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A Stochastic Frontier Model with
short-run and long-run inefficiency
random effects

Roberto Colombi, Gianmaria Martini, Giorgio Vittadini

Abstract This paper presents a new stochastic frontier model for panel data.
The model takes into account firm unobservable heterogeneity and short-run
and long-run sources of inefficiency. Each of these features is modeled by a
specific random effect. In this way, firms’ latent heterogeneity is not wrongly
modeled as inefficiency, and it is possible to disentangle a time-persistent
component from the total inefficiency. Under reasonable assumptions, we
show that the closed-skew normal distribution allows us to derive both the
log-likelihood function of the model and the posterior expected values of the
random effects. The new model is compared with nested models by analyzing
the efficiency of firms belonging to different sectors.

Key words: Closed-Skew Normal Distribution, Longitudinal Data Analysis,
Mixed Models, Stochastic Frontiers.
1 Introduction

The estimation of a stochastic frontier to evaluate firms’ technical or cost
efficiency has been the object of several contributions (see Coelli et al. 2005
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and Kumbhakar and Lovell 2000, for recent overviews of the existing liter-
ature). According to this approach, the frontier estimation has to take into
account that if the firm’s observed output (cost) is not equal to the maxi-
mum (minimum) feasible output (cost) (i.e., the firm is not efficient), “not
all the shortfall has to be attributed to technical inefficiency” (Kumbhakar
and Lovell 2000, p. 65); exogenous random shocks may also have an impact.
Hence, a typical stochastic frontier (SF) model separates the error terms into
two components: (1) the random shocks error component, given by a random
variable with normal distribution and zero mean; and (2) the firm’s technical
inefficiency, which is a non-negative random variable with different possible
probability distributions (e.g., half-normal, exponential, truncated normal,
and gamma).

In this paper, we introduce a new SF model in which the error term is
instead split into four components to take into account different factors influ-
encing the firms’ possible shortfalls. The first component captures firms’ la-
tent heterogeneity, which has to be disentangled from the inefficiency effects;
the second component identifies the impact on firms’ performance of short-
run sources of inefficiency (Greene 2005). The third component investigates
the importance of long-run sources of inefficiency, while the last component
captures random shocks.

The new SF model presented in this paper fills a gap in the literature on
SF applications to panel data. Indeed the existing contributions have been
developed in two directions (see Kumbhakar and Lovell 2000 and Greene
2005 for comprehensive surveys). One class of SF models investigates firms’
performance over time by assuming that inefficiency is time variant. The
other class assumes instead that firms’ inefficiency is time invariant—i.e., if a
firm is inefficient, this gap remains fixed over time. Both approaches present
some drawbacks.

Time-varying inefficiency models treat inefficiency as a period-specific ran-
dom variable without considering the possible presence of some elements
leading to long-lasting (i.e., time-invariant) effects on firms’ inefficiency. We
define them as long-run components of inefficiency. Moreover, time-varying
inefficiency SF models assume that the firm’s random inefficiency at period ¢
is independent from its previous inefficiency levels. The latter is somehow in
contrast with the idea that a firm takes time to recover efficiency, given the
presence of some rigidities both in its assets and internal organization of pro-
duction. If inefficiency has a long-run effect, then it may have a certain degree
of time dependence. For example, a hospital has more capacity (beds) than
the optimal required level, but downsizing may be a long-run process due to
social pressure. This implies that the hospital has a long-run inefficiency since
this gap cannot be completely recovered in the short-run. Another example
is an airport with a radar system that does not allow the optimal utilization
rate of the other avionics assets (the runways’ length, the available aircraft
parking positions, etc.), so that its maximum flight capacity is rather low.
However, the substitution costs of this asset could be greater than the market
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value of a new, updated radar system because the obsolete equipment has
not completed its expected period of service yet. Hence, an updated radar
system is not installed, and so the related inefficient utilization of the other
assets has a multi-period impact. Consequently, in these circumstances it is
hard to believe that a firm’s inefficiency in period ¢ is independent from that
arising at period ¢ — 1.

On the contrary, time-invariant SF models assume that the firm’s ineffi-
ciency is constant over time, a questionable assumption in a sufficiently long
panel, as pointed out by Greene (2005). Even if a firm may suffer from the
presence of some rigidities in its production process, leading to long-run in-
efficiency, according to these models the firm is unable to eliminate in the
short-run any sources of inefficiency. Again, this is something difficult to ac-
cept. It is more sensible to assume that the firm may recover part of its
inefficiency by removing some sources having short-run effects, while some
other sources of inefficiency stay with the firm over time. For example, a hos-
pital with excess capacity may increase in the short-run its labor productivity
because the top management rearranges the personnel among the different
activities, so that part of the physicians’ and nurses’ daily working hours are
employed in day hospital activities rather than being partially under-utilized
in a full-time job allocation to acute discharges. This is a short-run improve-
ment eliminating only one source of inefficiency (the job allocation within
the hospital) that may also be completely independent from previous-period
short-run inefficiency levels. Hence, the hospital continues to suffer from long-
run inefficiency due to excess capacity, but it may have recovered part of its
short-run inefficiency.

