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Abstract

In this paper we describe a stochastic integral equation method for com-
puting the mean value and the variance of capacitance of interconnects
with random surface roughness. An ensemble average Green’s func-
tion is combined with a matrix Neumann expansion to compute nominal
capacitance and its variance. This method avoids the time-consuming
Monte Carlo simulations and the discretization of rough surfaces. Nu-
merical experiments show that the results of the new method agree very
well with Monte Carlo simulation results.

1. Introduction
Many of the fabrication processes used to generate both on- and off-chip
interconnect will produce conductors with surface variations. Though
these variations may not be truly random, they can often be accurately
modeled by assuming random surface roughness with an appropriate
spatial correlation. Experiments indicate that interconnect can easily
have topological variations with peak to valley distances larger than five
microns [1, 2]. Measurements indicate that this surface roughness can
increase high frequency resistance by as much as a factor of three[1], and
analytical treatments of the surface roughness problem [3, 4] correlates
well with these measurements. It has also been show that capacitance is
significantly increased by the surface roughness [5, 6].

Though 3D parasitic extraction has improved substantially recently [7,
8, 9, 10, 11, 12, 13], these programs were developed to analyze 3D struc-
tures with smooth surfaces. To the best of our knowledge, there has been
little work on numerical techniques specifically designed for analyzing
three dimensional interconnect with rough surfaces. Although it is possi-
ble to use existing programs to analyze conductors with rough surfaces,
such approaches are slow for two reasons. First, the details in the random
profile of rough surfaces requires a very fine discretization, and second,
an ensemble of analyses must be performed to estimate the mean and
variance of the extracted parameters.

The effect of surface roughness in the context of electromagnetic radia-
tion and scattering has been studied for at least three decades [14]. Work
on the analysis of rough surface effect falls roughly into two broad cat-
egories: numerical simulation techniques [3, 15] and approximate an-
alytical techniques [5, 16]. In the numerical simulation approach, the
statistical nature of the rough surface model is commonly dealt with
using computationally intensive Monte Carlo methods [15]. A surface
impedance boundary condition was proposed in [4] to take into account
the roughness effect. This strategy avoids the discretization of rough
surfaces. But only 2D grooves with periodic roughness are analyzed
in [4]. More importantly, since the impedance boundary condition de-
pends on the profile of the 2D groove, this approach does not avoid the
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time-consuming Monte Carlo simulations. On the other hand, since the
solutions of the approximate analytical approach are explicit analytical
forms, it is possible to calculate the mean value and even the variance di-
rectly [16]. However, many assumptions have to be made in the approxi-
mate analytical techniques, hence limiting its application. A further step
was made in [17], where the mean scattering field in a 2D rough surface
acoustic scattering problem was calculated directly without using the
Monte Carlo process. In this case, the analytical solution is not readily
available. The ensemble average was taken on both sides of the govern-
ing integral equation instead of on the analytical solution as in [16]. This
leads to an integral equation of the mean scattering field defined only
on the smooth surface with the surface roughness removed. Since only
a 2D rough surface is considered in [17], it is possible to use analytical
techniques such as the Laplace transformation to obtain the solution to
the mean field integral equation.

In this paper, we extend the ensemble average Green’s function idea in
[17] to the numerical solution of stochastic integral equations. A crucial
assumption, the uncorrelatedness between source and Green’s function,
is used in [17] to significantly simplify the formulation. The justification
for this assumption in [17] is based on physical intuition. In this paper,
we first demonstrate a mathematical interpretation of this assumption
and show that it leads to inaccurate results when the surface roughness
magnitude is large. We then propose a correction scheme to substantially
improve the accuracy. In addition, we have extended the ensemble aver-
age Green’s function idea to the calculation of the variance. Finally, we
demonstrate the method on some relatively simple capacitance problems
to show that it is possible to directly calculate the mean surface charge
density, the mean and the variance of capacitance by just one solve, as
oppose to many thousands of solves in Monte Carlo approach.

