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Summary
Bacterium Chlamydia trachomatis causes genital chlamydia infection. Yet little is known about
the transmission efficiency of this organism. Ethical constraint against exposing healthy subjects
to infected partners precludes the possibility of quantifying transmission risk through controlled
experiments. This research proposes an alternative strategy that relies on observational data.
Specifically, we present a stochastic model that treats longitudinally observed infection states in a
group of young women as a Markov process. The proposed model explicitly accommodates the
parameters of C. trachomatis transmission, including per-encounter sexually transmitted infection
(STI) acquisition risks, with and without condom protection, and the probability of antibiotic
treatment failure. The male-to-female transmission probability of C. trachomatis is then estimated
by combining the per-encounter disease acquisition risk and the organism’s prevalence in the male
partner population. The proposed model is fitted in a Bayesian computational framework.
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1 Introduction
Chlamydia is a common sexually transmitted infection (STI) caused by the bacterium
Chlamydia trachomatis. It is among the most prevalent STIs in the United States (CDC
2007a). It is estimated that approximately 2.3 million non-institutionalized US civilians ages
14–39 are infected with C. trachomatis each year (CDC 2007b; Datta et al. 2007), but
prevalence rates are known to be substantially higher among the young (ages 14–25 years)
and inner city residents (Miller et al. 2004; Weinstock et al. 2004). Repeated and prolonged
infections induce substantial morbidity and detrimental sequelae including pelvic
inflammatory disease, ectopic pregnancy, and tubal infertility in women and epididymis and
reactive arthritis (Reiter’s Syndrome) in men, although complications among men are less
common (Cates and Wasserheit 1991; Hillis et al. 1997; Westrom 1999; Fung et al. 2007).
Recent research also suggests that chlamydial infections increase susceptibility to human
immunodeficiency virus (HIV) thus heightening the risk of HIV transmission (Fleming and
Wasserheit 1999).

In the US, genital chlamydial infection is primarily transmitted through sexual intercourse
among heterosexual partners, although intercourse with an infected partner does not
automatically result in infection. Despite the routine use of antibiotics to treat identified
cases, persistently high prevalence rates suggest substantial risk of disease transmission (Xu
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et al. 2000; Lamontagne et al. 2007). Given the health consequences and the role that
transmission plays in the spread of these diseases, it is surprising how little is known about
C. trachomatis transmissibility. Herein, we define transmissibility as the probability of
acquiring chlamydia through one exposure with an infected partner.

The primary difficulty in assessing the organism-specific transmission probability is that the
quantity cannot be directly obtained from controlled experiments, due to ethical constraints
against knowingly exposing human subjects to infectious pathogens. In the 1970’s,
investigators examined the risk of men acquiring gonorrhea from infected female sex
workers, or FSW (Holmes et al. 1970). In the study, uninfected crew members on board a
US navy ship were allowed to visit FSW during a foreign port visit. Using the estimated
prevalence of Neisseria gonorrhoeae among the FSW and the reported number of sexual
contacts between the crew and the FSW, the investigators were able to estimate the female-
to-male N. gonorrhoeae transmission probability. Despite concerns about the accuracy of
the N. gonorrhoeae prevalence estimate for the FSW due to the limited sampling frame and
potential bias associated with unregistered FSW (Felton 1973; Hooper et al. 1978;
Baumgarten 1980), the estimate from this experiment remains the only accepted measure of
the gonorrhea transmission probability. Studies such as this, however, are no longer
recognized as ethical. Although human challenge studies injecting infectious pathogens have
been used to study host immune responses to organisms such as N. gonorrhoeae and
Haemophilus ducreyi (Cohen and Cannon 1999; Spinola et al. 2002), the methods of
infection are artificial, thus not truly relevant to sexual transmission.

