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A STOCHASTIC MODEL FOR 
DIRECTED GRAPHS WITH 

TRANSITION RATES DETE1U-1INED BY 
RECIPROCI'IY 

ABSTRACT 

We present a stochastic model for the evolution of directed graphs over 

time. The infinitesimal transition rates for each arc in a directed graph 

depend only on the presence or absence of a reciprocated arc. The model re­

duces the entire directed graph to a set of{~} independent and identically 

distributed dyad processeso The properties of the dyad process are discussed, 

four parameters of the stochastic model examined, and estimation strategies 

given based on maximum likelihood and the embeddability of the data for 

several sampling schemes. 

KEYWORDS: Directed Graphs; Stochastic Modelling; Embeddability; Statistical 

Inference in Markov Chains. 
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This paper addresses the problem of mathematically describing the evo­

lution of a binary directed graph over time. We discuss a simple stochastic 

model for this process of change, and describe several strategies for esti­

mating the parameters of the model. The appropriate strategy for a given 

situation depends on the number of times the graph is observed in its evolu­

tion. The model has been successfully applied to several data sets by 

Wasserman (1977a). 

The use of binary directed graphs as structural representations for 

processes is widespread. Wasserman (1977b) comments on a few areas of appli-

cation, including sociology, communication, transportation, and several fields 1 ... 
in the natural sciences. Most of these processes are acknowledged to change 

over time, an evolution that alters the arcs that exist between nodes. However, ~ 

there has been little effort directed at the construction of realistic models 

for this evolution. Undirected graphs and multivalued graphs have been effec­

tively modelled stochastically, but the fitting of these models to binary 

directed graphs yields little insight into the binary processes under investi-

gation. Indeed, the most important features of these processes are the on/off ..J 

nature and the directedness of the arcs in the structural graph. Ignoring 

these two qualities in the model construction would be a fundamental error. 

The stochastic model described here is quite simple. But one should not 

assess the merits of such a model by its complexity or lack thereof. Much 

can be learned from simple, non-elaborate models, particularly in the social ~ 

sciences. The information to be gained yields valuable insights into the pro-

cess in question. Hopefully, such research will eventually allow researchers -a 

to postulate and adequately analyze more complicated models. As noted by 

Wasserman (1977a), this has certainly been true of the research discussed in 

this paper. 
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1. Introduction to the Problem 

Consider a directed graph or digraph that structurally represents the 

state of some process at time t. A digraph is a set V = (v
1

, v
2

, ••• ,vg} of 

nodes and a set L = l1
1

, 1
2

, .•• ,lc} of directed~ connecting pairs of nodes. 

We let 1. = v.vk be the directed line running from node v. to node vk and 
l. J • J 

further stipulate that the digraph be binary; i.e., if two distinct arcs exist 

such that 1. = v.vk and 1., = v.v.k, then 1. = 1. 1 • In addition, arcs 1. = v.v. 
l. J l. J l. l. l. J J 

do not exist, ruling out the existence of loops in the digraph. We commonly 

let D represent a digraph with g nodes. 
g 

Let X(t) be the adjacency matrix representing the state of D at time t. 
g 

Specifically, X(t) = [X .. (t)], where 
- l.J 

{ 

1 if v. v. e: L at time t, 
X •• (t) = 1. J 

l.J O otherwise. 

The time parameter tis assumed to be continuous, t ~ O. 

The matrices _e, Ji, z, ~, ... are single states of the continuous time 

stochastic process f(t). The process has a state space ~of all possible 

(g x g) binary-valued matrices with zero diagonal -- 2g(g-l) in number, making 

.§_ quite large. 

The problem that this paper considers is the formulation and evaluation 

of a stochastic model for !(t) where the transitions between states of§._ depend 

on the state of the digraph at time t. We accomplish this by assuming X(t) to 

be a continuous time Markov chain and by allowing the infinitesimal transition 

rates to be specific functions of the elements of !_(t). This solution to the 

problem was first suggested by Holland and Leinhardt (1977a) and has been 

further elaborated on by Holland and Leinhardt (1977b) and by Wasserman (1977c). 

