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Somatic cell reprogramming has dramatically changed stem cell research in recent years.

The high pace of new findings in the field and an ever increasing amount of data from new

high throughput techniques make it challenging to isolate core principles of the process. In

order to analyze such mechanisms, we developed an abstract mechanistic model of a sub-

set of the known regulatory processes during cell differentiation and production of induced

pluripotent stem cells.This probabilistic Boolean network describes the interplay between

gene expression, chromatin modifications, and DNA methylation. The model incorporates

recent findings in epigenetics and partially reproduces experimentally observed reprogram-

ming efficiencies and changes in methylation and chromatin remodeling. It enables us to

investigate, how the temporal progression of the process is regulated. It also explicitly

includes the transduction of factors using viral vectors and their silencing in reprogrammed

cells, since this is still a standard procedure in somatic cell reprogramming. Based on

the model we calculate an epigenetic landscape for probabilities of cell states. Simula-

tion results show good reproduction of experimental observations during reprogramming,

despite the simple structure of the model. An extensive analysis and introduced variations

hint toward possible optimizations of the process that could push the technique closer to

clinical applications. Faster changes in DNA methylation increase the speed of reprogram-

ming at the expense of efficiency, while accelerated chromatin modifications moderately

improve efficiency.

Keywords: differentiation and reprogramming, epigenetic landscape, induced pluripotent stem cells, mathematical

modeling, probabilistic Boolean network

1. INTRODUCTION

Starting with the successful reprogramming of mouse and human

fibroblasts to induced pluripotent stem cells (iPS; Takahashi, 2006;

Takahashi et al., 2007), modifications of cell types have become

extremely important in recent years. Manipulating the devel-

opmental state of cells transitioning from a differentiated to a

pluripotent state or – as recently achieved (Vierbuchen et al.,

2010) – to distinct differentiated cell types, opens the door for

various clinical applications. Major roadblocks on the way to the

clinic are the general inefficiency and slow pace of the process

(Hanna et al., 2009).

While most of the reprogramming experiments today are still

based on the viral transduction of the same four Yamanaka tran-

scription factors SOX2, OCT4, KLF4, and cMYC (Takahashi,

2006), alternative techniques have been developed that improve

the concept in various ways (Okita et al., 2008; Zhou et al., 2009).

Although direct reprogramming has made it possible to study

the interplay of the networks regulating pluripotency in a defined

environment, it is still not understood how the transition happens

in detail. However, it has become clear that the reprogramming

potential is not limited to specific cells in a culture, but rather that

essentially every cell can be reprogrammed given enough time

and the appropriate method (Hanna et al., 2009). A high prolif-

eration rate seems to be beneficial to the process of overcoming

the barriers in reprogramming (Hong et al., 2009; Kawamura et al.,

2009; Marión et al., 2009). Moreover, efficiency could be improved

by the addition of small molecules (Wang and Adjaye, 2010), some

of which are also capable of replacing KLF4 and cMYC or even

SOX2 (Ichida et al., 2009) in the process. Most of these discovered

molecules act on the epigenetic modifications in the cells that fix

them in their current developmental state. One of the most promi-

nent drugs improving reprogramming is the histone deacetylase

1 (HDAC1) inhibitor valproic acid (VPA; Huangfu et al., 2008).

The inhibition of HDAC1 seems to lower the epigenetic barrier

between the cell states and facilitates the transition from one state

to the other.

Pluripotency in general is regulated by an interplay of differ-

ent mechanisms, the most important of which we will outline in

detail in the following. First, transcriptional regulation, i.e., activa-

tion or inhibition of target gene activity by specific transcription

factors, controls the expression of master regulators of pluripo-

tency or differentiation. A second layer of control consists in DNA

methylation of promoters of genes. Finally, the organization of

chromatin in active or repressive structures represents the third

mechanism.