Pitt and Lee (1981) pointed out these drawbacks, and they argued that
between the two extreme models—where all inefficiency stays with the firm
over time, and where none of it stays with the firm over time—there is an
intermediate case in which some inefficiency stays with the firm over time
and some that instead does not. However, they fail to propose a proper SF
model because of the difficulty they found in specifying a flexible multivariate
distribution for the inefficiency error components.

Another important limitation of many SF models is that they do not take
into account the impact of the firm’s unobserved heterogeneity on its produc-
tion process. By doing so, as observed by Kumbhakar and Heshmati (1995),
SF models confound time-invariant aspects of inefficiency with producer-
specific heterogeneity. For example, the physicians of a hospital located in
a given region may adopt a highly efficient surgery technique that cannot
be easily transferred to other physicians. Furthermore, latent heterogeneity
among hospitals belonging to different countries may have an even greater
effect. As a result, these heterogeneity effects have an impact on the pro-
duction frontier and may explain hospitals’ different performances, but they
are not due to managerial inefficiency. Greene’s (2005) “true random effect”
model is a first attempt to deal with this problem. He splits the error term
of the production frontier into three components: a producer-specific, time-
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varying inefliciency term; a producer-specific random-effect capturing latent
heterogeneity; and the random shocks. However, Greene’s true random-effect
SF model considers any producer-specific, time-invariant component as unob-
served heterogeneity. Hence, heterogeneity effects are now included in the SF
model but at the cost of regarding the firm’s inefficiency only as a per-period
effect, completely independent from past levels and with no long-lasting im-
pacts. In other words, long-run inefficiency is again confounded with latent
heterogeneity, while only short-run inefficiency is allowed.

In order to fill these gaps, in Section 2 of the paper we present an SF
model in which all possible sources of inefficiency are considered. Therefore,
we split the error term into a producer-specific effect capturing latent hetero-
geneity; a producer-specific, time-invariant component, which is distinct from
latent heterogeneity, capturing long-run sources of inefficiency; a producer-
specific, time-variant component, capturing short-run inefficiency; and a ran-
dom shock. The probabilistic assumptions on these random components are
also introduced in Section 2. To the best of our knowledge, such an SF model
has not been provided yet in the literature.

In Section 3, we show how well-known results about the closed-skew nor-
mal distribution (Arellano-Valle and Azzalini 2006, Gonzales-Farias et al.
2004) are useful to derive the log-likelihood of the new SF model and to
compute the posterior expected values of its random components. Computa-
tional aspects concerning the maximum likelihood estimator are also briefly
examined in this section. In Section 4 the new SF model is applied to analyze
firms’ inefficiency using three longitudinal data sets regarding firms oper-
ating in different sectors (i.e., hospitals, rice producers, and airports). The
performances of the new model and of nested models are compared, and we
show that the proposed SF model improves the analysis of firms’ inefficiency.
More in detail, these applications display that the four-component SF model
is particularly appropriate when firms are heterogeneous and when the panel
is sufficiently long. In these cases, it is important to distinguish between la-
tent heterogeneity and long-run inefficiency, and to investigate whether firms
are able to partially improve their performances over time by removing some
short-run inefficiency sources.

Our multiple-random-component SF model is related to the SF model in-
troduced by Dominguez-Molina et al. (2004) and to the linear mixed models
proposed by Lin and Lee (2005) and Arellano-Valle et al. (2005). Dominguez-
Molina et al. (2004) were the first to recognize the relevance of the closed-
skew normal distribution in SF analysis, but they did not examine multiple-
random-component SF models. Lin and Lee (2005) and Arellano-Valle et al.
(2005) used the closed-skew normal distribution to relax the normality as-
sumption in the mixed-regression models. However, the framework of mixed-
regression models is different from ours, and we think that skew normality
arises more naturally in the context of SF models than in that of mixed-
regression models.
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Some generalizations of the new SF model are presented in Section 5,
which concludes the paper.

2 A four-random-component SF model for Panel Data

We consider the stochastic frontier model:
Yir = Bo + 5B + b — wir — w0 + €4, (1)

where the index ¢, ¢ = 1,2,...n, denotes n units and ¢, t = 1,2,...,T, the
T time points at which every unit is observed. The variable y;; is the loga-
rithm of the i-th unit’s output at time ¢, &}, is a row vector of p regressors,
and 3 is a column vector of unknown parameters. The random variable e;
is the idiosyncratic random component capturing random shocks, and b; is
the random unit effect for latent heterogeneity. Furthermore, u;; is the time-
dependent stochastic inefficiency capturing short-run inefficiency effects, and
u;p is the time-invariant stochastic inefficiency for long-run sources of inefhi-
ciency.