A logical alternative to experiment-based studies is to estimate transmission risk using
observational data. Along this line, Katz (1992) has proposed a method that uses cross-
sectional data from contact tracing programs to estimate the chlamydia transmission
probability among couples. However, since contact tracing data rarely provide information
on coital frequency for each individual pair of partners, estimates obtained essentially
represent transmission risks associated with some “average” number of encounters among
all couples. The per exposure transmission risk for C. trachomatis remains unknown.

In this paper, we propose an alternative strategy: Using observational data collected from a
longitudinal cohort of young women, we estimate the per-encounter C. trachomatis
acquisition risk (p), i.e., the probability of a female subject being infected with C.
trachomatis through one unprotected sexual encounter with a male partner. It should be
noted that the per-encounter C. trachomatis acquisition risk p reflects not only the
transmissibility of the C. trachomatis organism, but also the organism’s prevalence in the
partner population. Clearly, the more transmissible the organism, the higher the risk of
disease acquisition. Similarly, the more prevalent the organism in the partner population, the
higher the per-encounter infection risk. Therefore, with the estimated C. trachomatis
prevalence in the male partner population, we could accurately quantify the male-to-female
C. trachomatis transmission probability from the following relationship: Per-encounter
Acquisition Risk=Transmission Probability × Partner Prevalence.

To estimate the per-encounter C. trachomatis acquisition risk (p), we propose a stochastic
model that describes the change of infection states within a subject over time. The proposed
model allows us to examine the effect of condom use in the modification of C. trachomatis
acquisition risk. It also allows us to assess the probability of antibiotic treatment failure. The
transmission probability is achieved with the estimated per-encounter acquisition risk p, and
estimated C. trachomatis prevalence rates in various male partner populations.
Methodologically, the proposed approach is a novel application of Markov stochastic
methods in longitudinally observed infection data. The model explicitly accommodates the
most important infection parameters. For convenience, we carry out the model computation
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in a Bayesian Markov Chain Monte Carlo framework. To the best of our knowledge, this is
the first attempt to use observational data to quantify per-encounter chlamydia transmission
risk among heterosexual partners.

It should be noted that there is a body of literature about HIV/AIDS transmission risk
(Padian et al. 1990, 1991, and 2007; European Study Group on Heterosexual Transmission
of HIV, 1992). However, fundamental differences between viral and bacterial STI demand a
new statistical approach for the latter. For example, unlike HIV/AIDS, infections with
bacteria such as C. trachomatis are curable. Identified infections are routinely treated.
Antimicrobial treatment often effectively aborts an infection episode, causing a shift in
infection state and posing greater methodological challenges for the quantification of
transmission risks. In this exercise, frequently measured infection data are essential for the
capture of the changing infection states. To our knowledge, not many studies are designed to
generate such data. In the next section, we will describe an epidemiological study that
provides ideal data for our research.

2 Description of Data Source
The Young Women’s Project (YWP) is an epidemiological study of recurrent STI in
adolescent women. The original purpose of the investigation was to examine the risk factors
associated with STIs in young women. The YWP study design and data collection, however,
provide a platform for the estimation of the C. trachomatis transmission probability. The
basic YWP data collection scheme is depicted in Figure 1.

Briefly, young woman between the ages 14 and 17 years, able to understand English,
without serious psychiatric disturbances or mental handicaps, and attending one of three
participating primary-care clinics were eligible for enrollment into the YWP. At these
clinics, young women who met the enrollment criteria, which were independent of prior
sexual experience, were approached by research staff. Those who agreed to participate were
approached and recruited at their scheduled clinical visits. Informed consent and parental
permission were obtained at enrollment.