Several models using these assumptions are discussed in depth by Wasserman 
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(1977a), including the model incorporating only reciprocity which is the 

subject of this paper. 

In section 2 we discuss the Holland-Leinhardt modelling framework, 

briefly outlining the assumptions of the framework. We present a simple 

model for digraphs based on reciprocity and describe how this particular 

parameterization substantially reduces the size of the state space. We 

compute moments and equilibrium distribution for the stochastic process 

arising from the reciprocity model in section 3. 

The particular parameterization chosen for the reciprocity model has 

four parameters that can vary from digraph to digraph. In the latter sections 

of this paper, we estimate these parameters. In section 4, we consider 

whether an observed set of observations of a digraph is representable as a 

continuous time Markov chain, and if so, give a simple procedure for com­

puting reasonable parameter estimates. Maximum likelihood estimation, a 

computationally more difficult procedure, is discussed in section 5. 

\ ' .... 

... 

... 

\ ,· ... 
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2. The Modelling Framework 

(1) 

(2) 

(3) 

The Holland-Leinhardt framework consists of t"t-10 assumptions regarding 

the stochastic nature of the arcs X .. (t)o The first is that_!(t) is a 
1.J 

Markov chain: 

Assumption 1. Markov 

_!(t) is a standard Markov chain with finite state space~ and 

P (t,h) = P(X(t+h) = v \ X(t) = x} 
':S.'i.. - .,I.. - -

as the probability transition matrix. 

Secondly, we assume that for small intervals of time (t, t+h), the changes in 

the arcs of a digraph are statistically independent: 

Assumption 2. Conditional Change Independence 

P (t,h) = JT.P(x .. (t+h) = y .. \ X(t) = x} + o'(h) 
.&. 1.,J 1.J 1.J - -

as h-+ O. 

Assumption 2 is crucial. It implies that the probability of any two arcs 

changing simultaneously is essentially zero. In a small interval of_ time, 

there are only t'Y7o changes that can occur for a single arc: arcs present at 

time t may disappear at time t + h, and vice versa. Thus, we represent the 

probability of arc changes as 

x_(t) = _x} = h }.. .. (x, t) + O'(h) 
l.J -

as h -+ Oo 

Note that}.., the change rate function, depends on the state of the digraph at 

time t, and on t itself. 

Let q (t) be the infinitesimal transition rates of !_(t), the digraph 
:& 

process. We have 
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A .. (x,t) if v and x differ only in the 
l.J - "'-- -(i,j)th element 

4-ez<t)= 
O, if :t and x differ by more than one 

element . 

and 

as terms of g_(t), the matrix of infinitesimal transition rates. Wasserman 

(1977a) discusses some characteristics of~, and proves that if a simple con­

dition is satisfied, specifically a restriction to non-zero change rates 

A .. (x,t), then the digraph process has an equilibrium distribution. 
l.J -

... 

\ i 
ta.I 
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The Reciprocity Model and the Dyad Process 

One can postulate various functional forms for the change rate function 

A, defined in equation (3), and generate many models, all incorporating the 

two assumptions ( 1) and (2) of the modelling frame·work. We propose one s·uch 

model in this section with a parameterization that produces a state space~ 

of only four states. The model is for reciprocity where the tendency over 

time for the arc v.v. to-exist depends only on the presence or absence of arc 
l. J 

vjvi. We consider the (~) dyads, or 2-subgraphs, of Dg, which by the model are 

independent and identically distributed. We compute moments and equilibrium 

distribution of the dyad process, and briefly describe its probability transi-

tion matrix. 

We now dichotomize the change rate function (3) into two functions to 

allow for both types of arc changes. Define 

and 

1 
Ao .. (x) = -hP[X •. (t+h) = 1 I X(t) 

1J - J.J -
= 1£, X •• (t) 

l.J 
= o} + 0'(1) 

i . I >..
1 
.. (x) = -hP[X .. (t+h) = 0 X(t) = x, X .. (t) = l} + O'(l) 
l.J - l.J - - -'l.J 

for small h. Note that the rates of the process are now time homogeneous, and 

consequently, the digraph process stationary in time. 

and 

For the reciprocity model, we assume that 

A O •• (x) = A O + µ. 
0

x .. 
1J - Jl. 

