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Introduction 
 
Alcohol abuse has ramifications not only in pub-
lic health and highway safety but also has effects 
on a nation's Gross domestic product (GDP) 
which underscores the extensive literature on the 
subject (1). The ethanol pharmacokinetics in hu-
man body consists of three distinct phases 
marked by absorption, distribution and elimina-
tion (2). Roughly 95% of the alcohol ingested is 
metabolized through enzymatic oxidation in the 
liver and the rest excreted through breath, sweat 
and urine. The metabolic elimination of alcohol 
has been modeled using zero order kinetics (con-

stant elimination rate) or first order kinetics (dose 
dependent elimination rate) (3). The enzymatic 
elimination process is governed by two main he-
patic enzymes known as alcohol dehydrogenase 
(ADH) and cytochrome (CYP2E1) (4, 5). 
ADH enzyme has a low km (Michaelis constant) 
which gets saturated very early and hence fits eas-
ily into a constant elimination process. However, 
cytochrome enzymes have a much higher km and 
provided that the alcohol concentration stays be-
low the km. The elimination process with this 
enzyme will apparently produce first order kinet-
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ics that is the mechanism for blood alcohol clear-
ance, which only becomes effectively operative at 
high blood alcohol concentrations (3). Existing 
models on ethanol elimination use either zero 
order or first order kinetics while more appropri-
ate modeling should consider zero order kinetics 
followed by first order kinetics which comes into 
play with a higher ethanol concentration in the 
body. 
Studies on ethanol metabolism have mainly been 
built on single dose experimental studies from 
the highway safety aspects or to chart the time 
course of ethanol elimination (6). The highway 
safety manual was introduced by the American 
Association of State Highway and Transportation 
Officials (AASHTO) that aim to help different 
deputations to unify safety in all processes related 
to decision making (7). Additional complications 
arise when alcohol is ingested in multiple doses 
(8). 
Simulating multiple ingestions increases the com-
plexity and analysis of the model. Thus, experi-
mentalists as well as modelers have conveniently 
stuck to single dose studies staying away from 
multiple doses (9). However, consumption of 
multiple drinks in a short span of time is quite 
common and hence a better understanding of 
ethanol elimination with multiple dose ingestions 
is desirable. Such studies are addressed relatively 
easily with mathematical models, more specifical-
ly compartment models which surveyed the flux-
es between the compartments (10, 11). Existing 
compartment models on alcohol elimination are 
mostly deterministic in nature. Although such 
models provide a good deal of information on 
the pharmacokinetics of ethanol, the need for the 
determination of the model parameters such as 
the anatomical structure of the assumed com-
partments, metabolic rates as well as transient 
and steady state solutions, requires extensive and 
sophisticated experimental studies and inhibits 
their efficacy. Because of the variability in the 
instants of alcohol consumption, absorption and 
elimination times which are random in nature, a 
front runner for modeling such phenomena are 
stochastic models which provide useful infor-
mation with minimal complexity. One study (12), 

used Markov or hidden Markov models to de-
scribe the drinking behavior of subjects. These 
models are better suited to describe processes 
that make sudden changes rather than being 
gradual over time. Another study (13), suggested 
the use of multivariate time models for alcohol 
consumption. 
In other study (9), proposed a stochastic model 
applying queuing theory to describe the adverse 
effects of ethanol in the system. That drew an 
analogy between customers and the ethanol in-
take, server and the body and service and ethanol 
elimination. The serious short comings of the 
model were the assumptions of the larger elimi-
nation rate compared to the rate of alcohol inges-
tion and the infinite system capacity. But as a pre-
liminary model, it established the success of the 
stochastic approach. 
The purpose of the present work is to develop a 
new stochastic model to describe the adverse ef-
fects of ethanol in the body taking into account 
the randomness in the times of alcohol ingestion 
as well as elimination times. The model accounts 
for multiple doses as well as alcohol metabolizing 
enzymes ADH and CYP2E1 known to contrib-
ute to the observed variability of alcohol elimina-
tion rates.  
 

