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Abstract. A population balance model for a particulate suspension transport with size6
exclusion capture of particles by porous rock is derived. The model accounts for particle7
flux reduction and pore space accessibility due to restriction for large particles to move8
through smaller pores – a particle is captured by a smaller pore and passes through a9
larger pore. Analytical solutions are obtained for a uniform pore size medium, and also10
for a medium with small pore size variation. For both cases, the equations for averaged11
concentrations significantly differ from the classical deep bed filtration model.12

Key words: deep bed filtration, pore size exclusion, accessibility, stochastic model, averaging.13

Nomenclature14

c total suspended particle concentration, L−3.

C concentration distribution for suspended particles, L−4.

f size distribution (probability distribution function), L−1.

fT size distribution of rs-particle population retained in rp-pores, L−2.

h total vacant pore concentration, L−3.

H concentration distribution for vacancies, L−4.

J distribution of an rs-particle population flux per unit of cross-section area,

L−3 T−1.

J distribution of an rs-particle population flux through the rp-pores per unit of

cross-section area, L−4 T−1.

k0 initial permeability, L2.

k(σ ) formation damage function, dimensionless.

L core length, L.

p pressure, M/T2L.

P probability of a particle with radius rs to meet a pore with radius rp.

rp pore radius, L.

rs particle radius, L.

t dimensional time, T.

T dimensionless time.15
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2 A. SANTOS AND P. BEDRIKOVETSKY

U fluid velocity, L/T.

x dimensional linear co-ordinate, L.

X dimensionless linear co-ordinates.

〈x〉 average penetration depth, L.

Greek Symbols

α flux reduction factor.

δ Dirac’s delta function.

φ porosity.

λ′ dimensional filtration coefficient, L−1.

λ dimensionless filtration coefficient.

µ viscosity, ML−1T−1.

�(rs, rp) concentration distribution for particles with radius rs captured by

pores with radius rp, L−5.

�(rs) concentration distribution for retained particles with radius rs, L−4.

σ total deposited particle concentration, L−3.

Subscripts and Superscripts

0 initial value at T =0.

f front.

p pore/vacancy.

s suspended (for particles).

tr transition.

T trapped (for retained particles).

(0) boundary value at X =0.16

1. Introduction17

Deep bed filtration of water with particles occurs in several industrial and18
environmental processes like water filtration and soil contamination. In19
petroleum industry, deep bed filtration of drilling fluid happens during well20
drilling; it also takes place near to injection wells during seawater injection21
causing injectivity reduction.22

The particle capture in porous media can be caused by different physical23
mechanisms (Elimelech et al., 1995):24

• size exclusion (large particles are captured in small pores and pass25
through large pores);26

• electrical forces (London – Van der Waals, double electrical layer, etc.);27
• gravity segregation;28
• multi particle bridging.29

In the current paper, the size exclusion mechanism is discussed.30
A phenomenological model for the particle-capture and permeability-31

damage process was proposed by Iwasaki (1937) and used in filtration32
processes (Herzig, et al., 1970) and in well injectivity with rock permeabil-33
ity decline (Pang and Sharma, 1994; Wennberg and Sharma, 1997). The34
model assumes linear kinetics of particle deposition, and exhibits a good35
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 3

agreement with laboratory data. So, the model can be used for prediction36
purposes, like forecast of well injectivity decline based on laboratory core-37
flood tests. Nevertheless, the model does not distinguish between different38
mechanisms of formation damage. Therefore, the model cannot be used39
for diagnostic purposes, like determination of the dominant capture mech-40
anism from well data.41

The model predicts that the particle breakthrough happens after injec-42
tion of one pore volume. Nevertheless, several cases where the break-43
through time significantly differs from one pore volume injected have been44
reported in the literature for particulate and polymer suspensions (Dawson45
and Lantz, 1972; Bartelds et al., 1997; Veerapen et al., 2001; Massei et al.,46
2002).47

In case of size exclusion mechanism, the larger are the particles and the48
smaller are the pores, the more intensive is the capture and the larger is49
the formation damage. Nevertheless, several attempts to correlate the for-50
mation damage with sizes of particles and pores were unsuccessful (Oort et51
al., 1993; Bedrikovetsky et al., 2001, 2003). It could mean that either size52
exclusion mechanisms never dominate, or the phenomenological model for53
average concentrations is not general/universal enough. One of ways around54
this contradiction is micro scale modelling of each capture mechanism.55

Different network micro models have been developed by Payatakes56
et al. (1973, 1974), Sahimi and Indakm (1991), Rege and Fogler (1988),57
(see Khilar and Fogler, 1998), Siqueira et al. (2003). Different physical58
mechanisms of particle retention are included in these models.59

Sharma and Yortsos (1987a), derived basic population balance equations60
for transport of particulate suspensions in porous media. The model accounts61
for particle and pore size distribution variation due to different particle cap-62
ture mechanisms. It is assumed that an overall pore space is accessible for63
particles and the particle population moves with the average flow velocity64
of the carrier water. In the case of porous medium with the uniform pore65
size distribution, this assumption results in independent deep bed filtration66
of different particle size populations. Nevertheless, during deep bed filtration67
with size exclusion mechanism, particles smaller than the pore radii should68
pass the rock without being captured and particles larger than the pore radii69
should not enter the rock.70

The pore size exclusion supposes that the particles can enter just71
larger pores, i.e. only the fraction of porosity is accessible for particles.72
Therefore, the particles are carried by water flowing just via the accessible73
pore space, i.e. the water flux carrying particles of a fixed size is just a frac-74
tion of the overall water flux via porous media. The effects of porous space75
accessibility and flux reduction due to finite size of polymer molecules have76
been observed and mathematically described for flow of polymer solutions77
in rocks (Dawson and Lantz, 1972; Bartelds et al., 1997).78

Journal: TIPM MS.: TIPM 1847 CMS: DO00015175 � TYPESET DISK LE � CP Disp.: 6/5/2005 Pages: 32



U
n
c
o
rr

e
c
te

d
 P

ro
o
f

4 A. SANTOS AND P. BEDRIKOVETSKY

In the current work, the effects of particle flux reduction and porous79
space inaccessibility due to selective flow of different size particles are80
included into the model for deep bed filtration. The terms of advective flux81
reduction and accessibility appear in the population balance equation. An82
analytical solution for the uniform pore size medium shows that deep bed83
filtration does not occur – large particles do not enter the porous media,84
and small particles move without capture.85

For a small pore size variation medium, an analytical solution found86
shows that only intermediate size particles perform deep bed filtration. In87
this case, the population velocity is particle size-dependent. The averaged88
equations for deep bed filtration of intermediate size particles significantly89
differ from the classical deep bed filtration model.90

In Section 2, the classical deep bed filtration equations are presented. Its91
stochastic generalization accounting for pore and particle size distributions92
and for flux reduction with pore accessibility is derived in Section 3. The93
initial-boundary value problem for suspension injection has a Goursat type;94
it allows obtaining the exact formulae for captured-particle and pore popu-95
lations at the inlet cross-section without solving the initial-boundary value96
problem (Section 4). Section 5 contains analytical solution for a single pore97
size medium. Exact analytical solution and averaged equations for deep98
bed filtration in a media with small pore size variation are also derived in99
Section 6.100

2. Classical Deep Bed Filtration Model101

The deep bed filtration system consists of equations for the particle mass102
balance, for the particle capture kinetics and of Darcy’s law (Iwasaki, 1937;103
Herzig et al., 1970)104