2. Mathematical Model for Rough Surfaces
The rough surface of a conductor can be described as a statistical pertur-
bation of a nominal smooth surface. Specifically, for each point �r on the
smooth surface, let h � �r � be a perturbation normal to the smooth surface
at point �r. For typical rough surfaces, h � �r � is described by a probability
density function with spatial correlation. A common such model is the
Gaussian distribution

P1 � h � 
 1�
2πσ
exp �  h

2

2σ2
� (1)

for each individual point and the Gaussian joint distribution

P2 � h1 � h2; �r1 � �r2 � � 

exp �  h21 � 2C � �r1 � �r2 � h1h2 � h22

2σ2 � 1 � C � �r1 � �r2 � 2 � �
2πσ2 � 1  C � �r1 � �r2 � 2 (2)

for the connection between two points on the same surface. Here σ is
the standard deviation and C � �r1 � �r2 � is the auto-correlation function. We
assumed that the random rough surface is translation invariant, i.e.,

C � �r1 � �r2 � 
 C � � �r1  �r2 � � 
 C � ξ � � (3)
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The most commonly used auto-correlation function is the Gaussian cor-
relation function

C � ξ � � exp � � ξ2

η2
� � (4)

where η is correlation length, defined as the value of ξ at whichC � η � � 1
e

where e is Euler constant.

The height fluctuation defined by (1), (2) and (3) is a stationary Gaus-
sian stochastic process [18]. From above description it is clear that this
stochastic process is uniquely determined by two parameters: the stan-
dard deviation σ and the correlation length η. Here we want to empha-
size that the stochastic integral equation (SIE) method developed in this
paper is not tied to the specific mathematical model for rough surface. A
different model for rough surface simply means that different probability
density functions like the ones in (1) and (2) will be used in calculating
the ensemble average Green’s function. But the basic elements of the
SIE method remain the same.

3. Stochastic Integral Equation Method
For the sake of clarity, we use a simple 2D capacitance problem, a single
conductor over a ground plane, to explain the basic ideas of the stochastic
integral equation method. As will be made clear, this method can be
readily extended to the multiple conductor case as well as to the 3D
capacitance problems with little modification.

Figure 1 shows one conductor over an infinite ground plane, where the
conductor is denoted as D1 and the ground plane is denoted asD0. With-
out loss of generality, we assume that the side walls of conductor D1
(denoted as S1 and S3) are smooth, only the top and the bottom surfaces
(denoted as S2 and S4) are rough. The position of the points on the top
and the bottom surfaces are defined by�

y1 � x � � b 
 h1 � x � � x � y1 � x � � � S2
y2 � x � � a 
 h2 � x � � x � y2 � x � � � S4 (5)

where h1 � x � and h1 � x � are two independent surface height fluctuation
functions with statistical characteristics defined by (1), (2) and (3), and a
and b are the nominal position of the top and the bottom surface, re-
spectively, as shown in figure 1. To facilitate the explanation in the
following sections, we also define the smooth nominal surfaces S̃2 and
S̃4 for rough surfaces S2 and S4 as � � x � y � � S̃2 � 0 � x � c � y � b � and� � x � y � � S̃4 � 0 � x � c � y � a � , respectively.
3.1 Description of 2D capacitance problem
The 2D capacitance can be calculated by solving a 2D exterior Laplace
problem defined as�� � � ∂2

∂x2 
 ∂2
∂y2 � φ � x � y � � 0 � x � y � � D

φ � x � y � � Vi � x � y � � ∂Di i � 0 � 1
φ � x � y � � 0 � x � y � � ∞

(6)

where D denotes the region outside of conductors, ∂Di refers to the sur-
face of Di and Vi is the given voltage on ∂Di. To compute capacitance,
we setV1 � 1 andV0 � 0. Equation (6) can be converted to the equivalent
integral equation [7]�

∂D1
dl � x � � y � � ρ � x � � y � �

ε0
G � x � � y � ;x � y � � V1 � 1 � � x � y � � ∂D1 � (7)

where

G � x � � y � ;x � y � � 1
2π
ln  � x � x � � � 2 
 � y � y � � � 2� x � x � � 2 
 � y � y � � 2 � (8)

and � x � � � y � � � is the image of � x � � y � � with respect to the ground plane. Here
we have used the image theory ([19], pp. 48) to take into account the
effect of ground plane. So in our calculation, we only need to discretize
conductor surface ∂D1. It should be noted that with the Green’s function
in (8) the boundary conditions at infinity and on the ground plane are
satisfied automatically. Using the fact that the rough surface height is

a function of position, and combining that with the standard change of
variable identity for integrals yields� b

a

ρ � x � � 0 � y � �
ε0

G � x � � 0 � y � ;x � y � dy � 
� c
0 " 1 
 � dy1 � x � �

dx � � 2 ρ � x � � y1 � x � � �
ε0

G � x � � y1 � x � � ;x � y � dx � 
� b
a

ρ � x � � c � y � �
ε0

G � x � � c � y � ;x � y � dy � 
� c
0 " 1 
 � dy2 � x � �

dx � � 2 ρ � x � � y2 � x � � �
ε0

G � x � � y2 � x � � ;x � y � dx � � 1� x � y � � ∂D1 � (9)

where the first and the third terms are associated with the two smooth
sides and the second and the fourth terms are associated with the rough
top and bottom (see figure 1). Now define