Many interesting models can be obtained from Eq. (1) by omitting one
or more random components. By doing so, every model is identified by a
three-letter label (without taking into account the random shock term). The
first letter pertains to the presence (T = True) or absence (F = False) in
the SF model of the random-unit effect, the second letter (again, T or F) is
related to the presence/absence of the time-dependent inefficiency term, and
the third letter indicates the presence/absence of the time-independent inef-
ficiency term. Hence, the new model presented in this contribution is labeled
as TTT (see Eq. (1)); the Greene’s (2005) true random-effect SF model is
obtained by dropping u;g from Eq. (1), and it is labeled as TTF; the Pitt and
Lee (1981) model I is obtained by dropping the terms b; and wu;; and is labeled
as FFT; and the pooled SF model (Pitt and Lee, 1981, model II) is labeled
as FTF (i.e., b; and u;g are dropped). Furthermore, other two new SF models
can be analyzed: TFT—i.e., an SF model with latent unit heterogeneity and
long-run inefficiency—and FTT—i.e., a model with both short-run and long-
run inefficiency terms but without latent heterogeneity. Finally, by dropping
both of the inefficiency components, the random-intercept regression model
TFF (with only latent heterogeneity) and the classical regression model FFF
(with no latent heterogeneity and inefficiency terms) are obtained.

Our purpose is to test how the new TTT SF model improves the analysis
of firms’ inefficiency in panel data by comparing its statistical performances
with those of the other less general SF models. Testing one of the previous
models against the general one (i.e., TTT) is a non-standard problem because
under the null hypothesis one or more parameters are on the boundary of the
parametric space. In fact, under reasonable assumptions, in this case the
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asymptotic distribution of the log-likelihood ratio test statistic is a mixture
of chi-square distributions known as chi-bar-square distribution (Silvapulle
and Sen 2005). For example, in the case of models differing for the presence
of only one random component (i.e., the TTT and FTT models), the log-
likelihood ratio test statistic is asymptotically distributed as a 0.5 mixture
of a chi-square distribution with zero degrees of freedom and a chi-square
distribution with one degree of freedom, and the p-value is found by dividing
by two the p-value corresponding to a chi-square distribution with one degree
of freedom.

For the sake of simplicity, we consider only the case of balanced panel data
with a fixed number of observations per unit, but the results of the following
sections can be easily extended to unbalanced panels.

We assume that:

(Ala) for i = 1,2,...,n, the 2 x (T + 1) random variables u;p, b;, Uz, €
(t=1,2,...,T) are independent in probability;

(A1Db) the random vectors (b;, w0, Wily ..y UiTy €ily -y &T), t = 1,2,..5m
are independent in probability;

(A2) for every i, u;p is a normal random variable with null expected value
and variance o, left-truncated at zero, and b; is a normal random variable
with null expected value and variance Ug;

(A3) for every ¢ and t, u; is a normal random variable with null expected
value and variance Jgu’t left-truncated at zero, and e;; is a normal random
variable with null expected value and variance o2;

(A4) the x;; are vectors of known constants.

The following matrix representation of model (1) will be useful in the next
sections.

Let 17 be a vector of ones, O a vector of zeros, and I the identity
matrix of dimension 7T". Moreover, y; is a vector of the T" observations on the
i-th unit; X; is the T x p matrix with rows xf,, u; is the (T + 1) vector
with components wu;g, u;1, U;2, ---, u;r; and e; is the vector of the idiosyncratic
random components of the i-th unit. From (1), it follows that: y;, = 17(6o +
b)) + X0 + Au; + e;, where the matrix A is defined as: A = —[1p Ip].

In the next section, we will derive the joint density function of the random
components 17b; + Au; + e;.

3 Statistical properties of the TTT model

Some important consequences of assumptions (Al)-(A4) are examined here
in order to derive the log-likelihood of the TTT model presented in Eq. (1)
and to derive the posterior expected values of the random components.
With ¢q(x, p, £2), we denote the density function of a ¢-dimensional nor-
mal random variable with expected value g and variance {2, while él_5q(u7 )
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is the probability that a g-variate normal random variable of expected value
p and variance matrix 2 belongs to the positive orthant.

3.1 The closed-skew normal distribution

For an easy reference, we report the definition of the closed-skew normal
distribution (Arellano-Valle and Azzalini 2006; Gonzales-Farfas et al. 2004).