∂c(X,T )

∂T
+

∂c(X,T )

∂X
=−

1

φ

∂σ(X,T )

∂T
,

105
∂σ(X,T )

∂T
=λ(σ)φc(X,T ), (1)

106

U =−
k0k(σ )

µL

∂p

∂X
,

107

where λ(σ)=λ′(σ )L is the dimensionless filtration coefficient that is equal108
to probability that a particle will be captured during flow through a109
specimen; X and T are dimensionless coordinate and time; c(X,T ) is the110
suspended particle concentration that is equal to the number of suspended111
particles per unit of pore space volume; σ(X,T ) is the deposited particle112
concentration that is equal to the number of retained particles per unit of113
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 5

porous rock volume. The formation damage function k(σ ) shows how per-114
meability declines due to particle deposition.115

The velocity U is independent of X due to suspension incompressibility.116
Therefore, the third equation (1) separates from the first and second equa-117
tions that can be solved independently. The first and second equation (1)118
form the kinematics model for transport and capture of particles, the third119
equation is a dynamical model that predicts pressure gradient increase due120
to permeability decline with the particle retention.121

In the case of constant filtration coefficient, the particle penetration122
depth equals 1/λ.123

In the case of size exclusion capture, the larger are the particles and the124
smaller are the pores, the higher is the capture rate. Nevertheless, the phe-125
nomenological model (1) does not account for particle and pore size distri-126
butions.127

In the current work, the emphasis is on the size exclusion mechanism of128
particle capture in the model accounting for particle and pore size distribu-129
tions.130

It is worth mentioning that particles move with the carrier water veloc-131
ity, according to the continuity equation (1). Analytical solution for one-132
dimensional deep bed filtration contains the suspended concentration shock133
that moves with the carrier water velocity, the particles appear at the core134
outlet after one pore volume injected and the suspended and captured con-135
centrations are equal to zero ahead of this shock (Herzig et al., 1970).136

3. Governing Equations137

In this section we derive the population balance equations for flow of water138
with suspended particles in porous media. In the derivations of the kinetic139
equations, we will proceed from an assumption similar to the Boltzmann’s140
assumption about “molecular chaos” (Landau and Lifshitz, 1986). Some141
particles are captured by the rock from the suspension by size exclusion142
mechanism, i.e. if a large particle arrives to a small pore, rp <rs, it is cap-143
tured and plugs the pore; otherwise, a small particle rp >rs passes the pore144
without being captured (Figure 1). It is also assumed that each particle can145
plug only one pore, and vice versa.146

The geometric model structure of the pore space is as follows:147

• locally the porous space is a bundle of parallel capillary;148
• the flux through each pore is proportional to the fourth power of its149

radius;150
• the complete mixing takes place at the length scale l, i.e. there is a non-151

zero probability for a particle moving through any pore at the point x152
to get into any pore at the point x + l.153
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6 A. SANTOS AND P. BEDRIKOVETSKY

Figure 1. Schema of the large particle entrapment by small pores.

Figure 2. Separation of particle flow and capture by inserting the mixing chambers

(sieves) into a capillary bundle porous media: (a) particle trajectories in capillar-

ies and chambers, (b) frontal cross section, (c) schema for links between pores in

sequential capillary bundle sections.

The example of the porous medium under consideration is shown in154
Figure 2(a)–(c) – it is a bundle of parallel capillary alternated by mix-155
ing chambers. The complete mixing of different size particles occurs in the156
chambers. The particle transport and capture occurring simultaneously in157
natural rocks, are separated in the proposed model. The particles move158
in the sections of a bundle of parallel capillary without being captured159
(Figure 2a). The capture occurs at the thin pore inlet, where large parti-160
cles arrive. So, an inlet cross-section of each parallel capillary section acts161
as a sieve, i.e. large particles do not enter thin pores and are captured at162
chamber outlets.163

It is assumed that the chamber volume is negligible if compared with the164
capillary (pore) volume.165
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 7

In order to describe the pore size exclusion mechanism, one should166
introduce distributions of suspended particles, captured particles and pores167
over radius168

∞
∫

0

fs (rs, x, t)drs =1,

∞
∫

0

fT (rs, x, t)drs =1,

∞
∫

0

fp

(

rp, x, t
)

drp =1. (2)

169

The product fs (rs, x, t)drs is the fraction of particles with radii between170
rs and rs +drs. The concentration C(rs, x, t)drs of suspended particles with171
radii between rs and rs +drs is defined as the number of particles with radii172
between rs and rs +drs per unit of pore volume173

C(rs, x, t)drs = c(x, t)fs(rs, x, t)drs. (3)174

Strictly speaking, C(rs, x, t)drs is a concentration, and C(rs, x, t) is a175
“concentration density”, or “concentration distribution”.176

The concentration c(x, t) is the total number of particles per unit of177
pore volume.178

From Equations (2) and (3) follows that the total particle concentration179
is180

∞
∫

0

C(rs, x, t)drs = c(x, t). (4)

181

Let us introduce the fraction of particles with radii between rs and182
rs + drs have been captured by pores with radii between rp and rp + drp :183
fT (rs, rp, x, t)drs drp. The particle concentration with radius rs that have184
been captured by pores with radius rp is called �(rs, rp, x, t) (Figure 1):185

�(rs, rp, x, t)drp drs =σ(x, t)fT (rs, rp, x, t)drpdrs. (5)186

The product �(rs, rp, x, t)drsdrp is equal to the number of particles with187
radii between rs and rs +drs which have been captured by pores with radii188
between rp, and rp +drp per unit of the rock volume.189

The total retained concentration σ(x, t) is equal to the number of par-190
ticles captured in a unitary volume of a porous medium.191

The size exclusion capture mechanism assumes that the “rs” particle is192
captured by the “rp” pore if rs >rp. Therefore, �(rs, rp, x, t)=0 for rs <rp,193
and the fraction of captured particles with radii between rs and rs +drs is194

fT (rs, x, t)drs =





rs
∫

0

fT (rs, rp, x, t)drp



drs. (6)

195
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8 A. SANTOS AND P. BEDRIKOVETSKY

Integrating (5) in rp and accounting for (6), we obtain the concentration196
of captured particles with radius in the interval [rs, rs +drs]:197





rs
∫

0

�(rs, rp, x, t)drp



drs =�(rs, x, t)drs. (7)

198

From (5)–(7) follows that199

�(rs, x, t)drs =σ(x, t)fT (rs, x, t)drs. (8)200

Integration of (7) in rs from zero to infinity results in the total captured201
particle concentration:202

∞
∫

0

�(rs, x, t)drs =σ(x, t). (9)

203

The vacant pore concentration H(rp, x, t)drp with radius in the interval204
[rp, rp +drp] is defined as205

H(rp, x, t)drp =h(x, t)fp(rp, x, t)drp, (10)206

where the total vacant pore concentration is207

∞
∫

0

H(rp, x, t)drp =h(x, t). (11)

208

It is assumed that a captured particle plugs one pore only, and vice209
versa. Besides, the size exclusion mechanism assumes that an rs-particle can210
be captured by an rp-pore if rs >rp, so �(rs, rp, x, t)= 0 for rs <rp. There-211
fore, the variation on the total number of pores with radii in the interval212
[rp, rp +drp] is equal to the total number of particles captured in pores with213
size in the interval [rp, rp +drp]:214