Upon enrollment, all study participants received enrollment interviews and underwent a
pelvic exam, where a cervical swab for STI testing was collected and analyzed with nucleic
acid amplification tests for C. Trachomatis. Infected participants were treated while at the
clinics or shortly after test results became available. Enrolled YWP participants have
quarterly clinical visits for up to 54 months. During the study period, STI testing and
treatment were repeated at each quarterly visit. See Figure 1 for a schematic depiction of the
study plan. In Figure 1, STI tests are represented as blue circles; treatments are represented
as green circles. All test results and treatments were noted in the participant’s medical
record, including antimicrobial agents used, prescription dose and regimen, and route of
delivery. Also at each quarterly visit, participants participated in a face-to-face interview, in
which they were queried about numbers of coital events, with and without condom
protection, since the previous quarterly visit.

In this research, we focus on the analysis of the first 200 participants who have completed at
least two follow-up visits after the enrollment interview. We used this subset of data because
this is the group of young women whose test results are available at the time of analysis.
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3 Method
3.1 Notation

We let Yij indicate the infection state of the ith participant at the jth visit, i = 1, 2,…, I, and j
= 0, 1, 2,…, Ji, where j = 0 represents the enrollment visit: Yij = 1 if the participant is
infected, Yij = 0 otherwise. Similarly, we let Zij be the treatment indicator: Zij = 1 if the
participant is treated, Zij = 0 otherwise. We denote the treatment failure probability as q. For
self-reported sexual behaviors, we let nij and mij be the total number of coital events and the
number of coital events protected by condom, in the three month period preceding the jth
visit, respectively.

3.2 A Markov Model for C. trachomatis Infections
The approach that we use for the modeling of chlamydia infection is conceptualized in
Figure 2.

Herein, we assume that the sequence of infection states from the ith subject form a
stochastic process that satisfies the Markov property, i.e., the infection state at time j
depends only on the infection state at time j −1, the treatment that the participant had
received at j − 1, and her sexual behaviors between the two time points, j − 1 and j. In other
words, we assume that the C. trachomatis infection state at any given visit Yij is a stochastic
function of the previous infection status Yij−1, the presence or absence of antibiotic treatment
Zij−1, and her possible exposure to the organism (characterized by nij and mij) between the
visits. Our objective is to estimate the per-encounter risk of C. Trachomatis from the
observed data (Y,Z, n,m).

For simplicity, we let pi be the C. trachomatis acquisition risk in an unprotected sexual
encounter for the ith participant. Similarly, we let  be the risk associated with a condom
protected encounter, where c > 0 represents the effect of a condom in the modification of the
per-encounter risk pi. Specifically, if condoms are indeed effective in protecting against C.
trachomatis acquisition, we will have  or c > 1. Since the numbers of coital events with
and without condom protection, mij and nij − mij, are known for the three month interval
between j − 1 and j, the probability for the ith participant not to acquire infection through
behavior in the interval can be calculated as .

It should be noted that the current formulation is extendable. For example, one could let the
per-encounter disease acquisition risk to be event-specific rather than subject-specific. Such
an extension may be useful for the assessment of event-specific modifiers of transmission
risk, if event-level (or partner-specific) covariates are available. We will briefly discuss that
extension in Section 4.1. Herein, we assume the disease acquisition probability to be
subject-specific because the current scientific understanding is that once exposed to C.
trachomatis, whether a woman develops an infection or not is primarily influenced by her
own immune response to the bacterium rather than who is the source of the pathogen, or the
fashion in which the exposure occurs. Therefore, once we control for the disease prevalence
in the partner population, the disease acquisition probability could be considered a subject-
specific risk.

With this, all consecutive infection states in the stochastic process can be characterized in
four scenarios: (a) no infection; (b) successfully treated infection; (c) newly acquired
infection; and (d) recurrent infection. These scenarios are graphically depicted in Figure 3.

Analytically, the scenarios can be described as follows:
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1. No infection detected between two consecutive visits. Since the participant tested
negative at Time j − 1, there would not be any treatment; since the participant
tested negative at Time j, there must not be a disease acquisition via behavior.
Therefore, we have P(Yij = 0|Yij−1 = 0) = Δij, as illustrated by Figure 3(a).

