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A Stochastic Model for Interconnections in 
Custom Integrated Circuits 

ABBAS A. EL GAMAL, MEMBER, IEEE, AND ZAHIR A. SYED, STUDENT MEMBER, IEEE 

Abstract- A stochastic model for interconnections in integrated circuits 
composed of unequal size logic blocks separated by routing channels is 
described. An algorithm, based on the model, is given for estimating 
channel widths and chip area. The effectiveness of the algorithm is tested 
through an example. Applications of the model to placement and routing of 
integrated circuits are discussed. 

I. INTRODUCTION 

W E CONSIDERED in [l] the problem of estimating 
interconnections area for master slice integrated 

circuits. We obtained estimates for routing channels width 
in terms of the number of logic blocks, the average number 
of interconnections emanating form the logic blocks, and 
the average interconnection length. The goal of this paper 
will be to extend the work in [l] to integrated circuits 
composed of arbitrary size logic blocks with routing chan- 
nels running in the space separating the blocks as depicted 
in Fig. 1. 

We begin in Sectiori II by describing a statistical inter- 
connections model for integrated circuits of the type shown 
in Fig. 1. This model is essentially a generalized version of 
the model in [l]. 

In Section III, an algorithm is provided for estimating 
routing channel widths. This is done in two steps. First, the 
number of interconnections entering each channel from 
other neighboring channels is estimated. Then a simple 
diffusion model for interconnection generation and death 
is used to estimate the congestion in every channel. An 
example is given in Section IV. In Section V, we discuss 
some applications of our statistical models to the layout of 
large complex integrated circuits. 

II. DESCRIPTIONOFTHE MODEL 

We assume .given is a placement of a finite number of 
unequal size nonoverlapping polygons, as shown in Fig. 1. 
The placement allows only for horizontal and vertical 
orientations of the sides of the polygons. The space be- 
tween two sides of any two adjacent polygons is referred to 
as a routing chmnel. We denote by a channel graph, the 
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Fig. 1. A general integrated circuit organization 
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Fig. 2. Channel graph for Fig. 1. 

undirected connected graph with edges representing the 
center lines of the routing channels. The nodes of the 
channel graph are the intersection points of the different 
channels center lines. The channel graph of the placement 
in Fig. 1 is given in Fig. 2. 

Let the nodes of the channel graph be denoted by 
1,2; * *, N and denote an edge connecting nodes i and j by 
(i, j). The lengths of the routing channels are assigned to 
corresponding edges in the channel graph. Thus every edge 
(i, j) is assigned a positive number lij denoting the length 
of channel (i, j). 
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Fig. 3. Minimum length trajectory from channel (0,l) to channel (14,17). 

Interconnection Generation: W e  assume that intercon- 
nections are randomly generated along the edges of the 
channel graph according to a  Poisson process with parame- 
ter X interconnections per unit channel length. The  number  
of interconnections generated along channel (i, j) is, there- 
fore, Poisson with parameter Xlij. 

Interconnection Path Description: Interconnections move 
along m inimum distance paths only. For example, in F ig. 3  
an  interconnection originating at channel (0,l) and  moving 
to channel (14,17) can only choose the shown m inimum 
length trajectory along the channel graph. 

Starting from any channel (I, k) the permissible shortest 
distance paths along the channel graph can be  labeled (this 
will be  made  more precise in the next section). An inter- 
connection originating at channel (I, k) and  arriving at 
node i, chooses with equal probability (except for “dead 
ends” as defined in Section III) among the feasible direc- 
tions which are determined by the labeling procedure. 

Interconnection Length Distribution: Each interconnec- 
tion is assumed to have a  random length drawn according 
to an  exponential distribution with parameter (Y. The  aver- 
age  interconnection length is equal to l/cu in units of 
channel length. 

Remark: The  interconnections mode l described is a  gen- 
eralization of the mode l in [l]. If the logic block are of 
equal size, then the parameter A in [l] could be  easily 
related to A in this paper. Also the average interconnection 
length E in [l], which was measured in terms of the 
number  of steps on  a  lattice,, could be  related to the 
average interconnection length l/a. However, as will be  
explained in Section V, the motivating application of the 
mode l in this paper  is different from that in [l], and  the 
asymptotic types of results discussed in [l] are not of 
interest here. 

