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Abstract—This paper presents a novel stochastic channel model
for multiple-input multiple-output (MIMO) wireless radio chan-
nels. In contrast to state-of-the-art stochastic MIMO channel
models, the spatial correlation properties of the channel are not
divided into separate contributions from transmitter and receiver.
Instead, the joint correlation properties are modeled by describing
the average coupling between the eigenmodes of the two link ends.
The necessary and sufficient condition for the proposed model
to hold is that the eigenbasis at the receiver is independent of
the transmit weights, and vice versa. The authors discuss the
mathematical elements of the model, which can be easily extracted
from measurements, from a radio propagation point of view and
explain the underlying assumption of the model in physical terms.
The validation of the proposed model by means of measured data
obtained from two completely different measurement campaigns
reveals its ability to better predict capacity and spatial channel
structure than other popular stochastic channel models.

Index Terms—Antenna arrays, channel capacity, channel
modeling, MIMO channels, spatial diversity, spatial multiplexing.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems
have recently attracted much attention. They promise

a very high spectral efficiency because they allow the con-
struction of parallel communication channels that are separated
in the spatial domain. Under ideal conditions, the information
theoretic capacity of a MIMO system grows linearly with
the minimum of transmit and receive antennas [1], [2]. How-
ever, various measurements show that realistic MIMO channels
show a significantly lower capacity [3]–[6]. This reduction of
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capacity is due to the spatial correlation of the MIMO channel
coefficients [7], [8].

Besides geometrical approaches like, e.g., [9], many publica-
tions dealing with MIMO channel modeling aim at describing
the spatial correlation properties of MIMO channels directly,
e.g., [4], [5], [10]–[13]. Their common approach is to model the
correlation at the receiver and at the transmitter independently,
neglecting the statistical interdependence of both link ends. The
authors of [3] and [14] have shown that realistic indoor MIMO
channels cannot be modeled adequately by this approach; chan-
nel capacity is underestimated when the number of antennas at
one link end becomes larger than two or three.

Another question is whether aggregate statistical parameters
like ergodic capacity and eigenvalue distributions alone are
sufficient to judge whether a model is appropriate or not. Based
on evidence presented in [14] and [15], we strongly believe it
is not. Aggregate metrics provide necessary but not sufficient
conditions for the validation of channel models. Eventually,
the ultimate goal of MIMO channel modeling is to reflect
the underlying spatial structure of the radio environment. An
interesting approach in this respect, called “virtual channel
representation,” has been presented in [16]. Its author utilizes
a virtual partitioning of the spatial domain to characterize
the MIMO channel. This partitioning is fixed and predefined,
which poses some difficulties with respect to the rendering of
measured channels.

Due to aspects of practicability, a MIMO channel model is
subject to some restrictions. A small number of modeling para-
meters are desirable. It facilitates the application of the model
and reduces estimation errors when it comes to estimating the
model parameters from measurements. A concise mathematical
description is necessary for practicable analytical investigations
of the MIMO channel, e.g., derivation of optimum transmit or
coding strategies. Instead of designing a specific model for each
type of environment, we aim at a rather general model covering
most real-world scenarios. Furthermore, the parameters of the
model should be interpretable with respect to wave propagation,
and we would like to be able to parameterize the model di-
rectly from measurements or channel estimates obtained during
system operation.

We will present a novel stochastic MIMO channel model1

that has been inspired by the correlation-based models, e.g.,
the “Kronecker model” [4], as well as by the “virtual channel
representation” of [16]. Combining the advantages of both

1The basic idea of this model has already been presented in [17].
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approaches, it shows enhanced capabilities to model the spatial
multipath structure of realistic MIMO channels correctly. It
does not only account for the correlation at both link ends
(as does the Kronecker model) but also models their mutual
dependence (as does the “virtual channel representation”). Fur-
thermore, its mathematical description is simple and concise.
Independently, a similar modeling approach has been intro-
duced in [18]–[20]. In contrast to our present work, the channel
modeling perspective was not the focus of these papers.

Validating a channel model with a single measurement cam-
paign does not allow for verifying the generality of the model.
In order to avoid the pitfall of finding an environment that fits
the proposed model, we will present validation results from two
different measurement campaigns: an indoor office scenario
and a suburban outdoor area.

The rest of the paper is organized as follows. In the next
section, we will present the signal model and some formal de-
finitions. In Section III, we will shortly discuss the restrictions
of the “Kronecker model” and the “virtual channel represen-
tation.” The new channel model is presented and discussed in
Section IV. Finally, in Section V, we will evaluate the perfor-
mance of the new model by means of measured MIMO im-
pulse responses.