H(rp, x, t)drp =H(rp, x,0)drp −





∞
∫

rs

�(rs, rp, x, t)drs



drp. (12)

215

Differentiation of (12) with respect to t results in216

∂H(rp, x, t)

∂t
=−

∞
∫

rp

∂�(rs, rp, x, t)

∂t
drs. (13)

217

Equation (13) means that plugging of a pore is caused by the capture218
of whatever larger particle.219
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 9

Let us derive the population balance for suspended and captured parti-220
cles.221

A particle with radius rs passes through the pore with radius rp only if222
the particle radius is smaller than the pore radius, rs <rp. Therefore, small223
pores (rp < rs) are inaccessible for large particles. Particles flow in larger224
pores only, i.e. in an accessible pore volume. Assuming that locally the pore225
space is a bundle of parallel capillary, we introduce the accessibility factor226
γ for particles with radius rs as a fraction of pore volume with capillary227
radii larger than rs:228

γ (rs, x, t)=

∫ ∞

rp
r2

pH(rp, x, t)drp
∫ ∞

0
r2

pH(rp, x, t)drp

. (14)
229

Consequently, particles with radius rs move in the γ (rs, x, t)-th fraction230
of pore volume.231

Let us define the flux J (rs, rp, x, t)drs/drp of particles with specific radius232
rs via pores with a specific radius rp and also the total flux J (rs, x, t)drs of233
particles with radii in the interval [rs, rs + drs]. From the assumption that234
locally the pore space is a bundle of parallel capillary, we obtain:235

J (rs, x, t)drs =





∞
∫

rs

J (rs, rp, x, t)drp



drs. (15)

236

The flux of particles with radius rs via pores with smaller radius (rp <rs)237
equals zero. Nevertheless, water flows via pores of all sizes including thin238
pores. Therefore, the water flux carrying rs-particles is lower than the over-239
all water flux in the porous medium.240

We assume that the flux via the pore rp is proportional to the fourth241
power of the capillary radius r4

p (Hagen–Poiseuille formula, see Landau and242
Lifshitz, 1987). Consequently, the fraction of the flux via pores with radii243
varying from rp to rp +drp is244

F(rp, x, t)drp =
H(rp, x, t)r4

pdrp
∫ ∞

0
H(rp, x, t)r4

pdrp

. (16)
245

The flux of particles with specific radius rs via pores with specific radius246
rp equals the total flux of particles with radius rs times fraction of the total247
flux via the pores with radius rp only:248

J (rs, rp, x, t)drsdrp =UC(rs, x, t)
H(rp, x, t)r4

pdrp
∫ ∞

0
H(rp, x, t)r4

pdrp

drs. (17)
249

Journal: TIPM MS.: TIPM 1847 CMS: DO00015175 � TYPESET DISK LE � CP Disp.: 6/5/2005 Pages: 32



U
n
c
o
rr

e
c
te

d
 P

ro
o
f

10 A. SANTOS AND P. BEDRIKOVETSKY

The above explanation of (17) would become more rigorous by substi-250
tuting the terms “specific radius” rs and rp by the terms “in the intervals”251
[rs, rs +drs] and [rp, rp +drp], respectively.252

The total flux J (rs, x, t)drs of particles with radii in the interval [rs, rs +253
drs] accounts for transport via all pores with radius larger than rs:254

J (rs, x, t)drs =UC(rs, x, t)

∫ ∞

rs
H(rp, x, t)r4

pdrp
∫ ∞

0
H(rp, x, t)r4

pdr
drs. (18)

255

Introducing the fraction of the total flux that carries particles with256
radius rs257

α(rs, x, t)=

∫ ∞

rs
r4

pH(rp, x, t)drp
∫ ∞

0
r4

pH(rp, x, t)drp

(19)
258

from (18) and (19), we obtain the following formula for the flux of particles259
with radii varying from rs to rs +drs:260

J (rs, x, t)drs =Uα(rs, x, t)C(rs, x, t)drs (20)261

From now on, α will be called the flux reduction factor.262

Formulae for the flux reduction and accessibility factors ((14) and (19))263
can be derived for regular pore networks using effective medium or perco-264
lation theories (Sharma and Yortsos, 1987b,c; Seljakov and Kadet, 1996).265
From either theory will follow two threshold values for the flux reduction266
factor corresponding to existence of infinite clusters for small and for large267
particles.268

In the case of low concentrated suspensions, the pore space fraction269
occupied by retained particles is negligibly small if compared with the over-270
all pore space. Therefore, the porosity is assumed to be constant.271

From now on, we consider concentration densities instead of concentra-272

tions, so the multipliers drs and drp in both sides of equations are dropped.273
In this case, the equation for particle number balance for rs-population274
accounting for retention is275

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+

∂J (rs, x, t)

∂x
=−

∂�(rs, x, t)

∂t
. (21)

276

Substitution of (20) into (21) results in the following form of the277
population balance equation:278

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+

∂[Uα(rs, x, t)C(rs, x, t)]

∂x
=−

∂�(rs, x, t)

∂t
. (22)

279

In order to obtain a closed system of governing equations, let us derive280
equations for particle capture and pore plugging rates. The probability P281
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 11

of a particle with radius from the interval [rs, rs +drs] to meet a pore with282
radius from the interval [rp, rp +drp] is proportional to the product between283
the number of particles with radius from the interval [rs, rs + drs] and the284
flux fraction that passes via the pores with radius from the interval [rp, rp +285
drp] (Herzig et al., 1970):286

P ∝UC(rs, x, t)drs

r4
pH(rp, x, t)drp

∫ ∞

0
r4

pH(rp, x, t)drp

. (23)
287

The number of particles with size in the interval [rs, rs + drs] captured288
in pores with radius in the interval [rp, rp + drp] per unit of time is called289
the particle-capture rate. This rate is proportional to the probability P ,290
(23), and the proportionality co-efficient is called the filtration co-efficient291
– λ′(rs, rp):292

∂�(rs, rp, x, t)

∂t
=λ′(rs, rp)UC(rs, x, t)

r4
pH(rp, x, t)

∫ ∞

0
r4

pH(rp, x, t)drp

. (24)
293

Here, as in the majority of following formulae, we omitted drs/drp in both294
sides of (24). It means that we will work with concentrations density (C,�295
and H ) instead of concentrations (Cdrs,�drs, and H -drp).296

The filtration coefficient is equal to zero for the absence of capture:297

λ′(rs, rp)=0 : rp >rs. (25)298

Integration of both sides of (24) over rp from zero to infinity and299
accounting for (25), results in the expression for the total capture rate of300
particles with radius rs:301

∂�(rs, x, t)

∂t
=

UC(rs, x, t)
∫ ∞

0
r4

pH(rp, x, t)drp

∫ rs

0

λ′(rs, rp)H(rp, x, t)drp. (26)
302

Substituting the capture rate (24) into (l3), we obtain the equation for303
pore plugging kinetics304

∂H(rp, x, t)

∂t
=

UH(rp, x, t)r4
p

∫ ∞

0
H(rp, x, t)r4

pdrp

∫ ∞

rp

λ′(rs, rp)C(rs, x, t)drs. (27)
305

It is assumed that the aqueous suspension is incompressible, the total306
flux conserves, U = U(t), and term U can be taken out of x-derivative in307

Equation (22).308
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12 A. SANTOS AND P. BEDRIKOVETSKY

Equations (22), (26) and (27) form a closed system for three unknowns309
C(rs, x, t),�(rs, x, t) and H(rp, x, t):310

φ
∂[γ (rs, x, t)C(rs, x, t)]

∂t
+U

∂[α(rs, x, t)C(rs, x, t)]

∂x
=−

∂�(rs, x, t)

∂t
,

311

∂�(rs, x, t)

∂t
=UC(rs, x, t)

∫ rs

0
λ′(rs, rp)r

4
pH(rp, x, t)drp

∫ ∞

0
r4

pH(rp, x, t)drp

, (28)
312

∂H(rp, x, t)

∂t
=−U

r4
pH(rp, x, t)

∫ ∞

0
r4

pH(rp, x, t)drp

∞
∫

rp

λ′(rs, rp)C(rs, x, t)drs.