In order to use the described mode l to estimate channel 
widths, we now define the following random variables: 

1) Xl?;) = number  of interconnections generated in 
channel (i, j) and  entering channel (1, k) at node 1. The  
random variable X$$) has a  Poisson distribution with 
mean  that depends on  A, (Y and the topology of the channel 

graph. 
XC!. k) 

For any two channels (i, j)#(i’, j’), X{tA) and  
(I’. J ) 

are independent.  Also, X{tJ5) and  X[$f) are mdepen-  
dent. In general, any two random variables .X:f,‘i) and  
X,‘,‘:$‘) are independent if no  interconnection ongmating at 
channel (i, j) can have a  m inimum distance trajectory that 
passes through both channels (I, k) (from I-+ k) and  (1’, k’) 
(from I’ + k). 

2) 4, = 2  XC!, k) 
(1.J) 

all channels (i , j) 
other than (I, k) 

= total number  of interconnections entering 
channel (I, k) at 1. (1) 

Each random variable X,, is the sum of independent Pois- 
son distributed random variables. Thus X,, is Poisson with 
parameter equal to the sum of the means of these random 
variables. 

3) Z,, = the number  of interconnections generated in 
channel (1, k) and  that leave the channel from node k. This 
excludes interconnections that are generated in (I, k) but 
end  within the channel and  the interconnections that leave 
the channel from node 1. The  random variables Z,, are 
independent and  Poisson distributed. 

Now suppose that the means for the random variables 
Xlk, Xk,, Z,k, and  Z,, are given. How does one estimate the 
width of channel (I, k)? 

A Diffusion Mode l for Routing Channels: Consider a  
channel  (I, k) with length I,,, and  define: 

1) X,,(t), OG t< I,, to be  the number  of interconnections 
at t that have entered the channel at 1. Thus X,,(O)=X,, 
(the left or lower node of any channel is considered at 
t=O). For any O<t<I,, the random variable X,&J is 
Poisson distributed with parameter = X,, * e  --(I’, where X,, is 
the mean  of X,,. Similarly, define X,,(t), OG t <I,, to be  
the number  of interconnections at t that have entered the 
channel at node k. The  random variable Xk,(t) is Poisson 
distributed with parameter = &,. e  -a(‘lk --I), where Fkl = 
EX,,. Also, X,,( I,,)= X,,. 

2) Let Z,,Jt), OG t<I,, be the number  of interconnec- 
tions at t that have originated in the interval (0, t) and that 
move towards k. Assume that interconnections originate 
uniformly over (0, t) and that any interconnection originat- 
ing at r & (0, t) chooses to move toward k with probability 
plk. Since the interconnection length is exponentially dis- 
tributed, the probability that an  interconnection starting at 
7  E (0, t) have length greater than (t - 7) is e  -a(f-Ti. It then 
follows that 

AP,k --(l-e-“‘). 

Similarly, 

Z,,(t)=EZ,,(t)=l’“h(l-p,;)e-‘(‘-’)d7 
t 

= yp’*) (l--,-a(/,,-0) (3) 
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Fig. 4. Plot of&(t), ik,(t), ?&(t), and &,(t). 

F&t), Xk,(t), z&t), and Tk,(t) are sketched in Fig. 4, as a 
function of t. The width of the channel at t can now be 
defined as 

Wlk(t)=Xlk(t)+Xk,(t)+Z,k(t)+Zkl(t). (4) 

k&(t) is the sum of independent Poisson random vari- 
ables. Thus W,,(t) is Poisson with mean 

EW,k(t)=XIke-a’+X,,e-a(“k-f)+ +(l-e-ai) 

+ X(1 -PI/J 
a 

(l--,--av/k--r))~ (5) 

The average width of channel (I, k) denoted as Fk can be 
easily obtained by finding the maximum of (5) in t. 

III. ANALGORITHMFORESTIMATING CHANNEL 
WIDTHS 

We now provide a simple algorithm for estimating Wlk. 
This algorithm consists of the following two main steps: 

1) Use Algorithm 1 below to compute x,, and Fkr, for 
all channels (1, k). 

2) Evaluate 

w,k = ,ppw)~ for all channels (I, k). (6) 

Step 2 involves simple computation based on (5) and (6). 
Thus no further details are presented for this step. 

Algorithm 1: 
A) For each channel (i, j) 
1) Find the shortest paths to (I, k), for all channels 

(I, k)#(i, j). This is done by labeling the channel graph 
using a shortest path algorithm, such as Algorithm B in [2]. 
Instead of labeling the nodes, however, the edges are 
labeled. The label wrk attached to edge (I, k) is the shortest 

distance from (i, j) to node I or k whichever is farthest 
from (i, j). A path p={pi, p2;..,p,,,} is a shortest dis- 
tance path from node p, to p,,, if 

W  
P,P,+1 

=w 
PI-IP, +*P,P,+l’ 

V 2GiGm- 1. 

