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ABSTRACT

Meridional dipoles of zonal wind and geopotential height are found extensively in empirical orthogonal
function (EOF) analysis and single-point correlation maps of observations and models. Notable examples
are the North Atlantic Oscillation and the so-called annular modes (or the Arctic Oscillation). Minimal
stochastic models are developed to explain the origin of such structure. In particular, highly idealized,
analytic, purely stochastic models of the barotropic, zonally averaged zonal wind and of the zonally aver-
aged surface pressure are constructed, and it is found that the meridional dipole pattern is a natural
consequence of the conservation of zonal momentum and mass by fluid motions. Extension of the one-
dimensional zonal wind model to two-dimensional flow illustrates the manner in which a local meridional
dipole structure may become zonally elongated in EOF analysis, producing a zonally uniform EOF even
when the dynamics is not particularly zonally coherent on hemispheric length scales. The analytic system
then provides a context for understanding the existence of zonally uniform patterns in models where there
are no zonally coherent motions. It is also shown how zonally asymmetric dynamics can give rise to
structures resembling the North Atlantic Oscillation. Both the one- and two-dimensional results are mani-
festations of the same principle: given a stochastic system with a simple red spectrum in which correlations
between points in space (or time) decay as the separation between them increases, EOF analysis will
typically produce the gravest mode allowed by the system’s constraints. Thus, grave dipole patterns can be
robustly expected to arise in the statistical analysis of a model or observations, regardless of the presence

or otherwise of a dynamical mode.

1. Introduction

A problem of considerable interest is the proper
characterization of intraseasonal (sometimes called low
frequency, here meaning time scales between about 10
and 100 days) variability in the extratropics. In particu-
lar, many analyses of the spatial structure of such vari-
ability result in meridional dipole patterns—they ap-
pear in empirical orthogonal function (EOF) analysis
and single-point correlation maps of observations of
both the geopotential height and zonal wind (e.g., Wal-
lace and Gutzler 1981; Barnston and Livezey 1987) and
in models (e.g., Limpasuvan and Hartmann 2000; Cash
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et al. 2002). The zonal structure of the EOFs is gener-
ally more uniform, especially in the Southern Hemi-
sphere, while the correlation patterns are more local.
Interpreting such patterns has been problematic, for
they do not clearly differentiate between a hemi-
spheric-scale dynamical mode of oscillation (Thompson
and Wallace 2000) and dynamics that are more regional
in nature (Ambaum et al. 2001). Wallace (2000) pro-
vides a summary of the issues. For example, the first
EOF of the low-passed (>10 day period) surface pres-
sure in the Southern Hemisphere is almost zonally uni-
form, and might be called an annular mode. In the
Northern Hemisphere, the corresponding EOF is more
regional and resembles a pattern of variability tradi-
tionally known as the North Atlantic Oscillation
(NAO), although it is now known (essentially by defi-
nition) as the Northern Annular Mode or the Arctic
Oscillation (AO). As Wallace (2000) points out, the
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name North Atlantic Oscillation implies regional dy-
namics, perhaps even a role for the ocean, whereas re-
ferring to it as an annular mode or Arctic Oscillation
implies more hemispheric dynamics. In this paper our
goal is to clarify what underlying processes give rise to
such patterns and to suggest a simple model, perhaps
the simplest possible model, for them.

In Vallis et al. (2004, hereafter denoted V04), a baro-
tropic model was employed to illustrate a mechanism
for the generation of meridional dipole patterns. The
authors found that robust annular mode-like and
NAO-like patterns of variability could be generated
with a simple midlatitude stirring. It was concluded that
both the AO and NAO in their model were created by
the same dynamics. It was further noted that the annu-
lar mode of their model did not necessarily indicate the
presence of a zonally uniform dynamical mode, but
rather reflected the fact that the same “meridional di-
pole forming mechanism” was acting at all longitudes.
Drawing on these results, we develop a purely stochas-
tic model for understanding the spatial structure of the
single-point correlation maps and EOFs characterizing
the NAO and AO.

EOF analysis allows one to represent a variable of
interest in the most efficient set of orthogonal modes,
using only the variable’s covariance function as input. It
further quantifies the variance represented by the
modes, reflecting the importance of each in describing
the covariance structure.! Stochastic models, that is,
models of “random motions,” have long been used to
better understand EOF and correlation patterns. An
understanding of the space of all potential motions can
provide insight into the space of observed motions.
Batchelor (1953) notes in his section 2.5 that the statis-
tical stationarity of homogeneous turbulence necessi-
tates the choice of trigonometric functions when seek-
ing an orthogonal basis. North and Cahalan (1981) re-
port a theorem by Obukhov (1947) that the EOFs of a
statistically uniform random field on the sphere are the
spherical harmonics. In both cases, the variance repre-
sented by each EOF is dependent on the decorrelation
spectrum. If the field is “white” in space, the spectrum
is flat; all modes are degenerate, explaining the same
fraction of variance. When the field is “reddened” so
that spatial correlations decay over a finite distance, the

! For data on a finite grid, EOFs are the eigenvectors of the
covariance matrix, whose ijth entry is the covariance between
points i and j. The corresponding eigenvalues quantify the vari-
ance represented by each eigenvector. The generalization of EOF
analysis to continuous functions is also known as a Karhunen—
Loéve decomposition. [See von Storch and Zwiers (1999), chapter
13, for a complete discussion.]
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modes separate. If this reddening is simple so that co-
variance between two points decorrelates monotoni-
cally as the distance between them increases (e.g., ex-
ponential decay), the gravest mode allowed by the ge-
ometry of the system will be the top EOF, and the
variance represented by each mode decreases with in-
creasing wavenumber.

With idealized three-dimensional turbulence in a box
with periodic boundaries and random motion on the
sphere, symmetries in the system lead to the selection
of the EOF basis. The extratropical atmosphere is more
constrained than homogeneous turbulence, and we may
wonder what the symmetries and constraints of the cir-
culation imply for the selection of an EOF basis. In
section 2 we present a one-dimensional model of the
barotropic zonally averaged zonal wind, which suggests
that the oft-observed meridional dipole pattern is a
natural consequence of angular momentum conserva-
tion on a sphere, or zonal momentum conservation in a
channel. We extend the model to two dimensions in
section 3 to illustrate the potential for annular modes in
a system with no zonally coherent motions. In section 4,
we find that the addition of a relatively small degree of
zonal inhomogeneity, that is, a storm track, localizes an
annular mode-like pattern to a NAO-like pattern. We
then discuss the relation between EOFs of zonal wind
and of pressure in section 5. Differences are illustrated
by two one-dimensional models of the zonally averaged
surface pressure, where we find that the conservation of
mass plays a similar role as the conservation of momen-
tum in establishing the dipole pattern. From the outset,
we seek to explain the observations from the V04
model, but believe the results have relevance to the AO
and NAO of the atmosphere.

2. A one-dimensional model
a. Theory

We begin our discussion with the barotropic zonally
averaged zonal wind. Our model is a stochastic process
M(w, y) designed to catalog all possible anomalies of
the barotropic jet. The variable y € [0, 1] is our meridi-
onal coordinate, 0 being the equator and 1 the pole.
Here » marks the process in probability space: for each
particular o*, M(w*, y) represents one realization of an
anomalous zonally averaged barotropic wind profile.
Sampling M is analogous to sampling the wind profile
from a dynamically evolving model over time incre-
ments sufficiently long enough for the zonal anomalies to
be independent of one another, say 10 days to a month.