313

Introduction of dimensionless variables314

x =
x

L
, T =

UT

Lφ
, λ=λ′L, (29)

315

transforms the system (28) to the form:316

∂[γ (rs,X,T )C(rs,X,T )]

∂T
+U

∂[α(rs,X,T )C(rs,X,T )]

∂X

=−
1

φ

∂�(rs,X,T )

∂T
,

∂�(rs,X,T )

∂T
=φC(rs,X,T )

∫ rs

0
λ(rs, rp)r

4
pH(rp,X,T )drp

∫ ∞

0
r4

pH(rp,X,T )drp

,

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )

∫ ∞

0
r4

pH(rp,X,T )drp

∞
∫

rp

λ(rs, rp)C(rs,X,T )drs.

(30)

317

Boundary condition at the core inlet corresponds to injection of water318
with a given particle size distribution C(0)(rs, T ). The injected rs-particle319
flux is equal to C(0)(rs, T )U . The inlet core/reservoir cross-section acts as320
a sieve. The injected rs-particles are carried into the porous medium by a321
fraction of the water flux via accessible pores – α(0)(rs, T )U (Figure 2(b)).322
The injected rs-particles carried by water flux via inaccessible pores [1 −323
α0(rs, T )]U are deposited at the outer surface of the inlet and form the324
external filter cake from the very beginning of injection. For particles larger325
than any pore, there is no accessible pores and flux reduction factor is zero,326
α(0)(rs, T )= 0. So, all these particles are retained at the inlet cross-section,327
contributing to external filter cake growth. On the other hand, for particles328
smaller than the smallest pore, α(0)(rs, T ) = 1. So, all these particles enter329
porous medium without being captured.330

The density of the rs-particle flux entering porous medium (in situ331
rs-particle flux) is equal to C(0)(rs, T )α(0)(rs, T )U ; and the fraction captured332
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 13

at the inlet cross-section is equal to C(0)(rs, T )[1 −α(0)(rs, T )]U . Therefore,333
the rS-particle concentration is continuous at X =0.334

We also assume that the retained at the outer surface of the inlet large335
particles do not restrict access of newly arriving particles to the core inlet336
before the transition time (Khatib, 1994; Pang and Sharma, 1994). The337
external cake does not form a solid matrix before the transition time and338

cannot capture the particles from the injected suspension.339
Initial condition corresponds to the absence of either suspended or cap-340

tured particles in porous media before the flow. Finally,341

X =0 :C(rs,0, T )=C(0)(rs, T ),

T =0 :C(rs,X,0)=0, �(rs,X,0)=0, H(rp,X,0)=H0(rp,X).
(31)

342

Integration of (13) in rp, from zero to infinity results in a conservation343
law for pore number344

∂h

∂T
=−

∂σ

∂T
, (32)

345

which leads to346

h(X,T )=h0(X)−σ(X,T ). (33)347

Equation (33) shows that one particle can plug only one pore and vice348
versa.349

4. Particle and Pore Populations at the Inlet Cross-Section350

Second and third equations of system (30) do not contain X-derivative, so351
it is not necessary to set the corresponding species concentrations at the352
inlet boundary X = 0 (The so-called Goursat problem; Tikhonov and Sa-353
marskii, 1990). It means that one do not fix the injected concentration of354
an immobile specie, i.e. retained particles and vacancies. Nevertheless, these355
values can be calculated using boundary conditions for mobile species and356
the kinetic equations for immobile species (second and third equation of357
system (30)).358

Let us fix X = 0 in system (30) and substitute the boundary condition359
(31) into second and third equations of system (30). Finally, we obtain the360
system of two ordinary integro-differential equations for captured particle361
and vacant pore concentrations at the plug inlet:362

d�(0)(rs, T )

dT
=φC(0)(rs, T )

∫ rs

0
λ(rs, rp)r

4
pH (0)(rp, T )drp

∫ ∞

0
r4

pH (0)(rp, T )drp

,

dH (0)(rp, T )

dT
=−φ

r4
pH (0)(rp, T )

∫ ∞

0
r4

pH (0)(rp, T )drp

∫ ∞

rp

λ(rs, rp)C
(0)(rs, T )drs,

(34)

363
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14 A. SANTOS AND P. BEDRIKOVETSKY

where,364

H (0)(rp, T )=H(rp,X =0, T ), �(0)(rs, T )=�(rs,X =0, T ). (35)365

The second equation (34) is independent of the first equation, and can366
be solved separately. Afterwards, the first equation allows calculating the367
deposition kinetics.368

There were no deposited particles and plugged pores at the beginning369
of deep bed filtration. It provides the initial conditions for the system of370
ordinary integro-differential Equations (34).371

�(0)(rp, T =0)=0, H (0)(rp, T =0)=H
(0)

0 (rp). (36)372

The solution of the second ordinary integro-differential Equation (34)373
allows calculating the transition time (Ttr) from the system of deep bed fil-374
tration in porous media. The filtration at the inlet cross-section stops at the375
moment when the concentration of vacancies H (0)(rp, T ) forming an infi-376
nite cluster decreases up to percolation threshold.377

The solution H (0)(rp, T ) results in calculation of the rs-particle flux378
C(0)(rs, T )[1 − α(0)(rs, T )]U forming an external filter cake from the very379
beginning of the particle injection. It allows describing the external filter380
cake formation before the transition time, when particles still penetrate into381
porous medium.382

5. Filtration in a Single Pore Size Medium383

Consider the injection of suspension with any given particle size distribu-384
tion in a porous medium with a single pore radius r ′

p:385

H(rp,X,T )=h(X,T )δ(rp − r ′
p). (37)386

Figure 3(a) shows the pore size distribution (Dirac’s delta function) at387
T =0 and the particle size distribution in the injected suspension at X=0.388

Let us first consider propagation of small particles with rs <r ′
p. For this389

case, formulae (14) and (19) show that α=γ =1; i.e. all pores are accessible390
for small particles, and there is no flux reduction.391

Substitution of the pore size distribution (37) into (30) results in the fol-392
lowing system for deep bed filtration of small particles:393

∂C(rs,X,T )

∂T
+

∂C(rs,X,T )

∂X
=0,

∂�(rs,X,T )

∂T
=0.

(38)

394
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 15

Figure 3. Distributions of suspended particles and pores in a single pore size

medium: (a) initial and boundary concentration distributions for pores and sus-

pended particles, respectively; (b) particle distribution for any X and T (continuous

curve) and at X = 0 (dashed curve); pore distribution at the inlet cross-section for

T >0.

