
Scientific Programming 14 (2006) 251–265 251
IOS Press

A stochastic model for workflow QoS

evaluation1

Yunni Xia, H.P. Wang∗, Y. Huang and L. Yuan
School of Electronic Engineering and Computer Science, Peking University, Beijing, China, 100871

Abstract. Quality (QoS) prediction is one of the most important research topics of workflow. In this paper, we propose a

stochastic model to evaluate QoS (make-span, reliability and cost) of workflow systems based on QWF-net, which extends

traditional WF-net by associating tasks with firing-rate, failure-rate and cost-coefficient. Through a case study, we show that

our framework is capable of modeling real-world workflow-based application. Also, Monte-carlo simulation in the case study

indicates our analytical methods are consistent with simulation. We also present a sensitivity analysis technique to identify QoS

bottleneck.The paper concludes with a comparison between our approach and related work.

Keywords: Workflow, QoS, homogeneous continuous-time markovian process, monte-carlo simulation, sensitivity analysis

Notation

T Set of tasks in QWF-net Q Infinitesimal generator

ti The ith task U(t) State-space

P Set of places in QWF-net Si The ith state in state-space

pi The ith place Ti Time-to-termination of Si

λ(ti) Firing-rate of ti MS Make-span of QWF-net

µ(ti) Failure-rate of task ti Ri Reliability of ti
lo(ti) Skipping probability of task ti RSi Reliability of state Si

se(ti) Selection probability of task ti Reliability Reliability of QWF-net

θ(ti) Cost-coefficient of task ti COi Cost of executing ti
C Cost of QWF-net

1. Introduction

With the advent and evolution of global scale economies, organizations need to be more competitive, efficient

and flexible. In the past decade, workflow techniques [22] have been widely used to address these needs. Workflow

aims to help business goals to be achieved with high efficiency by means of sequencing work activities and invoking

appropriate human and/or information resources associated with these activities.

The application of workflow techniques requires QoS management. Appropriate control of QoS leads to high

efficiency of services and high quality of products, thereby fulfilling customer expectations and achieving customer

satisfaction. According to [6], being able to evaluate and manage QoS of workflow has four distinct advantages.

1This research is supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312004.
∗Corresponding author. Tel.: +8610 62765818; E-mail: whpxhy@pku.edu.cn.

ISSN 1058-9244/06/$17.00  2006 – IOS Press and the authors. All rights reserved

252 Y. Xia et al. / A stochastic model for workflow QoS evaluation

Sequential routing

Parallel routing Selective routing

Iterative routing

 (loop)

AND-split AND-join XOR-split XOR-join

Fig. 1. Routing patterns.

– QoS-based design: it allows organizations to translate their vision into their business processes more efficiently,

since workflow can be designed according to QoS metrics. For e-commerce processes it is important to know

the QoS an application will exhibit before making the service available to its customers.

– QoS-based selection and execution: it allows for the selection and execution of workflows based on their QoS,

to better fulfill customer expectations. As workflow systems carry out more complex and mission-critical

applications, QoS analysis serves to ensure that each application meets user requirements

– QoS monitoring: it makes possible the monitoring of workflows based on QoS. Workflows must be rigorously

and constantly monitored throughout their life cycles to assure compliance both with initial QoS requirements

and targeted objectives. QoS monitoring allows adaptation strategies to be triggered when undesired metrics

are identified or when threshold values are reached

– QoS adaptations: to achieve higher performance and reduce cost, it is necessary to expect to adapt, replan, and

reschedule workflow system. When adaptation is necessary, a set of potential alternatives is generated, with

the objective of changing a workflow as its QoS continues to meet initial requirements. Therefore, through

QoS evaluation techniques,workflow designers and managers can study how system adaptations influence

performance and decide whether QoS requirements remain satisfied

Among many research topics of workflow, performance/QoS analysis is yet to be given the importance it deserves.

Techniques and models for workflow QoS evaluation are still limited. Existing models and approaches fall into

two categories, namely simulative and analytical. Among analytical methods [5], derives an analytical model from

historical logs, models of [6,9,24] use reduction (simplification) techniques to simplify complex routing constructs

into performance-equivalent tasks [11,17], derive analytical models from basic compositional patterns (sequence,

parallelism, choice and loop) [10], proposes a performance equivalent analysis technique [5,12,13], model the

control flow of workflow systems as continuous Markovian chains, [4] uses a decomposition technique to find some

performance bounds of WF-nets [1], introduces a state-based performance evaluation technique for workflow based

on stochastic Petri-net.

This paper introduces an analytical approach to address the need for QoS evaluation. This approach is based

on QWF-net (WF-net for QoS evaluation) model, which is an extension of traditional WF-net by associating tasks

with firing-rate, failure-rate and cost coefficient. By mapping the execution process of QWF-net into a continu-

ous Markovian process, analytical methods to evaluate make-span(expectation and standard-deviation calculated),

cost(expectation and standard-deviation calculated) and reliability is developed. The case-study shows that our

approach is capable of modeling real-world workflow applications. The Monte-carlo simulation in the case study

indicates our analytical methods are consistent with simulation. For the purpose of finding QoS bottlenecks, a

sensitivity analysis technique is also proposed based on models above. The technique is capable of determining

which task influence the system QoS most and therefore deserves optimization most. The idea of sensitivity analysis

is inspired by [7,21].