We keep M as general as possible, but each realiza-
tion should be in keeping with the basic physical prop-
erties of the atmospheric jet.
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1) The jet varies little in the Tropics.

2) The jet must vanish at the pole.

3) The fluid motions that generate the jet conserve
zonal momentum.

Constraint 1 is motivated by V04, which suggests that
NAO/AQ variability arises from the eddy-driven com-
ponent of the midlatitude jet with little variation at low
latitudes. At the pole, geometry fixes the zonal wind at
zero. Constraint 3 accounts for the fact that fluid mo-
tions, midlatitude eddies in particular, conserve mo-
mentum, and so can only reorganize momentum within
the atmosphere; anomalous momentum convergence at
one latitude must then be at the expense of momentum
lost at another. We enforce this constraint by requiring
that realizations of M have zero mean. We thus ignore
variations of the density with latitude and approximate
the hemisphere as a channel, but this does not qualita-
tively affect our conclusions. Likewise, one could view
M as a model of the angular momentum, where the
application to spherical geometry is more straightfor-
ward. The complete mathematical translation of the
three constraints is then that M must satisfy

M(w,0) =0 (2.1a)
M(w,1) =0 (2.1b)
1
f M(w,y)dy =0 (2.1¢)
0

for all w.

While our primary focus is on the effect of midlati-
tude eddies, diabatic effects may be of importance in
the NAO and annular modes, particularly at lower fre-
quencies. Momentum conservation is ultimately regu-
lated by dissipation at the surface, where on average
there can be no net transfer of momentum. Assuming
an effective drag coefficient, c,;, independent of lati-
tude, we have

f "’ e, (;)do = 0, (2.2)

0
where 6 is the latitude and (u), the time and zonally
averaged surface wind. In constraint (2.1c), we further
assume that there is no significant exchange of net mo-
mentum between atmosphere and surface at any time,
so that (u), can be replaced by the zonally averaged
wind, u,.

Last, we must specify a probability space to govern
the randomness of M. For simplicity, let us begin with a
discrete random walk formulation. Consider a random
walk of N steps from y = 0 to 1. At each step, the path
moves forward 1/N units in y and to the left or right d
units with equal probability. As we begin at the origin,
all 2V possible paths satisfy (2.1a). Only a fraction of

JOURNAL OF CLIMATE

VOLUME 18

TABLE 1. Number of possible random walks of length N. Note
that all walks begin at the origin, and so trivially satisfy (2.1a).

Satisfying Satisfying Satisfying
N (2.1a) (2.1a), (2.1b) (2.1a)—(2.1c)
4 16 6 2
8 256 70 8
12 4096 924 58
16 65536 12 870 526

them, however, will be bridgelike in that they both be-
gin and end at the same point. To satisfy (2.1b), the
path must take an equal number of steps to the left as
to the right. Hence N must be even, and, from combi-
natorics, we deduce that only N!/[(N/2)!]* are possible.
The final condition, (2.1c), further limits the number of
paths. We find that N must be a multiple of 4 for any
such mean zero, bridgelike paths to exist. While we do
not present a formula for determining the number of
them, it is easily computed by exhaustion for small N,
and values are listed in Table 1. This subset of paths is
a discrete implementation of the process M; each path
is a possible jet anomaly profile. By construction, each
potential anomaly pattern is equally likely to occur, pro-
viding a well-defined probability measure on the subset.

Formally, one could obtain Brownian motions from
these random walks by allowing N to go to infinity and
setting the right and left step size d = \/1/N. By the
central limit theorem, the distribution of the position of
the path at any y between 0 and 1 will be Gaussian, and
this choice of d sets the mean and variance of the dis-
tribution to 0 and y, respectively. This particular limit of
the random walk is the Wiener process, W(w, y), the
canonical Brownian motion. The fraction of paths sat-
isfying the first two conditions becomes smaller as N
increases, even though the number of such paths is
growing. In the limit N — o, there will be an infinite
number of bridgelike paths, but they will occupy a set of
measure zero inside the set of all possible Wiener paths.
The same holds for paths satisfying all three conditions.
There are an infinite number of mean zero, bridgelike
paths, that is, realizations of M, but they occupy a set of
measure zero within the set of paths satisfying the first
two conditions. Noting these points, we use the Wiener
process, which is well developed in the literature, to
construct the probability space of M.

We first sketch the procedure by which a realization
of M is obtained from a realization of W, as illustrated
in Fig. 1. We begin with a Wiener path W (curve a) that
trivially satisfies (2.1a). We then detrend W to satisfy
the second endpoint constraint, (2.1b). The resulting
path, B (curve c) is a realization of a process known in
stochastic calculus literature as a “Brownian Bridge,”
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F1G. 1. A sketch of the procedure of transforming a Wiener path
to a path of M. Line a is one realization, W(w*, y), of the Wiener
process. Line b is the expected, or average, path taken by all
Wiener paths that end at W(w*, 1). Line c is the Brownian bridge
B(w*, y), formed by taking the difference between lines a and b.
Curve d is the expected path taken by all Brownian bridges that
have the same integral in y as B(w*, y). Line e is the mean zero
Brownian bridge M(w*, y), formed by subtracting lines d from c.

as it arches from (0, 0) to (0, 1). Last, we eliminate the
mean in y from B to satisfy (2.1c), thus attaining a
realization of M (curve e).

To establish notation, given a function flw, y), we
define its expectation,

E[f(0,y)] = jgf(w, V)Py () do, (2.3)
where Q) is the space of all w and Py/(w) is the Wiener
probability density function. The E[f(w, y)] is the ex-
pected, or average, value of f at y. The conditional ex-
pectation of f, given Z = z, E[flw, y)|Z = Z], is the
expected value of f computed over the subset of ()
where the event Z = z is true.

A construction of B from W is well known in the
literature (e.g., Karatzas and Shreve 1991, 358-360).
We begin with a realization of the Wiener process,
W(w*, y) on the interval 0 to 1. Here w* is marked with
an asterisk to stress that this is a single path, and so
fixed when an expectation with respect to w is com-
puted. Here B(w*, y) is constructed by detrending
W(w*, y) with the average path taken by all Wiener
paths W(w, y) that terminate at W(w*, 1), that is,

B(o*,y) = W(w*, y) — E[W(o, y)|W(e, 1) = W(o*,1)]
(2.4)
= W(w*, y) — yW(w*, 1). 2.5)

It can be shown that (2.5) yields the most general space
of Wiener paths, or Brownian motions, that satisfy the
fixed end-point constraint, B(0) = B(1) = 0.
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Equivalently B can be generated from a sinusoidal
basis (Knight 1981, 12-14),
V2t
v ';1 (2.6)

B(w,y) = — sin(mny),

n
n
where the ¢, are identically and independently distrib-
uted Gaussian variables with zero mean and unit vari-
ance. With this formulation, we may more intuitively
define the space of w: an infinite-dimensional vector
space of independent Gaussian random variables:

o=, ... 2.7)
We will see shortly that it is really only the first few
degrees of freedom that govern the small wavenumbers
that matter for our question.