The solution of a linear hyperbolic equation (first Equation (38)) subject395
to initial-boundary conditions (31) is a travelling wave:396

C(rs,X,T )=

{

C(0)(rs, T −X), X <T,

0, X >T .
(39)

397

Therefore, small particles are transported with the velocity of carrier398
water without being trapped. There are no suspended particles ahead of399
the injected water front. Particle distribution profile behind the front moves400
with unitary velocity along the porous medium. It repeats the shape of the401
injected concentration C(0)(rs, T ) with delay that equals X.402

We consider the case where there were no trapped particles in porous403
medium before the injection (initial condition (31)). As it follows from the404
second Equation (38), the capture of small particles does not happen. Con-405
sequently, for any T �0406

�(rs,X,T )=0. (40)407

Therefore, no pores will be plugged by small particles.408
Now consider propagation of large particles (rs >r ′

p). In this case, from409
(14) and (19) follows that α =γ =0.410

Therefore, none of pores is accessible for large particles, and there is no411
large particle flux.412

Substitution of (37) into (30) results in the following system:413

0=
∂�(rs,X,T )

∂T
,

414
∂�(rs,X,T )

∂T
=φC(rs,X,T )λ(rs, r

′
p), (41)

415

∂h(X,T )

∂T
=−φ

∞
∫

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs.

416
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16 A. SANTOS AND P. BEDRIKOVETSKY

From initial condition (31) and first Equation (41) follows that417

�(rs,X,T )=0, (42)418

i.e. no large particles are deposited in the reservoir.419
From first equation (34) we obtain the captured particle concentration420

at the core inlet:421

�(0)(rs, T )=λ(rs, r
′
p)φ

∫ T

0

C(0)(rs, T )dT . (43)
422

Therefore, all large particles are captured at the inlet cross-section.423
It is assumed that there were no suspended particles before the injection424

(initial condition (31)). In this case, from first and second equation (41) fol-425
lows that:426

C(rs,X,T )=0 :X >0, (44)427

i.e. no large particles (rs >r ′
p) enter the reservoir.428

Substituting (44) into third equation (41) and solving the resulting ordi-429
nary differential equation, accounting for initial and boundary conditions430
(31), we obtain:431

h(X,T )=h0(X) :X >0, (45)432

i.e. the number of vacant pores does not change during the injection.433
The line 2 in Figure 4 shows that large particles never arrive to the core434

outlet. It was also observed in laboratory study (Massei et al., 2002), where435
size exclusion was the dominant capture mechanism.436

Now let us study accumulation of large particles at the core inlet.437
Substituting (43) into (9), accounting for (44), results in:438

σ (0)(T )=φ

∫ ∞

r ′
p

λ(rs, r
′
p)

∫ T

0

C(0)(rs, τ )dτ drs. (46)
439

Figure 4. Breakthrough curves for different size particles (at X=1): l – for particles

smaller than r ′
p by the proposed model 2 – for particles larger than r ′

p by the pro-

posed model 3 – for particles larger than r ′
p by the model without considering the

flux reduction and accessibility.
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 17

The equation for vacant pore concentration at the inlet cross-section is440
obtained substituting (46) into (33):441

h(0)(T )=h
(0)

0 −σ (0)(T ). (47)442

The relationship (47) reflects the fact that each particle can plug only443
one pore and viceversa.444

For the case of a single pore size medium (37), the solution of the sys-445
tem (30), subject to the initial and boundary conditions (31), is given by446
formulae (39), (40), (42)–(47).447

The plot of the solution is given in Figure 3. Initial concentration den-448
sity for pores and concentration density for suspended particles at inlet449
cross-section are shown in Figure 3(a).450

The dynamics of particle size distributions (PDF) for small and large451
particles is shown in Figure 3(b). Comparison between continuous and dot-452
ted lines shows that the shape of small particle concentration density is453
repeated with delay that is equals to X, which corresponds to travelling454
wave behaviour, (39). The continuous line in Figure 3b shows that the455
large particle (rs >r ′

p) concentration density is equal to zero for any X>0.456
Figure 3a and b shows that the total vacancy concentration at the inlet457
cross-section decreases with time, as suggested by formula (47); the pore458
size distribution at T >0 remains delta function.459

Figure 4 (line 1) shows concentration density of small particles at the460
core outlet for the case of constant injected concentration. The concen-461
tration equals zero until the injection of one pore volume. After particle462
arrival at the outlet at the moment T = 1, the concentration at the outlet463

is equal to the injected concentration. The line 2 in Figure 4 shows that464
large particles never arrive to the core outlet.465

It is important to highlight that, depending on the size, the particles in466
uniform pore size medium either pass or are trapped (see Equations (39)467
and (44)). Therefore, the deep bed filtration, where does exist an average468
penetration length for each size particle, does not happen in case of par-469
ticulate flow in a single-size porous medium. The penetration length is zero470
for large particles, and is infinite for small particles.471

Let us obtain equations for average concentrations for the case of472
particulate suspension flow in a single pore size medium.473

Integration of both sides of system (38) in rs from zero to r ′
p results in474

the system for average concentration of small particles475

∂c1(X,T )

∂T
+

∂c1(X,T )

∂X
=0,

∂σ1(X,T )

∂T
=0,

(48)

476
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18 A. SANTOS AND P. BEDRIKOVETSKY

where477

c1(X,T )=

r ′
p

∫

0

C(rs,X,T )drs, σ1(X,T )=

r ′
p

∫

0

�(rs,X,T )drs.

478

The solution of (48), accounting for initial and boundary conditions479
(31), is:480

c1(X,T )=

{

c
(0)

1 (T −X), X <T,

0, X >T .
(49)

481

The solution (49) shows that free advection (without particle capture) of482
small particles occurs. Thus, deep bed filtration of small particles does not483
happen.484

Integration of both sides of the first and second equation (41) in rs from485
r ′

p to infinity results in the system for average concentration of large parti-486
cles rs >r ′

p:487

0=−
1

φ

∂σ2(X,T )

∂T
,

∂σ2(X,T )

∂T
=φ

∞
∫

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs,

(50)

488

where σ2 is the average deposited concentration of large particles.489
From first equation (50) and initial condition (31) we obtain the solu-490

tion for average deposited concentration of large particles:491

σ2(X,T )=0. (51)492

Substituting first equation (50) into second equation (50) we obtain:493

∞
∫

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs =0. (52)

494

Consequently, the average suspended particle concentration is also zero495
in the reservoir:496

∞
∫

r ′
p

C(rs,X,T )drs = c2(X,T )=0. (53)

497

The solutions of (51) and (53) show that all large particles are captured498
at the inlet cross-section; there is no transport of large particles through499
porous media.500
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 19

In order to evaluate the effect of flux reduction and accessibility on501
particulate suspension flow in porous media, let us ignore the flux reduc-502
tion and accessibility factors in the system of governing equations (30), i.e.503
α = γ = 1. In this case, we obtain the population balance model as pre-504
sented by Sharma and Yortsos (1987). Substituting α = γ = 1 in the first505
equation (30), results in:506

∂C(rs,X,T )

∂T
+

∂C(rs,X,T )

∂X
=−

1

φ

∂�(rs,X,T )

∂T
. (54)

507

The second and the third equations of system (30) remain the same. So,508
the system of equations (30) takes the following form:509

∂C(rs,X,T )

∂T
+

∂C(rs,X,T )

∂X
=−

1

φ

∂�(rs,X,T )

∂T
,

510

∂�(rs,X,T )

∂T
=φC(rs,X,T )