Definition 1. A random vector  has a (p,q) closed-skew normal distribu-
tion with parameters u, I', D, v, A if its probability density function is:

_ d) (:B7l,l,’1-')¢ (D(y_u)_VaA)
f($7M7F;D7V;A7p7q) - E éq(_V?A+DFD/) . (2)

The moment-generating function of the previous random variable is:

$,DI't—v,A+ DI'D')

E(exp{t'z}) = ®,(—v,A+DI'D’)

1
exp{t'p + it'l“t}. (3)

3.2 Closed-skew normality in the TTT model

For our purposes it is useful to introduce the following matrices:

oty O
0p ¥
A=V -VA(Z+AVA) AV = (VI AT AL
R=VA (X +AVA) ' =2A'5""

V:[ } =02l + 02171

where ¥ is the diagonal matrix with the variances 03, , (t = 1,2,...,T) on
the main diagonal.

The relevance of the closed-skew normal density function in the context of
the TTT model stems from the following proposition (from now on, we will
assume that ¢ =T + 1).

Proposition 1. Under the assumptions Ala, A2-A4, the random vector y;
has a (T,q) closed-skew normal distribution with the parameters: v = 0,
pu=1p80+X;8, '=X+AVA', D=R, and A = A.

Proof. See the Appendix.

From Definition 1 and Proposition 1, it follows that the density of y, is
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D,(R(y; — X3 —170), A)

f(yz) = ¢T(yi7 ]-Tﬂ() + XZ/Bv X =+ AVA/) 2—q

and that its moment-generating function is

B, (VAL V)

1
=7 exp{t' (175 + X.8) + it/(z + AV At}

E(exp{t'y,}) =
When y; is a vector of logarithms of outputs and ¢ is the k-th column of
the identity matrix of dimension T', the previous moment-generating function
gives the expected value of the k-th component of the vector exp{y,} of the
outputs.

It can be easily checked that a (T,T) closed-skew normal distribution is
obtained when we only consider SF models without time-invariant inefficiency
(e.g., Greene'’s 2005 TTF model; Pitt and Lee’s 1981 FTF model). Finally,
when the time-dependent inefficiency is omitted, a (7', 1) closed-skew nor-
mal density arises. When the unit random component is omitted, the joint
distribution, is given by the previous results with o2 = 0.

The following Proposition is an immediate consequence of assumption Alb
and of Proposition 1.

Proposition 2. Under the assumptions A1-A4, the log-likelihood of nT ob-
servations from model (1) is:

L= Z?=1(1n ¢)T(yz - X’Lﬁ? 1Tﬂ03 X+ AVAI) —+
+In®y(R(y; — X8 — 1700), A)) + ngIn(2), (4)

which is the log-likelihood of the n independent closed-skew normal random
variables y; — X ;3.

Note that the computational complexity of the maximum-likelihood es-
timator, which maximizes the log-likelihood (4), comes from the multiple
integrals @,(R(y; — X8 — 170y), A) (i = 1,2,...,n). There are, however,
remarkable exceptions. For the models TFT and FFT, the above integral is
one dimensional, while for the pooled model FTF it is a product of T one-
dimensional integrals. Thus, the computational problem is limited to the SF
models where the time-dependent inefficiency is present together with the
unit-specific component or with the time-invariant inefficiency. For a survey
of efficient numerical and Monte Carlo methods to compute the previous
multi-normal integrals, see Genz and Bretz (2009).

Since the maximization of the log-likelihood reported in Eq. (4) is a com-
plex and time-consuming task, in Section 4 the following two-step proce-
dure will be applied to obtain reasonable starting values. Let ¢; be the unit-
specific random component €; = b; — u;p and €;; be the random component
€t = —Uu;t + €. In the first step, the procedure computes the estimate B of
B by a standard estimation method for panel data models or mixed models
applied to the following random intercept model:
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yir = Bo + B + € + €ir. (5)

From A.1-A .4, it follows that 3 is a consistent estimator of 3 (Bo is not
consistently estimated because the random components of the previous model
have non-null expected values). In the second step, since y, — X;0 (i =
1,2,...n) are independent closed-skew normal random variables, the following
pseudo log-likelihood function is maximized with respect to 3y, 07, 0, o2
and ¥:

L= Z(ln ¢1(y;—X B, 1060, B+AV A)+In &, (R(y,— X ,8—11/))). (6)
i=1

The properties of these estimators follows from the general theory of two-
step M-estimators (Parke 1986).

3.3 Prediction of the random components

When y; is a vector of logarithms of outputs, an important topic in applied
research is forecasting the unit random components by the expected values
E(exp{b;}|y;) and the unit random inefficiencies by E(exp{—u;}|y;). In do-
ing so, it is convenient to introduce the following definitions:

'ri:yiin,BflTﬂo, 5’5 :(Tgfo'g]./TAlT (7)

- 4
A= (X +AVA) A:A—RlTl’TR’%. (8)
b
The following proposition shows how the relevant expected values can be
computed.