A 
1 

•• (x) = A 
1 

+ µ.
1
x .. o 

1.J - J1 

There are g(g-1) pairs of the change intensities (6a) and (6b) such that the 

pair for ( i, j) depends only on the pair for (j., i) • The parameters A 
O 

and A 
1 

are measures of the overall rate of change for an arc, and µ
0 

and µ
1 

measure 
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the "importance" of a reciprocated arc. We expect that 

and 

as argued from~ consideration of various applications in Wasserman (1977a). 

Let 

D •• ( t) = [X .• ( t) , X .. ( t) ] , i > j , 
l.J l.J Jl. 

be the dyad for the pair of nodes (i,j). The state space~ of the dyad 

D .. (t) contains four states as illustrated in Figure 1. The g intensity 
l.J 

matrix for the dyad process is shown in Table 1. 

D •• (t) = (1,1) 
l.J 

·< 
i 

Mutual Relation (M) 

·----->~· Asymmetric Relation (Al) 

i j 

Di/t) = (0,1) 

:E Asymmetric Relation (A2) 

l. j 

Dij(t) = (0,0) 

Null Relation (N) 
i j 

FIGURE 1. States Contained in D 

w 

.... 

... 

I ._ 

I > 
I 

1..,6 
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A (1,0) 

T (0,1) 

E (1,1) 

(O,O) 
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0 
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0 

- 9 -

ST ATE 

(1,0) 

AO 

-(AO~ 1 ;µ 0) 

0 

>..1-+µl 

(0,1) 

AO 

0 

-(AO -fti. 1-fµO) 

>.. 1-tµl 

TABLE 1. Q Matrix for the Dyad Process 

(1,1) 

0 

A 0--fµO 

Ao-tv,o 

-2(>..iiµ l) 

The parameterization (6a) and (6b) of the reciprocity model yields a set 

of dyad processes (D .. (t)} that are independent. The entire !_(t) digraph 
l.J 

process can be represented as(~) independent dyad processes consisting of 

the symmetrically positioned pairs of off-diagonal elements of ,!(t). Moreover 

·the [D .. (t)} are identically distributed, continuous time, 4 state ~Iarkov 
l.J 

chains, with state space Q. 

We now consider the moments of the dya4 process. Let . 

m(t) = [m .• (t), m •• (t), m •••• (t)]' 
l.J Jl. l.J;Jl. 

= [E(X •. (t)}, E(X .. (t)} .. E(X .. (t)X .• (t)}]' 
l.J Jl. . l.J Jl. 

be the vector of first and second moments of the (D .. (t)}. 
l.J 

Also define 

-(µ.0-tµl) 

A= -(µ.0-tµl) 

-zQ. o-fr.Lo-1-k 1ff·1 1) 

The following theorem gives a differential equation for ~(t) and its solution. 

Theorem 1. If the equations (6a) and (6b) are assumed as functions for the 

• change rates (3), then the moments ~(t) satisfy the equation 

d~(t) - = ~ E!(t) + b 
dt 

-
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which has solution 

t 

.!!!(t) = ,!!(t) + J e (t-s)A .!?_ds 

to 

subject to the condition 

!!(to)= _!!(to)= [mOl' m02' mo3l' 

where 

d.!!_(t) 

dt 

Proof. See Wasserman (1977a), as the necessary calculations are too 

lengthy to be reproduced here. 

Calculation of the integral in equation (11) yields a very complicated 

solution for _!!!(t) that gives little insight ;nto the process. However, the 

equilibrium distribution of the dyad process is simple to calculate anc 

easy to comprehend. After some necessary definitions, we show that the 

dyad process is reversible, allowing the equilibrium probabilities to be 

simply found from the reversibility equations. 