2. Successfully treated infection. If the participant tested positive at Time j − 1 but
tested negative three months later at Time j, the participant must have received
treatment, the treatment must have been successful, and she must not have acquired
a new infection through sexual behavior. Therefore, we have conditional
probability P(Yij = 0|Yij−1 = 1) = Zij−1 (1 − q)Δij.

3. Newly acquired infection. If the participant tested negative for C. trachomatis at
Time j − 1 but tested positive at Time j, the participant must have acquired new
infection. In this case the conditional probability is simply: P(Yij = 1|Yij−1 = 0) = 1
− Δij.

4. Repeated infections. Finally, we consider the case of repeated infections. If the
participant tested positive at two consecutive time points, there could be a number
of possibilities: the first is the infection has not been treated; the second is the
treatment has not been successful; the third is a new infection has been acquired.
Therefore the conditional probability can be written as P(Yij = 1|Yij−1 = 1) = (1 −
Zij−1) + Zij−1q + Zij−1(1 − q)(1 − Δij).

Using the conditional probability formula, it is straightforward to derive the following
unconditional probability

(3.1)

where .

Separately, Equation (3.1) implies

Through an iterative formula, Equation (3.1) provides a probability description of the
infection process. Since Δij represents the probability that the ith participant does not acquire
infection via sexual intercourse between the j − 1th and jth visits, the above probability
statements are intuitively interpretable.

It should be noted that the above model could be further extended to accommodate
situations of C. trachomatis spontaneous clearance. Cases of C. trachomatis self clearance
have been documented (McCormack et al. 1979, Golden et al. 2000, Morre et al. 2002,
Molano et al. 2005). Specifically, we could extend scenario 2 to include a possibility of self
clearance ξ. Under this extension, Scenario 2 could be described by P(Yij = 0|Yij−1 = 1) =
Zij−1(1 − q)Δij + (1 − π)ξ, where ξ is the probability of spontaneous clearance. We do not
consider this extension in the current research because our study protocol requires all
identified infections be treated at the clinical visit (Tu et al. 2009). Additionally,
symptomatic infections are also treated between visits (Batteiger et al. 2010). Such frequent
testing and treatment have practically eliminated the possibility of observing spontaneous
clearance from quarterly infection data.
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4 Bayesian Estimation: Likelihood, Priors and Posterior
4.1 The Likelihood function

We write the density function of Yij as f(yij|pi, c, q) = P(Yij = 1)Yij [1 − P(Yij = 1)]1−Yij, where
P(Yij = 1) is given by (3.1). Under this formulation, the parameters of interest pi and c are
linked to P(Yij = 1) through .

In this research, we assume that the infection acquisition probability associated with one
sexual encounter is a subject-specific quantity. For the ith participant, this probability is pi
for coitus without condom protection. For convenience, we express pi as a logistic function

(4.1)

where Ui ~ G(θ), and G(θ) denotes some parametric distribution with parameter θ.

As mentioned in Section 3.2, the model could be expanded to include event-level covariates
xit via pit = exp(βxit + Ui)/(1 + exp(βxit + Ui)). The expansion makes the model particularly
useful for the assessment of event-level factors that have the ability to modify the
transmission risk. For example, in future topical microbicide studies, this model could be
useful in assessing the timing, application method, and various characteristics of the
microbicides. Along that vein, one could incorporate a random partner effect to
accommodate the potential correlation structure of events within the same partner if partner
changes are common. In our data set, a relatively small fraction of subjects (12%) reported
multiple partners during the quarterly observation period. And, as previously discussed, C.
trachomatis transmission risk was primarily influenced by the subject’s immune response to
the invading bacteria, which justifies the subject-specific risk assumption. But for other
organisms, the modeling structure is certainly expandable to accommodate additional
considerations.