Proposition 3. a) Conditionally on y,, the unit-specific random component
b; has a (1,q) closed-skew normal distribution with density

5 Py (Rr; — R1p026, 2(b; — 021, A7), A)
bily.) = ¢(b;, 021’ Ar;, 52) =2 i Tpy9p \Vi — Op 27 ATi), )
f( Iyz) ¢( 7Ub r 70b) qu(R’ri’ ) X

b) Conditionally ony,, the random inefficiency vector w; is a left-truncated
normal random variable with density:

_ ¢q(ui, Rri, A)

| Ji) — = ) % 07
Fludy) = 5
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@q(RT‘i — .l'z]_TUg7 A)
éq(R’I‘ZA)

1.
E(exp{bi}ly;) = exp{oj 17 Ar; + 557}

d)

&,(Rr; + At, A) 1
E tu;}y,) = —L— ! t' Rr; + —t' At}.
(exp{t'u}|y;) &, (Rri, A) exp{t'Rr; + St At}

Proof. See the Appendix.

If —t’ is the k-th row of the identity matrix of dimension ¢, result d) of
Proposition 3 gives the conditional expected value of the k-th component of
the inefficiency vector exp{—w;}. In particular, for k¥ = 1 we get the con-
ditional expected value of the time-invariant inefficiency. We highlight also
that, conditionally on the observation y,, the random effect b; has not a
normal distribution as happens in standard random-effect models.

4 Applications and comparison of different SF models

In this section, we investigate the efficiency of firms belonging to three differ-
ent sectors and compare the results provided by the TTT model with those
of the nested models presented in Section 2.

To test whether the variances of one or more random components are
zero, we will use the log-likelihood ratio test statistic. The log-likelihood
ratio test statistic G2 has, in this case, a non-standard asymptotic chi-bar-
square distribution that is a mixture of chi-square distributions (Silvapulle
and Sen, 2005). Moreover, in order to explain the effect of the elimination
of a random component from the model TTT, we will investigate whether
the omission of a random error (e.g., the latent heterogeneity component)
has the impact of inflating the variances of the other random terms (i.e.,
the idiosyncratic error and the short-run and long-run inefficiency terms).
The latter outcome would imply that the eliminated random component was
capturing a relevant inefficiency (or heterogeneity) effect, that is confounded,
in a less general model, with the remaining random terms.

Table 1 displays the main features of our data sets. We apply the above
models to three different sectors (i.e., hospitals, rice producers, and airports),
with sample data differing also for their geographic extension (the hospitals,
and the rice producers data sets regard firms belonging to a single region,
while the airport data set presents information at the country level). Fur-
thermore, the sample size differs, in that the hospital data set covers 134
units, the rice producer data set 43 units, and the airport data set only 34
units. The time horizon is rather large for the hospital data set (T" = 10)
and for the rice producer one (T' = 8), while it is relatively short for the
airport data set (T' = 4). In the production function estimation, we consider
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5 inputs both for the hospital and airport cases, and only 3 inputs for the
rice producers. Finally, the impact of exogenous factors (e.g., ownership, size)
that may affect the production levels is considered only in the hospital and
airports cases, where we believe they may play a more important role than
in the rice producers’ sector; in the latter case, firms have the same type of
ownership and size and are also closely located.

Table 1 Features of the three data sets

Sector Geographic n T P Exogenous
extension (firms) (years) (inputs) factors

Hospitals Region 134 10 5 Ownership
(Lombardy, Specialization
Italy)

Rice Region 43 8 3 —

producers (Tarlac, Philip.)

Airports  Country 34 4 5 Size
(Ttaly)

The different time horizons of the three data sets may have an impact
on the relative importance of the short-run and long-run inefficiency terms.
For instance, if the time horizon is short it is less difficult to accept the
hypothesis that the inefficiency is time invariant (Greene 2005), since firms
may at most slightly improve (or deteriorate) their performances in such a
short time period. Hence, in the presence of short panel data, not considering
the long-run inefficiency component may involve omitting a factor capturing
most of the firms’ inefficiency level. Moreover, the omission of firms’ latent
heterogeneity may have a mild impact in the explanation of firms’ shortfalls
from the estimated frontier if the sample covers geographically concentrated
firms producing a rather standardized good (e.g., rice producers).

In the first application, we examine a data set composed of n = 134 hos-
pitals located in the Lombardy region of Northern Italy.! The data were
collected every year from 1998 to 2007. The output variable is given by a
case-mix adjusted number of outpatient discharges, and the inputs consid-
ered are the number of beds, wards, physicians, nurses, and administrative
workers.? A log-linear frontier, that is to say a linearized Cobb-Douglas func-
tional form, has been used as in all of the following applications. Hence, all
variables are transformed in logarithm. In order to control for the impact
on the hospitals’ activity of some exogenous factors, we include in the lin-
earized production function a dummy variable Qwnership (Public or Private)
and a dummy variable Specialistic—i.e., whether the hospital concentrates
its activity on a single major diagnostic category—in this case, the dummy

1 A full description of the data set is provided in Berta et al. 2009.

2 The data set does not include day-hospital discharges. The case-mix is an index
specifying the complexity of a discharge, based on the DRG classification.