II. SIGNAL MODEL AND DEFINITIONS

The presented model focuses on the spatial structure of
MIMO channels. We will, therefore, restrict our considerations
to stationary and frequency-flat channels that can be described
by a random channel matrix H subject to small-scale fading.
For reasons of clarity, we will assume in the following the chan-
nel matrix H to be multivariate complex-normal distributed
with zero mean, i.e., Rayleigh fading.

Denoting the number of receive (Rx) and transmit (Tx)
antennas in the forward link with MA and MB , respectively,
the matrix H is of size MA × MB . The signal vector y at the
MA receive antennas reads as y = Hx + n, where x denotes
the transmit signal vector and n is the noise vector observed at
the receiver. Utilizing the channel in the reverse link, the link
ends switch role with respect to transmitting and receiving the
radio signal. In order to avoid confusion, we will denote the
link ends with the labels “A” and “B,” respectively. Both link
ends A and B can act as receiver or transmitter depending on
the link direction. Throughout the entire paper, the subscripts
•A and •B will indicate to which side of the radio link an entity
is associated.

We will use the vec(•) operator that stacks the columns of
a matrix into one tall vector, the diag(•) operator that puts
the elements of a 1 × M vector onto the main diagonal of an
M × M diagonal matrix, and the tr(•) operator that denotes
the trace of a matrix. The superscripts •T, •H, and •∗ denote the
matrix transpose, conjugate matrix transpose, and the complex
conjugate, respectively. Finally, we define two matrix product
operators. The symbol ⊗ denotes the Kronecker matrix product
and ⊙ denotes the element-wise product of two matrices.

The total mean energy of the channel will be denoted by
PH

∆
= EH{tr(HHH)}. Here, and for all subsequent consid-

erations, the expectation operator is performed with respect to

different channel realizations of one and the same scenario. We
define a scenario as a region in time and space for which the
channel statistics are approximately constant.

A. Correlation Properties of MIMO Channel

In order to describe the spatial behavior of a general MIMO
channel, a full correlation matrix that specifies the MAMB ×
MAMB mutual correlation values between all channel matrix
elements is required. In accordance to the literature, we will use

RH
∆
= EH

{

vec(H)vec(H)H
}

(1)

for the description of the joint correlation properties of both
link ends.

Additionally, we will use “one-sided” correlation matrices
that denote the spatial correlations of one link end only. Because
the two link ends of a MIMO channel cannot be considered
as independent, the one-sided correlation matrices have to be
parameterized by the statistical signal properties of the other
link end

RA,Q
B

∆
= EH{HQBHH} and RB,Q

A

∆
= EH{HTQAH∗}

where QA and QB are the spatial signal covariance matrices of
sides A and B, respectively.

The unparameterized one-sided correlation matrices RA
∆
=

EH{HHH} and RB
∆
= EH{HTH∗}, which are well estab-

lished in the literature, are obtained by assuming the signal
covariance of the other link end to be spatially white. Their
eigenbases will be denoted by UA and UB, respectively, and
consist of the eigenvectors denoted by uA,m and uB,n, re-
spectively. Furthermore, we define the matrices ΛA and ΛB as
diagonal matrices containing the eigenvalues of RA and RB,
respectively, as well as the vectors λ̃A and λ̃B to consist of the
square roots of the eigenvalues of RA and RB, respectively.

III. DISCUSSION OF TWO EXISTING CHANNEL MODELS

A significant drawback of the full correlation matrix is its
huge size. It requires (MBMA)2 real-valued parameters to be
fully specified. Moreover, a direct interpretation of the elements
of RH with respect to the physical propagation of the radio
channel is difficult. In the literature, this problem is mainly
addressed by two analytical channel model approaches: the
“Kronecker model,” e.g., [4], [5], [10]–[13], and the “virtual
channel representation” presented in [16].

Both models imply severe restrictions on the structure of
the MIMO channel. In the following, we will shortly discuss
these restrictions by means of the parameterized one-sided
correlation matrices RA,Q

B
and the following theorem.

Theorem 1: For a MIMO channel matrix that is modeled as

H = BA

((

K
∑

k=1

λ̃A,kλ̃
T

B,k

)

⊙ G

)

BT
B
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(where BA and BB are unitary matrices; G is an independent
and identically distributed (i.i.d.) random matrix with zero
mean and unit variance elements; and the vectors λ̃A,k and
λ̃B,k are real valued) the resulting parameterized one-sided
correlation matrices RA,Q

B
and RB,Q

A
are given as

RA,Q
B

= BA

(

K
∑

k=1

ΛA,ktr
(

ΛB,kBT
BQBB∗

B

)

)

BH
A

RB,Q
A

= BB

(

K
∑

k=1

ΛB,ktr
(

ΛA,kBT
AQAB∗

A

)

)

BH
B

where ΛA,k
∆
= diag(λ̃A,k)2 and ΛB,k

∆
= diag(λ̃B,k)2 (see

proof in the Appendix).

