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Abstract Surveys on sensitive issues provide distorted
prevalence estimates when participants fail to respond
truthfully. The randomized-response technique (RRT)
encourages more honest responding by adding random
noise to responses, thereby removing any direct link
between a participant’s response and his or her true status
with regard to a sensitive attribute. However, in spite of the
increased confidentiality, some respondents still refuse to
disclose sensitive attitudes or behaviors. To remedy this
problem, we propose an extension of Mangat’s (Journal of
the Royal Statistical Society: Series B, 56, 93–95, 1994)
variant of the RRT that allows for determining whether
participants respond truthfully. This method offers the
genuine advantage of providing undistorted prevalence
estimates for sensitive attributes even if respondents fail
to respond truthfully. We show how to implement the
method using both closed-form equations and easily
accessible free software for multinomial processing tree
models. Moreover, we report the results of two survey
experiments that provide evidence for the validity of our
extension of Mangat’s RRT approach.

Keywords Randomized-response technique .Multinomial
model . Social desirability . Dishonest responding . Lie
detection

The validity of surveys on sensitive issues suffers from
respondents who fail to report their true status with regard
to sensitive attributes by responding in line with social
norms rather than truthfully (Tourangeau & Yan, 2007). The
randomized-response technique (RRT; Warner, 1965) was
developed as a means to reduce this social desirability bias.
The rationale of the RRT is to add random noise to the
participant’s responses to ensure that an individual’s true
status cannot be determined on the basis of his or her
response to a sensitive question. Although the randomiza-
tion process protects the true status of all individuals
participating in the survey, elementary probability calcu-
lations allow the derivation of estimates of the prevalence
of a sensitive attribute at group level.

In the first randomized-responsemodel, proposed byWarner
(1965), respondents were to answer either a sensitive question
(e.g., “Have you ever used cocaine?”) with probability p or
the negation of this question (“Have you never used
cocaine?”) with probability 1 – p. One implementation of
this method simultaneously provided respondents with both
the sensitive question and its negation. Participants engaged in
a randomization procedure to determine which of the two
questions had to be answered. For example, if a die were used
as a randomization device, participants could be requested to
respond to the sensitive question if the die showed 1, 2, 3, or 4
(p = 2/3), but to the negation of the sensitive question if the
die showed 5 or 6 (1 – p = 1/3). As a consequence, an
observed “yes” response might stem from both carriers of the
attribute responding to the sensitive question and noncarriers
responding to the negation of the sensitive question. The lack
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of a direct link between the participant’s response and his or
her true status regarding the sensitive attributes
increases the confidentiality of responses. Given that
the probability distribution of the randomization device
is known beforehand, it is straightforward to determine
the prevalence of the attribute in question. If π denotes
the true proportion of respondents carrying the sensitive
attribute, the probability of “yes” responses for the entire
population is l ¼ ppþ ð1� pÞ 1� pð Þ. It follows that the
proportion of respondents carrying the sensitive attribute
can be estimated by bp ¼ blþ p� 1ð Þ

h i
= 2p� 1ð Þ, where bl

denotes the relative frequency of “yes” responses in a
sample and p ≠ .5 (Warner, 1965).

Since the randomization procedure adds noise to the
responses, the RRT is associated with a considerable loss of
efficiency as compared to direct questioning (Lensvelt-
Mulders, Hox, & van der Heijden, 2005a). Accordingly,
considerable efforts have been exerted in order to reducing
the sampling variance (Boruch, 1971; Bourke, 1984;
Greenberg, Abul-Ela, Simmons, & Horvitz, 1969; Kuk,
1990; Moors, 1971). One way to achieve this goal is to
restrict sampling variability to some part of the total sample.
For instance, only one question is asked in the forced-response
variant of the RRT (Dawes & Moore, 1980; Greenberg
et al., 1969). Rather than requiring a second question, a
randomization device is used to determine whether partic-
ipants are prompted to respond truthfully or instructed to
respond in a prespecified way (e.g., “yes”), regardless of the
content of the sensitive question. Also addressing the problem
of efficiency,Mangat (1994) proposed a variant of the Warner
(1965) model that restricts the randomization procedure to
participants not carrying the sensitive attribute. In this
variant, respondents carrying the sensitive attribute are
requested to respond to the sensitive question, whereas
respondents not carrying the sensitive attribute receive either
the sensitive or the negation of the sensitive question in the
format proposed by Warner, as explained above. Given that
“yes” responses may still stem from either carriers or
noncarriers of the sensitive attribute, the confidentiality of
respondents answering affirmatively is protected. Moreover,
because only noncarriers are affected by the randomization
instruction and all carriers provide “yes” responses, the
variance of the estimate of bp is reduced as compared to
Warner’s method.