Under the current formulation, while it is a common practice to assume normal distributions
for random subject effects, Wang and Louis (2003) noted that under the usual normal
assumption for Ui, the marginal regression model of binary response no longer had a logistic
form when the random effects were integrated out. To retain the logistic structure and odds
ratio interpretation, Lin et al (2009) recommend the use of a bridge distribution with
parameter ϕ (0 < ϕ < 1):

(4.2)

where ϕ represents the attenuation factor of the marginal odds ratio.

The bridge density in (4.2) is symmetric around zero, and has . It has a
slightly heavier tail and is more peaked than the normal density.

Under this formulation, the distribution can then be written as

The likelihood then follows
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(4.3)

4.2 Prior Distributions
With the assumed bridge distribution for Ui, the marginal probability of STI acquisition
(after integrating out the unobservable random effects Ui) can be written as EU[pi(Ui)] = eτ/
[1 + eτ], where τ = ϕβ and EU is the expected value with respect to the density of Ui. To
estimate τ, we use the Markov Chain Monte Carlo (MCMC) method to approximate the
values of ϕ and β iteratively. Within each iteration, the value of τ is generated from τ = ϕβ.
And τ becomes the parameter of interest.

Following Lin et al (2009), we assume a Beta(1, 1) (uniform) prior for ϕ. For β, we specify a
moderately diffused normal prior centered around zero, β ~Normal(0, 4). We use a zero
mean prior because we are uncertain of the expected value of β and β = 0 gives equal
chances to infection and non-infection. A similar approach has been used in mixed effects
model settings (Natarajan and McCulloch, 1998). The prior variance of 4 for the logistic
regression parameter gives a relatively wide range for β, which translates into the full range
of probability measure, (0, 1). The relationship between the prior variance and resulting
odds ratio in logistic regression has been discussed by Spiegelhalter et al (2004). The pc is
the per encounter STI risk when a condom is used. For practical purposes, we restrict the
support of c to positive values, i.e., c > 0. Here we assume that c follows an exponential
distribution π(c) ~ exp(λ) where, λ ~ Gamma(1, 5). Thus, the mean value of λ is 5 and
variance is 25.

For treatment failure probability q, clinical trials have shown that azithromycin and
doxycycline, the antibiotics that we used for C. trachomatis treatment in the study, are very
effective (Lau and Qureshi 2002). But the effectiveness of these treatments in a real world
clinical setting, often referred to as the use-effectiveness, is less well defined. Use-
effectiveness of antibiotics could be affected by a number of factors, including the clinical
venue (i.e., STD clinics versus primary care), patient population, route of administration,
and most importantly, patient adherence. For the study population, our best guess is that the
treatment failure probability q is likely to be less than 20%. Thus, we assume π(q) ~
Beta(0.1, 0.9). This prior expects a 10% chance of a failure probability and it has great
uncertainty as the effective sample size corresponding to this prior is (0.1+0.9) = 1. Among
all beta priors with the same mean, those with larger effective sample sizes are considered
more informative. See Thall and Wathen (2007) for a more detailed discussion on effective
sample size.

4.3 Posterior Distribution and Inference
The joint posterior distribution of the parameters of the models conditional on the data is
obtained by combining the likelihood in (4.3) and the prior densities using Bayes’ theorem:

(4.4)

The computations for the posterior distributions of the parameters were performed via
Markov Chain Monte Carlo (MCMC) methods. The conditional posterior distributions are
log-concave, and thus the MCMC can be implemented using standard algorithms. The Gibbs
sampling and the associated Metropolis-Hastings algorithm were implemented using readily
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available free software, WinBUGS (Spiegelhalter et al. 2005). We omit the explicit
calculation of the conditional distribution of each parameter given the rest of the parameters
because WinBUGS does not require the specification of the full conditional distribution. We
use 25,000 iterations with an initial burn-in of 5,000. Convergence of the generated samples
was assessed using standard tools within WinBUGS software, viz., trace plots, ACF plots as
well as Gelman-Rubin convergence diagnostics. The initial values for the parameters were
selected by starting with prior means and covering ±3 standard deviations. We used three
different MCMC chains with three different initial values to get reasonable convergence.