Methods 
 

Two compartments for ethanol metabolism dis-
appear alcohol from the blood stream (3). The 
first compartment cleared by a process showing 
zero order kinetics and the second one shows the 
first order kinetics. To propose the mathematical 
formula and simulate the alcohol ingestion in the 
human body, at first some parameters should be 
defined. 
Let Xi denoted the time between the (i-1)th and ith 
drink. It was assumed that the sequence of ran-
dom variables {Xi; i ≥ 1} were independently and 
identically distributed with the distribution func-
tion D(.) (With probability density function d(.)). 
The adverse effect of alcohol due to the ith drink 
was random and represented by the random vari-
able Yi. It should be mentioned that one could 
correspond to the adverse effects of alcohol with 
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the well-known blood alcohol content (BAC) (4). 
However, it should have been done with caution 
as the model did not take into account the ab-
sorption and distribution phases. The sequence 
of random variables {Yi; i ≥ 1} were assumed to 
be a sequence of independently and identically 
distributed random variables and independent of 
the sequence {Xi}. The effect of the ith drink Yi 
was eliminated at a constant rate r (zero order 
elimination shown in window A) Fig. 1 presents a 
typical sample path of the model). Thus the time 
needed to completely eliminate the effects of the 
ith drink is Yi / r = Ei say. The adverse effects of 
alcohol in the system can be taken to be directly 
proportional to the amount of alcohol consumed. 
Thus, in this sequel we interchangeably used the 
random variable E to denote the elimination time 
of effects of alcohol, adverse effects of alcohol or 
the amount of alcohol consumed. The sequence 
{Ei; i ≥ 1} was therefore a sequence of inde-
pendently and identically distributed random var-
iables with distribution function E(.) (With prob-
ability density function e(.)). 
 

 
 
Fig. 1: A typical sample path of the time course of alcohol 
intake and assimilation covering zero order (A) and first 
order (B) elimination kinetics. Xi is the time between the (i-
1)th and ith drink; Yi is the effect of the ith drink; Ei is the 

elimination time of the ith drink and ϕ(τ) is the random 
amount added to the alcohol content at time τ. 

 
In the second compartment, when alcohol is in-
gested, before the adverse effects of alcohol from 
the previous drink are completely eliminated, 
there is a spurt in the alcohol concentration in 
the system. Hence, we called such an event as 
"overflow" in 4th Y (Fig. 1). Probabilistically, this 

event corresponds to the case when Xi <Ei. Such 
events are important from the study of alcohol 
concentration in the system, as they provide in-
stants of the discontinuities of the alcohol con-
centration curve with a positive jump leading to 
the alteration of the elimination kinetics. 
Accordingly for modeling purposes we assumed 
that each overflow event induces cytochrome 
enzymes leading to first order kinetics. More spe-
cifically, an overflow event at time τ results in the 

addition of a random amount ϕ (τ) to the alcohol 
content eliminated as a first order process (See 
window B in Fig. 1). Thus, this addition alcohol 

content ϕ (τ) at time τ was reduced to ϕ (τ) e-α (T-τ) 

at time T where α was the first order elimination 
rate. If the overflows occur at instants τ1, τ2… τn 
with τ1< τ2< …< τn< T, then the accumulated 
alcohol effects due to these jumps at time T was 

given by . τi's are 

random in nature. Based on study (14) time and 
cumulative of alcohol usage plays a vital role in 
relevant investigations. Therefore, in this study 
we focus on the time between overflows and the 
cumulative alcohol effects in the system, dis-
cussed in the following sections. 
In order to gain an understanding about perfor-
mance of the proposed model, we used simula-
tion for certain special cases and compared the 
statistical characteristics of the simulated model 
with that of the analytical results. The motivation 
for the resort to simulation is twofold: firstly the 
numerical results give us an insight into the work-
ing of the model. Secondly, the simulation proce-
dure gives us the results when the Laplace trans-
forms are not amenable for inversion and numer-
ical inversions are to be employed. It was done 
through varying the rate of drinking λ. In order 
to make a comparison between the random and 
deterministic times of drinking / elimination 
times, we choose the constant in the determinis-
tic case to be the mean of the corresponding ran-
dom variable. The choice of the parameter μ 
=0.125 used in the three cases was motivated by 
the following facts: The peak blood alcohol con-
centration on healthy men given an alcohol dose 
of 1g/kg is expected to reach around 150 mg/dl 
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and a mean blood alcohol decrease rate of 18.5 
mg/dl/hour (2). Thus the mean time to eliminate 
the alcohol effects 1/μ=150/18.5. The simula-
tion procedure was carried out using MATLAB 
software and each run was replicated 1000 times 
and the averages taken. 