A. Kronecker Model

The Kronecker model neglects the joint spatial structure
and describes the MIMO channel by the separated correlation
properties of both link ends

Hkron =
1

PH

R
1

2

AG
(

R
1

2

B

)T

(2)

where G is an i.i.d. random matrix whose entries are zero-
mean complex-normal distributed. Equation (2) can be equival-

ently formulated as Hkron = (1/PH) · UA((λ̃Aλ̃
T

B) ⊙ G)UT
B.

Thus, we can conclude from Theorem 1 that RA,Q
B

= cRA,
where c is a real-valued and nonnegative scalar scaling factor.

The “Kronecker model” implies that the transmitter does not
effect the spatial properties of the received signal at all. We will
see in Section V how that implication impairs the ability of the
“Kronecker model” to render the spatial structure of measured
MIMO channels.

B. Virtual Channel Representation

The “virtual channel representation” can be written as

Hvirt = AA

(

Ω̃virt ⊙ G
)

AT
B (3)

where G is again an i.i.d. random matrix whose entries
are zero-mean complex-normal distributed. The matrices AA

and AB are channel independent discrete Fourier transform
(DFT) matrices of size MA × MA and MB × MB, respec-
tively. By means of Theorem 1, we conclude that RA,Q

B
=

AAΛ
(virt)
A,Q

B

AT
B, where the real-valued diagonal matrix Λ

(virt)
A,Q

B

depends on the spatial distribution of the transmit signal.
The “virtual channel representation” restricts the eigenbases

of one-sided correlation matrices to predefined DFT matri-
ces. Furthermore, as pointed out in [16], the “virtual channel
representation” is restricted to single polarized uniform linear
arrays (ULAs).

It is shown in [16] that the channel matrix elements of a ULA
form a segment of a two-dimensional (2-D) stationary process.
Thus, the DFT matrices serve as asymptotically (as the number
of antenna elements goes to infinity) optimal eigenfunctions
for the channel matrix, and the elements of the fading matrix

(Ω̃virt ⊙ G) constitute samples of the underlying spectral rep-
resentation and are hence uncorrelated.

However, for a practical number of antenna elements, the
approximation of the true eigenbases by the predefined DFT
matrices can be rather poor. As a consequence, the matrix
elements of G in (3) can become significantly correlated when
“virtual channel representation” is applied to measured MIMO
channels, as shown in Section V.

IV. NOVEL STOCHASTIC MIMO CHANNEL MODEL

A. Modeling Assumption

The purpose of the new model is threefold. We want to
• alleviate the restriction imposed by the “Kronecker model”

and describe the joint spatial structure of the channel as the
“virtual channel representation” does;

• alleviate the restriction imposed by the “virtual channel
representation” and adopt the spatial eigenbases to the
channel as well as to the array configuration (including
array geometry, element characteristics and element po-
larizations) as the “Kronecker model” does;

• formulate a model that includes both the “Kronecker
model” and the “virtual channel representation” as special
cases.

To these ends, we postulate the following modeling as-
sumption.

All one-sided spatial correlation matrices of link end A (B)
have the same eigenbasis that is defined by the unpara-
meterized one-sided correlation matrix RA (RB). Their
eigenvalues may differ.

In formal notation, this assumption reads as

RA,Q
B

= UAΛA,Q
B
UH

A and RB,Q
A

= UBΛB,Q
A
UH

B

(4)

where ΛA,Q
B

and ΛB,Q
A

are real-valued diagonal matrices
with nonnegative entries.

The eigenbases do not depend on the signal correlation of the
other link end (they do, however, depend on the channel and the
array configuration). The eigenvalues do, in general, differ for
each transmit signal correlation matrix.

B. Physical Interpretation of the Modeling Assumption

What are the implications of the modeling assumption in
physical terms? The spatial correlation of transmit weights
determines how much power is radiated into which directions
(and polarizations). According to the assumption made, the
spatial eigenbases are not affected by the transmit weights and,
thus, reflect the radio environment only, i.e., number, positions,
and strengths of the scatterers.

The eigenvalues, on the other hand, do depend on the trans-
mit weights. They reflect how the scatterers are illuminated
by the radio waves propagating from the transmitter. Radiating
in certain directions, for example, may illuminate only certain
scatterers and leave others “dark.” Of course, the eigenvalues
are additionally influenced by the radio environment as well.
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Fig. 1. Parameters required for the new model. The spatial eigenbasis UA at
side A, the spatial eigenbasis UB at side B, and the coupling matrix Ω.