5 Data Analysis and Results
We analyze 1173 quarterly test results from 200 young women who have completed at least
two follow-up visits. The study subjects were recruited from an inner city population that
was at increased STI risk. Each subject contributed an average 5.86 visits, ranging from 2 to
18. The mean enrollment age is 15 (standard deviation 1.1). The study sample is dominantly
African American, 91%. At the time of enrollment, the subjects reported an average of 2.3
sexual partners during their lifetime (median 2). The quarterly average number of condom
protected and unprotected sexual encounters were 5.8 and 14.3, respectively. C. trachomatis
was detected from 208 of the quarterly swab samples (17.7%). Of all quarterly intervals,
approximately 66% were of scenario 1 (negative-negative), 16% were of scenario 2
(positive-negative), 15% were of scenario 3 (negative-positive), and 3% were of scenario 4
(positive-positive). All infected subjects received antibiotic prescription upon diagnosis.

From the estimated value of τ, we calculate the per-encounter probability of acquiring C.

trachomatis to be , which implies that the probability of a young
woman in our study population acquiring C. trachomatis infection by having one
unprotected intercourse with a male partner is less than 1%. It should be noted that the per-
encounter probability of acquiring C. trachomatis, p, is a population-specific estimate
because it reflects not only the organism’s transmissibility, but also the infection risk that the
corresponding male partner population presents toward the young women. Therefore, the
low infection acquisition risk estimate (p = 0.009) should not be surprising: If only a small
number of male partners have chlamydia, the probability that a female subject getting
infected through one sex encounter with a male partner will also be small!

In fact, using the estimated C. trachomatis prevalence in the corresponding male partner
population and the relationship Per-encounter Acquisition Risk=Transmission Probability ×
Partner Prevalence, we will be able to calculate the transmission probability associated with
one unprotected encounter. By transmission probability, we are referring to the probability
of a young woman becoming infected by having one unprotected sexual encounter with an
infected male partner. For example, if the C. trachomatis prevalence rate is 5% in the male
partner population, then the transmission probability will be 18.0%. Figure 3 illustrates the
relationship between transmission probability and C. trachomatis prevalence in the partner
population for the point estimate of the per encounter probability and the 95% credible
limits.

In our study, the exact prevalence of C. trachomatis infection in the male partner population
is unavailable. A recent study of chlamydia prevalence based on the test results from over
23,000 men in Baltimore, Denver, San Francisco, and Seattle, found that the overall
prevalence of C. trachomatis infection was 7%, but the rate tended to vary among cities
(Schillinger et al. 2005). Using this overall prevalence estimate, we calculate the
transmission probability as 0.129 with a 95% credible interval (0.096, 0.206).
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It should also be noted that the condom effect parameter estimate is 1.6 with the estimated
95% credible interval (1.12, 2.42) not containing 1. This suggests a significant condom
modification of the transmission probability. In other words, the per-encounter risk of
disease acquisition with condom protection is pc = 0.0091.6 = 0.00053, drastically lower than
the per-encounter risk without condom use. Again assuming 7% prevalence in the male
partner population, we estimate the transmission probability associated with one condom
protected encounter to be 0.0076, which is drastically lower then the transmission risk
without condom protection. While this finding is consistent with the observations about
condom efficacy in protection against STI, our estimate directly quantifies the condom’s
role in modifying the C. trachomatis transmission probability.

The estimated treatment failure probability q = 9.6% is slightly higher than the known
treatment failure rates from clinical trials (Lau and Qureshi, 2002). This perhaps is not
surprising because this estimate is not obtained from controlled experiments but represents
the treatment failure rate in the the real world. Many practical factors, such as suboptimal
medication adherence, could contribute to the increased failure of antibiotic treatment in
aborting an infection episode.