The core transcriptional regulatory circuitry of pluripotency

in human embryonic stem cells (hESCs) was first established

by Boyer et al. (2005) and contained the master regulators of
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pluripotency OCT4, SOX2, and NANOG. These three transcrip-

tion factors were found to interact in a mutually- and auto-

activating fashion thereby promoting and maintaining pluripo-

tency (Boyer et al., 2005; Loh et al., 2006). This regulatory circuitry

has been extended in further studies to yield different larger net-

works regulating pluripotency (Ivanova et al., 2006; Zhou et al.,

2007; Chavez et al., 2009).

DNA methylation of regulatory sequences, which silences gene

promoters, is one of the known mechanisms in epigenetic regu-

lation. This methylation is a major hindrance in reprogramming,

because methylation marks cannot easily be removed, although

there is evidence for active demethylation in reprogramming cells

(Bhutani et al., 2011) which we will further discuss below.

With the advent of next generation sequencing techniques there

is a wealth of data accumulating on DNA methylations (“methy-

lomes”) in different cell types (Lister et al., 2009, 2011; Laurent

et al., 2010). These studies reported large differences between

ES/iPS and differentiated cells in the methylation states of promot-

ers of key pluripotency and developmental genes. Moreover, they

identified a very slow reprogramming of methylation states with

aberrant methylation persisting in reprogramming cells,which can

thus be distinguished from fully reprogrammed or ES cells.

These remaining DNA methylation differences also limit the

differentiation potential of the iPS cells and restrict their appli-

cations. A recent study also reported the occurrence of newly

methylated aberrant sites that did neither occur in the source nor

in the target (ES) cells (Nishino et al., 2011).

Comparative studies were not limited to DNA methylation.

Histone modifications were also studied extensively, suggesting

a close connection between DNA methylation and chromatin

structure (Hawkins et al., 2010).

It has been found that there is a strong correlation between

gene silencing histone modifications and DNA methylations in

promoters of pluripotency regulators (Cedar and Bergman, 2009).

However, the relationship between the two is still not fully under-

stood. The connection is probably established by histone binding

proteins such as G9a, which have histone methylation activity

(HMT) and therefore facilitate the formation of heterochromatin.

G9a can also recruit the de novo methyl transferases DNMT3A and

DNMT3B to the nucleosome which in turn can methylate the gene

promoters on the DNA. DNA methylation is thought to stabilize

chromatin structure during mitosis through differential binding

of proteins for closed or open chromatin (Cedar and Bergman,

2009) and it can also inhibit methylation of H3K4, an activating

histone mark. Inheritance of histone modifications is coupled to

the methylation pattern as it guides binding of certain HDACs

(Fuks et al., 2000).

DNA methylation itself is sustained throughout DNA replica-

tion and mitosis by virtue of DNMT1 and other associated proteins

like NP95 by copying the methylation pattern of the template

strand to the copied strand. Though this process is quite efficient,

methylations can be lost in rapidly dividing cells and cells lacking

DNMT1 (Monk et al., 1991).

The consequences of the complex interplay of the three men-

tioned regulatory mechanisms, i.e., transcriptional regulation, his-

tone modifications leading to changes in chromatin structure,

and DNA methylation, are not easy to understand. Mathematical

modeling can help to unravel these complex interactions and

explain how cell behavior is linked to the molecular mechanisms.

Since we are dealing with an enormously complex system, we need

to reduce it in order to discern the basic underlying features of

the network. There have been various attempts to model certain

parts of regulatory networks in great detail, which gave valuable

insights into the dynamics of these subsystems (e.g., MacArthur

and Please, 2008). However, since the whole process cannot be

explained by breaking up the system into parts, we want to take a

more holistic approach in this work and combine gene expression

and epigenetic principles in one abstract model.

All the above mentioned regulatory processes only work cor-

rectly in an orchestrated manner. Regulatory structures in stem

cells have been described by various models using different mod-

eling approaches. There is a number of detailed models describing

the interplay of regulatory genes in pluripotency and reprogram-

ming, which help to understand the gene networks in detail and

have elucidated the bistability of decisions taken in development

and the influence of expression noise (Chickarmane et al., 2006;

Chickarmane and Peterson, 2008; MacArthur et al., 2008; Kalmar

et al., 2009). These models use ordinary differential equations to

show the dynamics inside a small part of the whole machinery.

