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Abstract— Stochasticity plays an essential role in biochemical
systems. Stochastic behaviors of bimodality, excitability, and
fluctuations have been observed in biochemical reaction net-
works at low molecular numbers. Stochastic dynamics can be
captured by modeling the system using a forward Kolmogorov
equation known in the biochemical literature as the chemical
master equation. The chemical master equation describes the
time evolution of the probability distributions of the molecule
species. We develop a stochastic framework for the design of
these time evolving probability distributions that includes spec-
ifying their uni-/multi-modality, their first moments, and their
rate of convergence to the stationary distribution. By solving
the corresponding optimizations programs, we determine the
reaction rates of the biochemical systems that satisfy our design
specifications. We then apply the design framework to examples
of biochemical reaction networks to illustrate its strengths and
limitations.

I. INTRODUCTION AND MOTIVATION

Biological behavior is commonly described using deter-

ministic, nonlinear, continuous-time models [1]. For these

models, multiple frameworks have been proposed in [2],

[3] for the design of chemical reaction network behaviors.

However, the deterministic description of chemical reaction

network kinetics is not appropriate if the chemical species

are at low molecular numbers or if stochastic fluctuations

are important in the time evolution of the system [4].

As such, chemical reaction network kinetics inside living

cells are better captured by discrete stochastic models since

reactant molecules are often at low copy numbers and subject

to random motion [5]. Experimental evidence in [4], [6]

highlights stochastic effects in living cells by showing copy-

number fluctuations in genetically identical cells and distinct

cell fate decisions in populations of clonal cells.

In order to capture the observed discrete stochastic behav-

ior, the chemical reactions in the network can be modeled

as a Markov jump process [5]. Every state of this process

is a vector of the concentration of species in the reaction

network at a fixed time. The state vector evolves in time

with dynamics given by a forward Kolmogorov equation,

known in the biochemical literature as the chemical master

equation (CME). The distribution of states evolves in time

according to an infinite-dimensional ODE specified by the

CME. The coefficients in the ODE are determined by rate

constants and by the stoichiometry and propensity functions

of the chemical reaction network. Analytical solutions to the

CME are only available for specific examples of chemical

reaction networks (e.g. monomolecular reaction networks

[7]). Most commonly, no analytical solutions are known

and Monte Carlo-based techniques are used to approximate

the solutions [8]. One possible method is to truncate the

infinite-dimensional ODE by a finite state projection (FSP)

and to obtain a finite-dimensional ODE approximation with

bounded error [9].

We propose a stochastic framework for the design of

the time evolving distributions of states, irrespective of

knowledge of an analytical solution to the CME. We are able

to capture design features of the chemical species’ distribu-

tions such as their uni-/multi-modality, their first moment

and shape, and their rate of convergence to a stationary

distribution. These design features could not be captured

in a deterministic framework; even the first moment of the

distributions might be altered by stochastic effects [10].

The design features we chose were inspired by unanswered

questions in the design of genetic regulatory circuits. Our

insight comes from the problem of designing a simple genetic

toggle switch [11]. The toggle switch has both unimodal and

bimodal transients, as well a wide range of gene expression

levels in the cell population. The phenotypic heterogeneity

of the cell population is poorly understood and not typically

designed for. It would help control this heterogeneity to

specify the modality of the transient distributions: uni-/multi-

modal, the genes’ expression levels, and the switching time.

We formulate these design specifications mathematically

using [12] as a guideline and we discuss how they result

in remarkably different behaviors in the cell population in

Section II C.

Even after selecting design features that are relevant to

the design of biochemical reaction networks, the stochastic

design problem is challenging to formulate mathematically.