We construct M from B by employing a similar pro-
cedure as was used to construct B from W. That is, we
subtract from a realization of B the expected path taken
by all Brownian bridges that have the same integral.
Given a specific Brownian bridge, B(o*, y), let u(w*)
be its mean:

1
ww*) = J’ ) B(w*,y) dy. (2.8)

We then obtain a mean zero Brownian bridge, M(w#*,
y), using
M(w*, y) = B(o*, y)

1
- E[B(w, y) j B(w, y)dy = M(w*)]
0
(2.9)
= B(w*,y) — 6u(w*)y(1 — y). (2.10)

The computation from (2.9) to (2.10), that is, comput-
ing the expected path taken by all Brownian bridges
with mean p(w*), is shown in the appendix. The Fou-

rier decomposition of M is
1 96
n - I’lS’TF4 gn

V2 s

M ==
964 > g—";] sin(ny)

3
N m=13,.m#n M

V2 &6
2

— sin(nmy).

n=13,...

(2.11)
n=24....

It is interesting to observe that all even Fourier modes

have been unaffected in the transform, as they are natu-

rally mean zero.

Fundamentally M is different from W and B in that it
is not Markovian. That is to say, W and B can be for-
mulated as diffusion processes in which the evolution of
the system in space depends only on the current state of
the system, but evolution of paths of M depend on the
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FIG. 2. (top) Two sample paths of B(w, y) and (bottom) the
corresponding paths of M(w, y) constructed as detailed in the text.

entire history of the process. In generating M from B,
we have assured that M satisfies (2.1), but we have not
proven that M is the most general Brownian motion
satisfying them. Numeric results, in which we sample
large numbers of Brownian bridges, accepting only
those with absolute mean smaller than a threshold e, sug-
gest that this is, in fact, the most general formulation.

b. Results

In Fig. 2 we show realizations of each process. Both
M and B are anomaly patterns, that is,

E[B(w,y)] = E[M(w,y)] = 0 (2.12)

for all y so that, on average, paths of both integrate to
zero in y. Paths of M, however, integrate to zero in y for
every o (2.1c). The effect of this strict conservation of
momentum is clear in their covariance functions, shown
in Fig. 3. As M and B are mean zero in w, the covari-
ance function (e.g., of M) is the expectation

cov(x,y) = E[M(w, x)M(w, y)]. (2.13)
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Fi1G. 3. Covariance function of (top) B and (bottom) M. Positive
contours are solid and negative dashed. The contour interval is
0.02 for B, with contours (..., —0.01, 0.01, 0.03, .. .,) and 0.1 for
M, with contours (..., —0.005, 0.005, 0.015, ... ).

The diagonal y = x of the covariance function shows
the variance of the process as a function of y. For the
Brownian bridge, the variance is largest at the mid-
point, where B is the least constrained. For M, however,
variance is slightly suppressed at the midpoint, peaking
at y = 0.25 and 0.75. Vertical (or horizontal) lines in the
covariance function are single-point covariance maps.
For example, the line x = 0.5 shows the covariance of
all points with respect to the process at 0.5. For the
Brownian bridge, the covariance function is strictly
positive. The only drift of B, on average, is toward 0 at
the endpoints; if it is known to be positive (negative) at
any point, it is expected to be positive (negative) over
the whole domain. For M, however, the covariance
function is not always positive. When two points are
close, a positive correlation is observed, reflecting the
continuity of M in y. As the distance between the points
increases, however, the covariance becomes negative.
This is a reflection of the fact that, for a profile to be
mean zero when it is positive in one region, it must be
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F1G. 4. First four EOFs of (top) B(w, y) and (bottom) M(w, y).
The EOFs (and EOFs in all subsequent figures) are normalized by
the variance accounted for by each mode.

negative elsewhere; that is, a westerly anomaly in one
region must be balanced by easterly anomaly else-
where. The single point covariance maps of points near
0.25 and 0.75 indicate a dipole pattern, whereas points
in the middle exhibit tripoles.

These differences in the covariance functions mani-
fest themselves in the corresponding EOFs, as demon-
strated by Fig. 4. As the Fourier coefficients of B are
independent, as shown in (2.6), the sine modes are the
natural way to decompose the motion of the Brownian
bridge. For M, however, only the even modes are per-
fect sinusoidal functions. The mean zero constraint
mixes the odd Fourier modes together, and they are
recombined to be orthogonal in both y and o space.
Most importantly, the first sine mode, which is inher-
ently not mean zero, has been lost; the integral con-
straint has removed a degree of freedom from the sys-
tem, eliminating this mode. The remaining odd modes
are reorganized so that each is mean zero. The dipole
pattern is now the gravest mode allowed by the system
and takes position as the foremost EOF.

As a measure of the robustness of these results, we
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FiG. 5. First four EOFs of a 12-step random walk constrained
by (top) (2.1a) and (2.1b) and (bottom) (2.1a)-(2.1c).

return to the discrete random walk. For the case N =
12, there are 924 possible bridgelike paths and 58 mean
zero, bridgelike paths. The top EOFs describing the
space of these walks are shown in Fig. 5. Even at such
course resolution the dipole pattern is clearly the dom-
inant mode of variability in the fully constrained case.

¢. Comparison with observations

The National Centers for Environmental Prediction—
National Center for Atmospheric Research (NCEP-
NCAR) reanalysis data were obtained from the Na-
tional Oceanic and Atmospheric Administration—
Cooperative Institute for Research in Environmental
Sciences (NOAA-CIRES) Climate Diagnostics Center,
Boulder, Colorado, from their Web site (http://www.
cdc.noaa.gov/). The reanalysis procedure is described
by Kalnay et al. (1996). We used the 0.995 o-level zonal
winds sampled every 6 h from 1958 to 1997 on a 2.5 X
2.5 latitude—-longitude grid. After the zonal average was
taken at each time step, the annual average was com-
puted and smoothed by a 30-day running mean. EOFs
were then calculated from the residual winds left after
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the removal of the smoothed annual cycle. The covari-
ance matrix was weighted appropriately to account for
the decrease in area with latitude (North et al. 1982a).

Surface winds were chosen for comparison as they
provide the best indication of the barotropic circulation
driven by midlatitude eddies. The top EOFs of the
Southern Hemisphere are shown in the top panel in Fig.
6. They are quite consistent with those describing M; EOF
analysis has performed a Fourier-like decomposition of
the winds, and the first mode is the dipole pattern.

In the bottom panel of Fig. 6 we show the top EOFs
of the angular momentum of the Southern Hemisphere
barotropic flow,

®(0) = ryu,(6) cos’6, (2.14)

where 0 is latitude, r, is the radius of the earth, and 7,
is the zonally averaged surface wind. One would expect
the angular momentum to provide the best comparison
with model predictions. With the exception of the sec-
ond EOF, this is largely the case. The cos® factor fo-
cuses the activity in lower latitudes where the subtropi-
cal jet may play a larger role. This may explain in part
the skewness of the second EOF, where the equator-
most lobe of the tripole is disproportionately large.