There are also many studies describing regulation of differentia-

tion into different lineages and the bifurcation dynamics prevent-

ing reprogramming (Roeder and Glauche,2006; Huang et al., 2007;

Duff et al., 2012). Moreover, there have been efforts to define the

potential of cell states in theoretical models and use it to identify

optimal routes of cell differentiation and reprogramming (Wang

et al., 2010; Bhattacharya et al., 2011). Larger networks were just

recently modeled using dynamic Bayesian networks and were used

to predict improved reprogramming factor combinations (Chang

et al., 2011).

A second class of more coarse grained models deals with tran-

sitions between cell states and how the system is shaped by self-

organizing systems in the cells (Qu and Ortoleva, 2008; Halley

et al., 2009). These models are very conceptual and refrain from

describing single gene interactions. There have also been efforts to

characterize the processes in chromatin remodeling in a theoreti-

cal model, which showed that there must be a positive feedback in

the formation of heterochromatin structure to explain its observed

behavior (Dodd et al., 2007).

Looking at the experimental evidence in the literature it seems

that the progression of reprogramming is governed by stochastic

processes that prohibit or permit activation of pluripotency genes.

For that reason, there have also been attempts to model it with

noisy ordinary differential equations (MacArthur et al., 2008) or

even as a stochastic process of state transitions (Hanna et al., 2009).

In a more general approach (Artyomov et al., 2010) the authors

explicitly modeled the space of cellular states as a binary tree with

nodes for each cell state and the pluripotent state as the root of

the tree. This study was the first to include gene regulation and

epigenetic changes in one model and it could, among other things,

explain the low efficiency of reprogramming.

We are going in a different direction by building an abstract

model of the combined networks that govern pluripotency and

reprogramming using well established modeling frameworks in a

novel way (Figure 1). Our model is based on a standard Boolean
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FIGURE 1 | General model structure. Transcriptional regulators that account

for the activation of a certain cell state are combined into a module. We have

four modules in the complete model: Two different differentiation modules A

and B, the Pluripotency Module P for the main pluripotency network, and the

exogenous reprogramming genes E. Each module is governed by the activity

of the other modules as well as its epigenetic states.

networks approach, meaning that it can easily be modified and

combined with other results. Boolean models have the convenient

property, that a cell state is defined as a binary vector of the states of

all variables, making it easy to compare states without further com-

plicated definitions. Since the processes we are modeling are clearly

non-deterministic, we have chosen to use probabilistic Boolean

models. The exact model structure will be derived in Section 3.1.

2. MATERIALS AND METHODS

2.1. MODELING FRAMEWORK

Boolean models are a drastic simplification of biological reality,

but they have produced valuable results in the past and are espe-

cially suited for developmental gene regulatory networks (e.g.,

Macía et al., 2009). Using them it is possible to model large net-

works and study their dynamic behavior while leaving out details

such as kinetic constants that are usually unknown in real world

examples (Kauffman, 2004). Boolean networks limit the state of a

gene to either ON or OFF and describe connections between the

genes by using logical operators, e.g., AND, OR, NOT (generally

written as ∧, ∨, and (¬ in mathematical formulas). For example

if two transcription factors A and B are needed to activate gene C

this would translate to the logical function C(t + 1) = A(t )∧B(t ).

In formal terms, a Boolean network can be represented as a

graph G = (V, E) consisting of a set of n nodes V = {v1, . . ., vn} and

a set of k edges E = {e1, . . ., ek} between the nodes. For every time

point t, each node vi has a state vi(t ) ∈ {0, 1} denoting either no

expression or expression of a gene or absence or presence of activ-

ity of a regulatory property, respectively. In a non-probabilistic

Boolean network, the state vector, or simply the state S(t) of the

network at time t corresponds to the vector of the node states at

time t, i.e., S(t) = (v1(t ), . . ., vn(t )). Thus, since every vi(t ) can

take only 2 possible values 0 or 1, the number of all possible states

is 2n. In probabilistic Boolean networks (PBNs), as we will outline

below, we are dealing with a probability distribution over several
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states at each time point. This is why, in order to extend the defi-