 
Time between overflows  
In this section we proceed to derive the probabil-
ity density function of the time between two suc-
cessive overflows. In order to do so, this time 
interval O consists of the sum of a random num-
ber of intervals of which all the intervals except-
ing the last one have the property X>E (we have 
dropped the suffixes for the random variable as 
they are identically distributed). The last interval 
is such that X ≤ E. Thus 

  ∑    
   
                            (2.1) 

Where the number of terms, N, in the summa-
tion is a geometric random variable with proba-
bility distribution  

 (   )                   where p = 
P(X ≤ E) and q = 1-p. 
The variables Ui , i = 1, …, N-1 are distributed as 
X but conditional on X>E whereas VN has the 
same distribution but conditional on X ≤ E. De-
fine the conditional distributions of Ui and VN 
respectively as 

 ( )   [        |   ]  
 ( )  ( )

 (   )
    

(2.2)               
and

     

(2.3) 
Then we could write the probability density func-
tion of the time between two overflows as  

  ( )   [        ] 
 

(2.4) 
Where a(n) * b(t) is the convolution of the n-fold 
convolution of a(t) with b(t). Taking the Laplace 
transform of both the sides of (2.4), and simplify-
ing, we obtain 

                                           (2.5) 

Where L0(s), , and LdE (s) are the Laplace 

transform of the functions f0(t),  and 

d(t)E(t) respectively. L*
0(s) could be inverted to 

obtain f0(t) for specific forms of the functions 
d(t) and e(t). However, when the inversion of 
L*

0(s) is not amenable for analytic expressions 
one can do it using the algorithm of Abate (15). 

The moments of overflow could be obtained us-
ing the following formula,  

                                (2.6) 

Specifically, the mean time between overflow is 
obtained as  

                            (2.7) 

The variance and higher order moments of the 
overflow could be obtained using (2.6). 
 
Number of drinks between two overflows 
We could obtain the probability distribution of 
N, the number of drinks, consumed between two 
overflows by observing that overflow occurs 
when for the first time a drink is consumed be-
fore the completion of the elimination of the ef-
fects of the previous drink, formally denoted by 
X≤E. Thus, the probability distribution of N fol-
lows a geometric distribution with 
  

 (   )                                     (2.8)                     
where  

 (2.9) 
 
And 

 
 (2.10)  
Thus the mean and variance of the number of 
drinks between two overflows were obtained as 

 ( )  
 

 
  and V  ( )  

 

  
 . 
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Specific models 
For illustration purposes, we assumed the fol-
lowing three specific models for the underlying 
probability distributions of the model: 
Model 1: The subject drinks randomly, so that the 
time between drinks is exponentially distributed 

as , t>0. 

The amount of alcohol consumed (or the effects 
of alcohol) in each drink is a constant C so that 

 ( )  {
       
       

 

The Laplace transform of the density function of 
the time between overflows given in (2.5), in this 
case reduces to the following formula. (Deriva-
tions are given in Appendix A). 

 
The mean and variance of the overflows are giv-
en by  

  

 
Finally, the mean and variance for number of 
drinks between overflows were obtained as  

 

 
Model 2: The subject drinks at fixed intervals of 
length C so that  

 ( )  {
       
       

 

The amount of alcohol consumed is random so 

that  

In this case the statistical characteristics are given 
by 

 

 

 

 

 
Model 3: Finally, we assumed that both the time 
between drinks and the amount of alcohol con-
sumed each time are random with 

, t>0. 

The statistical characteristics of this model are  

 

                                              (2.11)      

                                (2.12)      

 

 
 
Accumulated effects of ethanol 
The accumulated ethanol effects at time T due to 
overflows at τ1, τ2, …, τn eliminated by first order 
kinetics were given by  

                       (2.13)                                             

Noting that , the instants of overflow are ran-

dom, we can write Y(T) as a stochastic integral 

                 (2.14)                                          

where 

 
Note that the overflows form a renewal process, 
E [dN (τ)] = m (τ) where m (τ) is the renewal 
density corresponding to the overflow process. 
Thus 

 (2.15)                             
Without loss of generality let us choose the con-

stant E (ϕ (τ)) = 1. In order to evaluate E[Y (T)] 
we take Laplace transforms on both sides of 
(2.15) to get  
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where   ( )  
  
 ( )

 (    
 ( ))

 

and L0
*(s) is the Laplace transform of the over-

flow density function given in (2.5). Inverting (s) 

either analytically if possible or numerically yields 

. 