2) Using Algorithm 1.1, obtain, for all channels (I, k)# 
ti, j) 

x{!,i”,) and z)k;f) 1, 1, 
where 

F;!$’ = EX{!$’ 1, 1, . 
B) Evaluate, for all channels (I, k) 

xk = 2 q$yj:‘and 
V(i, j)z(l, k) 

% I= 2 j&k 7.0 
(J.J) ’ 

Yi, i)+(l, k) 

Step B above is actually accomplished in Step A.2 by 
accumulating 

x,, + x,, + F{;,3J!y ) v(*, k)f(i, j) 
everytime a new channel (i, j) is processed. 

Algorithm 1.1: (For channel (i, j_>) 
1) From (2) and (3) obtain Zij(Zij) and .?$(O). The 

probability pij,=nj/(ni+nj) where n, is the number of 
edges connected to node i excluding (i, j), and nj = number 
of edges conne_cted to j excluding (i, j). 

2, x(i, j) (‘,k) -Z..(O)/n, for all edges (I, k) connected to 
node i excluding (i, j). 

X{!,j”,) + Zij(Zij)/nj for all edges (I, k) connected to node 
j excmding (i, j). 

3) For each channel (I, k) connected to channel (i, j) 

F,k + F,k + q/,3J;‘. 

Insert {s,(Z, k)} at the bottom of a circular queue Q, 
where s is the side I or k from which the interconnections 
generated in channel (i, j) enter (I, k). 

4) While Q#c#J do 
5) Begin 
6) Select element {s,(Z, k)} from the top of Q 
7) Let s correspond to side I and let I be the lower 

or left node of channel (I, k). Then 

F&y;) ( I,, ) +- qy‘j’ (0) e -4 

%$?J5)( t)denotes the average number of intercon- 
nections at t; OG t<Z,, generated in chamrel (i, j) 
and entered channel (1, k) at 1. 

T{/,,jz) (0) = F{/;$) and Fl/,,A) ( I,, ) = F{r;f) 

8) For all channels (k, p), p#Z using the labeling done 
in Step A. 1 of Algorithm 1, determine 

(a) m  = number of channels for which wkp = wlk + I,,. 
We denote these as shortest path channels. 

(b) m* = number of dead end channeZs=number of 
channels (out of m  found above) (k, p) for which 
there is no channel (p, q) such that wp4 = wkp + Zp4. 
The remaining m-m* channels are called through 
channels. 
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Fig. 5. Labeling of the channel graph starting from channel (0,l). 

9) If m*=O or m=m* then 

q[J’) +-~jk(Z,k)/m, for all m  shortest path chan- 
nels 

10) Else 
11) Begin 
12) F{t;p) c x,,( Z,,)/c, for all dead end channels 
13) ~ Ftfjp) c X,,( Z lk)( 1  - m*/c)/( m  - m*), for all 

through channels where c is a  constant 
14) End 
15) Xkp + Xkp +x{$$‘), for all shortest paths channels 
16) For all through channels (k, p) 
17) Insert {k,(k, p)} at bottom of Q  
18) Delete {s,(Z, k)} from top of Q  
19) End. 
Remark: In steps 7-17 s was taken to be  the lower or 

left node I of channel (I, k). Similar computations are done 
for s=k. 

The  above algorithm contains the most important steps 
necessary to compute W lk. W e , therefore, give some 
numerical examples to help explain how it is used to 
compute F ltj”,) and  F{/;f). 

W e  consider (i, j)=(O, 1). The  channel graph is first 
labeled using the shortest path algorithm (see F ig. 5). The  
needed channel lengths are given in Table I. 

Now z,,(O) and  ~o,(Zo,) are computed as stated in Steps 
1  -and 2  of Algorithm 1.2. 