∫ rs

0
λ(rs, rp)r

4
pH(rp,X,T )drp

∫ ∞

0
r4

pH(rp,X,T )drp

, (55)
511

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )

∫ ∞

0
r4

pH(rp,X,T )drp

∫ ∞

rp

λ(rs, rp)C(rs,X,T )drs.
512

Let us discuss the case of a single pore size medium. In this case,513
H(rp,X,T ) is defined by Equation (37). The system (55) is reduced to the514
system (38) for small particles with rs <r ′

p. The solution for this system is515
given in the Equations (39) and (40). The accessibility and flux reduction516
factors are equal unity for small particles, i.e. all pores are accessible, and517
systems (30) and (55) coincide.518

For large particles with rs >r ′
p, system (55) takes the following form:519

∂C(rs,X,T )

∂T
+

∂C(rs,X,T )

∂X
=−

1

φ

∂�(rs,X,T )

∂T
,

520
∂�(rs,X,T )

∂T
=λ(rs, r

′
p)φC(rs,X,T ), (56)

521

∂h(X,T )

∂T
=−φ

∫ ∞

r ′
p

λ(rs, r
′
p)C(rs,X,T )drs.

522

Substitution of the second equation (56) into the first one results in one523
equation for suspended particle population:524

∂C(rs,X,T )

∂T
+

∂C(rs,X,T )

∂X
=−λ(rs, r

′
p)C(rs,X,T ). (57)

525

The solution of the linear hyperbolic Equation (57) with initial and526
boundary conditions (31) for each particle population with particle size527
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20 A. SANTOS AND P. BEDRIKOVETSKY

rs is:528

C(rs,X,T )=

{

C(0)(rs, T −X) exp
[

−λ(rs, r
′
p)X

]

, X <T,

0, X >T .
(58)

529

The solution (58) shows separate deep bed filtration of each popula-530
tion of large particles with the particle-size-dependent filtration coefficient531
λ(rs, r

′
p).532

The concentration history at the core outlet according to (58) is shown533
in Figure 4 by line 3. Concentration equals zero until the injection of534
one pore volume. At the moment T = 1 the concentration front arrives535
at the core outlet, and the concentration is constant after the break-536

through. The ratio between the injected and effluent concentrations equals537
exp[−λ(rs, r

′
p)], so it is always less than unity, i.e. the produced concentra-538

tion density is lower than the injected concentration density.539
The expression for vacancy concentration is:540

h(X,T )=











h0(X)−φ
∫ ∞

r ′
p

λ(rs, r
′
p) exp

[

−λ(rs, r
′
p)X

]

×

×
∫ T

X
C(0)(rs, T )dT drs, X <T,

h0(X), X >T .

(59)

541

Therefore, ignoring the fact that particles move only via larger pores,542
results in a separate deep bed filtration of large particle populations with543
different radii in a single pore size medium, while accounting for this effect544
results in the absence of deep bed filtration in this porous medium.545

6. Filtration in a Medium with Small Pore Size Variation546

Let us discuss porous medium with small pore size variation, i.e. pore547
radius varies inside the interval [rp min, rp max], and rp max − rp min ≪ rp min548
(Figure 5(a)). Pore radius is uniformly distributed inside the interval549
[rp min, rp max]. Injected particle radius is distributed according to any arbi-550
trary probability distribution function, which is independent of time551
f

(0)
s (rs).552

6.1. analytical solution553

Assuming a uniform pore size distribution, from (10) we obtain:554

H(rp, x, t)=







0, rp >rp max or rp <rp min,
h(x, t)

rp max − rp min

, rp min <rp <rp max.
(60)

555
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 21

Substitution of (60) into (14) and (19) allows obtaining expressions556
for flux reduction and accessibility factors for intermediate size particles557
(rp min <rs <rp max):558

α(rs)=
r5

p max − r5
s

r5
p max − r5

p min

, (61)
559560

γ (rs)=
r3

p max − r3
s

r3
p max − r3

p min

, (62)
561

i.e. the fractions α and γ become just rs-dependent. Consequently, system562
(30) takes the form:563

γ (rs)
∂C(rs,X,T )

∂T
+α(rs)

∂C(rs,X,T )

∂X
=−

1

φ

∂�(rs,X,T )

∂T
,

564
∂�(rs,X,T )

∂T
=φη(rs)C(rs,X,T ), (63)

565

∂H(rp,X,T )

∂T
=−φ

r4
pH(rp,X,T )

∫ ∞

0
r4

pH(rp,X,T )drp

∫ ∞

rp

λ(rs, rp)C(rs,X,T )drs,
566

where,567

η(rs)=































0, rs <rp min,
∫ rs

rp min
λ(rs, rp)r

4
pdrp

∫ rp max

rp min
r4

pdrp

, rp min <rs <rp max,

∫ rp max

rp min
λ(rs, rp)r

4
pdrp

∫ rp max

rp min
r4

pdrp

, rs � rp max.

(64)

568

For small (rs < rp min) and large (rs < rp max) particles, system (63) coincide569
with systems (38) and (41), respectively. Therefore, the solution for small parti-570
cles is given by formulae (39), (40) and the solution for large particles is given571
by (42)–(47). Small particles are transported through porous medium without572
being captured and all large particles are captured at the inlet cross section.573
Consequently, small and large particles do not perform deep bed filtration.574

Figure 5(b) shows the injected particle concentration (dotted line) and575
the concentration density of suspended particles behind the front for T >0.576
Both concentrations coincide for small particles (rs <rp min).577

On the other hand, intermediate size particles (rp min < rs < rp max) per-578
form deep bed filtration, i.e., a fraction of each particle population is cap-579
tured during the transport of particles through porous media.580

Let us discuss deep bed filtration of intermediate size particles.581
Substitution of second Equation (63) into the first one results in:582

γ (rs)
∂C(rs,X,T )

∂T
+α(rs)

∂C(rs,X,T )

∂X
=−η(rs)C(rs,X,T ). (65)

583
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22 A. SANTOS AND P. BEDRIKOVETSKY

Figure 5. Distributions for suspended particles and pores in a medium with small

pore size variation: (a) initial and boundary distributions for pores and suspended

particles, respectively; (b) suspended particle distributions behind the concentration

front for T > 0 (solid curve) and in the injected suspension (dashed curve), and

vacancy distribution.

The solution of linear hyperbolic Equation (65) is obtained by method584
of characteristics:585

C(rs,X,T )=















C(0)(rs) exp

[

−
η(rs)

α(rs)
X

]

, X <
α(rs)

γ (rs)
T

0, X >
α(rs)

γ (rs)
T

. (66)

586

The concentration distribution of particles with a specific size is steady587
state behind the concentration front, and is zero ahead of the front.588

The total suspended concentration c(X,T ) can be calculated from (66)589
using formula (4).590

Substituting (66) into second equation (30) and solving the resulting591
equation, we obtain expression for the deposited particles population:592

�(rs,X,T )=

{

η(rs)φ
[

T −
γ (rs)

α(rs)
X

]

C(0)(rs) exp
[

−
η(rs)

α(rs)
X

]

, X < α(rs)

γ (rs)
T ,

0, X > α(rs)

γ (rs)
T ,

(67)

593

where α(rs) and γ (rs) are given by (61) and (62), respectively.594
The characteristic velocity in (65) is particle-size dependent:595

dX

dT
=

α(rs)

γ (rs)
. (68)

596

In the case where the filtration coefficient is independent of pore radius,597
λ=λ(rs), from (64) we obtain:598