By means of the given physical interpretation, it becomes
obvious that the presented modeling assumption holds only
approximately. It is well known [21] that the spatial eigenbases
are influenced by the spatial structure of the transmit signals as
well. However, we want to stress that the presented assumption
is less restrictive and provides a better approximation of phys-
ical reality than both the “Kronecker model” and the “virtual
channel representation.”

C. Formulation of Channel Model

According to Theorem 1, the new channel model resulting
from modeling assumption (4) can be written as

Hmodel = UA

(

Ω̃ ⊙ G
)

UT
B

, (5)

where G is a random matrix with i.i.d. zero-mean complex-
normal entries with unit variance; and Ω̃ has, in general, full
rank and consists of real-valued nonnegative elements. By little
massaging of (5), we can calculate Ω̃ as the element-wise
square root of the coupling matrix Ω given by

[Ω]m,n = ωm,n = EH

{

∣

∣uH
A,mHu∗

B,n

∣

∣

2
}

.

We call Ω “coupling matrix” because its coefficients specify
the mean amount of energy that is coupled from the mth
eigenvector of side-A to the nth eigenvector of side B (or vice
versa).

All we need for modeling the spatial properties of a MIMO
channel are (cf. Fig. 1)

• the spatial eigenbasis UA at side A;
• the spatial eigenbasis UB at side B;
• the average energy of the virtual single-input single-output

(SISO) channel between each eigenmode of side A and
each eigenmode of side B, Ω, linking the correlation
properties of both ends.

1) Full Correlation Matrix: Denoting the elements of G

with gn,m and writing Hmodel as a sum of all eigenmodes, we
can stack the channel matrix Hmodel as

vec(Hmodel) =

MA
∑

m=1

MB
∑

n=1

vec
(√

ωm,ngm,nuA,muT
B,n

)

=

MA
∑

m=1

MB
∑

n=1

√
ωm,ngm,n(uB,n ⊗ uA,m)

and calculate the full correlation matrix of Hmodel as

RH,model =

MA
∑

m=1

MB
∑

n=1

ωm,n(uB,n ⊗ uA,m)(uB,n ⊗ uA,m)H

=

MA
∑

m=1

MB
∑

n=1

ωm,n

(

uB,nuH
B,n

)

⊗
(

uA,muH
A,m

)

. (6)

It is interesting to note that the full correlation matrix shows a
Kronecker structure on eigenmode level. Equation (6) provides
the eigendecomposition of RH with (uB,n ⊗ uA,m) as eigen-
vectors and ωm,n as eigenvalues.

The informed reader will notice that this section has been
partly inspired by [16] and the “Kronecker model.” Specifically,
the new model reduces to the “virtual channel representation”
by forcing the eigenbases to be DFT matrices; and it reduces
the “Kronecker model” by forcing the coupling matrix Ω to be
of rank one.

D. Structure of Coupling Matrix

We want to point out that the eigenvalues λB,n and λA,m

of the one-sided correlation matrices RB and RA do not
directly influence the model (5). They are given implicitly by
the elements of Ω, i.e.,

λA,m =

MB
∑

n=1

ωm,n and λB,n =

MA
∑

m=1

ωm,n.

As already observed in [16], the structure of Ω reflects the
spatial arrangement of scattering objects and influences the
capacity as well as the degree of diversity that is experienced
on spatially multiplexed channels. It tells us how many parallel
data streams can be multiplexed, which degree of diversity is
present at side A and at side B, and how much beamforming
gain can be achieved. Fig. 2 shows some examples of structures
of Ω and corresponding physical radio environments. In order
to aid intuition, we will, in the following, think of side A as the
receiving link end and of side B as the transmitter.

As defined in the previous section, ωm,n denotes the average
power of the virtual SISO channel between the mth eigenmode
of side A and the nth eigenmode of side B. A nonzero element
of Ω establishes a link between the respective eigenmodes. A
zero element of the coupling matrix means that the respective
eigenmodes do not couple into each other. In Fig. 2, the ele-
ments of Ω are depicted as gray (significant power) and white
(no power) squares. The right hand side of Fig. 2 simplifies
the eigenmodes to discrete directions. Such an interpretation
of eigenmodes is not correct in general, but it facilitates their
visualization.2 Think of an eigenmode as the unrestricted an-
tenna pattern generated by this mode. The number of eigen-
modes present in the channel considered equals the number of

2We want to emphasize that the proposed model is not restricted to a
directional interpretation of eigenmodes.
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Fig. 2. Various structures of the coupling matrix Ω (gray squares: significant
power; blank squares: no power; Ω6 is the outer product of two vectors) and
corresponding radio environments (black dots: antenna array; gray squares:
scatterers).

resolvable multipath components, which evidently is a lower
bound to all multipath components present.