The observational results are extremely robust. For
both the zonal winds and implied angular momentum,
the results remain largely the same when 1) analysis is
restricted to half of the time record, 2) linear trends are
removed, 3) the degree of smoothing of the seasonal
cycle is increased or decreased, and 4) the dataset is re-
stricted to a particular season (i.e., winters only). Similar
results are also obtained from analysis of the Northern
Hemisphere surface winds and the zonally and verti-
cally averaged zonal winds of both hemispheres. With
the vertically integrated winds there appears to be a
greater degree of mixing between the dipole and tripole
EOFs, so that in a few cases the top two EOFs are both
skewed tripole patterns. The dipole structure of the
first EOF is further corroborated by other authors in
more extensive studies of the observed winds (Lorenz
and Hartmann 2001; Feldstein and Lee 1998).

The fractions of the total variance represented by the
top EOFs of the various models and reanalysis data are
shown in Table 2. With B and M, the variance repre-
sented by EOFs of wavenumber n decay as n~ 2, as can
be seen from Egs. (2.6) and (2.11). The variance ac-
counted for by the top EOFs is relatively independent
of resolution, but the total variance, and hence the rela-
tive variance described by each mode, is altered when
small scales are truncated. Hence the top EOFs of the
constrained 12-step random walks explain a larger frac-
tion of the variance. The variance represented by EOFs
of V04 and the reanalysis data appear to decay expo-
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FIG. 6. First four EOFs of (top) the NCEP-NCAR reanalysis
surface winds and (bottom) angular momentum. The “mean”
curves refer to the climatological surface winds and angular mo-
mentum, respectively, scaled for ease of comparison with the EOFs.

nentially with wavenumber n, suggesting that the dy-
namics are producing a smooth profile, in which both
the function and its derivatives are continuous.

As a consequence of choosing Brownian motion to
model the anomalous zonal wind, we have assumed
that the underlying vorticity anomalies are white in
space. The zonally averaged vorticity anomalies im-
plied by M show no preference for any scale. Formally,
this can be seen from (2.11), where every Fourier mode
of —dM/dy (with the exception of the first) will have
nearly equal weighting. Given that we also neglect
spherical effects, the match between M and the reanaly-
sis winds in the Southern Hemisphere is perhaps a bit
fortuitous. One might expect the EOFs of the angular
momentum to better compare with the predictions of
the model, as it is the conserved quantity. Here the
second EOF appears to be stronger at the expense of
the first. While EOFs of the Northern Hemisphere win-
ter winds have the same structure as those in the South-
ern Hemisphere, the relative importance of the modes
differs. For the zonal wind, there is more energy in
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TABLE 2. Percent variance represented by the top EOFs. RW-B refers to the 12-step random walk constrained to be bridgelike and
RW-M the same walk further constrained to be mean zero. V04 refers to the EOFs of the zonally averaged zonal wind of their zonally
symmetric barotropic model. The Southern Hemisphere values for the EOFs of u, and ® are based on the full dataset. In the
calculations of the Northern Hemisphere winds, only data from the winter months [Dec-Jan-Feb (DJF)] were used.

No.
of nodes B(w, y) M(, y) RW-B RW-M Vo4 SH u, SH @ NH u, NH @
0 60.7 — 61.6 — — — — — —
1 15.2 38.0 15.6 422 51.1 37.0 31.1 32.0 434
2 6.8 18.6 7.2 18.7 26.6 21.3 27.6 21.7 233
3 3.8 9.5 42 11.5 10.9 9.8 11.3 12.2 7.9
higher EOFs, while the EOFs of angular momentum b. The model

more closely match the values predicted by M.

3. A two-dimensional model

a. Theory

We now turn to the zonal structure of EOFs and
correlation functions by constructing a simple two-
dimensional model using the process M as a source of
variability. In particular, we seek to understand the ro-
bust appearance of apparent annular modes in EOF
analyses, despite the general absence of annular pat-
terns in single-point correlation maps and other mea-
sures of zonal correlation.

In V04, it was shown that anomalous stirring of the
vorticity (i.e., anomalous baroclinic eddies in the atmo-
sphere) leads to anomalous convergence of momen-
tum, and hence a dipole anomaly in the streamfunction.
While this theory only applies strictly to the zonally
averaged flow, as long as the zonal averaging is suffi-
cient to cover a few eddies, the result approximately
holds. Thus enhanced stirring in one region, for ex-
ample, a storm track, leads to enhanced variability in
that region and an NAO-like pattern. We approximate
this process by directly simulating the local zonal flow
(by which we mean flow in the neighborhood of one
longitude) with the process M. We then specify the
correlation of the field in the zonal direction, seeking to
replicate the local structure observed in the single-point
correlation maps of models and observations.

While M was constructed to simulate anomalies of
the zonally averaged barotropic wind, we can also use
the process to simulate the local reorganization of zonal
momentum by eddies. Any longitudinal zonal wind
profile in a two-dimensional, incompressible random
flow field applicable to the extratropical atmosphere
should obey constraints (2.1). The end-point constraints
still apply if we continue with the assumption that the
variation of the flow in the Tropics is weak. Assuming
there is no flow across the equator, continuity implies
that the latitude-integrated flow is independent of lon-
gitude, establishing (2.1c).

We begin with a simple discrete example and then
generalize to a larger class of momentum-conserving
flows. For simplicity we simulate the flow in a channel
with zonally periodic boundaries. Suppose there are n,
degrees of freedom in the channel; that is, given a chan-
nel of length L and length scale of eddy anomalies L.,
ngis of order L/L,. To generate one realization of the
flow field, n,-independent realizations of M, denoted
m, j =1,2, ..., n, are sampled. The flow at n,
representative longitudes, i1, j = 1, 2, .. ., ny, are then
constructed from the m;. We build in a simple zonal
correlation structure, where

= (N2, + my,y) j#ng
1, = (UN/2)(m,, + my).

This structure specifies that the flow at any given lon-
gitude is 0.5 correlated with the flow at neighboring
longitudes and uncorrelated with all others. For com-
parison we also construct a null case in which the flow
at each of the n, representative longitudes is uncorre-
lated with the others: 1y, = m;.

We first compute numeric solutions. n,is varied from
2 (where the structure is just that of our one-dimen-
sional process) to 13. In Fig. 7 we compare two snap-
shots of random fields with n, = 8, one the null case
with no zonal correlation and the other described by
(3.1). The zonal correlation of the latter is much easier
to detect in single-point correlation maps, Fig. 8. By
construction, zonal correlation stretches out one step in
either direction from the base point, but no farther.
Similar to the single point correlation maps of stream-
function observed in V04, Figs. 9 and 14, a dipole pat-
tern appears when the base point is chosen poleward or
equatorward of the jet center but, when points are cho-
sen near the center of the jet, a meridional tripole pat-
tern is observed.