12 Roberto Colombi, Gianmaria Martini, Giorgio Vittadini

variable is equal to 1—or not. In the TTT model, the random component
b; models unobserved differences among hospital optimal outputs, the ran-
dom component u; models hospitals’ long-run inefficiency, and the random
component u;; captures hospitals’ short-run inefficiency. Table 2 presents the
results obtained by fitting all the models presented in Section 2.3

Table 2 Skew normal stochastic frontiers for the hospital data set

Model Max. log-lik. o? cr%u’l o2, o2

TTT 744.773 0.032 0.0148 0.006 0.009
TFT 364.362 0.028 - 0.000 0.027
FTT 704.207 - 0.087 0.121 0.001
TTF 729.029 0.035 0.177 - 0.006
FFT 364.033 - 0.089 0.027
FTF 175.908 - 0.011 - 0.004
TFF 364.316 0.029 - - 0.027
FFF 49.341 - - - 0.054

Table 3 shows the value of the log-likelihood ratio test statistic G2 for the
FTT, TFT, and TTF models and the corresponding p-values; furthermore,
the last column reports whether the null hypothesis Hy can be accepted.

Table 3 Log-likelihood ratio tests for the hospital data set

H, Hy G? p-value decision

TTT TEFT 760.822 0 Rejected
TTT FTT 81.132 0 Rejected
TTT TTF 31.132 0 Rejected

All the random components are clearly relevant and cannot be dropped.
Furthermore, when we compare the two models TTT and FTT it is evident
that the omission of the unit random effect capturing latent heterogeneity
inflates the estimated variance of the time-independent inefficiency but not
that of the time-dependent inefficiency. Hence, omitting the latent hetero-
geneity has the effect of overstating the firms’ long-run inefficiency but not
the short-run inefficiency. If instead the nested model TTF is adopted, not
considering the long-run inefficiency component has the effect of inflating
the variance of the short-run inefficiency terms. Finally, if the model without
the short-run inefficiency terms is adopted, the variance of the random-shock

3 In all estimates, and also in the following applications the R (R Development Core
Team 2009) functions SNF_twostage and SNF_maxlik, developed by the authors, were
used to fit the models. For the short-run inefficiency component, only the variance
for the first year is reported.



Stochastic Frontier Models 13

component is inflated, so that short-run sources of inefficiency are confounded
with random shocks.

These results point out that in the hospital sector the new model TTT
improves the analysis of firms’ inefficiency, since it identifies the relevance
of short-run inefficiencies and highlights long-run sources of inefficiency that
should not be confounded with latent heterogeneity. For the model TTT,
the estimates of the time-varying variances o-%u’t, t=1,2,..T, are reported
in Table 4. Notice that these variances decrease over time; this means that
hospitals have almost eliminated short-run sources of inefficiency during the
observed period.

The predicted random inefficiencies (or inefficiency scores) for four hospi-
tals are reported in Fig. 1. The expected values E(exp{—uqo}|y;), E(exp{—u:t}|y;),
E(exp{—uio —u;t}|y;) (predicted total inefficiency) were computed as shown
in Section 3. From the graphs, it clearly emerges that at the beginning of the
period almost all inefficiency was due to the time-varying component, while
at the end of the period almost all inefficiency was due to the time-invariant
component—i.e., the hospitals succeeded in removing almost all short-run
sources of inefficiency.

Table 4 Estimated 03, , in model TTT for the HOSPITAL data set

year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
U%u,t 1.4787 0.0887 0.0402 0.0195 0.0052 0.0009 0 0 0 0

The second application is in the rice producers’ sector®. In this data set,
the output is given by the annual rice production (measured in tonnes) of
n = 43 rice producers located in the Tarlac region of the Philippines, from
1990 to 1997.> We include as inputs the area planted (measured in hectares),
the labor employed (measured in days per worker), and the amount of fer-
tiliser used in production (measured in kilograms). In this application, the
random component b; models unobserved differences among producers. Table
5 displays the relevant informations on the fitted models.

The log-likelihood ratio tests to compare the model TTT with nested mod-
els are detailed in Table 6. The G? statistic to test the model FTT against
the model TTT is equal to 0.206, and the p-value is equal to 0.350. It follows
that model FTT, when compared with the more general TTT model, cannot
be rejected. The G? statistic to test model TTF against model TTT is 5.286,
and the p-value is equal to 0.011. In this case, the comparison highlights the
fact that the long-run inefficiency component cannot be dropped. The G?

4 We used the Rice panel data set presented in Coelli et al. 2005, pp. 325-326. The data
set is also available in the R-package Frontier developed by Coelli and Henningsen (
2010).