The first example Ω1 has only a single nonzero element
of the coupling matrix. This means that a single resolvable
multipath component is present in the channel. Whether this
is a line of sight (LOS) component or due to a scattering object
is not determined by Ω. A single multipath component offers
no diversity and does not support spatial multiplexing. On the
other hand, the concentration of channel energy to a single
Rx and a single Tx eigenmode allows for the enhancement of
signal power by means of beamforming. Based on statistical
knowledge only, we can focus the Rx and Tx antenna pattern
onto the signal space of rank one and achieve a beamforming
gain of MAMB.

The second example Ω2 shows a fully loaded single column
of the coupling matrix. From the viewpoint of the Tx link end,
this channel behaves the same as Ω1: it sees only a single
spatial channel component, which does not support diversity.
However, from the viewpoint of the Rx link end, the situation is
different: at least MA independent multipath components arrive
at the Rx antenna, causing a spatial diversity of order MA.
The physical explanation for the full channel rank at the Rx
side is a locally rich scattering environment, while the rank-one

channel of the Tx side can have two reasons. Either the size
of the Rx scattering cluster is much smaller than its distance
(depicted in Fig. 2), which causes the Tx array responses of all
multipath components to be approximately identical. Or there
is no LOS between the Rx cluster and the Tx array, and all
multipath components travel from the Tx array via the same
scattering object to the Rx side. While the Rx side offers spatial
diversity, the concentration of channel energy onto a single Tx
eigenmode allows for a Tx beamforming gain of MB without
instantaneous channel knowledge.

The third example Ω3 is the same as Ω2 with sides A and B
interchanged. Because the channels of the first three examples
collapse to a SISO, single-input multiple-output (SIMO), or
multiple-input single-output (MISO) channel, none of these
exemplary channels can support spatial multiplexing.

A strictly diagonal coupling matrix is depicted by Ω4. Be-
cause the ordering of the Rx and Tx eigenmodes is arbitrary,
this example is equivalent to any channel that shows a single
entry on each row and column of Ω. The diagonal structure
tells us that each Tx eigenmode is strictly linked to a single
Rx eigenmode. Such a linkage could be via LOS, a single
scatterer, or a scattering cluster. The depicted physical example
shows single scatterers as the cause for the diagonal entries.
The number of independent multipath components, and thus
the order of diversity, is limited by the smaller antenna array,
i.e., min(MA,MB). In contrast to Ω2 and Ω3, the diversity
is not associated with a single link end but is a joint Rx–Tx
diversity. The transmitter has to span the entire possible signal
space in order to enable full Rx diversity. A limited rank of the
Tx signal covariance would directly lead to a reduced diversity
at the receiver. Beamforming based on statistical knowledge is
possible neither at the Rx side nor at the Tx side as the channel
appears as fully decorrelated at both link ends. Ω4 is the first
example that supports spatial multiplexing. It does so in a very
convenient way. By transmitting a separate data stream on each
Tx eigenmode, the parallel data streams arrive on orthogonal
Rx eigenmodes. The channel behaves as min(MA,MB) nicely
separated and parallel SISO channels.

Example Ω5 shows a fully loaded structure of the coupling
matrix. Each Tx eigenmode is linked with each Rx eigenmode.
If all elements of Ω5 are exactly identical, this is the spatially
white MIMO case. Note that, for a MIMO channel to be
spatially white, it does not suffice to cause spatially white Rx
and Tx sides, like, e.g., Ω4. In the ideal spatially white case,
the channel matrix H is an i.i.d. random matrix, which is well
known to support full spatial multiplexing and full diversity.3 A
possible physical environment leading to Ω5 is a rich scattering
cluster containing both link ends.

We can identify a special case of Ω5 depicted by Ω6. It shows
a coupling matrix of rank one, i.e., it is the outer product of
a Rx-related and a Tx-related power distribution. This special
case is identical to the “Kronecker model.” Such a spatial
channel characteristic can occur when scatterer clusters around
the link ends are far apart.

3If the elements of Ω are of the same order of magnitude, this holds true
approximately.
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However, in [3] and [14], it was shown that the “Kronecker
model” lacks essential degrees of freedom for general MIMO
channels as all MA · MB elements of Ωkron are determined
by means of MA + MB eigenvalues. It cannot generate diag-
onally dominated coupling matrices, the elements of Ω are as
evenly distributed as possible. This leads to wrong capacity
estimates and a mismatch of the modeled and measured multi-
path structure.