Lack of efficiency, however, is only one of the concerns
associated with use of the RRT. A more serious problem
pertains to its validity—that is, to the utility of the RRT in
obtaining more valid prevalence estimates than a direct
question. In particular, the RRT has been criticized as being
susceptible to respondents who fail to adhere to the
randomized-response instructions by refusing to reply as
directed by the randomization device (Campbell, 1987). In
every questioning format, including direct questioning,

participants may fail to adhere to the instructions by
denying being a carrier of a sensitive attribute in spite of
actually being one. In the forced-response variant of the
RRT, it is also possible that participants want to avoid
associating themselves with an attribute they do not
hold, in spite of being told otherwise by the randomi-
zation device (Edgell, Duchan, & Himmelfarb, 1992;
Lensvelt-Mulders & Boeije, 2007). In fact, a recent meta-
analysis has shown that while outperforming direct-
questioning formats, the RRT may still substantially
underestimate actual population values (Lensvelt-Mulders,
Hox, van der Heijden & Maas, 2005b). Thus, although
randomization procedures seem to promote more honest
responding as compared to direct-questioning formats, the
RRT does not completely eliminate the problem of
dishonest responding.

Several extensions of the forced-response variant of the
RRT have been proposed that allow for determining the
proportion of respondents who fail to adhere to the
instructions by always providing a self-protecting response
(Böckenholt, Barlas, & van der Heijden, 2009; Böckenholt
& van der Heijden, 2007; Clark & Desharnais, 1998;
Cruyff, van den Hout, & van der Heijden, 2008;
Ostapczuk, Moshagen, Zhao & Musch, 2009a; van den
Hout, Böckenholt, & van der Heijden, 2010). However, all
of these approaches share the limitation that the true status
of nonadherent respondents cannot be determined. In other
words, these methods estimate the proportion of carriers of
the sensitive attribute not for the total population of
interest, but only for the latent subpopulation of respond-
ents who adhere to the instructions. Unfortunately, the rate
of nonadherence may be often substantial, with estimates
ranging from 5% to 50% (e.g., Moshagen, Hilbig, &
Musch, 2011; Moshagen, Musch, Ostapczuk, & Zhao,
2010; Ostapczuk, Musch, & Moshagen, 2009b; in press).

Although the problem of nonadherence to the
randomized-response instructions is well recognized and
recent developments of the RRT have progressed to the
point where the rate of nonadherence can be estimated,
there is currently no model available that allows for
determining the true status of nonadherent respondents.
Existing models either refrain from any assumption
regarding the status of nonadherent respondents—with the
undesired consequence that researchers cannot draw any
conclusion with respect to an often substantial proportion of
respondents—or have to rely on questionable assumptions
regarding the status of nonadherent respondents that likely
result in biased estimates of the prevalence of the sensitive
attribute. Unlike existing approaches, the model we propose
provides a direct means to estimate the extent of truthful
responding, rather than merely estimating the extent of
nonadherence to the instructions. Consequently, the pro-
posed model provides undistorted prevalence estimates for
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sensitive attributes in the total population of interest, even if
respondents fail to respond truthfully.

A stochastic lie detector

Mangat’s (1994) variant of the Warner (1965) model
restricts the randomization procedure to noncarriers of the
sensitive attribute. Noncarriers are prompted to respond to
either the sensitive question or its negation, depending on
the outcome of the randomization process. In contrast,
carriers of the sensitive attribute do not participate in the
randomization process and are always requested to respond
to the sensitive question. In Mangat’s model, carriers of the
sensitive attribute (π) are assumed to reply truthfully by
responding “yes” to the sensitive question with probability
1. Our basic idea is straightforward: We assume that carriers
of the sensitive attribute respond truthfully with an
unknown probability t ≤ 1, but fail to respond truthfully
by responding “no” with probability 1 – t. In line with
Mangat’s original model, participants who do not carry the
sensitive attribute (1 – π) are assumed to reply “no” if they
receive the sensitive question with probability p and to
reply “yes” if they receive the negation of the sensitive
question with probability 1 – p. Figure 1 illustrates our
stochastic lie detector model as a tree diagram.