Figure 9 illustrates the percent variance represented
by the top 20 EOFs for the null case and the correlated
case with n, = 8. With the uncorrelated run, we have
tiers of eight degenerate EOFs, corresponding to eight

(3.1)
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F1G. 7. Realizations of the two-dimensional random flow fields
with n, = 8. (top) The null case, with no zonal correlations. (bot-
tom) The flow has the simple correlation described in (3.1). EOFs
are computed at discrete grid points indicated by the position of
the arrows.

independent meridional dipole patterns, tripole pat-
terns, and so forth (none shown). Differences in the
variance accounted for by each EOF within the tier
reflect the finite length of the simulation and provide a
measure of the convergence. The addition of zonal cor-
relation in the second simulation separates one EOF
above the rest: an annular mode-like structure shown
in Fig. 10. Deviation from perfect zonal uniformity is a
product of the finite sampling. The next two EOFs (not
shown) are also meridional dipole patterns but with
zonal wavenumber 1. The two are degenerate and in
quadrature with each other; their phase is arbitrary,
given the lack of any zonal asymmetry in the model.
The value of n, does not govern the existence of the
annular mode-like EOF in this model, but rather its
separation from other modes. The annular mode-like
pattern is always the first EOF, but its separation from
higher wavenumber patterns is a function of 7, as in-
dicated in Fig. 11. Beyond n, = 13, the wavenumber 0
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FiG. 8. Single-point correlation maps from the random field
with zonal correlation given by (3.1) with n, = 8. The base points
are those with correlation (1.0). Contour interval is 0.1, and the
zero contour has been omitted. A dipole or tripole pattern is
found by varying the position of the base point, as observed in
V04 (their Figs. 9 and 14).

and 1 patterns are poorly separated and begin to mix in
simulations. This could be remedied of course by still
larger sampling, but from a practical point of view, such
small separation is meaningless. Note that, as n, in-
creases, the physical system described by (3.1) changes
in that the zonal scale of the correlation decreases if
one assumes that the zonal scale of the channel is fixed.
If one were to appropriately increase the correlation
between modes [(e.g., rit; = f(m;_y, m;, m;,,)] so that
the zonal scale of the correlation remained constant
relative to the length of the channel, then the first EOF
would be expected to remain annular and distinct.

c¢. Analytic solutions

As the zonal correlation is independent of latitude, the
zonal structure of an EOF is independent of the meridi-
onal structure. Hence, a two-dimensional EOF can be
separated into meridional and zonal components, that is,
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FIG. 9. Percent variance accounted for by top EOFs, n, = 8.
Values for the uncorrelated and correlated simulations are shown
for comparison. The annular mode-like EOF shown in Fig. 10 is
the top EOF of the correlated simulation.

E.,= VU, (3.2)

where matrix E; ; is the two-dimensional EOF, meridi-
onal EOF V, is a column vector, and zonal EOF U, is
a row vector. The subscript k refers to the kth zonal
eigenvector, and / for the /th meridional eigenvector.
The two-dimensional eigenvalues, A, ;, are the product
of the meridional and zonal eigenvalues, A;; = A\,
Hence, the fraction of the total variance accounted for
by a two-dimensional EOF is given by the product of
the fractional variances represented by the zonal and
meridional EOFs.

The meridional EOF structure, that of M, was diag-
nosed in section 2. The zonal EOF structure is deter-

&g 0.088

0.6

F1G. 10. First EOF of the model with zonal correlation (3.1) and
n,= 8, an “annular mode.” Contour interval is 0.02, contours ..,
—0.01, 0.01, 0.03, ...,). As shown in analytic computations in
section 3c, with infinite sampling the EOF is perfectly uniform in
x and sinusoidal in y.
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Fi1G. 11. Percent variance represented by the first (wavenumber
0, solid line) and second (wavenumber 1, dashed line) EOFs as a
function of n, for the model with zonal correlation (3.1).

mined from the zonal covariance matrix C, where the
ijth entry is defined by

(3.3)

The zonal correlation matrix C for the uncorrelated
null case is simply the identity matrix. All eigenvalues
are degenerate and equal to 1. The sum of all eigenval-
ues, the trace of the matrix, is ng so that each EOF
explain 1/n;of the variance. The two-dimensional EOFs
then clump in groups of n. the first n, each represent
0.38 - 1/n,of the total variance, the second set 0.19 - 1/n,,
and so forth. For n; = 8 the corresponding values are
0.048 and 0.023, as observed in the numeric simulation.

For the correlated cases the covariance matrix has
three nonzero diagonals (plus nonzero corners, a result
of the periodic boundaries),

(Ci,j) = cov(i, ”ﬁj)'

1 ifi =j,
Ci’]- = 172 iti :j *lor (17]) = (1a nf)’ (nf’ 1), (34)
0 otherwise.

As the sum of each row of C is 2, a vector of all ones is
an eigenvector with eigenvalue of 2. All other eigen-
values are less than 2, so this mode is nondegenerate
and the foremost EOF: the annular mode. It explains
2/n; of the zonal variance so that the full two-dimen-
sional annular mode EOF explains 0.38 X 2/n, of the
variance. The n; ' power law observed in Fig. 11 is thus
an expression of the fact that each “annular mode” in
this model represents the same amount of variance, but
the total variance in the system increases linearly with
n,. The remaining eigenvalues are distributed between
0 and 2, and the wavenumber of the associated eigen-
vector increases for the smaller values. For n; = 8, the
first three eigenvalues are 2, 1.7, and 1.7. The annular
mode then accounts for 0.38 X 2/8 = 0.095 of the vari-
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ance, and the degenerate second and third EOFs, with
wavenumber 1, account for 0.38 X 1.7/8 = 0.081 of the
variance, each.

We can easily compute the EOFs of more general
patterns as long as we keep the zonal correlation inde-
pendent of latitude, so that the meridional and zonal
structure of the EOFs remain independent. Rather
than mechanically construct the correlations, #; =
f(my, ..., mnf), as in the model above, one may specify
the covariance matrix C directly, or, in the continuous
limit, specify the covariance function. EOF analysis is
possible provided C is symmetric and positive semidefi-
nite, and the EOFs themselves (or any rotation thereof)
can be used to construct a flow with this zonal structure
from the m;. One can then construct a model with an
arbitrarily large number of zonal degrees of freedom,
ny, while maintaining reasonable zonal correlations by
filling out the diagonals of C. In the continuous limit,
the system can be viewed as a stochastic process on a
circle. As discussed by North et al. (1982a), rotational
invariance then leads EOF analysis to the trigonometric
functions. The ranking of modes follows the same princi-
pal as expressed before. A simple red spectrum favors the
gravest mode with zero wavenumber: the annular mode.

It is zonal symmetry of the covariance statistics, not
necessarily of the motions themselves, that is required
to produce an annular pattern. Zonal symmetry of the
statistics implies that each row in the matrix is a trans-
lation of the others. Any such matrix will exhibit a zon-

=1 05 0 0
05 1 05 0
0 05 1 0.5
0 0 05 a

=10 o o a-o0s
0 0 0 0
0 0 0 0
05 0 0 0

so that a sets the variance of the “storm track” region.
If we take a to be 2, thus doubling the variability in the
storm track, the first three eigenvalues are 3.6, 1.9, and
1.7. The trace of C is 10 so that the top EOF represents
0.38 X 3.6/10 = 0.14 of the total variance. Combining
this with the first meridional EOF, we obtain the NAO-
like mode shown in Fig. 12. It is well separated from the
next EOF, which explains only 0.38 X 1.9/10 = 0.072 of
the total variance.