5 The data were collected by the International Rice Research Institute. Details of the
survey are provided by Pandey et al. (1999).
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Fig. 1 Predicted hospitals’ time-varying ineff. (dashed line), time-invariant ineff.
(dotted line) and total ineff. (solid line) for the two most inefficient hospitals (66, 88)
and the two most efficient ones (73, 76).

statistic to test model TFT against model TTT is clearly statistically signif-
icant, so model TTT does improve the fitting against model TFT. Finally,
model FTT cannot be further simplified because both FFT and FTF must be
rejected, as clearly emerges from comparing the values of the log-likelihood
reported in Table 5. Last, notice that the omission of the time-dependent
random-inefficiency component inflates the variance of the idiosyncratic ran-
dom term (see Table 5). This implies that the presence of short-run sources
of inefficiency is confounded with the random shocks.
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Table 5 Skew-normal stochastic frontiers for the rice producers’ data set

Model Max. log-lik. o? c'rgu’1 o?. o?
TTT -49.707 0.0014 0.1783 0.0612 0.0170
TFT -86.430 0 - 0.0721 0.0832
FTT -49.810 - 0.1901 0.0655 0.0183
TTF -52.350 0.0245 0.2178 - 0.0152
FFT -86.431 - - 0.0723 0.0832
FTF -87.565 - 0.0606 - 0.0887
TFF -88.605 0.1584 - - 0.2901
FFF -104.907 - - - 0.3283
Table 6 Log-likelihood ratio tests for the rice producers’ data set

Hq Hy G2 p-value decision
TTT TFT 75.716 0.000 Rejected
TTT FTT 0.206 0.350 Accepted
TTT TTF 5.286 0.011 Rejected

For the best-fitting model FTT, the estimated variances of the time-
varying inefficiency components (i.e., aguyt, t =1,2,..T,) are displayed in
Table 7. No evidence of a reduction in short-run efficiency is found in this
case, differently from the hospitals’ example.

Hence, it emerges from the analysis of firms’ production of a standardized
good (e.g., rice) with location concentrated in one region (i.e., high proximity
between firms), that latent heterogeneity does not play an important role but
that both long-run and short-run inefficiency components are important.

Table 7 Estimated J%mt in model FTT for the rice producers’ data set

year 1990 1991 1992 1993 1994 1995 1996 1997
U%u,t 0.190 0.229 0.049 0.101 0.181 0.109 0.292 0.122

The last application covers the airport sector.® The sample is composed of
n = 38 Italian airports and includes the years from 2005 to 2008. The output
variable is given by yearly number of aircraft movements, and the inputs are
given by the number of runways, the total area of the airports, the number of
check-in desks, the number of luggage claim lines, and the number of aircraft
parking sites. We take into account the possible impact of the factor size of
the airport, using the EU classification. Hence, the airports are split into four
groups with decreasing size: Great European Airports, National Airports,
Domestic Airports, and Regional Airports.

6 The features of the data set are presented in Malighetti et al. (2007).
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In this application, in contrast to the previous ones, we can accept the
homoskedasticity hypothesis 03, , = 03,,, t = 2,3,4 on the variances of
the time-varying inefficiency terms. Indeed, the log-likelihood ratio statistic
to test these three constraints in the TTT model is G? = 1.342, with a p-
value equal to 0.719.7 Hence, different SF models are compared by assuming
that the time-varying inefficiency components (when they are included in the
model) have constant variance over time. Table 8 reports the results obtained
by fitting the SF models under the constraints agu,t = O’%%l, t=2,3,4.

Table 8 Skew-normal stochastic frontiers for the airport data set

Model Max. log-lik. o? a%uyl o?. o2
TTT 26.678 0.0493 0 0.3764 0.0159
TFT 26.677 0.0493 - 0.3764 0.0159
FTT 24.108 - 0 0.691 0.0126
TTF 25.699 0.1847 0 - 0.0159
FFT 24.107 - - 0.6904 0.0162
FTF -51.132 - 0 - 0.1474
TFF 25.699 0.4298 - - 0.1261
FFF -51.132 - - - 0.3387
Table 9 Log-likelihood ratio tests for the airport data set

Hq Hy G? p-value Decision
TTT TFT 0.002 0.482 Accepted
TTT FTT 5.14 0.012 Rejected
TTT TTF 1.958 0.081 Accepted

In this example, the relevance of the latent heterogeneity component
emerges from the comparison of model TTT and model FTT, as shown in
Table 9 (G2 = 5.14, p-value = 0.012). The conclusion of rejecting model FTT
is supported by the fact that the omission of the latent heterogeneity com-
ponent inflates the estimate of ¢7,. The non-relevance of the time-invariant
inefficiency is suggested by the comparison of model TTT with model TTF
(G? =1.958, p = 0.081). However, model TTF cannot be recommended be-
cause the omission of the time-invariant component inflates the estimates of
the variance o2. The model TFT, when tested against TTT, gives G = 0.002
and p = 0.482, so the time-dependent inefficiency can be dropped from TTT.
Hence, this is a confirmation that when the panel data have a relatively

7 Similar results are obtained when the same hypothesis is tested in the models FTF,
TTF, and FTT.
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short time horizon the impact of short-run inefficiency is limited, as correctly
assumed in the previous contributions (e.g., Greene 2005).