2. QWF-NET for QoS evaluation

The Workflow net (WF-net) proposed by van der Aalst [22] is a high level Petri Nets with two special places i and

o, which indicate the beginning and the end of the modeled process. Every transition is on a path, and a fork and

a join transition bound each path. A fork is a transition with more than one output places and a join is a transition

Y. Xia et al. / A stochastic model for workflow QoS evaluation 253

XOR-split XOR-join

t1
t2

t3

AND-split AND-join

P1

P2

P3

P4

P8

P6

P9

P10
P11

t4P5 P7

Fig. 2. A WF-net sample.

with more than one input places. WF-net incorporates four routing patterns namely sequence, parallelism, selection
and loop (illustrated by Fig. 1.). Figure 2 illustrates a WF-net sample.

Definition 1. (WF-net) A Petri Net N1 = (P, T, F) is a WF-net (Workflow net) if and only if:

– There is one source place i ∈ P such that ·i = ∅.

– There is one sink place o ∈ P such that i· = ∅.
– Every node x ∈ P ∪ T is on a path from i to o.

WF-net does not care the concept of QoS, but sometimes we need to consider QoS aspect in real-world applications.
For example, we want to know the time that workflow instance takes to travel from beginning to end (make-span)in

a workflow net so that we can decide whether the arrangement of the workflow system meets our time requirement.

So introducing QoS concept into WF-net is necessary.
For QoS evaluation, some quantitative information must be obtained, such as the execution-duration/firing-delay

of each task, the TTF (time-to-failure) of each task and the probability that each branch on XOR-split (selective

routing) is selected. This paper assumes every task has independent random firing-delay/TTF and each associated
with a firing-rate/failure-rate. Formally, we extend WF-net to QWF-net (meaning WF-net for QoS analysis) by

Definition 2. (QWF-net)N2 = (P, T, Task, λ, µ, θ, se,lo) is a QWF-net if and only if:

– N2 is structurally a WF-net.

– SPLIT/JOIN transitions (transitions illustrated by black thin bars in Fig. 2) fire immediately and have firing-delay
of 0.

– SPLIT/JOIN transitions never fail.

– The set Task ⊆ T denotes the set of transitions excluding SPLIT/JOIN transitions, as illustrated by white bars
in Fig. 2. The ith task is recorded as ti.

– Firing-rate denotes the probability that task finishes execution at time t + ∆t (where ∆t is an infinitesimal
period) if it is still busy at time t. A function λ : Task → Real is used to identify the firing-rate of each

task. In practice, firing-rate is quantitatively measured by the reciprocal of mean firing-delay

λ(ti) = lim
δ→0

P{ti idle at t+ δ|active at t}

δ
=

1

Mean firing delay of ti
(1)

In practice, this estimate can be obtained as the mean firing-delay/execution-duration of the task in its history
– Failure-rate denotes the probability that task fails at time t + ∆t (where ∆t is an infinitesimal period) if its is

still correct at time t. A function µ : T → Real is used to identify the failure rate of each task. In practice,

the failure-rate of task ti is measured by the reciprocal of mean-TTF

µ(ti) = lim
δ→0

P{ti down at t+ δ|correct at t}

δ
=

1

Mean TTF of ti
(2)

In practice, this estimate can be obtained as the mean TTF of the task in its history

– A function θ : Task → Real is used to identify the cost-coefficient of each task. The cost of executing a

task is the product of its firing-delay and its cost coefficient

254 Y. Xia et al. / A stochastic model for workflow QoS evaluation

– The control flow randomly chooses its path along XOR-split. For generality, this paper uses a function

se : Task → Real to denote the probability that each task is selected when its corresponding XOR-split is

activated. Note that, if a task is not on any XOR-split, its choice probability equals 1, otherwise smaller than 1.

The choice probabilities of tasks on the same XOR-split sum up to 1.

– The control flow skips loop when its current iteration finishes according to some probability. For generality,

this paper uses a function lo : Task → Real to denote the skipping probability of each task. Note that, if a

task is not on any loop, its skipping probability equals 1, otherwise smaller than 1.

It easily follows that QWF-net is identical with WF-net in construction aspect. Also, structural properties of

WF-net follow in QWF-net: there should be no dead tasks; the procedure should terminate eventually; at the moment

the procedure terminates there should be one token in sink place o and all the other places are empty; the definition

of reachable markings and its corresponding calculation methods for WF-net can also be applied to QWF-net.

Note that, analytical methods based on QWF-net rely on the mapping from execution process of QWF-net into a

continuous Markovian process. Such a mapping is under the assumption that transition between Markovian states

depends on the current state only. Although one could argue that in reality such assumption may not always be held,

the research by [14,15] conclude that many experiments of large-scale software closely converged to the Markovian

process results after a long duration. Therefore, Markovian models is well competent as an analytical framework

for QoS evaluation of workflow systems.

3. QoS evaluation based on QWF-NET

In this sections, we introduce analytical models to evaluate the make-span, reliability and cost of QWF-net.

Let Di denote the firing-delay of task ti and Mi denote the number of loop iterations. M i is geometrically

distributed with parameter lo(ti). Then, the cumulative distribution function (CDF) ofD i is given as

F (y) = P{Di � y} =
∞
∑

K=1

P{Mi = K}P{Mi ×Xi � y|Mi = K}

(3)

=

∞
∑

K=1

lo(ti)(1 − lo(ti))
K−1EK(y)

Where Xi denotes duration of one single iteration of t i (which is exponential due to constant firing-rate λ(t i)),
EK(y) denotes the CDF of K-phase Erlang distribution. Then, the probability density function (PDF) of D i is

given as

f(y) = F ′(y) =

∞
∑

K=1

lo(ti)(1 − lo(ti))
K−1λ(ti)(yλ(ti))

K−1

(K − 1)!
e−λ(ti)y

= λ(ti)lo(ti)e
−yλ(ti)

∞
∑

K=1

((1 − lo(ti))yλ(ti))
K−1

(K − 1)!
(4)

= λ(ti)lo(ti)e
−yλ(ti) × e(1−lo(ti))λ(ti)y

= λ(ti)lo(ti)e
−λ(ti)lo(ti)y

where
λ(ti)(yλ(ti))

K−1

(K−1)! e−λ(ti)y is the PDF of the K-phase Erlang distribution.