Let (q{D .. (t); D .. (t+h)}) be the elements of the Q matrix for the dyad 
l.J l.J 

process given in Table 1. We define 

rr.M(t) = P(D .. (t) = (1,1)} 
l.J 

TTAl(t) = P(Dij(t) = (1,0)} 

TTA
2

(t) = P(Dij(t) = {0,1)} 

rr.N(t) = P(D .. (t) = (0,0)} 
l.J 

(Mutual) 

(Asymmetric) 

(Asymmetric) 

(Null) 

as the elements of !!.Ct), the vector of probabilities of the 4·states of the 

dyad process. To prove the reversibility of D .. (t), we need the following 
l.J 

... 

--
1 

1 

~ 

I 

i I 
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lemma that states the Kolmogorov cycle condition [Kendall (1959), equation 

5.12] is a necessary and sufficient condition for reversibility. 

Lemma 1. A necessary and sufficient condition for the continuous time 

Markov chain D •• (t) to be reversible is that, for any distinct 
l. 

(1) (2) (n) . 
dyads D. • , D • • , ••• , D • . , n < 4, 1.n D, 

l.J l.J l.] - -

Proof: See Reich (1957), Theorem 2. 

We call the closed path (D. _(l), 
l.J 

(2) 
D. . , • • • , 

l.J 

(n) 
D.. ) a cycle. 

l.J 
It is not 

necessary to check (13) for every possible cycle, since all cycles are made up 

of certain simple paths. In fact, there is only one simple path for the dyad 

process, and that is 

(1,1) ~ (1,0) ~ (O,O) ~ (0,1) ~ (1,1). 

The following theorem proves that the dyad process is reversible and gives the 

equilibrium probabilities of the process. 

Theorem 2. The dyad process is reversible, and the equilibrium probabilities 

are 

TT (o:>) 
N 

AO(). 0-iµO) 

=-----------~-----:-
(Ao+Al) (A 1-fv.1) + A o(A O ~ o+A itµl) 

)..O(A.1-+-µ.l) 

=---------------0\, 0 -f1.. 1 )(A 1 +µ 1) + 11. 0 (A O-+µ 0 ~ 1-tJ.i, 1) 
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Proof: We use Lemma 1 and check reversibility for the one simple Kolmogorov 

cycle (14). We must show that the two following products are equal: 

q[(l,l); (l,O)}q[(l,O); (0,0)}q((O,O); (O,l)}q[(O,l); (1,1)} 

and 

q((l,l); (O,l)}q((O,l); (O,O)}ql(O,O); (l,O)}q((l,O); (1,1)} 

Examination of the elements of Table 1 shows that, term by term, the 

two products (16) and (17) are equal. 

Because the dyad process is reversible, the following reversibility 

eq~ations [Kendall (1959)] hold: 

nN(=)q{(O,O); (0,1)} = TTAz(=)q{(O,l); (O,O)} 

rrN(=)q((O,O); (1,0)} = TTAl(m)q((l,O); (0,0)} 

ffAl(=)q((l,O); (1,1)} = TTM(=)q((l,l); (1,0)} 

TTA
2

(=)q{(O,l); (1,1)} = TTM(=)q((l,l); (0,1)}. 

where rrN(=) + TTA
2

(=) + TTA
1
(=): TTM(=) = 1. Solving these equations 

(18) for rr(=) yields (15)o Q.E.D. 

··-
\ 

w 

Alternatively, we could have compuced the equilibrium probabilities (15) by w 

letting t ~=in expression (11). Or, we could have set the system of dif­

ferential equations for ~(t) in Theorem 1 to zero, and solved for~(=). 

The probability transition matrix for the dyad process is a very compli­

cated expression. We find it by examining the eigenvalues and eigenvectors 

of the (4 x 4) infinitesimal generator g_, and compute 

referred to Wasserman (1977a) for the details. 

tQ 
e -.a The reader is 
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Embeddab ility 

We now discuss how one determines whether the reciprocity model provides 

a good description of the evolution of a directed graph. We review the notion 

of embeddability, the determination of whether an observed probability transi­

tion matrix could have arisen from a continuous time Markov model. We continue 

this discussion in the next section where we discuss estimation of the model 

parameters and evaluation of the fit of the model to datao 

Suppose that we have observations on some process z(t) denoted by z
1
(t), 

z
2
(t), ••• , zK(t). Assume that the process has finite state space f, with 

states labelled 1, 2,.o•, N. For example, if z(t) = D .. (t), the dyad process, 
l.J 

we have K = (~), f = Q., and N = 4. These observations [z(t)} are collected 

at times t = t
0

, t
1

, •••. , t where the t. are distinct positive numbers. 
n J . 

