak R, Kraskov A, David P, Elger CE, Lehnertz K. On the
predictability of epileptic seizures. Clin Neurophysiol 2005;116:569–587. [PubMed: 15721071]

Murro A, Park Y, Bergey G, Kossoff E, Ritzl E, Karceski S, Flynn K, Choi H, Spencer D, Duckrow R,
Seale C. Multicenter study of acute responsive stimulation in patients with intractable epilepsy
(Abstract). Epilepsia 2003;44(Suppl 9):326.

Navarro V, Martinerie J, Le Van Quyen M, Clemenceau S, Adam C, Baulac M, Varela F. Seizure
anticipation in human neocortical epilepsy. Brain 2002;125:640–655. [PubMed: 11872619]

Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc
IEEE 1989;77:257–286.

Risinger M, Engel JJ, VanNess P, Henry T, Crandall P. Ictal localization of temporal seizures with scalp-
sphenoidal recordings. Neurology 1989;39:1288–1293. [PubMed: 2797451]

Sunderam S, Osorio I, Frei M, Watkins J. Stochastic modeling and prediction of experimental seizures
in Sprague-Dawley rats. J Clin Neurophysiol 2001;18:275–282. [PubMed: 11528299]

Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Trans Inform Theory 1967;13:260–267.

Weinand ME, Carter LP, el-Saadany WF, Sioutos PJ, Labiner DM, Oommen KJ. Cerebral blood flow
and temporal lobe epileptogenicity. J Neurosurg 1997;86:226–232. [PubMed: 9010424]

Winterhalder M, Maiwald T, Voss HU, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A. The
seizure prediction characteristic: a general framework to assess and compare seizure prediction
methods. Epilepsy Behav 2003;4:318–325. [PubMed: 12791335]

Worrell G, Wharen R, Goodman R, Bergey G, Murro A, Bergen D, Smith M, Vossler D, Morrell M.
Safety and evidence for efficacy of an implantable responsive neurostimulator (RNS™) for the
treatment of medically intractable partial onset epilepsy in adults (Abstract). Epilepsia 2005;46
(Suppl8):226.

Wong et al. Page 11

J Neurophysiol. Author manuscript; available in PMC 2008 February 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 1.
Diagram of the statistical validation process. Electroencephalogram (EEG) is used to train a
seizure prediction algorithm. This algorithm then converts the EEG to a binary sequence
(baseline and detected). Human electroencephalographer markings of seizures are then further
used to create a trinary observation sequence (baseline [1], detected [2], and seizure [3]). This
sequence is used to train an hidden Markov model (HMM), which is in turn used to Viterbi-
decode the original observation sequence into the hidden state sequence. Illustrative noise
observations are indicated in the sequences in red. Transitions into the seizure state are then
counted and used in hypothesis testing to determine whether a statistical association exists
between the detected and seizure states.
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FIG.2.
A: minimum sensitivity required for statistical validation (z-axis) vs. the number of seizures in
the data set (y-axis) vs. log base 2 of detected state/baseline state proportions (x-axis), for type
I error = 0.05. For any given number of seizures and detected to baseline state proportion, a
minimum sensitivity required for statistical validation at the 0.05 error level lies above the
surface. Statistical validation is difficult in regions where the detected state constitutes a large
proportion of the EEG, and in regions where the number of seizures is too low. (Note that the
nonsmooth boundary results from the binomial equation, a discrete function.) B: minimum
sensitivity required for statistical validation (z-axis) vs. the number of seizures in the data set
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(y-axis) vs. log base 2 of detected state/baseline state proportions (x-axis), for type II error =
0.2, assuming the minimal sensitivity calculated in A for a type I error of 0.5.
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FIG. 3.
Two typical seizure onsets, from different patients. Topmost red traces: raw binary support
vector machine (SVM)-based seizure detection output. Middle black traces: running
probability estimates determined by the particular implementation of the SVM algorithm in
Gardner et al. (2006), with a dashed alarm threshold in gray. Bottom red dotted traces: HMM-
Viterbi decoding of the raw binary SVM output into “state sequences.” x-axis is time in seconds,
with the unequivocal electrographic onset (UEO) indicated by a gray vertical bar set to time =
0. In both examples the onset of the detected state by the HMM-Viterbi decoded method occurs
seconds before the UEO, apparently within the earliest electrographic change (EEC) to UEO
period, consistent with the algorithm’s original construction as an early seizure detector. The
HMM-Viterbi decoded output transitioned to seizure before UEO in these 2 cases, but
contained more false alarms, whereas the algorithm as implemented in Gardner et al. (2006)
alarmed after UEO, but had many fewer false alarms. Raw detector’s false-positive
classifications, as determined by HMM-Viterbi analysis, are indicated by red arrowheads,
whereas a false negative is indicated by a black arrowhead.
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TABLE 1
Most common trained HMM from raw detector output training sequences

A =
0.9594 0.0406 8.08 × 10−6

0.2489 0.7511 0.0001
0.0010 0.0035 0.9955

B =
0.9540 0.0460 0.0
0.0627 0.9373 0.0
0.0 0.0 1.0

S∞ =
0.8567
0.1397
0.0036

This HMM was found 78% of the time (39 of 50 random starts) with the constraints outlined in METHODS. This HMM was also the one associated with the

highest probability of producing the training sequences. A, transition probability matrix; B, symbol emission probability matrix; S∞, 3 × 1 vector of s1,
s2, and s3.
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