Equation (4) indicates thatDi follows exponential distribution with parameter λ(t i)lo(ti).
Let U(t) denote the set of active tasks in QWF-net at time t (execution begins at time 0), then its state-space

(denoted by S) is obtained through mapping each reachable marking into a corresponding set of active tasks. For

any reachable marking where no SPLIT/JOIN transitions are activated, there exists a state which records all active

tasks in this marking. For instance, the marking illustrated in Fig. 2, [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], where only place p 3

contains a token is mapped into a U(t) state {t1}. Note that the marking where only sink place contains a token is

Y. Xia et al. / A stochastic model for workflow QoS evaluation 255

Table 1

Reachable markings and their corresponding states in X(t)

Reachable Markings Marking vector Corresponding State Active tasks

M0 [10000000000]

M1 [01000000000]

M2 [00100000000] S1(Initial) {t1}
M3 [00011000000] S2(Initial) {t3, t4}
M4 [00000001000] S3 {t2}
M5 [00001100000] S5 {t4}
M6 [00010010000] S4 {t3}
M7 [00000000010] S6(Absorbing) ∅

M8 [00000000100] S6 ∅

M9 [00000000001] S6 ∅

mapped into an absorbing state which records no task is active, meaning the termination of control flow. The state

space of U(t) of Fig. 2 are illustrated in Table 1. For any reachable marking, the i th entry in the marking-vector
indicates place Pi is empty if the entry is 0 or full otherwise. Note that, there exist more than one initial-state since

XOR− SPLIT1 may generate token into place either p2 or p3. S11 is the absorbing state.

SinceDi for each task is exponential according to Eq. (4),U(t) is a homogeneous continuous Markovian process.

The infinitesimal generator matrixQ of U(t) is given as

qi,j =











lo(tl) × λ(tl) ×
∏

tm∈NEW(i,j) se(tm) if Si
t1→ Sj

−
∑

1�r�|S|,r �=i qi,r if i = j

0 else

(5)

where lo(tl) × λ(tl) is the parameter of exponentialDl, |S| denotes the number of states in the state space, and q i,j

denotes the transition rate from state Si to Sj . Relation Si
tl→ Sj means that Sj is the resulting state of Si if the

active task tl in Si finishes execution and becomes idle. Note that, there may exist more than one resulting states

of Si when tl becomes idle because choice (XOR-split) may be activated. Those resulting states are viewed as

different types in the Markovian chain according to the phase-type property [20].
∏

tm∈NEW(i,j) se(tm) denotes
the occurrence probability of Sj among all types, where NEW(i,j) denotes the set of newly-emerging active tasks in

the transition from state Si to Sj .

3.1. Evaluating make-span

Time is a common and universal measure of performance. The philosophy behind a time-based strategy usually

demands that businesses deliver the most value as rapidly as possible. Shorter workflow execution time allows for a

faster production of new products, thus providing a competitive advantage.

The first measure of time is task firing-delay. Task firing-delay corresponds to the time an instance takes to be
processed by a task. According to [6], the time can be broken down into two major pieces: wait time (WT) and

process time (PT). Wait time refers to the non-value-added time needed in order for an instance to be processed by

a task. This includes, for example, the instance queuing wait (QW) and the setup wait (SW) of the task. While,

those two metrics are part of the task operation, they do not add any value to it. Queuing wait is the time instances
spend waiting in a task-list, before the instance is selected for processing. Setup wait is the time an instance spends

waiting for the task to be set up. Setup activities may correspond to the warming process carried out by a machine

before executing any operation, or to the execution of self-checking procedures. Process time is the time a workflow

instance takes at a task while being processed; in other words, it corresponds to the time a task needs to process
an instance. In an general way, we use firing-rate to stochastically depicts the random firing-delay of each task in

QWF-net.

In this paper, make-span (denoted by random variable MS is defined as the time that workflow instance takes to
travel from source place i to sink place o. Shorter make-span means faster completion of workflow applications and

higher efficiency.

Let Wi denote the time for state Si to reach the absorbing state (time-to-termination). The moments of W i are

given by the following theorem

256 Y. Xia et al. / A stochastic model for workflow QoS evaluation

Theorem 1. [Moments of time-to-termination]

E(Wn
i) =

nE(Wn−1
i) +

∑

1�k�|S|,k �=i qi,kE(Wn
k)

Zi

(6)

where E(W 0
i) = 1, and E(W n

i) = 0 if Si is the absorbing-state and n � 1. Zi is given by Zi =
∑

1�j�|S|,j �=i qi,j
proof: Let Vi denote the elapsing time of state Si andOi =Wi−Vi representing the time to termination just after the

Markovian process U(t) leaves state Si. Oi are related to those immediately succeeding states of S i. Its moments

are given by

E[On
i] =

∑

1�k�|S|,k �=i

qi,k
Zi

E(Wn
k) (7)

where
qi,k

Zi
is the probability that stateSk immediately succeedsSi. E[On

i] is the weighted (by occurrence probability)

moments of Si’s immediately-succeeding states.

Vi andOi are independent of each other. Since V i follows exponential distribution with parameterZ i, we have its

moments as

E(V n
i) =

n!