Let A=6.198 pins per m m  
a=2.385 per m m  

I,, = 1.04 m m , and po, =2/3. From (2) and  (3) we 
obtain 

Z,(O) = W-PO,) (y (1 -ePcx’ol) 

and  

CH LENGTH 
(4 

iij iiij wij lwij-Wijl IWijiijI 

(031) 1.045 3.64 3.13 2 0.86 0.64 

(0,7) 0.343 3.36 3.73 1 1.29 1.42 

(73) 0.507 3.06 2.96 3 0.03 0.02 

(6,s) 0.433 3.00 2.46 4 0.58 0.98 

(5,4) 0.105 2.52 2.93 4 0.26 0.62 

(l-4) 0.343 3.33 2.70 1 1.28 1.03 

(12) 1.045 3.71 3.33 2 0.89 0.73 

(2,3) 0.343 3.34 2.95 3 0.18 0.03 

(4,3) 1.045 2.85 2.52 4 0.68 0.93 

(3,15) 0.418 3.51 3.33 3 0.27 0.18 

(14315) 0.313 2.85 2.98 3 0.09 0.01 

(13,14) 0.836 2.92 2.93 3 0.05 0.04 

(5,131 0.418 3.14 2.78 4 0.48 0.73 

(13,12) 0.134 3.22 3.45 2 0.68 0.78 

(11,121 0.194 2.72 3.50 5 1.38 0.80 

(lO,ll) 0.239 3.21 4.56 6 1.56 0.67 

(6,101 0.552 2.89 3.62 2 0.52 0.85 

(9910) 0.299 2.98 3.93 7 2.33 1.55 

(8,9) 0.209 2.79 3.83 4 0.72 0.86 

(78) 0.552 3.34 4.39 3 0.19 0.66 

(821) 0.179 2.92 3.15 3 0.05 0.08 

(21,201 0.209 2.93 3.85 3 0.04 0.43 

(920) 0.179 2.47 3.35 2 0.30 0.74 

(20,19) 0.537 2.92 5.11 5 1.22 0.05 

(11,19) 0.179 2.49 3.33 1 0.94 1.28 

(19,18) 0.194 3.27 4.00 3 0.15 0.50 

(12,18) 0.179 2.94 3.15 4 0.62 0.48 

(18,17) 0.836 3.33 2.79 4 0.37 0.73 

(14,17) 0.313 2.64 2.92 3 0.22 0.05 

(17,16) 0.313 2.82 2.07 2 0.49 0.05 

(15,!6) 0.313 2.94 2.59 5 1.20 1.49 

(16,24) 0.493 3.37 2.44 5 0.89 1.64 

(2324) 1.149 3.61 1.90 3 0.32 0.80 

(18,231 0.493 3.59 2.85 3 0.31 0.09 

(2223) 0.940 3.56 1.95 2 0.83 0.04 

(21,221 0.493 3.39 2.68 3 0.21 0.19 

P& = Measured width of channel (i, j) in terms of number of tracks. 
W ’,i =Estimated width of channel (i, j) in terms of number of tracks 

when each channel has an individual generation rate hi,. 

Hence 
= 1.589. and  
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We now consider computations for the intermediate 
channel (0,7) (i.e., Step 7 of Algorithm 1.2). Using the 
diffusion model presented in Section II, the expected num- 
ber of interconnections leaving node 7 is given by 

qy,‘( I,, ) = q’;,)e -a’07 

=0.35. 
Each interconnection, leaving node 7, chooses one of the 
two available channels (7,6) and (7,s) with probability 
l/2. Therefore, 

F&y=qgf1’=0.175. 

Channels (5,6) and (6,lO) are examples of what we call 
dead end channels. This can be seen for channel (6,lO) by 
investigating the labels of channels (6, lo), (9,lO) and 
(10,ll). Note that w, ,o#w, ,,,+I, i. and w,,, ,, #w, ,,, + 
1 ,0 , ,. Similarly for channel (5,6), ws ,0 #w, 5 + f6 ,,, and 
w7 6 # ws 5 + I, 6 (refer to Step 8.b of Algorithm 1.2). 

Since channel (5,6) is a dead end, we assume that an 
interconnection leaving node 5 will enter channel (5,6) 
with a small probability l/c. For example, with 

%$;t) 0) =0.136 and c= 100, it follows that . ( 

~$$=~{$:))/lOO= 1.364X 10e3 and 

@‘;;‘=~$,$,‘(l- 1/100)=0.135. 

IV. AN EXAMPLE 

We now apply our algorithm to estimate channel widths 
for the chip in Fig. 1. The layout of this chip is due to 
Preas [3]. 

Following are the major characteristics of the chip: 
1) Number of devices: 1127. 
2) Metal to metal spacing: 18 pm 

Polysilicon to polysilicon spacing: 23 pm 
3) Dimensions (Die size: from scribe line to scribe line): 

Area = Length X Height 

=3.025 by 2.575=7.79 mm2. 

4) Parameters h and cy: 
The parameters obtained from this chip are 

A = 6.198 pins per mm 

a = 2.385 per mm. 