nition of states to probabilistic Boolean Networks, we will refer to

a specific state as Si from now on where i ∈ {0, . . ., 2n}, indepen-

dent of the time of its appearance. Every node is updated at every

time point by application of a set of update functions F = {F 1, . . .,

Fn} that integrate the input information of edges on one node. In

other words, the function Fi assigns a new state value to the node

vi at time t + 1, i.e., vi(t + 1). They depend on the state of k input

nodes with k ∈ {0, . . ., n} at time t.

There have been different approaches to address uncertainty

and stochasticity in the Boolean framework (Shmulevich, 2002;

Garg et al., 2009; Twardziok et al., 2010). We will follow the prob-

abilistic Boolean network (PBN) approach proposed by (Shmule-

vich, 2002), but apply it in a slightly different way. Originally,

probabilistic Boolean networks were designed to represent the

uncertainty in knowledge about regulatory functions. If there is

experimental data showing that both transcription factors A and B

activate gene C, but it is unclear whether they can act separately or

only in combination, there is not only one determined logical func-

tion that can describe their interaction. In probabilistic Boolean

networks this uncertainty is taken into account by relaxing the

constraint of fixed update rules Fi and by permitting instead one

or more functions per node. Thus, function Fi is replaced by a set

of functions Fi = { f i
j } with j∈{1, . . ., l(i)}, where f i

j is a Boolean

logic function and l(i) the total number of functions for node vi.

In each update step the functions are chosen randomly according

to their probability which we assign.

Our model uses this feature of probabilistic Boolean networks

to represent two kinds of stochasticity. The first is the afore-

mentioned uncertainty about the correct function to apply. By

employing different possible functions and varying their probabil-

ity we can see which of them fits the known data better. The second

way how we use the probabilistic functions is to model dynamic

features of the system. The single processes that influence a vari-

able are split into different functions and we assign each of them a

probability. That way we can adjust the probability of the activa-

tion of a variable under certain conditions instead of assigning it

one fixed value. We can also easily split activation and inactivation

into different functions. Depending on the influencing variables

the probabilities of the state of the variable change.

2.2. SIMULATION

The implemented model is based on the probabilistic Boolean net-

works approach (Shmulevich, 2002). The complete model consists

of n different variables, which are updated by Boolean rules in each

time step. The rules all consist of AND, OR, and NOT connections

between the different variables. In each time step one of the func-

tions is chosen with its assigned probability to determine the next

state of the variable. Probabilistic Boolean models can be simu-

lated in different ways. Either one can simulate single trajectories

of the model and analyze the results like the outcome of a stochas-

tic experiment, or one can analyze the resulting Markov chain. All

simulations were carried out using the R-Package BoolNet (Müssel

et al., 2010).

The PBN can be viewed as an ensemble of N standard Boolean

networks, where N =
∏n

i=1 l(i) . In each simulation step, we

choose one of the networks to update the state. The probability of

each network being chosen is the product of the probabilities of the

chosen functions. The vector Dt
= (Dt

1, . . . , Dt
r ) now comprises

the probabilities of all r = 2n states at time t, i.e., the probability of

the network to be in this state. We can define a (2n
× 2n) matrix

A, that contains the probability to transition from state i to state

j given all possible networks. If there is no network allowing the

transition i → j, Aij = 0 otherwise Aij is the sum of the probabil-

ities of all the networks allowing this transition. Matrix A is a

state transition matrix of a homogeneous Markov process. Thus,

given a (1 × 2n) vector D0 with a start probability for each state

we can recursively simulate the system from t to t + 1 [equation

(1)] or as well directly deduce the value at t + 1 of this geometric

progression [equation (2)]:

Dt+1
= Dt

· A (1)

Dt+1
= D0

· At+1 (2)

This kind of simulation enables us to follow transitions from a sin-

gle state to all its successors, but also makes it possible to start in a

distribution of states. The distribution approach is much closer to

biological reality than one sharp state since we are simulating on a

cell population level. We used the Markov simulations to find the

stationary states or attractors of the system and to find states with

transient high probabilities.