Our main challenges are that the exponential operator in the

solution to the truncated CME has a dearth of exploitable

mathematical properties [13] and a prohibitive computational

cost. The exponential is not separable, which prevents us

from leveraging a problem formulation in terms of relative

entropy optimization as in [14]. We also considered its tensor

projection as in [15], [16], [17], but the orthogonal bases that

we projected on were depleted of biological meaning; it was

unclear how to combine orthogonal basis polynomials in the

space of projection such that design features of uni-/multi-

modality of distributions were expressed. Such a formulation

would create overly elaborate problems that lose track of

biological implementation. To avoid these issues, we simply

consider the Taylor approximation to the exponential opera-

tor and compute bounds on the error of this approximation

in Section II D.

In Section III, we implement the design problem formu-

lation for two examples of biochemical reaction networks:

protein production-degradation and the Schlögl model [12].
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When we use a first order Taylor approximation of the

exponential operator, the design problems reduce to solving

a linear program and a semi-definite program for the pre-

specified convergence rate to the stationary distribution [18].

There exist very efficient, scalable computational tools, such

as CVX, to solve these problems [19], [20]. However, the

error of the approximation may be large and we suggest

using polynomial optimization methods as an alternative. Our

ability to obtain a solution also depends on the number of

design features we specify and on the number of molecule

counts for each species. We ultimately believe that we can

find solutions for biochemical reaction networks with several

species.

Our paper is organized as follows: In Section II, we

set up the design problem and evaluate the error in the

approximation of the exponential operator. In Section III,

we implement and solve design problems for two classic

examples of biochemical reaction networks. Section IV con-

tains discussion of the applicability and limitations of our

stochastic design framework, as well as an outline for future

work.

II. DESIGN PROBLEM SETUP

A. Notation

Let n � 1, n integer. Let P 2 [0, 1]n be the n-dimensional

probability vector set. For p = (p1, . . . , pn) 2 P , it must be

that pi � 0 and
Pn

i=1
pi = 1.

B. Background on stochastic chemical kinetics

We start by describing a chemically reacting network that

contains N distinct species {S1, . . . , SN}. The dynamical

state of the system at time t � 0 is described by the

state vector x(t) = (x1(t), . . . , xN (t)), where xi(t) is the

integer population of species Si at time t for all 1  i 
N . There are M distinct monomolecular or bimolecular

reactions {R1, . . . , RM} that can change the system’s state,

according to the propensity function associated with each

chemical reaction.

The CME describes how stochastically reacting chemical

species behave in a well-stirred solution at thermal equilib-

rium in a fixed, finite volume [8]. The chemical kinetics of

the N reacting molecular species are modeled as a discrete-

state, continuous-time Markov process on the distribution

state vector p(x, t), which denotes the probability that the

system will be in state x at time t. The CME gives the time

evolution law for p(x, t) as

@p

@t
(x, t) =

M
X

j=1

(aj(x� ⇠j)p(x� ⇠j , t)� aj(x)p(x, t)) (1),

where ⇠j is the jth column of the stoichiometry matrix and

aj is the jth propensity function associated with the chemical

reaction network.

This equation is also referred to as the forward Kol-

mogorov equation for a jump Markov process. More com-

pactly, the CME is a linear, infinite-dimensional ODE

dp

dt
(x, t) = H(c)p(x, t) (2),

where c = (c1, . . . cM ) are the rate reaction parameters of

the M chemical reactions.

Using the standard truncation given by the finite state

projection algorithm in [9], we consider only a finite number

S of states in each species in the chemical reaction network.

Then H(c) is finite-dimensional and we represent it affinely

as

H(c) = Σ
M
j=1cjHj (3).

Hence, equation (2) is equivalent to

dp

dt
(x, t) = Σ

M
j=1cjHjp(x, t) (4).

The matrices Hj are sparse, S-dimensional, and correspond

uniquely to reaction Rj .

The solution to equation (4) is given by

p(x, t) = eΣ
M
j=1

cjHjtp(x, 0) (5).

C. Problem formulation

Our formulation of a stochastic design framework for

biochemical reaction networks is a two-part contribution: (1)

we analytically describe the desired transient and stationary

behavior using our design features and (2) we find a solution

for the design problem under these constraints.