5 Conclusions

We have presented a new SF model with four random components that allows
us to disentangle latent heterogeneity from inefficiency, and to investigate
the impact of long-run and short-run sources of inefficiency on firms’ perfor-
mances. Long-run inefficiency stays with the firm over time, while short-run
inefficiency may vary in each period. We have applied the new model to ana-
lyze the efficiency of firms operating in three different sectors (hospitals, rice
producers, and airports), and we have shown that the new model is particu-
larly appropriate when firms are heterogeneous and when the panel is long.
We have modeled short-run sources of inefficiency with independent random
components. As Greene (2005, p. 29) underlines, “it seems reasonable to as-
sert that if nothing else, there is some inertia (autocorrelation) in short run
inefficiency.” Hence, a possible generalization of our model is the inclusion
of some dependency among the random components capturing the impact of
short-run sources of inefficiency in a firm. It seems that this can be achieved
by replacing the diagonal matrix ¥, introduced in Section 3.2, with an ap-
propriate non-diagonal matrix. The specification of this non-diagonal matrix
and the utility of the generalization needs further investigation.

Appendix

Proof of Proposition 1. In the TTT SF model presented in Eq. (1), the ran-
dom components b; — u;o — u;¢ + €;; can be written as the sum of the time-
independent terms (i.e., €; = b; — u;g) and of the time-dependent terms (i.e.,
€it = ei — u;t). According to our assumptions, these two terms are inde-
pendent in probability and are given by the difference of a normal random
variable and an independent left-truncated-at-zero normal random variable.
It is well known (Kumbhakar and Lovell 2000) that €; has the following den-
sity:

2 2\G5 —0ty 2 Tty
f(€2) = 2¢1(€i70, oy =+ 0'1“)@1 ﬁsi,alu 1 5 .

) 2
Ub + olu Ub + Ulu

Analogously, the densities of ¢;; (t =1,2,...,T) are:
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2 2 = —U%u t 2 U%u t
f(eit) = 261(git,0,0; + 03, ,)P1 70’5#, Ogus | 1 — 55— )

) 2
O¢ + U2u,t

The previous two densities are (1,1) closed-skew normal densities, and so
the random components b; — u;0 — u;s + €5 of the vector 17b; + Au; + e; =

’
—A(ei, €1, .., g7 ) are sums of two closed-skew normal random errors.
2
. . . . g . .
Let 7 be the diagonal matrix with the ratios — Jf;’; on the main diagonal.
e 2u,t

From Theorem (3) of Gonzdles-Farfas et al. (2004), it follows that the T + 1
independent random variables €;, ;¢ (¢t = 1,2, ..., T) have a joint (T+1,T+1)
closed-skew normal density function with parameters v =0, puy, = 0, and

)

_0-2u
ro=|utos Or | p |G O
Or ¥+ollr|’ or -7

0_2
A, = ot (1 - ggﬁ;i) 07 )
Or v-T

Finally, from the previous result and from Theorem (1) of Gonzdles-Farfas
et al. (2004), it follows that the T' dimensional random vector 17b; + Au; +
e; = —A(ei, €1, -y EiT )' with components b; — w0 — Ut + €5 = &; + €i
has a (T,T + 1) closed-skew normal distribution with parameters v = 0,
w, =0, ' = ATyA' = ¥ + AVA', D = DiIZWAT™' = R, A =
Ag+DoI'yD,—DyI'yA'T" "' AI'yD), = A. Because p is a location parameter
and y, = 1706y + X0 + 17b;, + Au; + e;, the statement of the Proposition
follows.

Proof of Proposition 3. To prove b) note that:

¢or(y;, 1760 + X8, X + AV A')gy(u, Rr;, A)2°
f(y;)

and use the result of Proposition 1 about f(y;). Noting that f(u;|y;) is the
density of a left-truncated-at-zero multi-normal random variable, d) follows
from Lemma 13.6.1 of Dominguez-Molina et al. (2004). To prove a) we observe
that:

fluily;) = (9)

f(bily;) = B(bi, 021’ Ar;,52) x
fooo fox $q (U7Rri—R1T0'32)5b725i,/~1)du0..4du7-

X

Point a) of the proposition follows immediately. Observing that f(b;|y,) is
a closed-skew normal density, point c) follows from the result (3) on the
moment-generating function of a closed-skew normal random variable.
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