Zn
i

(8)

Then, E(W n
i) is given by

E(Wn
i) = E[(Vi +Oi)

n]
(9)

= E(On
i) + E(V n

i) + E





n−1
∑

j=1

Cj
nO

j
iV

n−j
i





Since Oj
i and V n−j

i are independent of each other, we have

E(Oj
iV

n−j
i) = E(Oj

i)E(V n−j
i) (10)

Consequently

E





n−1
∑

j=1

Cj
nO

j
iV

n−j
i



 =

n−1
∑

j=1

Cj
nE[Oj

i]E[V n−j
i] =

n−1
∑

j=1

Cj
nE[Oj

i]
(n− j)!

Zn−j
i

=

n−1
∑

j=1

Cj
nE[Oj

i]E[V n−1−j
i]

n− j

Zi

= E





n−1
∑

j=1

Cj
nO

j
i V

n−1−j
i

n− j

Zi



 (11)

=
n

Zi

E





n−1
∑

j=1

Cj
n−1O

j
iV

n−1−j
i





Therefore, we have

E(Wn
i) = E(On

i) + E(V n
i) +

n

Zi

E





n−1
∑

j=1

Cj
n−1O

j
iV

n−1−j
i





= E(On
i) +

n

Zi

(n− 1)!

Zn−1
i

+
n

Zi

E





n−1
∑

j=1

Cj
n−1O

j
iV

n−1−j
i





= E(On
i) +

n

Zi

E



V n−1
i +

n−1
∑

j=1

Cj
n−1O

j
iV

n−1−j
i



 (12)

Y. Xia et al. / A stochastic model for workflow QoS evaluation 257

= E(On
i) +

n

Zi

E
[

(Oi + Vi)
n−1

]

= E(On
i) +

n

Zi

E[Wn−1
i]

=
nE[Wn−1

i] +
∑

1�k�|S|,k �=i qikE(Wn
k)

Zi

Therefore, the theorem follows. ✷

Then the moments of make-span MS are obtained as the weighted moments of all initial-states’ time-to-termination

E(MSn) =
∑

Si∈Init

E(Wn
i) ×

∏

tj∈ATi

se(tj) (13)

Where Init denotes the set of initial states and ATi denotes the set of active tasks in state Si.
∏

tj∈ATi
se(tj) is the

occurrence probability of initial state Si.

Moreover, the standard deviation ofMS is obtained as

σ(MS) =
√

E(MS2) − E2(MS) (14)

3.2. Evaluating reliability

To model the reliability dimension of workflow system, this paper applies software reliability theories to the

QWF-net model. The first step is to model the reliability of individual tasks.

Most software reliability researches assume that information about task’s failure behaviors is available and its

failure-rate is known, that is, ignore the issue of how they can be determined. Assessing the reliability of individual

software modules clearly depends on the factors such as whether or not task code is available, how well the task has

been tested, and whether it is a reused task or a new task. Reliability growth model has been widely accepted as a

reasonable solution for identifying failure-rate of software modules. For example [8], applied the model based on

non-homogeneous Poisson process, the hyper-exponential model, in order to estimate the stationary failure rates of

software modules. [19] used the enhanced NHPP model, proposing a method for determining task’s time-dependent

failure intensity based on block coverage measurement during the testing. [23] identified guidelines for estimating

failure-rate of the newly developed software modules based on the EET model whose parameters are related to the

task’s static and dynamic properties and the usage of each task.

This paper also depicts the reliability of workflow task through its failure-rate. Our approach of reliability

estimation differs from many existing methods (for instance [6]) in that, it considers reliability of task to be dependent

on many factors (firing-rate, failure-rate) rather than directly assign a independent reliability estimate to each task,

as explained by Eq. (16).

Since each task in QWF-net has constant failure-rate, we have

Prob{TTFti
> t} = e−µ(ti)t (15)

We use Ri to denote the reliability estimate of task ti. Ri is obtained through integrating the probability that t i
remain correct at time t (or the probability that TTF i is larger than t) multiplied by the probability-density-function

(PDF) of the firing-delay ofDi over the time interval from 0 to ∞. Therefore

Ri =

∫ ∞

0

λ(ti)lo(ti)e
−λ(ti)lo(ti)t × Prob{TTFti

> t}dt

=

∫ ∞

0

λ(ti)lo(ti)e
−λ(ti)lo(ti)t × e−µ(ti)tdt (16)

=
λ(ti)lo(ti)

∫ ∞

0
(λ(ti)lo(ti) + µ(ti))e

−(λ(ti)lo(ti)+µ(ti))tdt

λ(ti)lo(ti) + µ(ti)

=
λ(ti)lo(ti)

λ(ti)lo(ti) + µ(ti)

258 Y. Xia et al. / A stochastic model for workflow QoS evaluation

whereλ(ti)lo(ti)e
−λ(ti)lo(ti)t is the probability-density-functionof the firing-delayD i and e−µ(ti)t is the probability

that TTFi is greater than t.
The reliability of QWF-net is obtained as the weighted reliability of its initial states

Reliability =
∑

Si∈Init



RSi ×
∏

tj∈ATi

se(tj)



 (17)

where RSi denotes the reliability of state Si, meaning the probability QWF-net keeps correct from state S i to the
absorbing state. RSi is given by

RSi =

{

1 Absorbing-state
∑

Every Sj where Si

tl
→Sj

qi,j

Zi
Rl × RSj Else (18)

where
qi,j

Zi
denotes the probability that state Sj immediately succeeds Si.

3.3. Evaluating cost

During workflow design, both prior to workflow instantiation and during workflow execution, it is necessary to
estimate the cost of the execution in order to guarantee that financial plans are followed.