6 Discussion
In this research, we presented a method for the assessment of the per-encounter male-to-
female C. trachomatis transmission probability. The primary contribution of the method is
that it provides a modeling tool for epidemiologists and clinical investigators to assess the
transmissibility of a disease pathogen using observational data without resorting to
controlled experiments. By relying on observational data, the proposed estimation scheme
has helped to overcome the ethical constraints against exposing human subjects to infectious
pathogens, significantly enhancing our ability to assess the transmission efficiency of
bacterial organisms.

Applying the proposed method to observational data collected from a cohort of urban
adolescent women, and using the published prevalence of C. trachomatis infection among
men from urban areas, we have obtained an estimate of the C. trachomatis transmission
probability. To the best of our knowledge, this is the first time that the male-to-female per-
exposure C. trachomatis transmission probability has been successfully quantified. Viewed
within the context of adolescent sexual behavior, the estimated 0.129 per-exposure
transmission probability represents a substantial infection risk. At the same time, the
research also demonstrates a drastic reduction of infection risk, from 0.129 to 0.0076, when
a condom is used. These findings point to two potentially important areas of intervention:
prophylactic measures aimed at lowering the C. trachomatis transmission probability, and
more aggressive partner notification and treatment programs aimed at reducing C.
trachomatis prevalence among the partners.

The method that we presented in the current paper is likely to have a significant impact on
future studies of STI transmission. It could also influence the development of future
intervention strategies. Although the current data example examines the per-exposure risk of
male-to-female transmission of C. trachomatis, the same method could be used to study
female-to-male transmissions if similar observational data exist for male subjects. The
directionality of STI transmission between heterosexual partners and the magnitude of
transmission risk associated with each direction are of particular interest because of their
implications on the design of intervention strategies. Also with this method, studies
comparing the transmission efficiencies of different STI pathogens become feasible. These
future comparative studies will help to explain, at least to some extent, the observed
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differences in the scope of different STI epidemics. Finally, the method also provides an
important starting point for simulation studies of STI transmission dynamics.

Methodologically, this research represents a new development in the modeling of infectious
disease outcomes. The stochastic based modeling approach and Bayesian computation
techniques have made the proposed method easily implementable in a variety of computing
platforms. As shown in section 4.1, the method can be extended to incorporate important
behavioral and clinical factors as covariates that potentially influence the transmission
process. One possible way to accommodate the covariates X is to introduce them through

the logistic structure . Although the focus of the current research is to quantify
the per-encounter transmission probability, extensions to incorporate covariates could
further enrich the analytical tool set available to infectious disease investigators and make it
possible to assess factors directly related to the risk of transmission, instead of the static
outcome of infection. Such an extension may be more useful for the assessment of exposure
factors that have the potential to modify the transmission efficiency of the organism. For
example, one could use the method to evaluate the effect of topical microbicides, which are
usually applied around the time of exposure, on transmission risk. Additionally, as briefly
stated in Section 3, event-specific information about the sexual partner could also be
examined if partner information and characteristics are available.