It should be noted that Mangat (1994) also considered
the possibility of incomplete truthful responding (i.e., t ≤ 1).
However, he did so to derive the bias of the bp estimate
obtained through his model under violations of the
assumption of complete truthful responding. The difference
between our model and Mangat’s original variant is that we
use the additional parameter t to model actual response
behavior and, more importantly, to derive undistorted
estimates of π even if incomplete truthful responding
occurs. Of course, if all carriers respond truthfully (t = 1),
the stochastic lie detector reduces to Mangat’s (1994)

model, which is therefore a special case of the present
approach. Assuming that some participants carrying the
sensitive attribute fail to respond truthfully with probability
1 – t, however, the proportion of “yes” responses given a
randomization probability pi becomes

li ¼ pt þ ð1� pÞ 1� pið Þ: ð1Þ
To estimate the two unknown parameters of the model (π

and t), it is necessary to draw two independent random
samples from the population of interest and to apply
different randomization probabilities in each sample (p1 ≠
p2) (Clark & Desharnais, 1998). Specifically, carriers in the
first random sample receive the sensitive question with
probability p1 and the negation of the sensitive question
with probability 1 – p1, whereas carriers in the second
random sample receive the sensitive question with proba-
bility p2 and the negation of the sensitive question with
probability 1 – p2. To obtain an identifiable model, p1 and p2
must differ from each other but need not necessarily sum to
1. By inserting relative frequencies of observed “yes”
responses in Eq. 1 separately for the two samples i = 1 and
i = 2 (bl1 and bl2, respectively) and solving for the parameters,
estimates of the parameters can then be derived as:

bp ¼
bl2 � bl1� �

þ p2 � p1ð Þ
ðp2 � p1Þ ð2Þ

and

bt ¼ bl2 1� p1ð Þ � bl1 1� p2ð Þbl2 � bl1� �
þ p2 � p1ð Þ

: ð3Þ

Equations 2 and 3 provide maximum likelihood esti-
mates of π and t, respectively, if and only if both estimates
lie within the interval [0, 1]. If either of these estimates lies
outside of the admissible interval, this indicates some
degree of misfit of the model. The multinomial processing

“Yes“

1-
“No“

“Yes“

“Have you ever 
used cocaine?“

“Have youn ever
used cocaine?“

“Have you ever 
used cocaine?“

pi

1 - pi

Non-users

Cocaine
users

t

1 -t “No“

Fig. 1 A multinomial process-
ing tree diagram of the stochas-
tic lie detector. Two independent
random samples with different
randomization probabilities p1
and p2 are required to render the
model identifiable
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tree method outlined below should then be used to estimate
parameters and to evaluate the possible significance of the
model misfit. Of course, estimates should not be interpreted
in case of significant model misfit.

Based on results of Elandt-Johnson (1971, p. 334, Eq.
12.55), the variances of the parameter estimates can be
derived as

var bpð Þ ¼
bl1 1� bl1� �
n1 p1 � p2ð Þ2 þ

bl2 1� bl2� �
n2 p2 � p1ð Þ2 ð4Þ

and

var bt� � ¼ bl1 1� bl1� �
n1

p1 � p2ð Þ p2 þ bl2 � 1
� �

p1 � p2 þ bl1 � bl2� �2

2
64

3
75
2

þ
bl2 1� bl2� �

n2

p1 � p2ð Þ p1 þ bl1 � 1
� �

p1 � p2 þ bl1 � bl2� �2

2
64

3
75
2

; ð5Þ

where n1 and n2 denote the numbers of individuals in the first
and second samples, respectively. It is evident from Eq. 4 that
the sampling variability of bp decreases when the denomina-
tor terms increase. Because the denominators attain their
maximum for a given ni when p1 � p2j j ¼ 1, it follows that
the sampling variability of the estimates can effectively be
reduced by choosing randomization probabilities p1 and p2
that differ substantially between the two samples. From a
psychological perspective, extreme randomization probabil-
ities should be avoided, because they imply that one sample
will almost always have to respond to the sensitive question,
counteracting the goal of the RRT to remove any direct link
between the true status of a person and his or her response
(see Kwan, So, & Tam, 2010, for similar arguments related
to a different RRT model)

To further investigate the optimal choice of the random-
ization probabilities, we conducted a simulation study
based on population values of π = .3 and t = .8. The
effects of the randomization probabilities were examined in
two different ways. In the symmetric case, p1 and p2 were
varied symmetrically around .5 (such that p1 þ p2 ¼ 1). In
the asymmetric case, p1 took values from .05 to .7, while p2
was always fixed at .8. From Fig. 2, it can be seen that, as
predicted, the variances of π and t decreased with
increasing differences between p1 and p2. Moreover, the
variances tended to be slightly smaller with symmetric
randomization probabilities, unless the difference between
p1 and p2 was large.