ρ̃ � x � � y � � �
�%%� %%� ρ � x � � y � � � � x � � y � � � S1 � S3&

1 
 � dy1 ' x ( )
dx ( � 2ρ � x � � y1 � x � � � � � x � � y � � � S̃2&

1 
 � dy2 ' x ( )
dx ( � 2ρ � x � � y2 � x � � � � � x � � y � � � S̃4 � (10)

dl̃ � x � � y � � � �
dx � � � x � � y � � � S̃2 � S̃4
dy � � � x � � y � � � S1 � S3 � (11)

Ĝ � x � � y � ;x � y � � �� � G � x � � y � ;x � y � � � x � � y � � � S1 � S3
G � x � � y1 � x � � ;x � y � � � x � � y � � � S̃2
G � x � � y2 � x � � ;x � y � � � x � � y � � � S̃4 � (12)

then equation (9) can be written as�
˜∂D1

ρ̃ � x � � y � �
ε0

Ĝ � x � � y � ;x � y � dl̃ � x � � y � � � 1 � � x � y � � ∂D1 � (13)

where ˜∂D1 is the nominal smooth surface. It should be pointed out that
with the change of variable defined in (10) and (11), the unknown charge
ρ̃ is define on the nominal smooth surface ˜∂D1 and the integral domain
of equation (13) becomes ˜∂D1. This makes it much easier to use the
standard definition of stochastic integral [18] in the following sections.
1 In view of (10) and (11), the self capacitance is

C � �
∂D1

ρ � x � � y � � dl � x � � y � � � �
˜∂D1

ρ̃ � x � � y � � dl̃ � x � � y � � + (14)

It should be noted that the charge density distribution is a nonlinear func-
tion of the surface point location, as shown in (7). This implies that the
capacitance is also a nonlinear function of the surface point location.
Hence the mean capacitance is not equal to the capacitance for the con-
ductor with a nominal smooth surface. This should not be surprising
because the rough surface conductor’s surface area is larger. As shown
in [6] as well as in our numerical result section, this difference is not
negligible.

3.2 Basic ideas
Instead of solving equation (13) for many statistically independent real-
izations of the rough surface and taking the ensemble average of charge
density, we derive the integral equation for the mean charge density di-
rectly. By solving this stochastic integral equation, we can easily calcu-
late the mean capacitance.

Taking the ensemble average on both sides of equation (13) yields�
˜∂D1
dl̃ � x � � y � � , ρ̃ � x � � y � �

ε0
G̃ � x � � y � ;x � y � - � 1 � � x � y � � ˜∂D1 (15)

1The stochastic processes y1 � x � � and y2 � x � � in (10) are differentiable be-
cause the autocorrelation of h1 � x � and h2 � x � in (5), which is defined in
(4), has derivative of order up to at least two [18].
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Figure 1: One conductor over a ground plane. The top and the bot-
tom surfaces are rough with nominal position at y � b and y � a,
respectively.

where

G̃ � x � � y � ;x � y � �
�� � Ĝ � x � � y � ;x � y � � � x � y � 
 S1 � S3
Ĝ � x � � y � ;x � y1 � x � � � � x � y � 
 S̃2
Ĝ � x � � y � ;x � y2 � x � � � � x � y � 
 S̃4 � (16)

and the angle brackets stand for ensemble average. Assuming that the
charge density distribution is uncorrelated to Green’s function, as is done
in [17], equation (15) becomes�
˜∂D1
dl̃ � x � � y � � � ρ̃ � x � � y � � �

ε0
� G̃ � x � � y � ;x � y � � � 1 � � x � y � 
 ˜∂D1 � (17)

In section 3.3 we will explain the significance of this uncorrelatedness
assumption and show that there is a way to compensate for the error
introduced by this approximation. In view of (14) the mean self capaci-
tance is

� C � � �
˜∂D1
dl̃ � x � � y � � � ρ̃ � x � � y � � � � (18)

It is clear that � ρ̃ � x � � y � � � is exactly what we want to compute, and it
is treated as the unknown variable.