The cost of QWF-net is the cost of running all scheduled tasks in QWF-net. The total cost is dependent both
on cost of each task and the structure of QWF-net. [6] gives a detailed discussion of workflow’s execution cost.
However, it assumes that the task cost is constant and independent of its firing-delay. In this paper however, we
assume task cost is the product of its firing-delay and cost-coefficient. Let CO i denote task cost of ti, we have its
moments as

E(COn
i) = θ(ti)

n × E(Dn
i) = θ(ti)

n ×
n!

λ(ti)n
(19)

where n!
λ(ti)n denotes the moments of firing-delayD i.

Let PEi denote the probability that task ti is executed. To calculate PEi, we first define the occurrence probability
of state Si as OCi. OCi is given by

OCi =

{∏

tj∈ATi
se(tj) Initial-state

∑

ALL Sj satisfying Sj

tl
→Si

OCj ×
qj,i

Zj
Else (20)

where ATi denotes the set of active tasks in state Si and Zj is given earlier by Eq. (6).
Then, PEi is given by

PEi =
∑

ALL Sj satisfying Sj

ti
→Sk

OCj ×
qj,k
Zj

(21)

Then, the cost of QWF-net, C, is defined as the sum of each task’s cost multiplied by its probability of being
executed. Its expectation is

E(C) =
∑

ti∈ QWF-net

E(COi) × PEi (22)

Also, the second-order moment of C is

E(C2) = E





(

∑

ti∈N2

PEiCOi

)2




(23)
=

∑

ti∈N2

PEi × ((PEi)E(CO2
i) +

∑

tj∈N2∧ti �=tj

E(COi)PEjE(COj))

The standard deviation of C is given by

σ(C) =
√

E(C2) − E2(C) (24)

Y. Xia et al. / A stochastic model for workflow QoS evaluation 259

Table 2

Tasks in the case study

T λ µ θ se lo T λ µ θ se lo

t1 0.3 0.0026 1.1 1 1 t7 0.30 0.0013 0.8 0.2 1

t2 0.2 0.0028 1.2 1 1 t8 0.45 0.0014 0.6 0.1 1

t3 0.4 0.0053 2.1 1 0.33 t9 0.30 0.0064 0.4 1 1

t4 0.65 0.0041 0.65 1 1 t10 0.45 0.0054 1.1 1 1

t5 0.6 0.0051 1.0 1 1 t11 0.80 0.0023 0.4 1 1

t6 0.2 0.0037 1.4 0.7 1 t12 0.25 0.0058 0.45 1 1

4. Case study and Monte-carlo simulation

Often, an analytical approach is preferred over simulation. However, the complexity of a real software system can

be such that a simulation approach is the only feasible means of analysis. Given a specific process model, there are

several aspects that determine whether an analytical approach is feasible at all and-if so- preferable over simulation.

For example, if random duration is too complex (for example general distribution) or the state space is too large, it

will be extremely difficult to obtain an analytical solution. Simulation is then the only possible alternative to obtain

quantitative solution.

Moreover, even if analytical models are tractable, simulation is still useful in that modelers can figure out whether

analytical models are correct and accurate by comparing simulative and analytical solutions.

This section applies our analytical framework to some examples and studies performance in a simulative manner.

Monte-carlo simulation is a flexible performance prediction tool used widely in science and engineering [2,3,

16]. Its flexibility stems from the fact that it consists of a computer program that behaves like the system under

study. The stochastic behaviors and events of target system are modeled using pseudo-random number generators.

The execution of a computer simulation is comparable to conducting an in-vitro experiment on the target system.

Simulation outputs are treated as random observations (samples). The idea of monte-carlo simulation in this section

is also inspired by the approach of discrete-event simulation [18] to analyze component-based software system. This

approach relies on random generation of faults in components using a programmatic procedure which returns the

inter-failure arrival time of a given component. The total number of failures is calculated for the application under

simulation, and its reliability is estimated. This approach assumes the existence of a control flow graph of a program.

The simulation approach assumes failure and repair rates for components, and uses them to generate failures in

executing the application. It also assumes constant execution time per component interaction, and ignores failures

in component interfaces and links (transition reliabilities).

The cases studied are given by Fig. 3. Firing-rates, failure-rates, cost-coefficients of involved tasks are listed in

Table 2. Cases c1−4 are four simple cases dealing with sequential, parallel, selective and iterative routing modes,

respectively.

c7 is a complex case featured by all the four routing styles. It models a booking-order processing workflow ap-

plication, including several tasks responsible for different functions. The application acquires booker’s information,

checks previous booking records in the customer’s account, then processes in parallel the insurance-related services,

booking task and secondary service. The booking task t 3 is executed iteratively because customer may have more

than one booking orders. The insurance service (t 4,6,7,8,9) first gets the insurance account information of the booker

and then provides three optional insurance services and runs the banking procedure. Note that, tasks t 6,7,8 are on a

XOR-split meaning customers can choose from three kinds of optional services. After tasks above accomplish their

execution, updating and maintenance tasks will be executed to make accounts correct and up-to-date.