The closed-form method of parameter estimation based
on Eqs. 2 and 3 is just one of several methods to estimate
parameters of the stochastic lie detector. Alternatively, we
can make use of the fact that the stochastic lie detector is a

member of the family of multinomial processing tree
(MPT) models (Batchelder & Riefer, 1999; Erdfelder,
Hilbig, Auer, Aßfalg, Moshagen, & Nadarevic, 2009).
Using the MPT approach to estimate the parameters and
their associated variances offers several benefits, the main
one being increased flexibility. For instance, it is possible to
augment the model with additional parameters representing
different subgroups (e.g., males and females) for which
parameters can be estimated separately. Moreover, in
contrast to the estimation procedure based on Eqs. 2 and
3, the MPT approach always provides parameter estimates
within the admissible interval [0, 1], along with power
divergence goodness-of-fit statistics that measure the degree
of possible model misfit. By applying the parametric
bootstrap test option to one of these goodness-of-fit
statistics, it is possible to evaluate the stochastic lie detector
statistically even in those cases in which it is a saturated
model (with as many parameters as independent model
equations—that is, the two-groups case). Likewise, restric-
tions on the parameters can be tested, such as the
assumption that each carrier responds truthfully (t = 1).
Estimating the stochastic lie detector within the MPT
framework proceeds by employing the EM algorithm
(Dempster, Laird, & Rubin, 1977) tailored to binary tree
models (Hu & Batchelder, 1994). Fortunately, this algo-
rithm has already been implemented in several freely

Fig. 2 Variances of bp andbt as a function of the difference between the
randomization probabilities p1 and p2, where Δp ¼ p1 � p2j j. In the
symmetric case, p1 and p2 varied symmetrically around .5 such that
p1 þ p2 ¼ 1. In the asymmetric case, p2 was fixed at .8 and p1 was
varied from .05 to .7. Estimates are based on n1 = n2 = 2,500, π = .3,
and t = .8
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available software programs (e.g., Hu & Phillips, 1999;
Moshagen, 2010; Stahl & Klauer, 2007). Only the program
multiTree (Moshagen, 2010), however, provides the para-
metric bootstrap test option required to evaluate model
misfit when one of the parameter estimates obtained with
Eqs. 2 and 3 exceeds the permissible interval [0, 1]. The
model input file defining the stochastic lie detector model
for use in multiTree is shown in the Appendix.

Readers familiar with maximum likelihood procedures
for multinomial data can use more general estimation
techniques, such as minimizing the log-likelihood ratio
statistic G2 (Read & Cressie, 1988), using software pack-
ages such as MATLAB or R. For the present model, G2 is

G2 t; pð Þ ¼
XI

i¼1

2
XJ
j¼1

nij log
nij

Nikij t; pð Þ
� �

ð6Þ

where nij and kij denote the observed and expected
frequencies, respectively, for the jth response category
(“yes” and “no” responses) in sample i, and Ni is the total
number of observations in the ith sample. This is a very
flexible approach that enables users to implement not only
different types of parameter restrictions, but also possible
extensions of the model that exceed the MPT framework.
For example, covariates can be added to the model
equations (see, e.g., Böckenholt et al., 2009; Böckenholt
& van der Heijden, 2007; van den Hout et al., 2010).

Experiment 1

An experiment was conducted to assess the performance of
the stochastic lie detector in obtaining an undistorted estimate
of the prevalence of domestic violence. To this end, we
compared the stochastic lie detector with (a) a simple direct
question and (b) the RRT variant proposed byMangat (1994).

A group of 1,504 students (63% female; mean age =
23.57 years, SD = 6.86) of the University of Düsseldorf,
Germany, volunteered to participate in the study. Respond-
ents were randomly assigned to one of three conditions:
direct question (N = 329), stochastic lie detector with low
randomization probability (N = 535), and stochastic lie
detector with high randomization probability (N = 640). As
outlined above, the latter two groups were necessary in
order to estimate π and t based on the stochastic lie detector.
Higher numbers of participants were assigned to both
stochastic lie detector conditions to compensate for the loss
of efficiency associated with the randomization procedure.