The design features we chose as constraints for the prob-

ability distribution vector are:

(i) uni-/multi-modality

(ii) fixed first moment

(iii) rate of convergence to the stationary distribution

Our inclusion of design feature (i): the uni-/multi-modality

of distributions is motivated by experimental evidence show-

ing the presence of multi-modal (bimodal) transients in

genetic switching in the � phage, the lactose operon, and

in cellular signal transduction pathways in mammalian cells

[21]. The Gardner et al. [11] toggle switch is probably

the first synthetic gene regulatory circuit to display multi-

modality of the transient probability distributions. An illus-

tration of the genetic toggle switch behavior is presented in

Fig. 1.

Multi-modality is a purely stochastic behavior that cannot

be reproduced or accounted for by deterministic modeling.

Gardner et al. themselves give an incomplete explanation on

why it appears in the genetic toggle switch: ”the stochastic

nature of gene expression causes variability in the location

of the switching threshold and thus blurs the [deterministic]

bifurcation point” [11]. Currently, multi-modality in gene

regulatory circuits is not well understood and there are no

analytical tools to control it based on the CME. We hope that

our mathematical formulation of this design feature will shed

light onto how to design for uni-/multi-modal distributions.

The design problem’s mathematical formulation is to find

reaction rate vector c = (c1, . . . cM ) such that the probability

distribution vector p(x, t) is constrained according to our

choice of design features for time point values t 2 T =
{t1, .., tk}, where k � 1 is the number of time points.



Fig. 1. The transient distributions for the toggle switch are bimodal, while
the initial and stationary distributions are unimodal. The bimodal transient
can be visualized as the cell population phenotype with roughly equal
proportions of red and green fluorescent protein expression. The unimodal
initial distribution is pictured on the left and the unimodal stationary
distribution on the right. Figure partially reproduced from Portle et al. [22]

Find c = (c1, . . . cM ) such that:

f0p0  µ0, fp
∗  µf (6)

fie
P

M
j=1

cjHjtip0  µi (7)

(H(c)� p∗1M )T (H(c)� p∗1M )  µ2
IM×M (8)

H(c)p∗ = p∗ (9)

H(c) = Σ
M
j=1cjHj (10)

p0 2 X0, p
∗ 2 Xf , pti 2 Xi (11)

X0, Xi, Xf ✓ P, 81  i  k (12)

where p0 and p∗ are the initial and stationary distribu-

tions, respectively; f0, fi, f are pre-selected projection op-

erators that induce uni- or multi-modality of distributions;

X0, Xi, Xf are pre-selected subsets of P ; µ, µi, µf are the

tightness of the bounds, for all 1  i  k.

The inequalities in equations (6) and (7) impose design

features (i) and (ii) at time points {t1, .., tk} under appro-

priate choices of operators. For example, an operator that

imposes unimodality and first moment equal to value m can

be chosen to be the function g : R≥0 ! R≥0, g(x) =
(x � m)2 [12]. In Section III of our paper, we give more

examples of projection operator choices.

Remark 1: The inequality in equation (8) reduces to a

semi-definite program (SDP) by using the Schur complement

formulation. According to [18], the bound µ can be used to

tune the largest singular value norm of matrix H(c). Thus, µ

controls the rate of convergence to the stationary distribution

through the solution of the SDP.

Remark 2: We clarify that design features (i) and (ii)

apply to the marginal probability distributions of biochemical

reactants in networks with more than just one species, N >

1. In order to marginalize the probability distributions, we

multiply the operators f, f0 and fi, 1  i  k, by the

appropriate marginalization matrices of size M ⇥MN−1.