 

Results 
 

We present below the simulation results of the 
three models discussed in the previous section. 
For each model, we consider three different cases 

depending on the drinking pattern by classifying 
the drinker as heavy, normal or sparse. For all the 
models, the first order elimination rate α is cho-

sen to be 0.1 mg/dl/hour,  and the 

time T=9. The values in the parentheses in each 
of the cells in the tables were obtained using the 
analytical results while the other value in the 
same cell was obtained using simulated result. 
Table 1 shows the results when the subject drinks 
randomly and the time between drinks is expo-
nentially distributed and the amount of alcohol 
consumed in each drink is a constant. 

 
Table 1: Statistical characteristics of the elimination process for model 1(drinks are consumed randomly) 

, t>0 and  ( )  {
       
       

 where C=1/μ. 

Model 1 E(O) STD(O) E(N) STD(N) E[Y(T)] 

Heavy drinker 
λ = 0.150, μ = 0.125 

9.5737 
(9.5401) 

12.4270 
(12.5221) 

1.4259 
(1.4310) 

0.7834 
(0.7854) 

0.8400 
(0.8472) 

Normal drinker 
λ = 0.125, μ = 0.125 

12.5576 
(12.6558) 

16.0894 
(16.6738) 

1.5757 
(1.5820) 

0.9607 
(0.9595) 

0.6909 
(0.6980) 

Sparse drinker 
λ = 0.100, μ = 0.125 

18.3242 
(18.1597) 

24.0361 
(23.8087) 

1.8232 
(1.8160) 

1.2098 
(1.2173) 

0.5418 
(0.5507) 

E (O): mean time between overflows; E (N): mean of the number of drinks between overflows; E[Y(T)]: 
average of the accumulated effects of alcohol; STD: standard deviation; λ: drinking rate; μ: elimination rate. 
Values in parenthesis were obtained using the analytical results and the other value in the same cell was ob-
tained by simulation.  
 
Table 2 considers the situation that the subject drinks at fixed intervals of length and the amount of alcohol 
consumed is random. 

 
Table 2: Statistical characteristics of the elimination process for model 2 (drinks consumed at fixed intervals C) 

 ( )  {
       
        

, t>0, where C=1/λ and . 

Model 2 E(O) STD(O) E(N) STD(N) E[Y(T)] 

Heavy drinker 
λ = 0.150, μ = 0.125 

15.224 
(15.3398) 

11.4229 
(11.5345) 

2.2934 
(2.3010) 

1.7021 
(1.7302) 

0.3449 
(0.3465) 

Normal drinker 
λ = 0.125, μ = 0.125 

22.0072 
(21.7463) 

17.3768 
(17.2896) 

2.7192 
(2.7183) 

2.1715 
(2.1612) 

0.3367 
(0.3187) 

Sparse drinker 
λ = 0.100, μ = 0.125 

34.7850 
(34.9034) 

29.3204 
(29.4825) 

3.5284 
(3.4903) 

2.9909 
(2.9482) 

0.0000 
(0.0000) 

E (O): mean time between overflows; E (N): mean of the number of drinks between overflows; E[Y (T)]: average of 
the accumulated effects of alcohol; STD: standard deviation; λ: drinking rate; μ: elimination rate. Values in parenthe-

sis were obtained using the analytical results and the other value in the same cell was obtained by simulation.  
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Table 3: Statistical characteristics of the elimination process for model 3 (time between drinks and the amount alco-
hol consumed each time are random) 

, t>0. 