The last example Ω7 is a rather unusual case. Such a cross-
like structure leads to full rank correlation matrices at both link
ends. Nevertheless, an instantaneous channel realization will
have the same cross-shape (in the eigendomain) and, thus, its
rank will be strictly limited to 2. The cross-like structure be-
haves in some sense like a keyhole channel, which is described
in, e.g., [11], [22], and [23]. However, the mechanism that leads
to a rank deficiency of instantaneous realizations is different.
Specifically, the cross-shape can be identified by knowledge
of the MIMO channel correlation matrix, whereas the keyhole
phenomenon does not appear in the channel correlation. Ω7

should serve as a clear example that it is not possible to derive
the joint MIMO structure by knowledge of the link ends only.

Two entities are of great interest with respect to MIMO
channels: diversity and mutual information. The total degree of
spatial diversity present in the channel is given by the number
of independently fading channel components, which is identical
to the number of nonzero eigenvalues of RH . According to (6),
this number is given by the number of nonzero elements of Ω.

In line with the discussion of Fig. 2, we can state that the
capacity of examples 1 to 3 (no multiplexing) is smaller than
the capacity of example 7 (limited to rank two), which is in turn
smaller than the capacity of examples 4 to 6 (full multiplexing).
Comparing the capacity of examples 4 to 6 is not straightfor-
ward. Inspection of various simulations with synthetic and mea-
sured (cf. Section V) MIMO channels suggests the following
rule of thumb: the more diagonal the structure of Ω (while the
total channel power is constant), the higher the mutual informa-
tion. Having the eigenvalues of the correlation matrices of sides
A and B as given side constraints, the Kronecker model Ω6

exhibits the least diagonal structure. The “Kronecker model”
underestimated channel capacity for all measurement results
of Section V. Concerning analytical results on the capacity of
MIMO channels like Ω4, Ω5, and Ω6, we want to refer the
reader to [24]. There, upper and lower bounds on capacity and
asymptotic capacity results for infinitely large antenna arrays
are provided for the virtual channel representation.

V. VALIDATION OF MIMO CHANNEL MODEL WITH

MEASURED DATA

In order to avoid the pitfall of finding an environment that
fits the proposed model, we present validation results from
two completely different measurement campaigns. One was
conducted in the premises of an office building, the other
one was carried out in a suburban outdoor environment. The
antenna configurations were different, the carrier frequency was
different, as were the people performing the measurements.

We will utilize three metrics for validation purposes: mutual
correlation of the elements of the fading matrix G, mutual

information,4 and the 2-D angular power spectrum. First, model
parameters are extracted from the measurements and synthetic
channel realizations are created by means of the parameterized
models. The size of the synthetic ensemble is the same as of
the measured ensembles. Second, mutual information values
and angular power spectra are calculated from measured and
synthetic MIMO channel impulse responses and compared to
each other.

When calculating the mutual information of MIMO chan-
nels, we assume that the transmitter has no knowledge about
the channel at all. Thus, the mutual information is given
by [1], [2]

I = E

{

log2

[

det

(

IMA
+

SNR

MB
HHH

)]}

(7)

where SNR denotes the signal-to-noise ratio, and the average
energy of the channel matrix entries hm,n is normalized to
unity. The expectation operation is performed with respect to
measured channel realizations or fading realizations of the ran-
dom matrix G when applying (5), (3), or (2). For the following
evaluations, the receive SNR was set to 20 dB.

A. Extraction of Model Parameters From Measurements

The correlation matrices for the “Kronecker model” are given
by RA and RB, where expectation is performed with respect
to measured channel realizations. As basis matrices of the
new model, we utilize the eigenbases UA and UB of these
correlation matrices obtained by eigendecomposition. For the
“virtual channel representation,” the basis matrices AA and AB

are constructed as explained in [16].
An estimate of the coupling matrix Ω of the new model is

obtained from the measured impulse responses H

Ω = EH

{(

UH
AHU ∗

B

)

⊙
(

UT
AH∗UB

)}

which is equivalent to a calculation via the full correlation
matrix RH (1)

ωm,n = (uB,n ⊗ uA,m)H RH (uB,n ⊗ uA,m) .

By using the predefined basis matrices AA and AB instead
of the eigenbases, the coupling matrix Ωvirt of the “virtual
channel representation” is estimated analogously.