Zonal inhomogeneity shifts EOF analysis from an
annular pattern to a more localized NAO-like pattern.
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ally uniform EOF. A sufficient condition for this to be
the dominant EOF is that the covariance decay mono-
tonically over some finite length as the distance be-
tween points increases. As illustrated by our discrete
model, local correlation—only three nonzero diagonals
in the covariance matrix—is sufficient to produce such
a pattern. Zonal symmetry of the motions, that is, long
distance correlation in the zonal direction, would be
manifested by nonzero values filling out the diagonals
of the covariance matrix. This too would lead to zonally
uniform EOFs, but is not a necessary condition.

4. An NAO-like pattern

In V04, it was observed that enhanced stirring of the
vorticity in a particular region led to enhanced local
zonal wind anomalies and consequently a NAO-like
pattern. We may use our stochastic process to model
this, that is, use M to directly simulate the response of
the zonal flow to inhomogeneous eddy forcing. For a
simple illustration we employ the same nt; = f(m;)
structure as in (3.1), but the strength of the random
fluctuations of the zonal flow in one region (one m,) is
increased. For n, = 8, we make the following changes:

my, =\/12m5; + \/a — 12m,
ms =\ a—12m, + \/12ms.

for a > 1/2. The corresponding zonal covariance ma-
trix is

(4.1)

n
]

a—0.5
4.2)

o =~ o o0 o o o
n

o R, o0 o o o o
W

n
— O O o o o o o

Figure 13 illustrates the degree to which the EOF has
localized as a function of a. As a measure of the asym-
metry of the first EOF, we plot the ratio m/M, where m
is the minimum of the zonal EOF and M the maximum.
For example, in the case when a = 2 above, m/M =
0.0067/0.69 = 0.0096. For a = 1 the variance is equal at
all longitudes, and so is the first EOF. When a is 1.25,
the variance of the flow is only 25% stronger in one
region, but the first EOF weights this region roughly five
times as much as on the opposite side of the channel.

In general, the first EOF computed by numerical
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F1G. 12. The first EOF from a simulation with enhanced vari-
ability in one region, described by (4.1). Contour interval is 0.03,
with contours (..., —0.015, 0.015, 0.045, .. .,). It is NAO-like in
being a zonally localized dipole pattern.

simulation of the two-dimensional model with zonally
uniform zonal correlations (a = 1) was slow to converge
to the analytic solution. The analytic first EOF is zon-
ally uniform, projecting only on to zonal wavenumber
0. The first EOF based on simulation was always domi-
nated by zonal wavenumber 0, but mixed with small
wavenumber 1 or higher anomalies. Only with a long
simulation did these higher wavenumber patterns dis-
appear. Such slow convergence to a perfect zonal wave-
number-0 pattern was also observed in V04 when the
barotropic model was forced with statistically zonally
uniform forcing.

The steep slope of the ratio m/M near a = 1 in Fig. 13
suggests an explanation for the slow convergence.
Zonal EOF patterns are quite sensitive to small inho-
mogeneities in the covariance matrix. For example,
when a is 1.01, so that the variance in one region is just
1% greater than the rest of the domain, the ratio of
m/M is 0.94, indicating a 6% zonal inhomogeneity in
the top EOF. Coupled with the slow convergence of the
experimentally determined covariance matrix,” this
sensitivity necessitates long simulations to achieve the
pure analytical zonal wavenumber-0 structure.

5. Pressure models

How does our decision to model the zonal winds, as
opposed to another variable, affect our conclusions? To

2 The magnitude of the absolute error between the estimated
covariance matrix (i.e., the covariance matrix computed from a
finite simulation with n independent observations) and the true
covariance matrix decays with the square root of the number of
independent observations, n~ /2,
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F1G. 13. EOF localization as a function of a. m/M is the ratio of
the minimum value of the first zonal EOF to its maximum value,
and hence a rough measure of the asymmetry of the mode.

answer this question, we formulate two simple models
of the zonally averaged surface pressure to compare
with our model M of the zonally averaged zonal winds.
By hydrostatic balance, surface pressure provides a mea-
sure of the vertically integrated mass of the atmosphere.
Conservation of mass then establishes a constraint on
the zonally averaged surface pressure. What does this
constraint imply in the selection of an EOF basis?

a. Model P,

Using the same notation as for M(w, y) in section 2a,
we construct the stochastic process P;(w, y) to model
the space of zonally averaged surface pressure anoma-
lies. To enforce the conservation of mass, we require
that all anomalies have zero mean, thus constructing a
model of the zonally averaged pressure in a homoge-
neous channel. We further assume there is no surface
pressure anomaly at the equator (the lower boundary
of the channel), in keeping with our thinking that the
NAO and annular modes are primarily midlatitude
phenomena. The process is then very similar to M, but
for the omission of constraint (2.1b), which pins the
zonal winds to zero at the pole. Paths are constructed
from the Wiener process by the same procedure used to
obtain M from B:

1
Pl(w*,)’):W(w*»Y)_E[W(wa}’) f W(w,)’)dy
0

1
= f W(w*, y) dy]
0

1 3y
=W(w*,y) — [L W(w*,y) dy] 5 2=y

(5.1)

(5.2)
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FI1G. 14. (left) Sample paths from models (top) P, and (bottom) P,. (right) The first four
EOFs of the two respective models.

Computation of the expected path taken by all Wiener
paths of a given mean and the Fourier decomposition of
P, are discussed in the appendix. Realizations of Pj,
which are just Brownian motions constrained to have
zero mean, are shown in Fig. 14.

Also shown in Fig. 14 are the top EOFs of model P;.
The first EOF is a dipole of pressure: an annular mode.
We again have a Fourier-like decomposition of the
field, but now EOFs take the form of sin[w(n + 1/2)],
modified so that each has zero mean. Individual paths
of P, are not differentiable, so one cannot speak of the
geostrophic wind implied by individual realizations.
The EOFs are differentiable; the geostrophic winds im-
plied by the first indicate a dipole in the wind, the sec-
ond a tripole, and so forth. The implied winds, however,
neither conserve momentum nor decay to zero at the
equator and the pole.

The use of Brownian motion as our starting point
makes it problematic to improve this model to account
for the constraints on the zonal wind. We cannot en-
force the conservation of momentum without the exis-
tence of geostrophic winds on a path by path basis, and
it is the coupling of momentum conservation with con-
tinuity that allows us to extend our model of M to two
dimensions in section 3. There are of course a number
of differentiable stochastic processes that would enable
us to overcome this limitation. To avoid the introduc-
tion of new mathematics, however, we explore one op-
tion based on our previous work with M.

b. Model P,

Realizations of our second model of the zonally av-
eraged surface pressure, P,(w, y), are obtained from
paths of M by integration, so inheriting geostrophic
winds satisfying constraints (2.1):

Py(0*,y) = c(w*) + J‘nyM(w*, x) dx, (5.3)
0

where f; is the Coriolis parameter (assumed to be con-
stant) and c(w) is an integration constant determined
on a path by path basis to ensure that each realization
has zero mean. While ¢(w) enforces the conservation of
mass, it also eliminates our control of the pressure at
the equator; pressure profiles are now free at both ends.
The loosening of boundary conditions can be seen in
the sample paths of P, and the corresponding EOFs
shown in the bottom panels in Fig. 14. The Fourier
decomposition of P, is shown in the appendix.