Finding a solution to the design problem is equivalent

to checking the feasability of a corresponding reachability

problem. We let Y0, Yi, and Yf be the subsets of P where

inequalities in equations (6) and (7) hold respectively, for

1  i  k. Our problem is to find a reaction vector c

such that there is a feasible probability distribution trajectory

from set X0 \ Y0 to set Xf \ Yf that passes through the

sets Xi \ Yi for 1  i  k and approaches Xf \ Yf

at the pre-determined rate µ. Finding a feasible solution

to this reachability problem is equivalent to solving the

design problem set up in equations (6)-(12). See a graphical

representation in Fig. 2.

Fig. 2. Another way of thinking about our formulation is in the form of
a reachability problem: p(t) is a solution if it goes through sets X0 ∩ Y0,
X1 ∩ Y1, . . . , Xk ∩ Yk and approaches Xf ∩ Yf at a pre-determined rate
µ. The sets are drawn in rectangular shapes for illustrative purposes.

Our main challenge in finding a solution to the design

problem is the exponential operator present in equation (7).

The transition rate matrices Hj , 1  j  M do not

typically commute, unless the associated chemical reaction is

monomolecular, so the matrix exponential of the sum cannot

be separated into a product of exponentials. A possible ap-

proach we considered was to use the tensor projection of the

exponential operator as in [15], [16], [17], but it was overly

elaborate to express the design features (i)-(iii) in terms of the

orthogonal bases that we project onto. Our best approach has

been to consider the Taylor approximation to the exponential

operator and calculate the error of this approximation in

Section II D. Following a Taylor approximation of order

l � 1 of the exponential operator, the inequality in equation

(7) is replaced by

fi

l
X

v=0

1

v!
(

M
X

j=1

cjHjti)
vp0  µi, 81  i  k (13).

Subsequently, the design problem formulation has linear con-

straints in equations (6) and (10), a semi-definite constraint in

equation (8), and polynomial constraints in equations (9) and

(13). The problem is polynomial of degree l+1 in variables c,

p0, and p∗. In our implementation in Section III, we find it

useful to assume knowledge of p0 and p∗, acquired either



through experimental data or computer simulations. This

reduces the degree of the polynomial problem to l, eliminates

the inequality in equation (6), and makes the equality in

equation (9) linear.

D. Error bound for the approximation of the exponential

operator

Theorem 1: Let A 2 R
M×M be a transition rate ma-

trix. Then the error bound for the approximation of the

exponential operator geAtp0 by the truncated Taylor series

g
Pl

v=0
1

v!
Avtvp0 of degree l 2 Z≥1 is given by

gp0Tl(t) +O(gp0Tl(�2t)) (14),

where 1 > �2 > . . . > �m are the eigenvalues of A

without counting multiplicity. Here, Tl is the lth degree

Taylor polynomial, Tl(t) =
P∞

i=l+1
1

i!
ti, for all t � 0.

Proof: Let

✏(t) =
∞
X

i=l+1

1

i!
gAip0t

i (15)

be the residue following the truncation of the Taylor series.

We write transition matrix A in its Jordan form. Let

U 2 R
M×M be an invertible matrix such that A = UJU−1.

Let the Jordan blocks be 1, J2, . . . Jm, m � 1. The blocks

correspond to eigenvalues 1,�2, . . . ,�m.

We separate each Jordan block Jj = �jIj +Nj , where Ij

is the identity matrix of size equal to that of block Jj and Nj

is the corresponding nilpotent matrix. Then for each j � 2
and i � l + 1,

UJ i
jU

−1 = U(�jIj +Nj)
iU−1 (16).

Since | �j |< 1 for any j � 2, then

J i
j = O(�i

jIj) (17).

Given that �2 > . . . > �m, we obtain the final result

✏(t) = gp0Tl(t) +O(gp0Tl(�2t)) (18).

By applying Theorem 1 to the design problem, we calcu-

late an error of

fip0Tl(ti) +O(fip0Tl(�2ti)) (19)

for the approximation in equation (7) at each time step ti,

1  i  k, where �2 is the second largest eigenvalue of

matrix H(c). This informs us to choose low norm reaction

vector c, and to normalize fi and p0 in the implementation.