It should be noted that the surface roughness is not explicit in the en-
semble average Green’s function, hence only the smooth nominal sur-
face ˜∂D1 needs be discretized and only one solve is needed to obtain the
mean charge density.

In this paper we use piecewise constant basis functions and the Galerkin
method to discretize equation (17). The discretized system for (17) is�

Ā� � ρ̃ � � L̃ � (19)

where

Āk � j � �
∆̃k
dl̃ � x � y � �

∆̃ j
dl̃ � x � � y � � � G̃ � x � � y � ;x � y � � � (20)

L̃k � �
∆̃k
dl̃ � x � y � � (21)

The detailed formulas for evaluating (20) are given in [20].

3.3 Second order correction to the uncorrelated-
ness assumption

In this section we show that the solution of (19) is only a zero-th order
approximation to the correct mean charge density. Hence we will call it� ρ̃ � 0 � � in the remaining part of the paper and we have

� ρ̃ � 0 � � � Ā � 1L̃ � (22)

The discretization of (13) on each realization of the rough surface results
in �

A � ρ̃ � L̃ � (23)

or equivalently,

Aρ̃ � � Ā � A  Ā � ρ̃ � Ā �
I � Ā � 1 � A  Ā � � ρ̃ � L̃ � (24)

Therefore,

ρ̃ � �
I � Ā � 1 � A  Ā � � � 1Ā � 1L̃ � (25)

Using an idea from stochastic finite elements [21], Taylor expanding (25)
and using (22) yield

ρ̃ # �
I  Ā � 1 � A  Ā � � Ā � 1 � A  Ā � Ā � 1 � A  Ā � � � ρ̃ � 0 � �� ρ̃ � 0 � � ρ̃ � 1 � � ρ̃ � 2 � � (26)

where ρ̃ � 0 � � � ρ̃ � 0 � � , ρ̃ � 1 � �  Ā � 1 � A  Ā � � ρ̃ � 0 � � , and ρ̃ � 2 � � Ā � 1 � A  
Ā � Ā � 1 � A  Ā � � ρ̃ � 0 � � . The approximation in (26) is due to the trun-
cated Taylor expansion. Taking the ensemble average on both side of
(26) yields

� ρ̃ � # � ρ̃ � 0 � � � � ρ̃ � 2 � � � (27)

where the elimination of the term � ρ̃ � 1 � � is due to
� ρ̃ � 1 � � �  Ā � 1 � � A  Ā � � � ρ̃ � 0 � � � 0 � (28)

Now it is clear that the uncorrelatedness assumption in section 3.2 only
gives us the zero-th order term � ρ̃ � 0 � � in (27). Hence its accuracy
depends largely on the size of the deviation of each matrix A from Ā. In
other words, it depends on the magnitude of the surface roughness. In
the numerical result section we show that this is indeed the case and that
the second order correction term improves the accuracy significantly.

The difficulty in (27) is that in order to obtain the correction term �
ρ̃ � 2 � � it is necessary to compute � � A  Ā � Ā � 1 � A  Ā � � . In the fol-
lowing, we will use the Kronecker product to show how to compute this
term.

As explained in section 3.1 and 3.2, both � ρ̃ � and � ρ̃ � 0 � � are defined
on the smooth nominal surface. From (27), the average capacitance is

� C � � L̃T � ρ̃ � # L̃T � � ρ̃ � 0 � � � � ρ̃ � 2 � � �� � C � 0 � � � � C � 2 � � � (29)

where

� C � 2 � � � L̃T � ρ̃ � 2 � �� L̃T Ā � 1 � � A  Ā � Ā � 1 � A  Ā � � Ā � 1L̃� � ρ̃ � 0 � � T � EĀ � 1E � � ρ̃ � 0 � � (30)

and

E � A  Ā � (31)

The last equality in (30) is due to ĀT � Ā, because the Galerkin method
is used in (19). Using Kronecker product identities and the so-called vec
operator [22, 23], (30) can be written as