If n is finite and nonzero, we define the empirical probability transition 

~ ~ 

matrix P(tL - tk), 0 ~ k < t :Sn, with elements (pij(ti - ~)) as follows 

(where t = tL - ~): 

~ T .• (t)/ 
P • • ( t) = J..J 

l.J 

where 

j 

T •. (t) 
l.J 

Tij(t) = number of z 1 s in state i at time tk and in state j at time 

t.c 

These estimates are maximum likelihood estimates of the elements of the 

probability transition matrix of a stationary discrete time Markov chain 

[Anderson and Goodman (1957)]. For moderate n, there is a substantial number 

of estimated transition matrices that can be used to test the suitability of 

a continuous time Markov chain for these data. 
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Embeddability was first posed as a problem by Elfving (1937) and dis­

cussed by Kingman (1962), but only recently has the problem.been rigorously 

solved by Singer and Spilerman (1974). The embedding problem, as formulated 

by Singer and Spilerman (1976), is: 

Find simple test criteria on the elements of an observed stochastic 
,.. 

matrix f(t), 0 < t <=,which will guarantee that it can be written in 

the form!,(t) = etQ for some g_ with 

q •. > O, for i ~ · 
l.J - J, 

q .• < O, for i = 1, 2, ••• , N, 
l.l. -

L,q .. = O, for i = 1, 2; ••• , N. 
j l.J 

The data analytic problem is_ to find the subclass of all .Q matrices with 

,.. 
structure (20) that could have given rise to the observed! matrix or matrices. 

This subclass of g_ matrices is 

n = (all matrices n with structure (20) such that (t. - t.)Q = 
~ ~ 1 l -

,. 
log P(t. - t.) for O < J

0 < i < n} 
- l. J - -

g_ may contain more than one element even when n = 1 because the logarithm 

function of a matrix is a "one to many" function. Moreover, when n > 1, 
,.. 

the collection of g_ matrices compatible with, a subset of the empirical! 

matrices may not coincide with the Q matrices compatible with a different 

subset. This situation is caused by the negation of the Markov assumption 

of time-homogeneous transition rates. 

I : -
I ' 

: I .... 

I 

w 

There are many necessary conditions for g_ to be nonempty. Unfortunately> ._ 

no simple sufficiency criteria exist. One must verify that the observed P 

matrix satisfies the necessary conditions, and even then~ there may not be a 

g_ matrix compatible with the observed transition matrix. 

\. 

'-I 



-
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,.. 
Fortunately, i.f P has positive, distinct, real eigenvalues, then there 

,. 
is a unique Q ~~trix for a given! since the scalar logarithm function is 

multiple valued only when it has complex arguments, and of course undefined 

~ith negative arguments. The following theorem, due to Sylvester, and also 

given by Singer and Spilerman (1976), states the result for this special 

instance. 

,. 
Theorem 3. Sylvester's Theorem: If Pis an (N x N) matrix with distinct 

eigenvalues A
1

, l
2

, ••• , AN' and if f(·) is single valued in a 

neighborhood of each of the eigenvalues, then 

N 

f(P)= I f(Ai)TT <i.., AP /o.. -A.). 

i=l Jii ]. J 

Proof: Gantmacher (1960) or Sylvester (1883). 

The application of this theory to the reciprocity model is straight­

forward. For example, suppose that we assume the model is operating, 

and that we have observations on the digraph at time t
0 

and t
1

• We reduce 

!_(t
0

) and ;_(t
1

) to two sets of(~) dyads, and form i,(t
1 

- t
0
), a 4 x 4 matrix 

of dyad transitions. If this empirical probability transition matrix has 4 

positive, real, distinct eigenvalues, we can calculate the unique empirical 

,. 
Q matr~ for these observationso Since we know the functional form of Q 

(Table 1) we can easily solve for the parameters :\.
0

, A 1, µ.
0

, µ 
1 

by setting 

the theoretical elements of g_ equal to the observed, calculated values. 