Participants in the direct-questioning condition simply
received the sensitive statement (“In my current or any former
relationship, I have intentionally hurt my partner physically”)
and were instructed to respond truthfully. In the stochastic lie
detector conditions, participants were provided with both, the

sensitive statement and its negation. The participants’ month
of birth was used as a randomization device, to keep the
randomization simple and transparent. In the high-
randomization-probability (p2) condition, the instructions read:

Below, you find two mutually exclusive statements,
which are labeled as statement A and statement B.
You are to respond to only one of these statements:

& If you never intentionally hurt your current or any
former partner physically, please respond to

– Statement A, if you were born between January and
October.

– Statement B, if you were born in November or
December.

& If you have intentionally hurt you current or any former
partner physically, simply respond to Statement A,
regardless of when you were born.

Following these instructions, both the sensitive statement
and its negation were presented. They read:

– Statement A: In my current or any former
relationship, I have intentionally hurt my partner
physically. – Statement B: In my current or any
former relationship, I have never intentionally hurt
my partner physically.

The instructions in the low-probability (p1) condition
were identical, except that noncarriers were requested to
respond to the sensitive statement (Statement A) if they had
been born in November or December, and to the negation
of the sensitive statement otherwise. According to official
birth statistics provided by the German Federal Agency for
Statistics, the randomization probabilities p1 and p2 were
.158 and .842, respectively. Instructions in the stochastic lie
detector conditions additionally explained how the random-
ization procedure protected the confidentiality of responses.

Table 1 presents a summary of the experimental design
along with the observed numbers of “yes” and “no” responses

Table 1 Observed frequencies of “yes” and “no” responses by
condition in Experiment 1

Direct Questioning Stochastic Lie Detector

Low Probability High Probability

N 329 535 630

“Yes” 31 402 215

“No” 298 133 425

1 .094 .751 .336

p 1 .158 .842

1 = relative frequency of “yes” responses; p = probability of being
prompted to respond to the sensitive question
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by condition. The parameters of the stochastic lie detector and
their associated variances were obtained by applying Eqs. 2–
5. Additionally, we employed the MPT framework for
parameter estimation using the multiTree program (Moshagen,
2010), because this easily allows for comparing the preva-
lence estimates of the stochastic lie detector and direct
questioning. This is achieved by constraining these prevalence
estimates to equality and testing the significance of the
associated increase in model misfit (ΔG2). The MPT
framework also makes it possible to compare the performance
of the stochastic lie detector with Mangat’s (1994) original
variant of the RRT. As outlined above, Mangat’s method is a
special case of the stochastic lie detector based on the
assumption that each carrier is responding honestly (t = 1).

Table 2 shows the prevalence estimates obtained via
direct questioning, Mangat’s variant of the RRT, and the
stochastic lie detector. The prevalence estimate obtained
from the stochastic lie detector indicated that direct
questioning underestimated the prevalence of domestic
violence. The two procedures yielded significantly different
estimates [9.4% vs. 39.3%,ΔG2 (Δdf = 1) = 53.26, p < .01].
Furthermore, the stochastic lie detector showed that a
substantial proportion of carriers failed to respond honestly,
since t was significantly smaller than 1, ΔG2 (Δdf = 1) =
56.96, p < .01.1 This result shows that relying on Mangat’s
original variant of the RRT—which does not take dishonest
responding into account—would have been inappropriate.
Although the prevalence estimate obtained with Mangat’s
variant of the RRT is significantly higher than the estimate
obtained by direct questioning, ΔG2 (Δdf = 1) = 8.40,
p < .01, it still underestimates the prevalence of domestic
violence as determined by the stochastic lie detector. Hence,
application of the stochastic lie detector results in higher
prevalence estimates of sensitive issues as compared to both
traditional direct questioning and previous randomized-
response variants that do not take dishonest responding into
account. This provides a first demonstration of the feasibility
and utility of the proposed survey method for obtaining
undistorted prevalence estimates of sensitive attributes,
attitudes, and behaviors.