� C � 2 � � # � � � ρ̃ � 0 � � T E � Ā � 1 � E � ρ̃ � 0 � � � �� � � � ρ̃ � 0 � � T ET � 0 � � ρ̃ � 0 � � T E � � vec � Ā � 1 �� � � ρ̃ � 0 � � T 0 � ρ̃ � 0 � � T � � ET 0 E � vec � Ā � 1 �� � vec � B � � T vec � Ā � 1 � � trace � Ā � TB � � (32)

where

vec � B � � � � � ρ̃ � 0 � � T 0 � ρ̃ � 0 � � T � � ET 0 E � � T� � E 0 ET � � � ρ̃ � 0 � � 0 � ρ̃ � 0 � � �� �
F � � � ρ̃ � 0 � � 0 � ρ̃ � 0 � � � (33)

F � �
F i j � N 6 N � � � Ei jET � � N 6 N (34)
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F i jnm � � Ei jEmn � � � � Ai j � Āi j � � Amn � Āmn � �
� � Ai jAmn � � Āi jĀmn � (35)

3.4 Variance of the capacitance
The algorithm in previous sections yields the mean capacitance. In this
section we show that the capacitance variance can be calculated by using
the same Taylor expansion in (26). From (14) and (19),

� C2 � � 
˜∂D1


˜∂D1

� ρ̃ � x � y � ρ̃ � x � � y � � � dl̃ � x � y � dl̃ � x � � y � � �
� L̃T � ρ̃ρ̃T � L̃ � (36)

Using the second-order approximation in (26) yields

� C2 � � L̃T
2

∑
i � 0

2

∑
j � 0 � ρ̃ � i � � ρ̃ � j � � T � L̃

� L̃T � ρ̃ � 0 � � � � ρ̃ � 0 � � � T � � ρ̃ � 1 � � T � � ρ̃ � 2 � � T � L̃
� L̃T � � ρ̃ � 1 � � � ρ̃ � 0 � � T � � ρ̃ � 1 � � ρ̃ � 1 � � T � � L̃
� L̃T � ρ̃ � 2 � � � ρ̃ � 0 � � T L̃

� � C � 0 � � � C � � L̃T � ρ̃ � 1 � � ρ̃ � 1 � � T � L̃
� � C � 2 � � � C � 0 � � � (37)

where the high-order terms � ρ̃ � 1 � � ρ̃ � 2 � � T � and � ρ̃ � 2 � � ρ̃ � 2 � � T � are
truncated and the term � ρ̃ � 1 � � � � ρ̃ � 0 � � T � is eliminated using (28).
From (29),

� C � 2 � � C � 0 � � � C � � � C � 2 � � � C � 0 � � � (38)

where the high-order term � C � 2 � � � C � 2 � � is truncated. Therefore,
the variance of the capacitance is

Var � C  � � C2 � � � C � 2 � L̃T � ρ̃ � 1 � � ρ̃ � 1 � � T � L̃ � (39)

From (22), (26) and (31), using the Kronecker product identities yields

L̃T � ρ̃ � 1 � � ρ̃ � 1 � � T � L̃
� � � � ρ̃ � 0 � � T E � ρ̃ � 0 � � � � � ρ̃ � 0 � � T ET � ρ̃ � 0 � � � �
� � � � ρ̃ � 0 � � T E � ρ̃ � 0 � � � ' � � ρ̃ � 0 � � T ET � ρ̃ � 0 � � � �
� � � ρ̃ � 0 � � T ' � ρ̃ � 0 � � T � � E ' ET � � � ρ̃ � 0 � � ' � ρ̃ � 0 � � �
� � vec � B � � T � � ρ̃ � 0 � � ' � ρ̃ � 0 � � �
� � � ρ̃ � 0 � � ' � ρ̃ � 0 � � � T vec � B �
� � � ρ̃ � 0 � � T ' � ρ̃ � 0 � � T � vec � B �
� � ρ̃ � 0 � � T B � ρ̃ � 0 � � (40)

where the second equality is due to the fact that � ρ̃ � 0 � � T E � ρ̃ � 0 � �
is a scalar. Both the first and the fourth equality use the fact that ĀT � Ā
and ET � E. Similar to the calculation of � C � 2 � � in (32), everything
boils down to the calculation of matrix B or vec � B � . Therefore, no ex-
tra computation work is necessary to obtain the approximate value of
the capacitance variance once we have used the second-order correction
scheme in section 3.3 to calculate the mean capacitance.
4. Numerical Results
In this section, we first use a simple 2D example to verify the second-
order correction scheme in section 3.3 and the method for calculating
capacitance variance in section 3.4. We then use a simple 3D example
to demonstrate that the stochastic integral equation method can be easily
extended to 3D cases.