The Monte-carlo simulation procedure (pseudocode given in Fig. 4) conducts h (h = 50000 in our simulation

program) experiments of the execution process of target QWF-net. At each experiment, the procedure randomly

selects its paths along XOR-splits according to choice probability given in Table 2. Then, it uses random variable

generator to generate the number of iterations of each iteratively-executed task. In the following, it uses random

variable generator again to generate firing-delay/TTF of each task according to firing-rate/failure-rate given in Table 2,

thereby changing stochastic QWF-net into a deterministic one. The make-span of QWF-net at current experiment

is then obtained as the longest path from source-place to sink-place of the deterministic QWF-net. The cost of

QWF-net is obtained as the sum of all involved tasks’ cost. At each experiment, if every task’s TTF is greater than its

260 Y. Xia et al. / A stochastic model for workflow QoS evaluation

Table 3

Comparison between analytical and simulative results

E(MS)/MS σ(MS)/S(MS) Reliability/Rel E(C)/C σ(C)/S(C)

c1 9.87/9.88 6.20/6.20 97.16%/97.22% 10.67/10.67 7.10/7.10

c2 4.22/4.22 3.09/3.10 96.48%/96.45% 4.00/4.01 2.36/2.35

c3 4.39/4.40 4.60/4.59 98.61%/98.62% 5.57/5.59 6.39/6.38

c4 7.57/7.57 7.58/7.56 96.14%/96.08% 15.91/15.96 15.91/15.88

c5 7.55/7.57 4.55/4.59 95.65%/95.55% 7.67/7.67 4.36/4.37

c6 12.30/12.31 7.77/7.76 93.49%/93.56% 27.48/27.51 18.16/18.15
c7 23.28/23.27 9.35/9.36 86.11%/86.15% 39.89/39.89 18.93/18.94

t1
t2 t4

case 1

AND-spl it AND-joint9

t5

t6

XOR-split XOR- join
t8

t7

t6

t3

Loop

case 2 case3

case4

A ND -spli t A ND -jo in

t3

Loop

XO R -spl it

t8

t7

t6

XO R -join

t2

case6

t1(B o o k e r - i n f o

r e t r i e v a l)

t2 (A c c o u n t

r e t r i e v a l)
AN D- split

A ND -jo i n

t4(I n s u r a n c e

a c c o u n t c h e c k)

t5(S e c o n d a r y- s e r v i c e)

t3 (B o o k i n g)

t8 (I n s - s e r v i c e 2)

t7 (I n s - s e r v i c e 2)

t6 (I n s - s e r v i c e 1)

t1 0 (I n s u r a n c e

- a c c o u n t -u p d a t e)

t1 1 (B o o k e r

a c c o u n t u p d a t e)
t1 2 (M a i n t e n a n c e)

cas e 7

t9 (B a n k i n g

p r o c e d u r e)

XO R- split XO R-j oi n

A ND -split A ND -jo int9

t5

t6t1

case 5

Fig. 3. Cases c1−7.

firing-delay (meaning no failure happens during the execution of this task), a success is recorded. The sample-mean

of make-span (MS), sample-mean of cost (C), standard-deviation of make-span (S(MS)) and standard-deviation of

cost (S(C)) are then obtained as the mean make-span of all experiments, the mean QWF-net’s cost of all experiments,

the standard-deviation of all experiments’ make-spans and the standard-deviation of all experiments’ QWF-net cost,

respectively. The simulative estimate of reliability (Rel) is the ratio of successes to the number of experiments.

Results obtained by Monte-carlo simulation (illustrated in normal style) are compared with those by our analytical

approach (illustrated in bold style) in Table 3. As shown, analytical results is pretty close to simulative results,

indicating our analytical approach is consistent with simulation.

5. Sensitivity analysis

Sensitivity analysis is another important aspect in QoS analysis. It is very useful for bottleneck analysis and

optimization of the software. During the design stage it is common that the exact values of the input parameters

for the model are unknown. Sensitivity analysis can then help in analyzing the influence of the change in input

parameters on the performance and reliability metrics.

More over, the QoS of a workflow system can increase in its life cycle if improvements of some tasks are carried

out. Therefore, considering such a system we are often interested to know which task is more important than others.

Y. Xia et al. / A stochastic model for workflow QoS evaluation 261

algorithm Monte-carlo simulation

Input: QWF-net

Output: Mean/Standard-deviation of make-span/cost, Reliability

. FOR 1 < i h

Randomly selects its paths along XOR-splits

Generate the number of iterations of each iteratively-executed task

Generate firing-delay/TTF of each task

calculate the system make-span and cost

If some task has a TTF < firing-delay then record a failure

. END FOR

. COS T = averaged cost of all experiments

. S (COS T) = standard-dev cost of all experiments

. M S = averaged make-span of all experiments

. S (M S) = standard-dev make-span of all experiments

. R el = ratio of successes to h

_ <_

Fig. 4. Monte-carlo simulation.

-80 -60 -40 -20 0 20 40 60 80 100
0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

Failure-rate increment of task (%)

Task t1

Task t4

Task t5

Task t9

Change of QWF-net reliability

% % % % % % % % %

Fig. 5. Sens of reliability.

Thus, the improvement of that critical task will increase the system QoS more than others. Sensitivity analysis gives

an approach to analyze the relative importance of consisting tasks in determining which task deserves optimization

most.

Based on analytical methods presented in previous sections, this section presents a sensitivity-analysis technique.

To decide the sensitivity of system QoS to a specific task, we simply change the task’s input QoS parameters while

stabilizing other tasks and study whether the total QoS fluctuates dramatically. If strong fluctuation of system QoS

occurs, we can conclude the system is very sensitive to the task under study and that task deserves optimization most.

The analysis is conducted on case c5 shown by Fig. 3 and input performance parameters of related tasks are given

by by Table 2. To study the sensitivity of reliability to a specific task, we change its failure-rate by between −80%

262 Y. Xia et al. / A stochastic model for workflow QoS evaluation

-80 -60 -40 -20 0 20 40 60 80 100
4

6

8

10

12

14

16

18

20

22

Firing-rate increment of task (%)

Task t1

Task t4

Task t5

Task t9

Change of QWF-net E(MS)

%% % % % % % % %

Fig. 6. Sens of E(MS).