However, because the true prevalence of domestic violence
in the present sample was unknown, one might question
whether the higher estimate obtained with the stochastic lie
detector was necessarily a more valid estimate. Amore precise

assessment of the validity of the stochastic lie detector would
require knowledge of the true status of each individual with
regard to a sensitive attribute. Unfortunately, owing to the very
nature of a sensitive question, such data are notoriously
difficult to obtain. This is mirrored by the fact that a recent
meta-analysis by Lensvelt-Mulders et al. (2005b) identified
only 6 “strong” validation studies reporting such data, as
compared to 68 studies using the comparative validation
approach we applied in Experiment 1. However, to achieve a
more conservative evaluation of the stochastic lie detector, a
second survey was conducted using voting turnout as a
better-accessible criterion.

Experiment 2

The goal of the second experiment was to validate the
stochastic lie detector using nonvoting in the 2009 German
federal elections as the sensitive behavior. Voter turnout
seemed well suited to serve this purpose for three reasons.
First, nonvoting in nation-wide elections is a socially
undesirable behavior, the prevalence of which is under-
estimated when relying on direct questioning (Bernstein,
Chadha, & Montjoy, 2001; Karp & Brockington, 2005).
Second, prior studies employing existing randomized-
response models failed to observe improved estimates of
voting turnout (Holbrook & Krosnick, 2010; Locander,
Sudman, & Bradburn, 1976), suggesting that the RRT cannot
always be expected to yield more valid prevalence estimates if
untruthful responding is not taken into account. Finally, the
true rate of voter turnout is known for the 2009 German
federal elections from official statistics, thus enabling its use
as an external criterion. For the stochastic lie detector to be
considered valid, it must be shown that its estimate of the rate
of nonvoting is closer to the known true rate of nonvoting than
estimates derived from other forms of questioning. Moreover,
because nonvoting arguably is a less sensitive behavior as
compared to domestic violence, it was to be expected that
carriers of the sensitive attribute would be more inclined to
respond honestly (as measured by the parameter t) than in the
first experiment involving domestic violence.

1 Parameters at the boundaries of the parameter space violate a
regularity condition (Birch, 1964), which questions the asymptotic
χ2(1) distribution of G2 under the null hypothesis. Thus, a parametric
bootstrap using 1,000 bootstrap samples was performed (Efron &
Tibshirani, 1993). The obtained distribution of the G2 statistics serves
as an estimate of the exact distribution of G2 that takes into account
the boundary value for t. The parametric bootstrap confirmed the
conclusions drawn from asymptotic theory, as the bootstrap distribu-
tion yielded p < .01 for observing G2 = 56.96, given H0: t = 1.

Table 2 Prevalence estimates (standard errors in parentheses) of
domestic violence obtained by direct questioning, Mangat’s (1994)
variant of the randomized-response technique (Mangat), and the
stochastic lie detector

Direct Questioning Mangat Stochastic Lie Detector

π 9.4% (1.6) 17.1% (2.0) 39.3% (3.9)

t – – 61.1% (3.5)

Mangat’s (1994) variant is a special case of the stochastic lie detector,
constrained by the assumption that all carriers of the critical attribute
respond honestly (t = 1)
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A total of 417 respondents volunteered to participate in the
study. Respondents whowere not eligible to cast a ballot in the
2009 German parliament election were excluded from further
analyses (n = 55). Of the remaining participants, 56% were
female. Age ranged from 19 to 78 years, with a mean of 31.3
years (SD = 11.2). Participants were randomly assigned to
one of three conditions: direct questioning (N = 66) or
stochastic lie detector with low (N = 127) or high (N = 169)
randomization probability, respectively.

The sensitive statement was worded such that nonvoters
(carriers of the sensitive attribute) were required to respond
affirmatively. It read: “I did not vote in the last Bundes-
tagswahl held in 2009.” Consequently, the negation of the
sensitive statement was: “I voted in the last Bundestagswahl
held in 2009.” As in Experiment 1, the month of birth was
used as the randomization device. Participants in the low-
probability (p1) condition who actually voted in the election
(noncarriers) were requested to respond to the sensitive
statement if they were born between October and December,
but to respond to the negation of the sensitive statement
otherwise. In the high-probability (p2) condition, noncarriers
born between January and September were requested to
respond to the sensitive statement, and noncarriers born in
another month were prompted to respond to the negation of
the sensitive statement. Birth statistics of the German Federal
Agency for Statistics showed that the randomization proba-
bilities p1 and p2 approximated .251 and .749, respectively.
The instructions to the participants closely mirrored those of
Experiment 1.