,. 
Wasserman (1977a) gives conditions on the elements of P that insure that 

the eigenvalues of i. are real, distinct, and positiveo The conditions generally 

,. 
hold if the diagonal elements of Pare large, relative to the off-diagonal 
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elementso This "diagonal-dominant" situation is likely to occur when the 

two observation time points t
0 

and t
1 

are close. Taking observations close 

in tin:te allows only a few transitions to other states so that the diagonal 

elements remain near unityo 
,.. ,.. 

We should note that occasionally log! yields a _g_ which does not have 

~ 

structure (20); i.eo, the off-diagonal elements of g_ may be negative. If so, 

then one may force the negative elements to zero, adjust the remaining terms 

to maintain the zero row sum, and obtain approximate parameter estimateso Or, 
,.. 

_, 

.... 

\, { 

--
..i 

I I ... 

-
a different P·can be examined if there are more than 2 observations on the ... -
process. This strategy of estimating Q by computing logarithms of empirical 

transition matrices- is flexible, but yields good estimates. We discuss the 

usefulness of this technique in the next sectiono 

~ 

... 

~ 

~ 

.. 

... 

~ 

... 

.... 

I I ... 
I I .. 
I I 

!al 
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5. Parameter Estimation 

In this section we discuss estimation of the parameters of the reciprocity 

modelo There are three possible sampling schemes: 

1) Continuous record, 

2) Single observation, 

3) Two or more observations. 

We discuss each of these situations in turn. 

5.1 Continuous Record 

When one has a continuous record of all changes in each of the(~) 

dyads for a time interval (t
0

, T), estimation is relatively easy and will 

not be discussed. Billingsley (1961) discusses the theory for general 

Markov processes. One assumes that the Q matrix is a function of a vector 

of parameters 9, and reduces the continuous record (D .. (t), t
0 

< t < T} for 
- iJ - -

all dyads to observations on the discrete jumps of the process and the total 

waiting time in each state. Billingsley estimates! by maximum likelihood, 

and discusses likelihood ratio tests. 

5.2 Single Observation 

When one has a finite number of observations on a continuous time 

Markov chain, estimation is rather difficult. Darwin (1956) recognizes 

this, and states that the complex form of the likelihood, with observations 

on the process taken once or at regular intervals, almost prohibits the 

use of maximum likelihood estimation. Keiding (1974, 1975) considers 

sampling of the process at equidistant time points t
0

, tj, t
2
j,••o, tNj~ 
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but only derives asymptotic results for N ~ =o 

We now consider estimation of the four parameters of the reciprocity 

model, A
0

, A
1

, µ.
0

, µ.
1

, assuming that we have a single observation on the 

entire digrapho A single adjacency matrix is the data set most frequently 

collected by sociologists studying social networks. We discuss the like­

lihood function of the parameters, given this single adjacency matrix, and 

estimate two meaningful functions of the parameters. 

Suppose we have a sole observation of the stationary !_(t) process, 

which we label,!_. The matrix~ cont~ins (~) independent observations of 

the dyad process D .. (t) with state space Q_. We are interested in the 
1J 

numbers of each type of dyad. Since the labelling of the nodes in the 

directed graph is arbitrary, we cannot distinguish a (1,0) asymmetric 

from a (O,l) asymmetric. Consequently, the information in~ can be sum­

marized by three statistics: 

1) 

2) 

3) 

M( t) = :E x .. x. . = number of mutuals> 
i>j J.J JJ. 

A(t) = ~ ((1-x .. )x .. + x .. (1-x .. )] = number of asymmetries, 
i>j J.J JJ. 1J J1 

N(t) = ~ (1-x .. )(1-x .. ) = number of nulls, 
:i>j 1J Jl. 

where M(t) + A(t) + N(t) ={ ~} 

Define L(!i 2£) as the likelihood function of the parameters given the 

single matrix ~, where ,! = (A
0

, Al" µ.
0

, µ
1
)' o L is merely a multinomial 

likelihood: 

.. 

... 