To visualize the probability distributions in our model we

plotted the probability for each state at each time point t in a

three-dimensional plot. To sort the states in a meaningful order-

ing, we defined a distance measure for states as explained below.

This measure ensures that states that are biologically different, are

further apart in the plot and those that differ only slightly are

closer together. The outcome is similar to the so-called epigenetic

landscape of the cell (Figure 2). In the next two sections we will

describe the generation of the start state distributions and the

aforementioned sorting of the states for plotting.

2.3. START STATES AND START DISTRIBUTIONS

Our main model contains 14 variables thus we are looking at a

total of 16,384 (214) possible states. An appropriate start state for

the simulation must take into account that a cell population is very

unlikely to consist of one specific Boolean state only, even if we are

looking at a pure population of one cell lineage. There is always

noise in biological systems: Genes that are not necessarily needed

can be transcriptionally inactivated in one cell, but can randomly

be expressed in the other, by chance packed into heterochromatin

structures or their promoter even be methylated while the state is

still viable. Nonetheless, there seems to be an optimal configura-

tion of gene expression patterns and epigenetic structures for every

cell type in which the majority of the cells lie. To account for the

biological noise, we attribute probabilities in the vector D0 to states

depending on their similarity to the optimal state yielding a normal

distribution around the latter. In the next section we will define the

similarity term and how we implemented it for our problem set.

2.4. SORTING THE STATES BY A SPECIFIC SIMILARITY MATCHING

A time course simulation of every state in the state space can be rep-

resented as a three-dimensional landscape where the states lie on

the x-axis, the simulation time on the y-axis, and the probabilities
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FIGURE 2 |The epigenetic landscape. The x -axis shows all possible

states of the model, sorted by similarity 6123
i

(Section 2.4) to the

distinguished states, i.e., differentiated state A, differentiated state B, or

pluripotent state P. The y -axis corresponds to simulation time steps, and

the z -axis to state probabilities. (A) Reprogramming starting from one

clearly defined state where A is active and the reprogramming factors are

present. (B) Differentiation by the activation of module A through a weak

signal.
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for the states at a given time on the z-axis for instance. A state can

be represented as a vector of length n for models with n variables.

The entries of every state vector Si (where i ∈ {1...2n}) are either

0 or 1. In order to sort the states in this three-dimensional land-

scape of gene expression and epigenetic mechanisms, we designed

a specific two-step matching algorithm for every state in the state

space. First of all, we defined the configuration of all variables for

the three states corresponding to the fully reprogrammed state and

two differentiated cell lineages respectively. These template states

S1, S2, and S3 are represented by vectors of bits of 0 or 1 each cor-

responding to the state of the according variable. For each of these

three state vectors and every variable therein we define a weight

depending on the variables’ contribution for the integrity of the

state which leads us to the three weight vectors W1, W2, and W3

(Table 1).

We now define a sorting algorithm which can serve to charac-

terize every state in the state space. We call matching vector of two

state vectors Si and Sj the vector Mij which contains 1 for every

variable that is identical in Si and Sj and 0 for the ones that are

different in the two vectors:

Mij =

(

δ(Si1Sj1), . . . , δ(SinSjn)

)

(3)

where Sik is the k-th element of vector Si and δlm is the Kronecker

delta with l and m ∈ {0, 1}. Thus, we define the specific similarity

σ ij of a state Si to one of the three template states Sj (j ∈ {1, 2, 3}),

as the scalar product of the weight vector Wj with the matching

vector Mij

σij = Mij · Wj (4)

Hence, we obtain the three sets σ i1, σ i2, and σ i3 of specific sim-

ilarities for every state. However, these three sets have largely

overlapping distributions of values, i.e., they contain very simi-

lar numbers which cannot be distinguished if we plot them on

an axis. To visually separate them in the landscape representation,

these specific similarities are now combined in the following way

to obtain the overall sorting score 6123
i for every state:

123
∑

i

= a ∗ σi1 ∗
(

σ2,max − σi2

)

∗
(

σ3,max − σi3

)

+ b ∗ σi2 ∗
(

σ1,max − σi1

)

∗
(

σ3,max − σi3

)

+ c ∗ σi3 ∗
(

σ1,max − σi1

)

∗
(

σ2,max − σi2

)

(5)

where a, b, and c are tunable parameters to attribute different

orders of magnitude for the three sets of states. Moreover, we

introduce correction terms for every summand by introducing

σ j,max, the maximal specific similarity which is attributed to the

template states themselves and which simply corresponds to the

absolute value of the weight vector. This correction term increases

the efficiency of separating the states regarding their similarity

or non-similarity to one of the three template states. Plotting the

simulation landscape according to this sorting of the states on one

axis renders the discrimination between the different states pos-

sible. In fact, we will get a separation of the three similarity sets

in such a way that the states closest to one of the three template

states cluster somewhere in its proximity and further away from

the other states, respectively. Moreover when moving from one

template state to the next the states will decrease in their similarity

to the state we started in and increase in their similarity to the state

we are moving toward (Figure 2).

2.5. PATHS THROUGH THE STATE SPACE

The state space of a probabilistic Boolean network with n nodes is

a directed graph in which vertices correspond to possible states the

network can reach and edges to the possible transitions between

two states. While in classical synchronous Boolean networks there

is only one defined state transition from every state to another

state or to itself, in probabilistic Boolean networks, there are up to

2n possible state transitions from every state to others, each pos-

sessing a certain probability of being taken. This makes the visual

representation of the state space for larger networks nearly impos-

sible. In order to circumvent this issue we focused on simulations

of the network starting from certain states and only showing the

states that are reached with a probability above a certain threshold

(Figure 3).

3. RESULTS

3.1. MODEL STRUCTURE

We analyze the interplay of three different regulatory layers, as we

look at chromatin structure, DNA methylation, and transcription

factor interaction. Due to the different properties of these mecha-

nisms we need to keep a fairly high level of abstraction to combine

them in one simple model (Figure 1).

For the sake of simplicity and to restrict computational com-

plexity of simulations, we combine the single genes and regulatory

factors that are responsible for the activation of a certain cell state

Table 1 | Variables and states of our model.

mE
e mE

m mE
hc

mP
e mP

m mP
hc

mA
e mA

m mA
hc

mB
e mB

m mB
hc

dnmt demeth

Pluripotent state S1 0 1 1 1 0 0 0 1 1 0 1 1 1 1

Differentiated state S2 0 1 1 0 1 1 1 0 0 0 1 1 0 0

Differentiated state S3 0 1 1 0 1 1 0 1 1 1 0 0 0 0

Weight vector W1 0.5 0.5 0.5 2.0 10.0 5.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0

Weight vector W1 0.5 0.5 0.5 2.0 2.0 2.0 2.0 10.0 5.0 2.0 2.0 2.0 1.0 1.0

Weight vector W1 0.5 0.5 0.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 10.0 5.0 1.0 1.0

The columns represent the model’s variables. In the rows, the pluripotent and the two differentiated states as Boolean states as well as the weight vectors explained

in Section 2.4 and used for the state sorting in Figure 2 are shown.

Frontiers in Physiology | Computational Physiology and Medicine June 2012 | Volume 3 | Article 216 | 6

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Flöttmann et al. Modeling epigenetics in reprogramming

FIGURE 3 | State space of the combined model of reprogramming. Time

evolution of the model starting with an active differentiation network and

active reprogramming genes. The Figure only shows the states that are

reached with a probability of p ≥ 10−4. The model has 2073 possible state

transitions between these 149 states. Different phases can clearly be

separated in the reprogramming process. In the beginning (yellow area) the

epigenetic factors of the different modules are modified, but there is no

change in gene expression yet. The second phase (dark yellow) represents

the down-regulation of the differentiation module followed by the activation of

the pluripotency module (blue area). The last step consists of the silencing of

exogenous factors, that produces stable iPS cells (red area). There are some

states that can lead to non-viable cells, in which no regulators are expressed

at all (gray area). The bold blue arrows represent the shortest path to the main

pluripotent state.

into modules. This simplified approach is justified by the strongly

correlated behavior that these genes are shown to have. It has also

been used in other theoretical models before and shown good

results (e.g., Artyomov et al., 2010).