B. Indoor Measurements

Channel matrices were measured in the Electrical Engineer-
ing Building on the Vienna University of Technology Campus
at 5.2 GHz [3]. The transmitter consisted of a positionable
monopole antenna on a grid of 20 × 10 positions with an
interelement spacing of half the wavelength. The receiver
employed a ULA of eight directional printed dipoles having an

4In the literature, the mutual information according to (7) is also referred to
as MIMO channel capacity for unknown channel at the transmitter.
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Fig. 3. Absolute values of the correlation coefficients of fading matrix ele-
ments for (a) new model and (b) “virtual channel representation.”

interelement spacing of 0.4 wavelengths and a 3 dB beamwidth
of 120◦. The channel was probed at 193 equi-spaced frequency
bins over 120 MHz of bandwidth. The transmitter assumed a
single fixed location in a hallway. The Rx array assumed many
different locations in several offices connected to this hallway
as well as three possible orientations. In total, 72 scenarios,
i.e., Rx positions and orientations, were measured. For each
scenario, 130 spatial realizations of an 8 × 8 channel matrix
were formed by moving a virtual eight-element ULA over the
20 × 10 grid, yielding a total of 130 · 193 (space and frequency)
realizations per scenario.

Fig. 3 illustrates the importance of choosing the right basis
matrices by comparing the new model with the “virtual channel
representation.” From the measured data, we calculated the
mutual correlation coefficients of all 8 × 8 fading ampli-
tudes (UH

AHU ∗
B) and (AH

AHA∗
B), respectively. In Fig. 3, the

absolute values of the 64 × 64 correlation coefficients are
depicted for (a) the new model and (b) the “virtual channel
representation.” Since the fading matrix G is modeled as i.i.d.,
the cross-correlation coefficients should be exactly zero for
both models. The new model shows only a few and rather low

Fig. 4. Mutual information for each of the 72 measured indoor scenarios
according to three different MIMO channel models versus measured mutual
capacity.

correlation coefficients that are due to a slight noncompliance
with assumption (4). On the other hand, the fixed bases of the
“virtual channel representation” cause significant correlation
values for a large portion of correlation coefficients.

In Fig. 4, we compare three different models: the “Kro-
necker model,” the “virtual channel representation” (labeled as
“Sayeed”), and the new model. The figure shows the modeled
mutual information versus the measured mutual information
for each of the 72 scenarios by means of a scatter plot. Each
data point in the figure corresponds to a specific model and
a specific scenario. The identity line (dashed) indicates the
points of no modeling error. Obviously, the “Kronecker model”
underestimates the mutual information and the “virtual channel
representation” tends to overestimate. The new model shows
a rather good match between measured and modeled mutual
information.

Fig. 5 gives a clue why the “Kronecker model” underesti-
mates mutual information but the new model does not. It shows
the 2-D joint angular power spectrum for a single scenario,
which was obtained by a 2-D Fourier transform.5 The measured
spectrum (a) shows a clear linkage of specific direction of
departure (DoD) to specific direction of arrival (DoA). The new
model (b) changes the spectrum slightly because assumption
(4) is not completely fulfilled. However, the linkage of DoDs to
DoAs is preserved to a large extent. The “Kronecker model” (c),
on the other hand, destroys the dependence of DoAs on DoDs
and produces a 2-D spectrum that is a multiplication of two
one-dimensional (1-D) spectra. This is a direct consequence of
the separability assumption of the “Kronecker model,” which
forces the coupling matrix to be of rank one. The virtual
channel representation (d) shows a very good fit to the measured
spectrum. However, keep in mind that the power spectrum does
not show any correlations between its peaks. While the peaks
of the measured channel are uncorrelated, the virtual channel

5In order to calculate the 2-D power spectrum, the array geometries of both
link ends have to be known.
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Fig. 5. (a) 2-D angular power spectrum of one measured indoor scenario. (b) Result of the new model. (c) Result of the “Kronecker model.” (d) Result of the
“virtual channel representation.”

representation introduces artefact correlations (cf. Fig. 3 and
discussion thereof), which cannot be seen in Fig. 5.

We want to point out that Fig. 5 is not representative for
all scenarios of the indoor measurement campaign. Although
the proposed model always performs better than the Kronecker
model, the performance difference is in some cases minor,
i.e., also the proposed model occasionally happens to produce
a rather blurred version of the power spectrum. The virtual
channel representation shows a rather good fit for all cases.

C. Outdoor Measurements

The measurements were carried out at the village of
Weikendorf [25], a suburban area in Austria. 193 equi-spaced
frequency bins over a bandwidth of 120 MHz were measured
at 2 GHz. The receiver was connected to a ULA of eight
directional patch elements with an interelement spacing of
half the wavelength, and was mounted at a height of approx-
imately 20 m. The transmitter, a uniform circular array of
15 monopoles with a radius of 1.03 wavelengths, was placed
on a trolley at a height of about 1.5 m above ground and
moved through streets at speeds of about 3 to 6 km/h [25].