The observed numbers of “yes” and “no” responses by
condition are presented in Table 3. The official voting turnout
in the 2009 German Bundestag election was 70.8%. Thus, the
percentage of eligible voters who did not cast a ballot was
29.2%. The estimated rates of nonvoting for direct question-
ing, Mangat’s original variant, and the stochastic lie detector
are shown in Table 4. It is evident that the rate of nonvoting is
substantially underestimated when using a direct-questioning
format. In contrast, according to the stochastic lie detector
estimate, 31.4% of the eligible voters failed to cast a ballot.

This is significantly higher than the direct-questioning
estimate, ΔG2 (Δdf = 1) = 8.24, p < .01, and very close to
the true rate of nonvoting,ΔG2 (Δdf = 1) = 0.05, p > .8. This
suggests that estimates obtained with the stochastic lie
detector are not only numerically higher than direct-
questioning estimates but also more valid. Moreover, partic-
ipants who did not cast a ballot were more likely to respond
truthfully (bt ¼ :92) as compared to carriers of the sensitive
attribute in Experiment 1 (bt ¼ :61). Since nonvoting can be
considered a less sensitive attribute as compared to domestic
violence, this result provides further evidence for the validity
of the t parameter.

Note, however, that the sample of participants ques-
tioned in Experiment 2 does not necessarily resemble a
random sample drawn from the population of eligible
voters. The actual voting turnout of the present sample may
therefore have differed from the official voting turnout in
the general population. For this reason, the results should
not be interpreted as providing strong evidence for the
validity of the stochastic lie detector, in the sense defined
above. Nevertheless, the close correspondence between the
observed pattern of results and the actual election result
provides additional support for the validity of the model.

Discussion

The present contribution addresses problems of biased
responding in surveys involving sensitive issues. While
the proposed stochastic lie detector, in line with previous
randomized-response models, protects the confidentiality of
responses using appropriate randomization, it offers the key
advantage of providing undistorted prevalence estimates of
sensitive issues even when participants fail to respond
truthfully. This is an important improvement over alterna-
tive approaches that allow for estimating nonadherence to
the randomized-response instructions but are not able to
unequivocally determine the true status of nonadhering
respondents. An additional advantage of the present
approach is that, unlike forced-response variants of the
RRT, it does not rely on forcing noncarriers of a sensitive
attribute to give a self-incriminating response. Many
participants in randomized-response surveys find it trou-

Table 3 Observed frequencies of “yes” and “no” responses by
condition in Experiment 2

Direct Questioning Stochastic Lie Detector

Low Probability High Probability

N 66 127 169

“Yes” 6 102 78

“No” 60 25 91

1 .091 .803 .462

p 1 .251 .749

1 = relative frequency of “yes” responses; p = probability of being
prompted to respond to the sensitive question

Table 4 Prevalence estimates (standard errors in parentheses) of
nonvoting obtained by direct questioning, Mangat’s (1994) variant of
the randomized-response technique (Mangat), and the stochastic lie
detector

Parameter Direct Questioning Mangat Stochastic Lie
Detector

π 9.1% (3.5) 27.3% (4.8) 31.4% (10.5)

t – – 92.1% (15.7)
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blesome to falsely incriminate themselves without actually
being a carrier and, in turn, give nonincriminating answers
instead (Edgell et al., 1992; Lensvelt-Mulders & Boeije,
2007). In a similar vein, the RRT variant proposed by
Mangat (1994), which served as the starting point of our
present approach, requires carriers of the sensitive attribute
to respond to a direct question. Privacy protection is
thereby provided in an indirect way only, as it completely
depends on the behavior of noncarriers. This may seriously
affect the willingness of carriers to provide truthful
responses (Lensvelt-Mulders et al., 2005a). However, it is
important to note that, in contrast to other randomized-
response models, increased confidentiality due to the
randomization procedure is no more than a side effect of
using the stochastic lie detector. In fact, given that
untruthful responding is taken into account, the stochastic
lie detector does not require honest responding at all. Even
in the most extreme scenario, in which every single
individual carrying the sensitive attribute fails to respond
truthfully, the estimate of the prevalence of the sensitive
attribute is still undistorted, provided that the stochastic lie
detector model is actually valid.

The validity of the proposed model, however, rests on
several assumptions. An assumption shared by other
questioning models, including the simple case of a direct
question, is that noncarriers do not falsely claim to be
carriers of the sensitive attribute. Although there is
evidence suggesting that such self-incriminating behavior
is usually very rare (cf. Tourangeau & Yan, 2007), applied
researchers should take caution in applying the model when
the direction of social desirability may be ambiguous, as for
example when surveying cannabis use among adolescents
(e.g., Percy, McAlister, Higgins, McCrystal, & Thornton,
2005).