η(rs)=λ(rs)[1−α(rs)]. (69)599

In the case of a bundle of parallel capillary, the dependency of the par-600
ticle velocity on rs is obtained by substitution of (61) and (62) into (68).601
Figure 6 shows that the larger is the particle, the larger is its velocity. The602
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 23

Figure 6. Particle velocity versus its radius.

large particles are the first to appear at the core outlet. This phenomenon603
was observed for deep bed filtration with size exclusion of particles (Massei604
et al., 2002) and for flow of polymer solution in a porous media (Bartelds605
et al., 1997).606

As it follows from (61), (62) and (66), for particles with rs = rp min (α =1607
and γ =1), there is no velocity enhancement, particles move with the veloc-608
ity of carrier water.609

The larger is the particle the higher is the decrement in the exponent of610
the solution (66). Consequently, the larger is the particle the more intensive611
is the particle capture rate.612

When rs tends to rp max, the denominator in the exponent in (66) tends613
to zero, and the concentration tends to zero. The concentration density of614
intermediate size particles C(rs,X,T ) in Figure 5(b) decreases from the ini-615
tial value C(0)(rs = rp min) at rs = rp min to zero for rs = rp max.616

Substituting (60) into first equation (34) we obtain deposited concentra-617
tions at the core Inlet:618

�(0)(rs, T )=η(rs)φC(0)(rs)T . (70)619

Here η=0 for particles with radii smaller than rp min (see (64)), i.e., small620
particles (rs < rp min) pass the core inlet without being captured. Particles621
with radii larger than rp max do not enter the rock and are deposited at622
the inlet cross section. From (9) follows the formula for the total deposited623
concentration at the core inlet:624

σ (0)(T )=

∫ ∞

rp min

�(0)(rs, T )drs. (71)
625

Formula (33), accounting for (70) and (71), allows calculation of the626
total vacancy concentration at the rock inlet.627

Figure 7 shows concentration profiles for different intermediate size628
particles. The suspended concentration wave front moves with velocity629
α(rs)/γ (rs).630
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24 A. SANTOS AND P. BEDRIKOVETSKY

Figure 7. Concentration distribution profiles for intermediate size particles during fil-

tration in a small pore size variation medium. Lines 1, 2 and 3 correspond to

different particle populations (rs1 <rs2 <rs3).

Figure 8. Particle concentration distribution histories at the core outlet, Line (1)

corresponds to concentration of particles smaller than rp min; line (2) is related to

concentration of an intermediate size particles (rp min < rs < rp max); line (3) corre-

sponds to concentration of particles larger than rp max.

The steady state profile behind the front for each particle population631
C(rs,X) is given by first formula (66). Figure 7 shows that for each size632
particles, the profile at the moment T1 and the section of the profile at the633
moment T2 from zero to α(rs)/γ (rs)T2 coincide.634

The larger are the particles the higher is the decrement η(rs)/α(rs)635
of exponent in (66), so small particles have higher relative concentration636
(C(rs,X,T )/C(0)(rs)) and their concentration profile moves slowly.637

Figure 8 shows different particle size concentration history at the core638
outlet (X = 1). The larger is the particle the earlier it arrives to the outlet639
and the lower is its concentration afterwards.640

The evolution of suspended particle concentration wave is shown in641
Figure 9. Small particles (line 1) are not captured, porous media traps642
intermediate size particles by pore size exclusion mechanism (lines 2 and 3),643
and large particles do not penetrate into porous medium (line 4).644
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 25

Figure 9. Concentration density profiles for different size particles. Each front moves

with the velocity α(rs)/γ (rs). Line 1 corresponds to small particles (rs1 < rp min).

Lines 2 and 3 are related to intermediate size particles, rs2 <rs3. Line 4 corresponds

to large particles (rs4 >rp max).

In the case where the filtration coefficient is independent of pore radius,645
λ=λ(rs), the explicit formulae (66) and (69) allow solving the inverse prob-646
lem for determination of the filtration coefficient λ(rs) from the outlet con-647

centration data of any intermediate size particles:648

λ(rs)=
α(rs)

1−α(rs)
ln

(

C(0)(rs)

C(rs,X =1)

)

. (72)
649

6.2. penetration depth650

The explicit formula (66) allows calculating average penetration depth for651
intermediate size particles into porous media 〈X(rs, T )〉:652

〈X(rs, T )〉=

∫

α
γ
T

0 X′C(rs,X
′, T )dX′

∫

α
γ
T

0 C(rs,X′, T )dX′

. (73)

653

Particle concentration density C(rs,X,T ) is zero ahead of the propagation654
front Xf (rs, T ) = α(rs)/γ (rs)T consequently integration in (73) is performed655
from zero to [α(rs)/γ (rs)]T . Substituting (66) into (73) and performing the inte-656
gration, we obtain the formula for depth penetration dynamics:657

〈X(rs, T )〉=
α(rs)

η(rs)









1− exp

(

−
η(rs)

γ (rs)
T

)(

1+
η(rs)

γ (rs)
T

)

1− exp

(

−
η(rs)

γ (rs)
T

)









. (74)

658
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26 A. SANTOS AND P. BEDRIKOVETSKY

Figure 10. Effect of particle size on penetration depth 〈x(rs)〉max for intermediate

size particles during filtration in a small pore size variation medium.

Tending T to infinity in (74), we obtain the maximum penetration depth659
for each size particle 〈X(rs)〉max660

〈X(rs)〉max =
α(rs)

η(rs)
. (75)

661

The penetration depth does not depend on accessibility γ (rs). When662
time tends to infinity, the suspended concentration profile given by first663
equation (66) is steady state and is independent of accessibility factor.664
Therefore, the maximum penetration depth is also accessibility-indepen-665
dent.666

For the case where the filtration coefficient is independent of pore667
radius, λ=λ(rs), substituting (69) into (75), we obtain the following maxi-668
mum penetration depth:669

〈X(rs)〉=
α

λ(rs)(1−α)
. (76)

670

Figure 10 shows the maximum penetration depth as a function of par-671
ticle radius. Particles with radii rs = rp max do not penetrate into porous672
media, α equals zero for this case, and 〈X(rp max)〉max = 0. Particles with673
radii rs =rp min flow without being captured. In this case, α equals unity and674
η(rs) tends to zero; from (75) follows that 〈X(rp min)〉max tends to infinity.675

Curves 1 and 2 in Figure 10 correspond to different filtration coeffi-676
cients, λ1 <λ2. Particles captured less intensively penetrate deeply.677

Let us analyse the effect of particle size on penetration depth. The larger678
is the particle, the lower is the flux reduction factor, and the smaller is the679
penetration depth. So, small particles penetrate deeply.680

6.3. averaged concentration model681

In this section we derive an average concentration model and compare it682
with the classical model for deep bed filtration (Iwasaki, 1937).683
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 27

Let us introduce average concentrations for small, intermediate size and684
large particles:685

c1 =

rp min
∫

0

C(rs,X,T )drs, c2 =

rp max
∫

rp min

C(rs,X,T )drs,

686

c3 =

∞
∫

rp max

C(rs,X,T )drs. (77)

687

The averaged small particle concentration is obtained by integration of688
the first equation (38) over rs from zero to rp min:689

∂c1

∂T
+

∂c1

∂X
=0. (78)

690

Small particles move with the carrier water velocity without entrapment.691
The equations for the total concentration of intermediate size particles692

are obtained by integration of first and second equations (63) in rs from693
rp min to rp max:694