First we test our Poisson assumption of interconnections 
generation, and the exponential assumption for intercon- 
nections length. 

The parameter X is estimated by simply dividing the 
number of pins P by twice the total length of the channels. 
Thus 

A=P/ 2 z Iii . 
( 1 (i.i) 

(7) 

Remark: It has been pointed out by one of the referees 

0.6 

t 

- MEASURED INTERCONNECTION 
GENERATION DISTRIBUTION 
IN 0.224mm 

--- POISSON WITH PARAMETER 
0.224 A 

NUMBER OF INTERCONNECTIONS 

Fig. 6. Interconnection generation distribution. 

that (7) may not be a good estimate for A when a sizable 
fraction of the interconnections connect more than two 
pins. He suggested the following generalization: 

h=(P-N)/ 2 lij (7’) 
Wi,i) 

where N = number of interconnections. 
The measured (solid curve) and the model predicted 

(broken curve) distributions for the number of interconnec- 
tions generated in 0.224 mm of channel length are shown 
in Fig. 6. The model predicted curve is obtained by plot- 
ting 

tO.224G e -o.224x 
k! 

while the measured curve is obtained by dividing the 
channels into subintervals of length 0.224 mm and count- 
ing the number of pins in each subinterval. The measured 
mean of this sample is 1.188, and the measured variance is 
1.341 which is within the 95-percent confidence interval of 
the hypothesized variance. 

Model predicted (broken curve) and measured (solid 
curve) cumulative interconnection length distributions are 
given in Fig. 7. The model predicted curve is a plot of 
1 -epa’, whereas the measured curve is derived from a 
histogram obtained by measuring the lengths of all wires. 
The parameter (Y is determined by computing the reciprocal 
of the sample average of all wire lengths. 

In Sections II and III, we have assumed that intercon- 
nection generation rate A is uniform over the channel 
graph. To obtain better channel width estimates (at the 
expense of increased storage requirement) we also consider 
the case when each channel (i, j) is assigned an individual 
interconnection generation rate Xii = half number of pins 
in (i, j). Thus for every channel (i, i), h in (2) and (3) is 
replaced by hij. 

Table I gives the actual and estimated channel widths 
(units used are number of tracks) for both the individual 
and the average generation rate case. The last two columns 
show the absolute deviation of the estimated from the 
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TABLE11 
COMPARISON OF MEASURED AND ESTIMATED CHIP DIMENSIONS 

1 Height mn 1 1.946 1 1.967 

I I I 
1.899 1 

I 

LENGTH (mm) 

Fig. 7. Interconnections length distribution. 

actual widths in units of standard deviations. Table II 
compares the estimated and the actual dimensions of the 
bounding rectangle (the smallest length and  height rectan- 
gle that can enclose the logic blocks and their interconnec- 
tions). 

V. APPLICATIONSTOZAYOUT 

W e  have described in this paper  and  in [l] statistical 
mode ls for interconnections in large integrated circuits. W e  
have demonstrated that using two parameters; namely 
average intercbnnection length and  average wire genera- 
tion, as well as certain simple rules for interconnection 
trajectories, it is possible to obtain satisfactory and  quick 
estimates of chip area and routing channel widths. W e  now 
discuss some applications of these results to the layout of 
complex integrated circuits. 

The  application of the mode l in [l] to master slice layout 
is well known [4]. A good prediction of the maximum 
width of routing channels is used to determine the dimen- 
sions of a  “universal” two-dimensional N X N array of logic 
blocks. This array could then be  routed in different ways to 
construct different computing machines. One  advantage of 
this design methodology is the direct applicability of many 
placement and  routing algorithms that have been devel- 
oped for printed circuit boards. However, two serious 
problems are frequently encountered. The  first is the failure 
to complete the routing due to unavoidable routing conges- 
tions. This could turn the layout process into a  “computa- 

tional nightmare.” The  second problem is that of ineff; 
cient utilization of chip asea which is caused by the rigid 
master slice layout. 

One  way to overcome the master slice layout problems is 
by tailoring (customizing) the layout to the specific design. 
F irst, decompose the design into reasonable size logic 
blocks. F ind compact layouts for them. Then tightly place 
and interconnect the blocks to yield the final layout. The  
statistical mode l described in this paper  can be  used to 
assist this layout process as follows: 

(i) Chip Planning: G iven the relative positions of the 
logic blocks, in an  early stage of the chip design, one  could 
use the statistical mode ls to predict the chip area. 