It should be noted, however, the proposed method has a few implicit assumptions that could
potentially limit its use in practice. First, we assume knowledge of C. trachomatis
prevalence in the male partner population. This assumption is essential for the conversion of
infection acquisition risk into the transmission probability. Second, we assume that the
probability of having an infected partner remains fixed for all sexual encounters. As a result,
the method provides no explicit accommodation of an individual partner’s contribution to
the infection risk. In other words, we will not be able to differentiate the infection risk
associated with coital events with different partners within the subject, i.e., the potential
clustering effect. This assumption allows us to circumvent the difficulty of not having
partner data. For the current application, such an approach is perhaps not unreasonable
because after an exposure to the disease pathogen, whether a woman develops a clinical
infection probably has more to do with her own immune response than with the source of
pathogen. This said, we are exploring an extended Bayesian modeling structure that assumes
a prior distribution on partner prevalence in a new study where limited partner information
is available. In the current research, we are unable to pursue this extension due to the lack of
partner data. Third, the validity of our estimates depends on the accuracy of STI testing as
well as the behavioral reporting. While we have put in place rigorous laboratory procedures
to ensure the accuracy of the testing data, we could not rule out the possibility of
misreporting on the part of the study subjects. The accuracy of the behavioral data could
certainly affect our estimates. For example, systematic under-reporting of coital events by
the study subjects could result in an overestimate of the STI acquisition risk. To alleviate the
concerns about reporting bias, we have performed a detailed data examination by comparing
self reported coital counts ascertained at quarterly visits with those obtained from subjects’
daily diaries in the same period. We note that over 90% of the reported counts from the two
sources are in exact agreement. Although this still does not prove the accuracy of behavioral
reports, it does give added assurances about the consistency of these reports. Finally, in our
research, the random subject effect is assumed to have a parametric bridge distribution.
Since it is hard to validate the distributional assumption, a broader class of distributions such
as Dirichlet processes, might represent a viable alternative to protect the model from
misspecification.

Tu et al. Page 10

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Not withstanding these limitations, we present a flexible and expandable platform for
investigating various aspects of the transmission of infectious pathogens.
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Figure 1.
Data collection scheme of the Young Women’s Project: Sexually transmitted infection (STI)
states were determined at enrollment and all subsequent quarter visits (blue circles
represents determination of infection status). Infected subjects were treated at these visits
(green circles represents antibiotic treatment). Also at each quarterly visit, participants
participated in face-to-face interviews, providing numbers of coital events, with and without
condom protection, in the previous quarter (represented by red circles).
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Figure 2.
A conceptual model of recurrent sexually transmitted infections (STI):We consider the
infection history of a participant as a stochastic process where the current infection state
depends on the infection state at the previous visit, the treatment received at the previous
visit, and STI related sexual behaviors between the two visits.
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Figure 3.
Four scenarios of infection history between two consecutive visits: (1) no infection detected;
(2) successfully treated infection; (3) newly acquired infection; and (4) recurrent infections.
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Figure 4.
Estimated C. trachomatis transmission probability at different levels of partner prevalence,
based on the point estimate (p̂ =0.90%), and 95% lower and upper credible limits of the per-
encounter STI acquisition risk (0.67% and 1.44%). Assuming 7% C. trachomatis prevalence
among male partners, we calculate the male-to-female transmission probability to be 12.86%
with a 95% credible interval of (9.57%, 20.57%)
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Table 1

Parameter Estimates

(a) Markov Model Parameters

Parameter
Posterior
Mean

Posterior
Median

95%
C.I.

τ −4.699 −4.733 (−4.997, −4.223)

q 0.0961 0.0981 (0.081, 0.3221)

c 1.6 1.65 (1.12, 2.423)

p 0.0091 0.0088 (0.0068, 0.0147)

(b) Transmission Probability: Without Condom

Prevalence rates
among partners

Estimated value of
transmission prob

95%
C.I.

0.03 0.300 (0.223, 0.048)

0.04 0.225 (0.168, 0.036)

0.05 0.180 (0.134, 0.288)

0.06 0.150 (0.112, 0.240)

0.07 0.129 (0.096, 0.206)

0.08 0.113 (0.084, 0.180)

0.09 0.100 (0.074, 0.160)

(c) Transmission Probability: With Condom

Prevalence rates
among partners

Estimated value of
transmission prob

95%
C.I.

0.03 0.018 (0.0111, 0.0377)

0.04 0.013 (0.0083, 0.0283)

0.05 0.010 (0.0066, 0.0226)

0.06 0.009 (0.0055, 0.0188)

0.07 0.008 (0.0047, 0.0161)

0.08 0.007 (0.0042, 0.0141)

0.09 0.006 (0.0037, 0.0126)
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