∂(〈γ 〉c2(X,T ))

∂T
+

∂(〈α〉c2(X,T ))

∂X
=−

1

φ

∂σ2(X,T )

∂T
,

∂σ2(X,T )

∂T
=λφ(1−〈α〉)c2(X,T ),

(79)

695

where the averaged flux reduction and accessibility factors are696

〈α〉=

∫ rp max

rp min
α(rs)fs(rs,X,T )drs

∫ rp max

rp min
fs(rs,X,T )drs

, (80)
697

〈γ 〉=

∫ rp max

rp min
γ (rs)fs(rs,X,T )drs

∫ rp max

rp min
fs(rs,X,T )drs

. (81)
698

The averaged flux reduction and accessibility factors change during par-699
ticle retention. The particle retention is described by the deposited con-700
centration σ2. Thus, we close the system (79) introducing constitutive701
relations702

〈α〉=〈α〉(σ2) and 〈γ 〉=〈γ 〉(σ2). (82)703

If compared with the classical deep bed filtration model (1), the model704
(79) for intermediate size particles contains flux reduction term (80) and705
accessibility factor (81) in the population balance equation. The capture706
rate expression in (79) contains the factor (1 − 〈α〉) showing that the707
capture rate should be proportional not to the overall flow velocity U as708
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28 A. SANTOS AND P. BEDRIKOVETSKY

it is assumed in (1), but to the fraction of the flow velocity via small pores709
(1−〈α〉)U .710

The equations for large particle concentrations c3 and σ3 are obtained711
by integration of equations (41) in rs from rp max to infinity. The averaged712
equations are the same as Equations (50) for large particles.713

7. Deep Bed Filtration in a Simple Geometry Medium714

Let us derive the population balance model for deep bed filtration in a715
simplified geometry porous medium, which is a bundle of parallel capillary716
alternated by mixing chambers (Figure 2).717

Particles are assumed to be deposited on sieves; σ ′(x, t) is deposited718
particle concentration per unit of a sieve area, the vacancy concentration719
h′(x, t) is also determined per unit of a sieve area:720

σ ′ =σ l, h′ =hl. (83)721

The number of particles with radius from the interval [rs, rs + drs] cap-722
tured in pores with radius from the interval [rp, rp + drp] per unit of time723
is equal to the number of particles with radius from the interval [rs, rs +724
drs] arriving to the sieve multiplied by water flux via pores with radius the725
interval [rp, rp +drp]:726

∂σ ′(x, t)fT (rs, rp, x, t)

∂t
drs drp727

= c(x, t)fs(rs, x, t)U
r4

pfp(rp, x, t)
∫ ∞

0
r4

pfp(rp, x, t)drp

drs drp. (84)
728

Integrating both parts of (84) in rp from zero to rs and accounting for729
(6) result in the expression for the total capture rate of particles with radius730
rs in a single sieve:731

∂

∂t
(σ ′(x, t)fT (rs, x, t))= c(x, t)fs(rs, x, t)

U
∫ rs

0
r4

pfp(rp, x, t)drp
∫ ∞

0
r4

pfp(rp, x, t)drp

. (85)
732

Changing areal deposited concentration in a sieve per volumetric733
deposited concentration (see (83)) and substituting formulae (3), (8) and734
(10) in (85), we obtain:735

∂�(rs, x, t)

∂t
=

1

l
C(rs, x, t)

U
∫ rs

0
r4

pH(rp, x, t)drp
∫ ∞

0
r4

pH(rp, x, t)drp

. (86)
736

Comparing formulae (86) and (26), one concludes that the dimensional737
filtration coefficient (λ′) equals the inverse to the distance between the738
sieves.739
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A STOCHASTIC MODEL FOR PARTICULATE SUSPENSION FLOW 29

It is assumed that in each sieve one particle can plug only one pore, and740
vice versa. So, formula (12) can be applied to concentrations in each sieve:741

h′(x, t)fp(rp, x, t)=h′
0(x)fp0(rp, x)−

∫ ∞

rp

σ ′(x, t)fT (rs, rp, x, t)drs. (87)
742

Differentiating (87) with respect to t and substituting (84) in the result-743
ing equation, we obtain the pore plugging kinetics:744

∂

∂t
(h′(x, t)fp(rp, x, t))=−

fp(rp, x, t)r4
p

∫ ∞

0
fp(rp, x, t)r4

pdrp

Uc(x, t)×
745

×

∞
∫

rp

fs(rs, x, t)drs. (88)

746

Changing areal vacancy concentration in a sieve per volumetric vacancy747
concentration (see (83)) and substituting formulae (3), (8) and (10) in the748
resulting equation, we obtain:749

∂H(rp, x, t)

∂t
=−

1

l

H(rp, x, t)r4
p

∫ ∞

0
H(rp, x, t)r4

pdrp

U

∞
∫

rp

C(rs, x, t)drs. (89)

750

The system of governing equations for deep bed filtration ((89) and (86))751
in a bundle of parallel capillary alternated by mixing chambers coincide752
with the system (28) proposed for a general case of pore space geometry.753

The dimensional filtration coefficient for deep bed filtration in a bun-754
dle of parallel capillary alternated by mixing chambers equals the inverse to755
the distance between the sieves, i.e. is constant. It coincides with the pore756
plugging kinetics suggested by Sharma and Yortsos (1987a) where l is con-757
sidered to be equal to the pore length.758

8. Conclusions759

Derivation of the stochastic deep bed filtration model for size exclu-760
sion mechanism accounting for particle flux reduction and pore acces-761
sibility effects, and analytical solutions obtained allow for the following762
conclusions:763

1. Absence of particles in the pores that are smaller than the particles,764
results in reduction of the particle carrying water flux if compared with765
the overall water flux. It also means that only a fraction of the pore766
space is accessible for particles. The flux reduction term appears in the767
advection flux in the population balance equation; the accessibility fac-768
tor appears in the accumulation term.769
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30 A. SANTOS AND P. BEDRIKOVETSKY

2. The analytical solution for flow in a single pore size r ′
p medium shows770

that capture-free advection of small particles (rs < r ′
p) takes place, and771

large particles (rs >r ′
p) do not penetrate into the porous medium. Conse-772

quently, there is no deep bed filtration in a uniform pore size medium.773
Ignoring flux reduction and accessibility effects results in a separate deep774
bed filtration of large different size particles.775

3. The analytical solution for flow in a porous media with small pore size776
variation shows that the particles larger than all pores do not move and777
that the particles smaller than pores move through the media without778
capture.779
The intermediate size particles perform deep bed filtration. Populations780
with different size particles filtrate independently; the filtration coeffi-781
cient and the flux reduction and accessibility factors for each population782
are particle-size-dependent.783

4. The larger is the intermediate size particle, the lower is its penetration784
depth during deep bed filtration in the rock with small pore size varia-785
tion.786

5. The average concentration models can be derived for flow in porous787
media with small pore size variation for small particles, for intermediate788
size particles and for large particles separately.789
The averaged model for intermediate size particles differs from the tra-790
ditional deep bed filtration model by the flux reduction and accessibil-791
ity factors (〈α〉 and 〈γ 〉, respectively), that appear in the particle balance792
equation. Also, the capture rate in the averaged model is proportional to793
the water flux via inaccessible pores, while in the traditional model it is794
proportional to the overall water flux.795
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