Given the one-to-one relationship between paths of
P, and M, it is not a surprise that there is a one-to-one
correspondence between their EOFs. The EOFs of M
are exactly the geostrophic winds implied by the EOFs
of P,. What is perhaps of interest are the variances
represented by each EOF, shown in Table 3. EOF 1
corresponds to the same motion in P, and M, but the
first EOF of pressure explains a much larger fraction of
the variance, 65% as compared to 38%.

Pressure, as the integral of the zonal winds, contains
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TABLE 3. Percent of the variance represented by the top pres-
sure EOFs. EOFs of the Southern Hemisphere are computed
from reanalysis sea level pressure (SLP) observations between 0°
and 80°S. EOFs of the Northern Hemisphere are based on win-
tertime (DJF) observations from 0° to 90°N.

EOF P, (0, ) P, (0, ) SH SLP NH SLP
1 50.2 64.7 60.9 51.3
2 17.0 265 19.0 252
3 8.5 40 83 115

more energy in larger scales. In these idealized models,
this can be seen in the decay rates. While the variance
of EOFs of M decay with wavenumber as n~ 2, they
decay as n~* for P,. The increased dominance of the
first EOF of model P, relative to M, however, does not
follow from the same reasoning; both are Brownian
motions with n~2 decay. Rather, it is a function of the
wavenumbers allowed by the systems. Motions with
wavenumbers 1, 3/2,2, ... are allowed in M, while P, is
characterized by 3/4, 5/4, 7/4, . . .. Albeit the n~? decay
is strictly true only in the limit as n — o, it applies
roughly to the small wavenumbers. Hence, the ratio of
the variances of the first two EOFs can be estimated by
(5/3)* ~ 2.8 for P, as compared to (3/2)* = 2.25 for M.

c¢. Comparison to observations

NCEP-NCAR reanalysis sea level pressure data
were obtained in the same form as the surface zonal
winds and EOFs computed with the same procedure. In
Fig. 15 we show the EOFs of sea level pressure in the
Southern Hemisphere. Data over Antarctica (poleward
of 80°S) were omitted in these calculations, but repeat
computations with the full hemispheric pressure field
produced nearly identical results. As seen with the
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FIG. 15. Top EOFs of sea level pressure in the Southern Hemi-
sphere. Data poleward of 80°S were omitted from the calculation.
The mean sea level pressure is shown as the anomaly from the
hemispheric mean and scaled for comparison with the EOFs.
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zonal winds, the EOF patterns are very robust. The
same EOFs are observed in computations based on
subsets of the time record, and in similar analysis of the
Northern Hemisphere. The percent variance repre-
sented by the top EOFs are listed in Table 3. The first
EOF in the Northern Hemisphere winter is less domi-
nant than its southern counterpart. This difference ap-
pears to be relatively independent of the data used to
compute the EOF; similar results are found when ob-
servations are limited to a season in the Southern
Hemisphere or extended to the whole year in the
Northern Hemisphere.

Model P, performs much better in capturing the ba-
sic structure of the observed EOFs. EOF analysis is
quite sensitive to boundary conditions; the modes de-
scribing P, must satisfy constraints on their derivatives,
and the cosinelike modes capture the end point con-
straints on the geostrophic winds. This is not to say that
conservation of momentum and mass are competing
effects. Rather, both constraints aid in the selection of
the dipole EOF. A more complex model could inte-
grate both constraints, as done naturally by atmo-
spheric motions.

As seen in Table 3, the relative importance of the top
EOFs in the atmosphere fall between models P, and P,.
It is somewhat problematic that both models M and P,
so closely match the variance structure of atmospheric
EOFs. Given geostrophic balance, it is not possible for
both the winds and pressure to be described by Brown-
ian motion. Spherical geometry is more important for
the surface pressure than zonal winds (North et al.
1982b) so that comparison of models P; and P, to the
atmosphere is more tenuous; the result may be the
product of canceling errors. Also, the reanalysis winds
and pressure EOFs appear to decay exponentially with
wavenumber. The differences in the relative impor-
tance of EOFs between model M and P, is a result of
low order algebraic decay. With exponential decay, the
top EOFs of both pressure and winds can explain the
same fraction of the variance. The atmosphere is likely
somewhere in between these extremes.

What do these pressure models say about our initial
question concerning the impact of variable choice on
EOF analysis? Perhaps the most important point is
seen in Tables 2 and 3, where we find the top EOFs of
pressure, the annular modes, to be more dominant than
the top EOFs of zonal wind. In the atmosphere fields
are noisier and the decorrelation spectrum is not mono-
tonic. The robustness of EOFs hinges on their separa-
tion. The larger separation between the top pressure
EOFs makes it more probable for the zonally averaged
signal to remain distinct in a noisy two-dimensional
field. There is less separation between scales in the
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zonal winds, and consequently the annular signal is
more likely to be overwhelmed.

6. Discussion and conclusions

We have constructed a series of stochastic models to
determine the implications of the symmetries of the
eddy-driven, barotropic circulation in the selection of
an EOF basis. Previous studies by Obukhov (1947),
Batchelor (1953), and North and Cahalan (1981) have
illustrated the effects of topological symmetries and
decorrelation structure on an EOF basis constructed to
describe random motions. We have added information
about the fluid dynamics—in particular that mass and
momentum be conserved—to models of random mo-
tions. We show that in various cases the resulting EOFs
and correlation structures resemble those of the atmo-
sphere. Meridional dipole structures robustly arise in
both EOF and correlation analysis and, depending on
the zonal correlation structure of the stochastic model,
either zonally elongated or zonally localized EOFs re-
sembling annular modes and the North Atlantic Oscil-
lation, respectively, are found. Zonally uniform EOFs
arise when the zonal correlation is independent of lon-
gitude and decays monotonically with zonal distance,
but do not require hemispheric-scale correlations for
their existence.

In our simplest model, M, we explored the space of
zonally averaged barotropic wind anomalies by con-
structing Brownian motions that are consistent with ob-
served anomalies in a channel, specifically the conser-
vation of zonal momentum. This constraint proved piv-
otal in the determination of the EOF basis. The result
is a dominant meridional dipole pattern similar to that
observed in the NAO and AO. The dipolar sinusoidal
pattern is the gravest mode that satisfies the integral
constraint required by the conservation of momentum.
With this stochastic process, the dipole pattern is not
indicative of a dynamical oscillation. Rather, it is part of
a Fourier-like decomposition, the most efficient statis-
tical expression of the variability. The EOF patterns
predicted by the model are similar to those observed, as
shown in section 2c.