I .... 

I i .. 
I -
I I 
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(25) 

(26) 

(27) 
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L(!l1S.) = 

TT 
x .. x.. x .. (1-x .. ) (1-x .. )x.. (1-x .. )(1-x .. ) 

TTM(t) l.J J\rAl (t) l.J Jl. iTA
2
(t) l.J Jl.TTN(t) · l.J Jl. 

all dyads 
i > j 

where the TT
1 s, defined in equation (12), are the probabilities of the four 

states of the dyad process. The log likelihood can be written succinctly as: 

log L(elx) = -·-
M(t)log TTM(t) + A(t)log iTA(t) + N(t)log rrN(t) 

where rrA(t) = TTA
1
(t) + TTA2(t), and indeed, M{t), A(t), and N(t) are sufficient 

statistics. 

The· expressions for TTM' TTA' and TTN are linear combinations of the elements 

of the m(t) vector of moments, given in (11), and hence, are quite complicated 

expressions. For computational ease, we shall use the steady state values of 

TTM' TTA' and TTN' defined in (15). 

Let d = AoO·o + "'1 + µ.o + µl) + (} .. o + A1)("'1 + µ.l) so that 

A O ().. 0 + µ. 0) a 
iT (cc) = ----- = -----

M 
d a+ 2b + C 

2). 0 (]i.. l + µ. l) 2b 
TT (c:0) = = 
A 

d a+ 2b +c 

).l(Al + µ,l) C 

TT (e0) = = 
N 

d a + 2b + C . 
The log likelihood (25) is: 

log L(~ ~) = 

M(t)log (a/2b) - N(t)log (2b/c) - {~) log (a/2b + c/2b + 1) 
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(29) 

(30) 
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where A(t) = {~) - M(t) - N(t). 

The likelihood function (27) depends on 4 unknown parameters!, but 

contains only 2 "pieces of information": M(t) and N{t). Hence, we can 

only estimate 2 functions of the parameters, which are 

e
1 

is the ratio of the probabilities of change, in a small time interval, in 

the presence of a reciprocated arc, and e
2

, the ratio in the absence of a 

reciprocated arc. The maximum. likelihood estimates of e
1 

and e
2 

[see 

Wasserman (1977a)] are 
,. 
e
1 

= 2[M(t)/A(t)] 
,. 
e
2 

= l/2(A{t)/N{t)] 

and are easily computed from the data. 

There are two other ratios that are more interesting than e
1 

and a
2

• 

These are 

Ki and K
2 

directly emphasize the importance of a reciprocated arc. Kl (K
2

) 

is the effect of a reciprocated arc on the change from a non-choice to a 

choice (choice to a non-choice). We suspect that Kl> 1 and K
2 

< 1. Unfor­

tunately, these "reciprocity" ratios cannot be estimated via maximum 

I, I 

-

.... 

I , ... 

\ ! 

'-' 
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likelihood with only one observation on the digraph [see ~asserman (1977a) 

for proof of this fact]. 

Note that the ratio of the change ratios e
1 

and e
2 

is an odds ratio
0 

We have 

P(X . . ( t+h) = 1 \ D •. ( t) = ( 0, 1) } / P(X . . ( t+h) = 1 \ D • . ( t) = ( 0 , 0)} 
l.1 1.1 1.J 1.J = 

P(X .. (t+h) = 0\D •. (t) = (1,1)} P[X .. (t+h) = 0\D .. (t) = (1,0)} 
l.J l.J l.J 1.J 

(31) / r _ _ · _ 
P[X .. (t) = o, x .. (t+h) = 1\X .. (t) = l} PtX .. (t) - o, x .. (t+h) - 1\X .. (t) - o} 

l.J l.J 11. l.J 1.J ]l. 

P(X .. {t) = 1, X .. (t-+h) = 0\X .. (t) = l} P(X .. (t) = 1, X .. (t+h) = O\X .. (t) = O} 
1.J 1.J J 1. 1.J 1.J J 1. 

the increase in the odds of a new arc v.v. coming into existence during the 
l. J 

interval (t, t+h) due to the existence of v.v .• With no reciprocity effect, 
J 1. 

log(
81/a2) =O; if log(

6ije2)> 0, a positive reciprocity effect is presento So 

even though e
1 

and e
2 

considered separately are not very informative, their 

ratio is quite interesting. 