Another assumption of the proposed model is that
carriers will refrain from using the randomization procedure
strategically by participating in the randomization proce-
dure and by responding in the same way as noncarriers.
However, such a fairly sophisticated response pattern would
require fundamental knowledge of the logic of the
underlying model in order to successfully hide one’s true
status. Importantly, the response pattern resulting from such
a strategic distortion would result in an underestimate of the
prevalence of the sensitive attribute, so that this estimate
could still serve as a valid lower bound.

Finally, comparable to related randomized-response
models (Clark & Desharnais, 1998; Cruyff et al., 2008;
Ostapczuk et al., 2009a), the stochastic lie detector assumes
that response behavior does not depend on features of the
randomized-response design. Specifically, it is assumed that
the probability to respond honestly (t) is independent of the
randomization probabilities p1 and p2. The validity of this
assumption may be questioned, because the degree of

anonymity that is afforded by the model depends on the
probability with which noncarriers are instructed to respond
to the negation of the sensitive question (1 – p). As this
probability increases, the diagnostic value of an individual
“yes” response decreases (Ljungqvist, 1993). Consequently,
carriers may be more willing to respond truthfully in the
condition in which the randomization probability is low as
compared to the condition in which the randomization
probability is high. However, this concern has already been
addressed empirically and was not found to be supported by
evidence. Soeken and Macready (1982) reported that their
participants’ willingness to adhere to the instructions was
unaffected by different randomization probabilities. In
another study, Soeken and Macready (1985) found preva-
lence estimates of sensitive behaviors to be less rather than
more biased by social desirability with an increasing
probability of having to answer the sensitive question
truthfully. Additionally, it can be shown that violations of
the independence assumption concerning p and t result in
an underestimation of π and an overestimation of t. Thus, in
the worst case, the stochastic lie detector acts conservative-
ly by always underestimating the prevalence of the critical
attribute.

The selection of an appropriate randomization device is a
critical issue in each application of a randomized-response
model. In the present experiments, the participants’ month
of birth was used. This particular randomization device was
chosen because it is simple, transparent, easy to assess and
to understand, and impossible to manipulate. Moreover, the
month of birth reduces the risk of obtaining a gambling-like
situation arising from using a spinner or a die (Moshagen &
Musch, in press). However, it is vital that the participants
trust the integrity of the randomization process. If there is
reason to suspect that participants may fear that their month
of birth may be known to the investigators, another
randomization device should be employed.

Some limitations of the present approach should be
acknowledged. Using a randomization procedure to in-
crease anonymity is unavoidably associated with some side
effects. First, the prevalence estimates obtained with the
stochastic lie detector have a larger variance as compared to
those obtained with a direct question. This decrease in
efficiency can only be compensated by increasing the
sample size. Although it could be argued that obtaining
more valid prevalence estimates with less precision might
be preferred over obtaining highly precise but invalid
prevalence estimates, the additional cost associated with
the use of the stochastic lie detector may only be justified
when examining issues of a sufficiently sensitive nature as
to be severely threatened by socially desirable responding.

Another side effect of the randomization procedure is that
the true status of each single individual remains unknown.
This makes it difficult to measure associations between the
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sensitive attribute and other variables. Whereas some other
randomized-response models are capable of including contin-
uous covariates (Böckenholt et al., 2009; van den Hout et al.,
2010), the stochastic lie detector has yet to be extended to
allow for such an inclusion. Note, however, that measuring
associations between the sensitive attribute and categorical
predictors (gender, religion, etc.) is less of a problem because
the prevalence πk, k = 1, . . . , K, can be estimated separately
for each of K categories or populations.

Finally, the model in its present form is only applicable
to dichotomous responses. Although it is straightforward to
extend ordinary randomized-response models to other re-
sponse formats (such as responses on rating scales), it is less
clear how to define nonadherence and how tomodel untruthful
responding in these cases (cf. Böckenholt et al., 2009).

Such remaining problems notwithstanding, the stochastic
lie detector offers some genuine advantages over previous
randomized-response models and traditional direct-
questioning formats, both of which yield distorted preva-
lence estimates to the extent that dishonest responding
occurs. We therefore conclude that the stochastic lie
detector is a useful extension of RRT methodology for
research involving questions on sensitive issues.

Author Note We are grateful to Mirjam Horbach for her help in
collecting the data.
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