Remark 3: There is a clear trade-off between choosing

a larger truncation order l with the effect of decreasing

the approximation error and keeping the degree of the

polynomial inequalities in the design problem low.

III. IMPLEMENTATION OF THE STOCHASTIC

DESIGN FRAMEWORK

A. Protein production-degradation reaction network

We implement our design problem formulation on the gene

regulatory network of protein production-degradation [1].

Here, protein production-degradation is modeled stochasti-

cally as a birth-death Markov process. The chemical reaction

network has only two reactions

A
c1��*)��
c2

; (20)

that represent the production and degradation of protein

species A. The rates of the two reactions are c1 and c2. The

birth occurs according to a Poison process with probability

c1 per unit time and the death occurs with probability per

unit time proportional to c2A(t).
We constrain the transient distribution to be unimodal

and of mean 100 using operator f(x) = (x � 100)2 and

we assume that the stationary distribution is pre-determined

by a Gaussian distribution with the same mean. The initial

probability distribution is a Dirac delta function of height

1. Our simulation results give reaction rates c1 = 3.9894
and c2 = 0.0397. H1 and H2 are the same as in [12]. The

number of states in the FSP truncation is S = 201 and the

convergence rate to the stationary distribution is µ = 0.1.

The results can be seen in Fig. 3 and Fig. 4. The approx-

imation error is O(10−9).

Fig. 3. Time-evolution of the unimodal transient distributions.

Fig. 4. We plot the pre-specified stationary distribution and the operator
f(x) = (x− 100)2 that imposes the uni-modality of the transients.

Remark 4: We want to clarify that the solution to the

optimization problem is not unique. The reaction rates c1 and



c2 can take other values and they can certainly be adjusted

by tuning the bounds µ0, µi, µf , 81  i  k.

B. Schlögl chemical reaction network

The Schlögl chemical reaction network [23] exhibits bista-

bility in the deterministic model and bimodality in the CME-

based model. The set of reactions is as follows:

A+ 2X
a1��*)��
a2

3X (21),

B
a3��*)��
a4

X (22).

Here, concentrations of A and B are kept constant (buffered)

and

a1(X) = k1A
1

2
X(X � 1) (23)

a2(X) = k2
1

6
X(X � 1)(X � 2) (24)

a3(X) = k3B (25)

a4(X) = k4X (26)

are the propensity functions. We return to our previous

notation by setting c1 = k1A, c2 = k2, c3 = k3B, and

c4 = k4. See Gunawan et al. [24] for an in depth discussion

of the chemical reaction network and [12] for the CME

expression. The analysis of the deterministic model of the

reaction network informs us that there is a bifurcation into

two possible steady states with values s1 = 84.79 and

s2 = 569.9. We construct our operators centered around

these values.

Using operator funimodal(x) = (x� s1)
2, we are able to

impose an unimodal constraint on the transient distributions

for rate reaction values c1 = 1.0710⇥10−5, c2 = 21.9939⇥
10−15, c3 = 0.3668, c4 = 0.0049. We expect the coefficients

to span many orders of magnitude [12]. We chose small rate

reaction values in order to prevent the exponential operator

from blowing up. The convergence rate is µ = 0.001.

See our results in Fig. 5.

Fig. 5. We plot the time evolution of the uni-modal transients and compare
it to the the stationary distribution. Not all transients are displayed.

Then, we impose a bimodal transient constraint as in [12]

using operator

fbimodal(x) =

⇢

min((x� s1)
2, 14920) if x � 328

min((x� s2)
2, 14920) otherwise.

and, simultaneously, a unimodal stationary constraint

f∗(x) = (x� s1)
2.