(ii) Comparison of Placements: G iven several feasible 
placements of the logic blocks, the statistical mode ls could 
be  used to determine which placement (or placements) 
yields the smallest overall area. 

(iii) Routing: G iven a  placement of the logic blocks how 
should the routing be  done? One obvious routing strategy 
would be  to assign arbitrarily large widths to the routing 
channels. But then we may either waste too much area, or 
run into routing difficulties, or both. An alternative routing 
methodology would be  to constantly change the placement 
each time  an  interconnection or a  group of interconnec- 
tions is routed. This is likely (but not guaranteed) to 
produce a  good compacted layout, but at the expense of 
excessive computations. A third routing strategy which was 
given in [3] is to first estimate the widths of the channels, 
do  partial routing, then mod ify the placement and  so on  
until routing is completed satisfactorily. Unfortunately, the 
proposed methods in [3] for estimating channel widths (in 
addition to the attempt to m inimize total chip area) require 
too much computing time. 

One  way of improving the computational efficiency of 
the routing algorithm described in [3] would be  to use the 
statistical estimates of channel widths, at least as an  initial 
step. O ther improvements are also possible, but will not be  
discussed here. 

A Remark on  Estimating h  and  (Y: For the above applica- 
tions it is assumed that the mode l parameters X and (Y are 
known. These parameters can be  estimated as follows: The  
number  of interconnections generated per unit channel 
length X is simply estimated by dividing the total number  
of pins by twice the sum of the lengths of the channels (as 
in Section IV). The  average interconnection length l/a 
could be  estimated by routing a  randomly chosen sample 
of interconnections and finding the sample average of their 
lengths. 
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Controlled Rounding Arithmetics, for 
Second-Order Direct-Form Digital Filters, 

that Eliminate All Self-Sustained Oscillations 
DEBASIS MITRA, MEMBER, IEEE, AND VICTOR B. LAWRENCE, MEMBER, IEEE 

Abstract- Quantization often allows a recursive second-order filter to 
oscillate even when the underlying linear model is absolutely stable and 
there is no external signal present to excite the filter. One of the 
significant innovative ideas recently introduced to combat this condition is 
“controlled rounding” which utilizes memory in the rounding decision 
process. Specifically, the selection at time (nt 1) of the state variable of 
filter, x,+ , , depends not only on the quantity to be rounded, but also on 
the two previous outputs of the rounding operation, x, and x,- ,; the latter 
two quantities are anyhow readily available at the time of decision. 

This paper gives controlled rounding arithmetics that suppress all self- 
sustained oscillations in all direct-form second-order filters for which the 
underlying ideal linear model is stable. Not just rounding but also overflow, 
and hence all the features that make a digital filter a finite state machine, 
a& taken into account. The incremental cost of the hardware which is 
mostly on account of the additional logic is reckoned to be slight. 

I. INTRODUCTION 

T 
HE FACT that a digital filter is a finite state ma- 
chine is the common cause for a variety of dis- 

crepancies between the filter behavior and that of the 
underlying ideal linear model which the filter is intended to 
imitate. One of these forms of distortion is of primary 
concern here and it is the widely studied topic of self- 
sustained oscillations in the basic modular unit of most 
present day digital filters, the direct-form second-order 
digital filter [ l]-[7] h s own in Fig. 1. Even when the filter is 
intended to be idle,’ not filtering, the compounding of 
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‘That is, r4, ~0 in Fig. 1. We call oscillations in such conditions 

self-sustained oscillations. 

Fig. 1. Schematic of the recursive part of second-order direct-form 
digital filter. 

feedback with the nonlinearity of the quantization opera- 
tion often allows the filter to oscillate. Such oscillations can 
be a severe handicap in many applications; this is espe- 
cially so in applications where the idle channel noise is a 
source of great concern. Therefore, the suppression of 
self-sustained oscillations without incurring substantial dis- 
advantages in other respects is important. 

Recently various significant innovative ideas have been 
introduced to combat this condition [3]-[ 111. The one that 
concerns us directly is the notion of controlled rounding 
[3]. In controlled rounding the decision involved in round- 
ing utilizes memory. Specifically, (see Fig. 2) the selection 
at time (n+ 1) of the value for x,+, depends not only on 
the quantity that is to be rounded, but also on the two 
previous outputs of the rounding operation, x, and x,-,; 
the latter two quantities are anyhow readily available at the 
time of decision (n + 1). It is fortuitous that recent innova- 
tions in hardware make the acceptance of controlled 
rounding more’attractive now than in the past. The partic- 
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