5
0
3 Twq or More Observations 

We now examine situations where one has a data set containing several 

observations on the directed graph. First coo.sider n = 2, and let !_(t
1

) and 

X(t
2
), t

2 
> t

1
, be the ttvo observations on the process. We examine each of 

the pairs (X .. (t
1
), X .. (t

1
)) and (X .. (t

2
), X .. (t

2
)) in turn> and form a 4 x 4 

l.J J 1. l.J J l. 

contingency table, with rows corresponding to the dyad state at_ time t
1

, and 

columns to the t
2 

stateo There are ( ~} "counts" in this table [See Bishop, 

Fienberg, and Holland (1975) for discussion of representation of data from 

Markov models as contingency tables]. 
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We let T denote such a table, with entries (tki), where 

k = 1 = Null (O,O) 

k = 2 = Asymmetric (1,0) 

k = 3 = Asymmetric (0,1) 

k = 4 = Mutual (1,1) 

and similarly for the subscript t. 

The likelihood function when n = 2 is 

L(e 1x(t ) = X X(t ) = ,,) = 
~- 1 :;:_> - 2 "'-

M(t ) A(t ) N(t ) TT ~ 
[TTM(t

1
) 1 TTA(t1) 1 TTN(t1) 1] pk1,(t2 - t

1
) 

k,1, 

where the (pkl,(t
2
-t

1
)) are the elements of the probability transition matrix 

for the dyad process. 

Suppose n > 2. We now have observations on the digraph process ~(t
1
), 

!(t
2
), ••• , !_(tn). We ~orm (n-1) matrices 1m, m = 1, 2, •.• , (n-1), with 

elements (t,_ 0 ), where T gives the transitions of the dyads at time t to 
~m -m m 

the dyads at time tnrf-
1

• The process is stationary, so that the probability 

transition matrix for the dyads depends only on tmi-l - tm. The likelihood 

L 

... 
I ,. 

--
.... 

--
... 

... 

-
ia.i 

.... 

... 

function is _. 

L(ejx(t
1

) = x
1

, X(t
2

) = x
2

, ••• , X(t) = x) = 
-- - - - - n --n 

M(t1) . A(t1) _ N(t1) • 
[rrM(tl) rrA(ti) TTN(tl) ] 

n-1 t 

1T 7T" ptc.e(tm+l - t) tc.em 
m=l k,L m 

When we have equidistant sampling, such that t
2 

- t
1 

= t
3 

- t
2 

= ••• -

I 

I.I 

... 

.. 
t - t 

1 
= t, then the likelihood (34) simplifies to ...__. 

n n- -

.. 

.... 

1w 
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We can "pool" transitions across time points if we are certain of time 

homogeneity, so that we have an effective sample of (n-1) (~) dyads. 

To estimate the four parameters i, we can differentiate the logarithm 

of (33) or.(34) with respect to each of the four parameters, setting the 

resulting derivatives to zero, to obtain a system of 4 equations in 4 

unknownso Unfortunately, the pk.J,'s are highly nonlinear, being sums of 

exponentials, and maximum likelihood estimation in such a situation is not 

only unreliable, but the solutions can only be obtained approximately. 

However, we may study the embeddability of the data in hand, and 

develop a new strategy. If n = 2, we compute the (4 x 4) empirical 

probability transition matrix and using the rules outlined in the previous 
,.. 

s~ction, find an empirical Q matrix, Q-. The elements of Q are simple functions 

of the parameters A
0

, A
1

, µ
0

, µ
1

; consequently, reliable estimates of the 
,.. 

parameters are easily obtained. If n > 2, we have several g_ matrices, and 

compute several plausible estimates of!, and study each. We can use these 

estimates as starting values for a Newton-Raphson iterative solution to the 

likelihood equations, or explore the likelihood function in the vicinity of 

these points. Wasserman (1977a) successfully analyzes two directed graphs 

using this strategyo 
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