For the evaluations, MIMO snapshots with a time resolution
of 84 ms were used. This is equivalent to a resolution in space
of about half the wavelength. We grouped five consecutive
time snapshots to one “scenario.” In total, we get 50 differ-
ent scenarios along the measurement route of the transmitter.
The total set of channel samples per scenario was formed by
193 equi-spaced frequency samples within the measurement
bandwidth times the five temporal snapshots. The normal-
ization was done separately for each scenario. Because the
steering vectors of the applied circular array have very low
side-lobe suppression, we did not apply the “virtual channel
representation.”

Fig. 6 compares the predicted mutual information values of
the “Kronecker model” and the new model with measured data
of the outdoor scenario. The movement along the measurement
route is projected onto the x-axis; the y-axis shows the mutual
information at a specific location of the route. Again, we
can see clearly that the “Kronecker model” underestimates
the mutual information. The new model shows significantly
less modeling error. However, for this measurement cam-
paign, the new model tends to slightly overestimate the mutual
information.
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Fig. 6. Mutual information along the outdoor measurement route for the
measured data, the new model, and the “Kronecker model.”

VI. CONCLUSION

We presented a novel stochastic model for MIMO radio
channels that is based on the joint correlation properties of
both link ends. The necessary and sufficient condition for the
proposed model to hold is that the eigenbasis at the receiver
is independent of the transmit weights, and vice versa. The
required model parameters are the eigenbasis at the receiver,
the eigenbasis at the transmitter, and a coupling matrix that
specifies how much energy is transported from each transmit
eigenmode to each receive eigenmode on average. The number
of elements in this coupling matrix is MA · MB, as compared to
MA + MB receive and transmit eigenvalues of the “Kronecker
model,” which is not able of modeling general MIMO channels
accurately. For MIMO channels whose correlation properties
are truly separable into Rx and Tx components, the new model
reduces to the “Kronecker model.”

As a reward for the increased number of modeling para-
meters, the proposed model, besides being able to predict mea-
sured mutual information values, shows an improved capability
of rendering 2-D power spectra of measured MIMO channels,
linking stochastic MIMO channel modeling to physical wave
propagation. This link to physical wave propagation is also
provided by the “virtual channel representation,” which, in
contrast to our proposed model, approximates the true eigen-
bases by fixed and predefined DFT matrices. The different
choice of basis matrices has some implications. The proposed
model decorrelates the channel coefficients in the eigendomain
as much as possible (within the structural restrictions of the
model), whereas the “virtual channel representation” shows sig-
nificant residual correlations for finite antenna arrays. While the
proposed model renders the mutual information of measured
channels almost exactly, the “virtual channel representation”
provides more accurate estimates of 2-D angular power spec-
tra. The “virtual channel representation,” whose application is
restricted to ULAs, provides a simple and intuitive relation to
physical directions and propagation environments. Moreover,
the predefined DFT matrices do not have to be recalculated
for each environment. On the other hand, the proposed model

adapts the eigenbases to the individual environment and radio
setup, which allows for the modeling of arbitrary antenna
elements or array geometries. Specifically, the proposed model
can also easily deal with dual-polarized antenna elements.

APPENDIX

PROOF OF THEOREM 1

Consider a MIMO channel matrix that is modeled as

H = BA

((

K
∑

k=1

λ̃A,kλ̃
T

B,k

)

⊙ G

)

BT
B

where BA and BB are unitary matrices, G is an i.i.d. random
matrix with zero mean and unit variance elements, and the
vectors λ̃A,k and λ̃A,k are real valued.

With ΛA,k
∆
= diag(λ̃A,k)2, ΛB,k

∆
= diag(λ̃B,k)2, and Q′

B
∆
=

BT
BQBB∗

B, the elements of the matrix

Ξk
∆
= EH

{

Λ
1

2

A,kGΛ
1

2

B,kQ′
BΛ

1

2

B,kGH
Λ

1

2

A,k

}

can be calculated as

[Ξk]m,m′

= EH

{

MB
∑

n=1

MB
∑

n′=1

[G]m,n[λ̃A,k]
m

[λ̃B,k]
n
[Q′

B]n,n′

· [λ̃B,k]
n′ [λ̃A,k]

m′ [G
∗]m′,n′

}

=

{

[ΛA,k]
m,m

∑MB

n=1 [ΛB,k]
n,n

[Q′
B]n,n, if m′ = m

0, else

=

{

[ΛA,k]
m,m

tr (ΛB,kQ′
B) , if m′ = m

0, else.

Now, the parameterized one-sided correlation matrix RA,Q
B

reads as

RA,Q
B

= BA

(

K
∑

k=1

Ξk

)

BH
A

= BA

(

K
∑

k=1

ΛA,k · tr
(

ΛB,kBT
BQBB∗

B

)

)

BH
A.

The proof for RB,Q
A

can be shown accordingly. �
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