-80 -60 -40 -20 0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

Firing-rate increment of tasks (%)

Task t1

Task t4

Task t5

Task t9

Change of standard-dev(MS)

%% % % % % % % %

Fig. 7. Sens of σ(MS).

and 100% and stabilize failure-rates of other tasks. The sensitivity of E(MS)/σ(MS)/E(C)/σ(C) is obtained in

a similar way through changing execution-rate/cost-coefficient of each task. Figs 5–9 illustrates the fluctuation of

system performance after input parameter of every task is changed. According to Figs 5–9, we have that system

reliability is most sensitive to task t9 while make-span and cost are most sensitive to task t1, meaning that those

tasks deserve improvement most and optimizing those tasks makes greatest sense.

Note that, our analysis of sensitivity is different from those differentiation-based techniques. For instance, [7,21]

establish symbolic equations relating system performance and input performance parameters. Through differentiating

the symbolic equation, they use partial derivatives as the sensitivity estimates of input parameters. However, this

approach is feasible only if the symbolic equation is obtainable and tractable. If system performance is determined

by too many input parameters or the symbolic equation is given in an iterative manner (just like Eq. (20)), partial

derivatives are not likely to obtain easily.

Y. Xia et al. / A stochastic model for workflow QoS evaluation 263

-80 -60 -40 -20 0 20 40 60 80 100
4

5

6

7

8

9

10

11

12

Cost-coefficient increment of task (%)

Task t1

Task t4

Task t5

Task t9

Change of QWF-net E(COST)

%% % % % % % % %

Fig. 8. Sens of E(C).

-80 -60 -40 -20 0 20 40 60 80 100
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Cost-coefficient increment of tasks (%)

Task t1

Task t4

Task t5

Task t9

Change of
standard-dev(COST)

%% % % % % % % %

Fig. 9. Sens of σ(C).

6. Comparison with related work

The method of [5] derives an analytical model from historical logs. For each situation in the logs, the method

generates a corresponding state in the state space. Therefore this method can only be feasible when historical logs

are small, otherwise it might cause state explosion.

Research of [6,9,24] uses reduction techniques to simplify sequential, parallel, selective and iterative routing

patterns into a single transition with equivalent QoS estimate, however their models are not very realistic since they

assume tasks in WF-net have deterministic firing-delay.

Methods of [5,12,13] are similar to our approach in that they all model the control flow as Markov processes.

These models assume execution of each task to be each state in the Markov chain and develop methods to evaluate

264 Y. Xia et al. / A stochastic model for workflow QoS evaluation

transition-probability (for DTMC) or transition-rate (for CTMC) between states. However these Markov-based

methods can not model parallel execution of more than one tasks.

Method proposed by [10] is similar to our model in that they both associate task with firing-rate. It develops

a simplification technique to simplify four basic routing patterns into a single task with approximate equivalent

performance. This method is pretty simple and intuitive comparing to models based on Markovian processes. How-

ever, the assumption that the performance-equivalent task follows exponential distribution is obviously inaccurate.

For instance, n tasks with the same constant firing-rate arranged by sequential routing pattern should be simplified

into a single equivalent task of n-phase Erlang firing-delay (which is obviously not exponential). Moreover, this

contribution only calculates the expectation of system make-span (In contrast, our model also gives its standard

deviation).

[1] introduces a performance-evaluation technique through mapping WF-net into stochastic Petri-net. This

contribution also assigns each task with a constant firing-rate. However, this research is only focused on stochastic

modeling rather than performance evaluation because no methods to evaluate performance metrics are given.

As for sensitivity analysis, our approach differs from [21] and [7] in that our analysis is conducted in a numerical

way. [7,21] establishes symbolic equation relating system performance and input performance parameters and uses

partial derivatives as the sensitivity estimates of input QoS parameters. However, this approach is feasible only if

the symbolic equation is obtainable and tractable. If system QoS is determined by too many input parameters or

the symbolic equation is given in an iterative manner (just like Eq. (20)), partial derivatives are not likely to obtain

easily.

7. Conclusion and further study

To stochastically model the execution of workflow systems, this paper extends traditional WF-net to QWF-net

through associating workflow task with firing-rate, failure-rate and cost-coefficient. Through mapping the execution

of QWF-net into a homogeneous CTMC process, we presents analytical methods to evaluate make-span, reliability

and cost of QWF-net. This paper also develops a Monte-carlo simulation procedure to calculate the simulative

QoS results. The comparison between simulative results and analytical results in the case study indicates that our

approach is consistent with simulation. For the purpose of QoS bottle-neck identification, a sensitivity-analysis

technique is also introduced.

We are currently making some further study extending this paper

– Introducing hierarchical QWF-net model and corresponding analytical methods for QoS evaluation: since more

and more complex workflow-based software systems are hierarchically constructed, we may have to strengthen

the power of QWF-net to support hierarchical modeling and QoS analysis. Hierarchical QWF-net model should

be capable of modeling a sub-net graph as a composite task.

– Developing non-MarkovianQoS models (for instance semi-Markovianmodel) to support modeling of inconstant

firing-rate/failure-rate of task: in this paper, it is assumed that every task has constant firing-rate/failure-rate.

For further study, we are going to introduce inconstant firing-rate/failure rate to capture general distribution of

firing-delay/TTF of task.

– Developing approximation methods: in this paper, the methods of calculating exact E(MS)/σ(MS)/E(C)/σ

(COST)/R are given. However, software engineers and practitioners may also need fast, concise and approx-

imate methods for quick evaluation of system QoS. Therefore approximation methods are to be introduced in

further study.