Model 3 E(O) STD(O) E(N) STD(N) E[Y(T)] 

Heavy drinker 
λ = 0.150, μ = 0.125 

12.1562 
(12.2222) 

14.8014 
(14.9485) 

1.8455 
(1.8333) 

1.2087 
(1.2360) 

0.6154 
(0.6111) 

Normal drinker 
λ = 0.125, μ = 0.125 

16.1248 
(16.0000) 

19.9370 
(19.5959) 

1.9914 
(2.0000) 

1.3864 
(1.4142) 

0.4958 
(0.4964) 

Sparse drinker 
λ = 0.100, μ = 0.125 

22.5223 
(22.5000) 

27.3548 
(27.5000) 

2.2281 
(2.25000) 

1.6684 
(1.6771) 

0.3869 
(0.3858) 

E (O): mean time between overflows; E (N): mean of the number of drinks between overflows; E[Y (T)]: 
average of the accumulated effects of alcohol; STD: standard deviation; λ: drinking rate; μ: elimination rate. 
Values in parenthesis were obtained using the analytical results and the other value in the same cell was ob-
tained by simulation.  
 
Finally, Table 3 contains the results when both 
the time between drinks and the amount of alco-
hol consumed each time, are random 

 
Discussions 
 
From the model formulation, as the rate of drink-
ing of alcohol (λ) increases for a given rate of al-
cohol elimination (μ), the expected time between 
overflows decreases and reaches to reverse of 
rate of alcohol elimination (1/λ). Thus with re-
duced time between drinking, there is a reduction 
in the time between overflows, so that ultimately 
every drink leads to an overflow. On the other 
hand, as the rate of alcohol elimination increases, 
for a given rate of drinking of alcohol, the ex-
pected time between overflows increases so that 
overflows do not occur. Furthermore, as the av-
erage amount of alcohol in each drink increases, 
the corresponding time between overflows de-
creases also mentioned by some studies (16). 
From the tables, the mean time between over-
flows (E[O]) as well as the mean number of 
drinks between two overflows (E[N]) are de-
creasing functions of drinking rate (λ). However, 
the average accumulated effects of ethanol 
(E[Y(T)]) is an increasing function of drinking 
rate so that the faster a subject drinks, the more 
effects of ethanol accumulates in the system.  
Another interesting observation can be made in 
the case of fixed drinking times (Table 2), when 
the drinking rate is less than the elimination rate, 

the times between overflows are sufficiently 
large, so the effects of alcohol due to first order 
kinetics do not accumulate at all (E[Y(T)] = 0).  
Next, we compare tables 1 and 3 where the only 
difference is in the time for elimination of the 
effects of a drink (or the amount of alcohol in a 
drink). In Table 3 it is random with a mean time 
of 1/μ while in Table 1 it is deterministic with 
C=1/μ. The comparison in the accumulated al-
cohol effects E[Y (T)] for the two cases shows 
that random amounts of alcohol ingested per 
drink has a reduced ethanol accumulation in the 
system as compared to constant amounts of 
drinking. Similarly, comparing the two tables 1 
and 3 for the mean number of drinks consumed 
in between two overflows, we conclude that there 
is a significant increase in the number of drinks 
consumed when the amount of alcohol con-
sumed is random. We also observe that in such a 
case the overflows are delayed considerably when 
the amount of alcohol consumed is random. A 
similar analysis could be carried out by consider-
ing the random and deterministic nature of the 
times of drinking as a queuing system (9), used a 
stochastic approach to model alcohol ingestion in 
human bodies. Additionally, the approach of our 
study can be applied for a study (17) where they 
developed a pharmacokinetic model and consid-
ered a metabolic series approach for the ethyl 
series. 
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Conclusion  

 
The paper proposed a new model for the process 
of ethanol elimination. The salient features of the 
model were that it accounts for multiple doses as 
well as zero and first order elimination. The re-
sults were able to account for the variations in 
the times of alcohol intake as well as the amount 
of alcohol consumed. Being the first stochastic 
model of such a kind, we do hope that it will 
throw more light on interpreting experimental 
data of alcohol abuse. In this regard, there are 
only three effective model parameters to be esti-
mated namely λ, μ and α (assuming exponential 
underlying distributions). Given the two mo-
ments of the overflows, one can easily estimate as 

 using moment estimators (from equa-

tions (2.11) and (2.12)). 
The model assumed that overflows occur when 
alcohol is ingested before the adverse effects of 

alcohol from the previous drink are completely 
eliminated. However, it is eminently possible to 
have this event occur at the kth drink and k could 
be random, although the analytical expressions 
get messier, but simulation is always possible. 
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