Our results are presented in Fig. 6.
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Fig. 6. We plot the time evolution of the distributions. In part a, the initial
distributions is pictured. We move through the transients in parts b-e. Part
f has the stationary distribution. Not all transients are displayed.

We start from an initial distribution p0 consisting of two

Dirac delta functions with different weights and we move

through a bimodal transient towards the unimodal steady

state distribution p∗. It is possible to find a solution to the

problem irrespective of the placement and the heights of the

Dirac delta functions. We show this in Fig. 7 with a second

unimodal stationary distribution choice f∗(x) = (x � s2)
2.

It is also possible to define an initial distribution p0 with

Gaussian distributions replacing of Dirac delta functions

and also to replace the piece-wise function with a sum of

Gaussian distributions centered at s1 and s2. In all these

cases, we are able to obtain solutions to the design problem.
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Fig. 7. We plot the time evolution of the distributions. In part a, the initial
distributions is pictured. We move through the transients in parts b-e. Part
f has the stationary distribution. Not all transients are displayed.

However, when we impose a bimodal steady state dis-

tribution constraint, we are unable to find a satisfactory

solution. This occurs because we implement equation (9)

as the relaxation kH(c)p∗ � p∗k  � for small �. Hence,

p∗ is not forced to be an eigenvector of the transition rate

matrix H(c) and this does not ensure that there are no

other eigenvectors corresponding to eigenvalues closer to

0. In our experience, the transient approaches p∗, but it

ultimately decays to a stationary distribution corresponding

to the eigenvector with the smallest eigenvalue. We choose

not to implement equation (9) without the relaxation because

the problem may be infeasible.



C. Reducing the error bound

If the approximation error bound is deemed too large,

we can use a larger order approximation of the exponential

operator to adjust it. In this case, the design problem becomes

a polynomial optimization problem of order equal to that

of the new Taylor approximation. Polynomial optimization

problems (POPs) are computationally NP-hard [25]; but, in

practice, solutions can usually be found for problems of

small to moderate size [26], [27]. Using our formulation, we

expect the polynomial optimization problems to be solvable

for biochemical reaction networks with several species. Our

ability to obtain a solution to the POP will also depend on

the number of design features we specify and on the number

of molecule counts allowed for each species.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed and implemented a CME-

based stochastic framework for the design of biochemical

reaction networks. Our formulation of the stochastic design

problem uses biologically meaningful design features for

the setup of optimization problems. Their solutions are the

rate reactions of the biochemical reaction networks. Our

stochastic design framework might offer insight into what

is even biologically possible to build; for example, we might

want to know if it is possible to build a genetic switch with a

uniform distribution transient. In particular, when designing

gene regulatory circuits, it is challenging to predict what

transient behavior might arise, how long the transient would

the last for, or if the stationary behavior will even follow

our specifications. Using the design feature language we

have developed, we can test for these questions. Future work

will include applying our stochastic design framework to the

class of genetic switches and testing out what is possible to

build. When combined with forward simulation techniques,

theoretical design work can be done by iterating between

two, similarly to the design process followed in engineering

problems.

The main limitation of our stochastic framework lies in

the size of the problems we can solve accurately. A better

approximation to the exponential operator might avoid the

”curse of dimensionality”, but none that we considered were

viable. Hence, the polynomial optimization portion of the

design problem formulation can only be solved for small

to at most medium-sized problems. However, this might be

sufficient to offer insight into the behavior of larger gene

regulatory circuits, when combined with results in reducing

multiscale stochastic models [28] or when using quasi-

steady-state and quasi-equilibrium approximations [29]. In

particular, we hope to use our framework to design multi-

scale genetic circuits with partial knowledge of rate reaction

values.
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[29] B. Mélykúti, J. P. Hespanha, M. Khammash, Equilibrium Distributions
of Simple Biochemical Reaction Systems for Time-Scale Separation
in Stochastic Reaction Networks, J. R. Soc. Interface, 11 June 2014;
11:20140054.