– Developing selection and scheduling algorithms: system managers sometimes have to select from a variety of

available tasks to compose a workflow system and design its scheduling policy to fulfill user requirements. Based

on analytical models proposed in this research, we are going to develop selection and scheduling algorithms

guiding system managers to identify the optimal selection and scheduling solutions

Y. Xia et al. / A stochastic model for workflow QoS evaluation 265

References

[1] A. Ferscha, Qualitative and Quantitative Analysis of Business Workflows using Generalized Stochastic Petri Nets, Proceedings of Workflow

Management – Challenges, Paradigms and Products, 1994. ACM press: Madison, Wisconsin, 1994, 222–234.

[2] W.R. Gilks, G.O. Roberts and S.K. Sahu, Adaptive Markov chain Monte Carlo through regeneration, Journal of the American Statistical

Association (1993), 1045–1054.
[3] H. Niederreiter, Random Number Generation and Guasi-Monte-Carlo Methods, SIAM, Philadelphia, 1992.

[4] J. Li, Y. Fan and M. Zhou, Performance modeling and analysis of workflow, IEEE transaction on Systems, man, and cybernetics-part A:

Systems and humans 34(2) (2004), 229–242.

[5] J. Klingemann, J. Waesch and K. Aberer, Deriving Service Models in Cross-Organizational Workflows, ProceedingS of lst Workshop on

Reasearch Issues in Data Engineering (RIDE), 1999, IEEE Computer Society Press: Boston, MA, 1999, 100–108.

[6] J. Cardoso, A. Sheth, J. Miller, J. Arnold and K. Kochut, Quality of service for workflows and web service processes, Elsevier Transaction

on web semantics 1(3) (2004), 281–308.
[7] J.-H. Lo, C.-Y. Huang, S.-Y. Kuo and M.R. Lyu, Sensitivity Analysis of Software Reliability for Component-Based Software Applications,

Proceedings of 27th Annual International Computer Software and Applications Conference, 2003, IEEE Computer Society Press: Boston,

MA, 2003, 500–505.

[8] K. Kanoun and T. Sabourin, Software Dependability of a Telephone Switching System, Proceedings of 17th International Symposium on

Fault-tolerant Computing, 1987, 236–241.

[9] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-Aware Middleware for Web Services Composition,

IEEE Transaction on Software Engineering 30(5) (2004), 311–327.

[10] C. Lin, Y. Qu, F. Ren and D.C. Marinescu, Performance Equivalent Analysis of Workflow Systems Based on Stochastic Petri Net Models,
Proceedings of 1st International Conference on Engineering and Deployment of Cooperative Information Systems (Lexcture notes in

computer science, Vol. 2480), 2002. Springer:Berlin, 2002, 64–79.

[11] M.C. Jaeger, G. Rojec-Goldmann and G. Muhl, QoS Aggregation in Web Service Compositions, Proceedings IEEE International Conference

on e-Technology, e-Commerce and e-Service, 2005, IEEE Computer Society Press: Boston, MA, 2005, 181–185.

[12] M. Gillmann, J. Weissenfels, G. Weikum and A. Kraiss, Performance and Availability Assessment for the Configuration of Distributed

Workflow Management Systems, Proceedings of 7th International Conference on Extending Database Technology (Lexcture notes in

computer science, Vol. 1777), 2000, Springer:Berlin, 2000, 183–201.

[13] M. Gillmann, G. Weikum and W. Wonner, Workflow Management with Service Quality Guarantees, Proceedings of ACM SIGMOD
International Conference on Management of Data, 2002, ACM press: Madison, Wisconsin, 2002, 228–239.

[14] T.B. Pinkerton, Program Behavior and Control in Virtual Storage Computer Systems, Technical Report 4, University of Michigan, 1968.

[15] C.V. Ramamoorthy, The Analytic Design of a Dynamic Look Ahead and Program Segmenting System for Multiprogrammed Computers,

Proceedings of ACM National Conference, 1966, 229–239.

[16] R.Y. Rubinstein, Simulation and the Monte Carlo Method, Wiley, New York, NY, 1981.

[17] S.-Y. Hwang, H. Wang, J. Srivastava and R.A. Paul, A Probabilistic QoS Model and Computation Framework for Web Services-Based

Workflows, Proceedings of 23rd International Conference on Conceptual Modeling (Lexcture notes in computer science, Vol. 3288), 2004,

Springer:Berlin, 2004, 596–609.
[18] S. Gokhale et al., Reliability Simulation of Component-Based Software Systems, In Proc. 9th Int. Symp. Software Reliability Engineering,

1998, 192–201.

[19] S. Gokhale, W.E. Wong, K. Trivedi and J.R. Horgan, An Analytical Approach to Architecture Based Software Reliability Prediction,

Proceedings of 3rd International Computer Performance and Dependability Symposium, 1998, IEEE Computer Society Press: Boston,

MA, 1998, 13–22.

[20] Stroock and W. Daniel, An Introduction to Markov Processes, Springer, Newyork, 2005.

[21] S.S. Gokhale and K.S. Trivedi, Reliablity Prediction and Sensitivity Analysis Based on Software Architecture, Proceedings of 13th IEEE
International Symposium on Software Reliability Engineering, 2002. IEEE Computer Society Press: Boston, MA, 2002, 64–78.

[22] W. van der Aalst and K. van Hee, Workflow Management: Models, Methods, and Systems, The MIT Press, 2002.

[23] W. Everett, Software Component Reliability Analysis, Proceedings of Symposium on Application-specific Systems and Software Engi-

neering Technology, 1999, IEEE Computer Society Press: Boston, MA, 1999, 204–211.

[24] Z. Tan, C. Lin, H. Yin, Y. Hong and G. Zhu, Approximate Performance Analysis of Web Services Flow Using Stochastic Petri Net,

ProceedingS of the 3rd Grid and Cooperative Computing GCC Conference (Lexcture notes in computer science, Vol. 3251), 2004,

Springer:Berlin, 2004, 193–200.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