The two-dimensional model illustrates a second im-
portant point. While zonally symmetric motions are
sufficient to produce annular patterns of variability,
they are not necessary. The necessary condition for
zonally uniform EOFs is zonal symmetry of the covari-
ance statistics. Our model makes explicit a case where
the motions are not symmetric, as seen in the finite
zonal correlation patterns, Fig. 8, but zonal symmetry
of the statistics produces the annular mode, Fig. 10.
Ambaum et al. (2001) make a similar point with a low-
order model of the Arctic Oscillation.
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We also found that the EOF structure of the two-di-
mensional model was quite sensitive to small asymme-
tries in the covariance statistics. In particular, if we in-
crease the variance in the stochastic model in a zonally
localized region, the annular EOFs are replaced by EOFs
that resemble those of the NAO, as shown in Fig. 12.

Last, we compared models of surface pressure to
models of the zonal wind. Our first model, Py, is similar
in spirit to M, consisting of Brownian motions con-
strained to behave as anomalies of the zonally averaged
surface pressure. In particular, anomalies must conserve
mass. EOF analysis again produces Fourier-like modes
consistent with the essential constraints and boundary
conditions; the first and gravest mode is a dipole in
pressure, or mass, between the pole and lower latitudes.
Both the EOF patterns and the variance represented by
each mode compare well with reanalysis observations.

Our second pressure model, P,, was based directly on
M in an effort to account for constraints on both the
zonal winds and pressure. While the model does not
predict the observed EOF structure as well as Py, it
illustrates an important point concerning EOF analy-
sis and the choice of variable. In choosing Brownian
motion to model the zonal wind, we assumed a white
vorticity field, constrained only to conserve angular
momentum and satisfy the boundary conditions of
the zonal wind. In EOF analysis of this vorticity field
(not shown), all modes are almost degenerate, explain-
ing nearly the same fraction of the variance. Integration
to compute the zonal wind anomalies, M, separates
modes with an n~2 spectrum, and the annular mode of
the zonally averaged winds appears. A second integra-
tion to obtain the pressure, P,, produces EOFs that decay
as n~*, further emphasizing the separation of scales.

While the atmospheric spectrum is not so extreme,
there is a greater separation of scales with pressure (or
geopotential height) than zonal winds. That the first
EOF of pressure then explains a larger fraction of the
variance is significant. Modes found in our simple mod-
els are more likely to be observed in the atmosphere if
they are well separated, and thus more robust to rear-
rangement when the covariance structure is perturbed.

Why do these EOF patterns arise? Both the meridi-
onal dipole and annular zonal patterns are grave
modes. In a field with a red spectrum, neighboring
points are positively correlated. Hence, they will likely
appear as the same sign in an EOF that will, by design,
maximize the variance it can represent. Given this con-
nection, EOF analysis simply links point to point, seek-
ing to capture the entire domain in the first EOF. In the
zonal direction this favors annular patterns. In the me-
ridional, conservation of mass and zonal momentum
provide an additional constraint; there must be at least
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one node, and clearly, less pairwise variance is sacri-
ficed with a single node than with two.

Zonal wavenumber-0 modes are expressions of rota-
tional symmetry and meridional wavenumber-1 modes
are expressions of mass and momentum conservation.
It is therefore natural that such patterns are observed in
simple dynamical models, full global climate models,
and observations alike. This does not, of course, pre-
clude the possibility that these patterns may be real
dynamical modes. However, these are simply the pat-
terns that one would expect to observe if the atmo-
spheric velocity field were characterized by a random
walk, subject to the constraints specified in (2.1). Thus,
they provide a starting point for searching out the dy-
namically interesting side of extratropical low-fre-
quency variability. Deviations from these patterns, for
example, may suggest that other dynamics is occurring.

We draw the readers attention to related work by
Wittman et al. (2005).
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APPENDIX
Stochastic Model Computations

a. Derivation of (2.10): The expected path of the
Brownian bridge

We compute the expected, or average, path taken by
all Brownian bridges with mean w. For simplicity, we
define this average path by the function F(y, n):

Fly,m = E[B(w, y)U B(y, w) dy = M]- (A1)
0

Using the sinusoidal decomposition of B, Eq. (2.6), we
have that

1 V2 & 1
f Blw,y)dy = \/ >~ (A2
0 T n

F(y,w)=E [\/E—s' (n
\sz[gnmJ

in(mmny), (A3)
where E[{,|p] is given by
E[{,|n]=E [ 22 E M]. (A4)
n= 13,.“
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In the second step of (A.3) we have used the fact that,
for random variables X and Y and scalars @ and b, E[aX
+ bY] = aE[X] + bE[Y], extended to the infinite sum.

We note that the condition on the mean of B only
involves the odd ¢,. As the ¢, are independently dis-
tributed, knowledge about the values of the odd ran-
dom variables provides no information about the even
variables. Hence,

E[{,|n] = E[,), n=2,4,...,
and E[¢,] = 0, by construction.

For the odd terms, the problem is now to compute
the expected value of each Gaussian variable, given the
sum of them all. We use a result from probability
theory: for independent, standard Gaussian variables X
and Y and scalars a, b, and z:

(A.5)

a
E[X|aX +bY =z] = —bzz (A.6)
Equation (A.6) can also be written as
2
ElaX|aX + bY = z] = T[fz
(A7)
var(aX)

- var(aX + bY) <

so that the expected contribution of each variable to the
sum is proportional to its variance. The result general-
izes to an infinite sum of Gaussian variables, so that for
n odd,

n TN
E[g,|p] = —
H 42V2
> m
m=13,... , (A.8)
24\/2 p
e
where we use the sum
o o
> mT :—. (A.9)
m=13,...

Inserting this result into (A.3) we conclude that

o

48,u, 1

F(y, p) = >, 5 sin(nmy) (A.10)
n=13,..1

=6p D, ——sin(nmy) (A.11)
n=13,.. 1

=6uy(l —y), (A.12)

where in the last step, we make use of the fact that on
the interval [0, 1]

o

ya-y= >

n=1,3,...

——sin(my).  (A13)
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In passing, we note that y(1 — y) is the variance of B
so that its expected path, given the mean, is simply the
variance function, suitably normalized. As observed
when constructing the Brownian bridge, the expected
path of a Wiener process, given its end point W(1), is
W(1)y. The variance of W(w, y) is also just y so that
here, too, the expected path is given by the variance.

b. Derivation of (5.2): The expected path of the
Wiener process

The expected path taken by a Wiener process, given
its mean,

1 3y
E[W(w,y)U W(w, y) dy = M] =5 <2 - y)u,
0
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is computed by the same procedure used above. The
Fourier decomposition of the Wiener process,

W(y) = \/ E Zsin[(n — 12)my],  (A.15)
is used in place of the decomposition of the Brownian
bridge, (2.6), and we make use of the result

o0

6
2

n=1

3%(2 —y)= sin[(n — 12)wy] (A.16)

on [0, 1]. There is no uncoupling between odd and even
modes, as all basis functions have nonzero mean.

c. The Fourier decomposition of models P, and P,

(A.14) The Fourier decomposition of P, is

P,(y) = i i Z i b sin[(n — 1/2)my] (A.17)

! T A \n-12 - 1/2) L m - 12) ' '

Model P, is obtained from M by integration of (2.11). The Fourier decomposition is
96 ~ &,
Py(y) = ! 0\[ 2 < — §—2> cos(nmy) + J 0\[ 2 —cos(nﬂ'y) (A.18)
n=13,.. nmT m=1m n=24,.1
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