4.1 A two-dimensional example
The two-dimensional example is a single circular conductor over ground
plane. The mean radius of the wire is 1mm and the radius fluctuation
is a stochastic process with respect to the angle in the polar coordinate
system. The surface of the ground is assumed to be smooth. The distance
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Figure 2: Themean charge density computed withMonte Carlo sim-
ulations and the stochastic integral equation method. The correla-
tion length is 0 � 2mm and standard deviation is 0 � 1mm. Maximum
charge density is around the surface point where the circular wire is
closest to the ground.

between the circular wire with nominal smooth surface and the ground
is 0 � 5mm.
The mean and the variance of capacitances calculated using different
methods are compared in table 1 and 2, respectively. Column Smooth
is the capacitance for the conductor with nominal smooth surface. This
serves as a reference. ColumnMonte Carlo is the capacitance computed
using Monte Carlo simulations. The number of Monte Carlo runs is
shown in the parenthesis. Columns SIE I and SIE II are the capacitances
computed using the stochastic integral equation method without and with
the second-order correction term, respectively. The parameters η (the
correlation length) and σ (the standard deviation) are two numbers we
use to control the roughness of the surface. Smaller η or larger σ means
a rougher surface. Figure 2 compares the detailed mean charge density
calculated using different methods.

As can be seen from table 1, table 2 and figure 2, the second-order cor-
rection term significantly improves the accuracy and also gives a reason-
able capacitance variance estimate. The good agreement between Monte
Carlo and SIE II for various roughnesses suggests that the stochastic inte-
gral equation method with the second order correction term is a promis-
ing approach. It is worth noting that the difference between smooth sur-
face capacitance and the mean capacitance is approximately 10%. Hence
the capacitance will be under-estimated if the surface roughness is ne-
glected.

4.2 A three-dimensional example
The simple 3D example is a plate of zero thickness over ground plane.
The ground plane is assumed to be smooth and the plate has a random
rough profile, as shown in figure 3. The mean and the variance of capac-
itance calculated using different methods are compared in table 3 and 4,
respectively. Again, the second-order correction significantly improves
the accuracy of mean capacitance and gives an accurate estimate for the
capacitance variance. It is worth noting that the algorithm and the im-
plementation for 3D structures are the same as those for 2D structures.

5. Conclusions
We have demonstrated a stochastic integral equation method for calcu-
lating the mean and the variance of capacitance of both 2D and 3D struc-
tures. This method has two advantages: 1) It avoids the time-consuming
Monte Carlo simulations; 2) It avoids the discretization of rough surface,
which needs a much more refined mesh than the smooth surface. We are
in the process of extending this method to the impedance extraction of
3D interconnects and packages with rough surfaces.
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Figure 3: A zero-thickness plate with random profile. The correla-
tion length is 0 � 2mm and standard deviation is 0 � 1mm. The size of
the nominal smooth plate is 1 � 1mm. The smooth ground plane is
not included in this picture. The distance between nominal smooth
plate and the ground plane is 0 � 5mm.

Table 1: Mean value of 2D capacitance calculated with different
methods. Unit:pF. η is the correlation length and σ is the standard
deviation. Both are in mm.

η σ Smooth Monte Carlo SIE I SIE II
0.2 0.1 57.68 61.42(5000run) 58.69 61.19
0.1 0.1 57.68 63.53(5000run) 59.80 64.72

Table 2: Variance of 2D capacitance by different methods. Unit:pF.
η is the correlation length and σ is the standard deviation. Both are
in mm.

η σ Monte Carlo SIE II
0.2 0.1 3.72(5000run) 3.00
0.1 0.1 3.02(5000run) 2.24

Table 3: Mean value of 3D capacitance calculated with different
methods. Unit:pF. η is the correlation length and σ is the standard
deviation. Both are in mm.

η σ Smooth Monte Carlo SIE I SIE II
0.2 0.1 56.599 62.656(4000run) 61.676 62.706
0.1 0.1 56.599 66.237(4000run) 63.850 65.471

Table 4: Variance of 3D capacitance calculated with different meth-
ods. Unit:pF. η is the correlation length and σ is the standard devia-
tion. Both are in mm.

η σ Monte Carlo SIE II
0.2 0.1 2.224(4000run) 2.011
0.1 0.1 1.194(4000run) 1.370
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