The modules contain many activating interactions between

their members. A good example is the network of OCT4, SOX2,

and NANOG that is responsible for sustaining pluripotency. These

transcription factors bind a large number of shared targets as well

as their own promoters. This leads to their mutual and auto-

activation (Boyer et al., 2005). Similar interactions have been

reported for master regulators of differentiated cell lines like PU-1

for erythrocytes (Nishimura et al., 2000; Okuno et al., 2005) or

PPARγ for adipose tissue (Wu et al., 1999).

Interactions between these modules are often mutually repres-

sive, as it was reported for GATA-1 and PU-1 (Rekhtman et al.,

1999). The pluripotency module also represses differentiation fac-

tors. This mutual antagonism paired with auto-activation of the

single modules is the basic structure of the transcription factor

regulations in our model.

The basic findings underlying the logical rules in our model are

summarized in Table 2. The epigenetic regulations that influence

the expression level in general and specifically for each module are

described in detail in the following.

Although there has been immense progress in the field of epige-

netics in recent years,many of the regulatory mechanisms and their

interactions are still enigmatic to researchers (Cedar and Bergman,

2009; Djuric and Ellis, 2010). In our model we explore differ-

ent motifs of the epigenetic marks governing gene expression in

development and reprogramming. The general mechanism imple-

mented in the model follows the approach suggested by (Cedar

and Bergman, 2009). Epigenetic dynamics emanate from the more

rapidly changing states of the proteome of the cell. The expressed

regulatory proteins and RNAs not only govern future expression

profiles by direct action on promoters, but also change the more

persistent epigenetic marks which then in turn redefine a new set

of transcribed genes and, thus, of cellular proteins. In our model,

the expression of genes that belong to the same module increases

the chances of removing silencing marks on chromatin. Once the

chromatin is in an open conformation, we assume there is a pos-

sibility to remove DNA methylation if it is also suppressing gene

expression in the module. The process of silencing can happen

if the genes of a module are not expressed. The module is then

prone to methylation and formation of heterochromatin. If one

of the silencing marks is set, it increases the chances of keeping it

and setting the second mark as well. As described above, histone

modifications and DNA methylations are strongly interconnected
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(Epsztejn-Litman et al., 2008; Thomson et al., 2010). This collab-

orative aspect of silencing creates a positive feedback loop, which

promotes bimodality of the epigenetic states, meaning that there

is a low probability to stay in a state where only one of the marks

is set when the gene state is constant.

We assume that the DNA methylation of the promoter regions

of the genes in one module are coregulated to a large degree, and

are thus also characterized by one entity only. This variable fol-

lows rules which we derived from literature (Table 2; Figure 4).

Activation of this variable means that the promoters are methy-

lated which will inhibit gene expression. The activation of the

DNA methylation status is governed by the presence of de novo

methyl transferases DNMT3A/B which are summarized in the

variable dnmt. However, dnmt is not the only variable influencing

the methylation state of a module. As described above, there are

also other chromatin binding proteins influencing the likeliness

of DNA methylation. We assume that all of these proteins com-

bined are responsible for the current local chromatin structure

and set the chromatin structure of the module as a modifying fac-

tor of the DNA methylation. This defines the activating update

function, that – if chosen – can only activate the variable. If

the DNA is already methylated, it can be demethylated by dif-

ferent mechanisms. For example, inefficiency of DNMT1 copying

of methylation patterns is considered as passive demethylation

(Monk et al., 1991). This process can only happen when cells are

dividing, as it depends on DNA replication. However, there might

as well be active demethylation processes influencing the DNA

methylation state as discovered recently (Table 2). In our model,

we summarize these processes leading to demethylation of DNA

in the variable demeth. All of the mentioned processes happen very

slowly compared to transcription factor mediated changes in the

regulation of expression, which is why we also introduced a func-

tion that does not alter the variable when it is chosen. This function

gets a high probability compared to the rest. A combination of the

above yields the following update functions for methylation of

pluripotency genes:

mA
m (t + 1) = mA

m (t ) ∨ dnmt (t ) ∧ mA
hc

mA
m (t + 1) = mA

m (t ) ∧
(

demeth (t ) ∨ mA
hc

)

mA
m (t + 1) = mA

m (t ) ∧ demeth (t )

mA
m (t + 1) = mA

m (t )

(6)

where mA
m and mA

hc are the methylation and chromatin states of

module A, respectively. Similar rules hold for modules B and P

(modules as shown in Figure 1). Note that probabilities of the

formulas sum up to 1.

The dnmt and demeth variables are governed by the following

rules:

dnmt (t + 1) = mP
e (t ) ∨ mE

e (t )

dnmt (t + 1) = mP
e (t ) ∨ mE

e (t ) ∨ dnmt (t )

FIGURE 4 | A schematic representation of the processes described by

our model. (A) Shows the connection between DNA methylation, histone

modifications and the pluripotency master regulators. Pluripotency

transcription factors activate their own expression and can be suppressed

by factors regulating differentiation. The pluripotency factors themselves

increase the expression of DNMT3 which enables de novo methylation of

DNA preferably in combination with repressive histone modifications such

as methylation or deacetylation (right nucleosome). On the other hand

activation of pluripotency genes also leads to a higher cell division rate, a

suppression of methylation maintenance and probably active

demethylation, which also increases the chances of euchromatin

formation. (B) Without external influences (e.g., retroviral genes or

signaling molecules), the structure of our model consists of three gene

modules (P, A, B) inhibiting each other and each governed by their specific

epigenetic states. The pluripotency (P) module regulates the activation of

methylation and demethylation.
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demeth (t + 1) = mP
e (t ) ∨ mE

e (t )

demeth (t + 1) = mP
e (t ) ∨ mE

e (t ) ∨ demeth (t ) (7)

where mP
e and mE

e are the expression of the pluripotency and the

exogenous modules, respectively. Switching off these factors is very

slow, because we assume that the influences implemented here are

not the only influence on these variables and that they are active

in many cell states.

Histone modifications are strongly simplified in our model.

We consider neither single modifications on different sites nor

different numbers of methyl groups on the residues. Chromatin

changes are dependent on the expression of the module’s genes.

If these genes are expressed, it is impossible to remodel the chro-

matin to a closed form. If they are not present, there is a chance

of negative histone modification which is increased by present

DNA methylation marks. In Boolean formulas these processes are

described as

mA
hc (t + 1) = mA

hc (t ) ∨ mA
m (t ) ∧ ¬mA

e (t )

mA
hc (t + 1) = mA

hc (t ) ∨ ¬mA
e (t )

mA
hc (t + 1) = mA

hc (t ) ∧ ¬mA
m (t )

mA
hc (t + 1) = mA

hc (t )

(8)

where mA
e is the expression of module A, mA

hc the chromatin state,

and mA
m is the DNA methylation of the module respectively. Fol-

lowing these rules the DNA methylation in a module increases the

chance of forming and keeping heterochromatin, independent of

the chosen parameters. The same is true for the chances of methy-

lation, which are dependent on the chromatin state of the module

as well. Thus, the epigenetic states are mutually dependent on each

other, and are also reigned by the states of their expressed genes.

In turn, the expression of a module is governed by its epigenetic

states. If the gene is located in heterochromatin and methylated it

is marked inactive and cannot be activated by any composition of

transcription factors. If both epigenetic sub-modules are inactive,

the expression of the genes in the next time step only depends on

the transcription factors. If the gene is in heterochromatin and not

methylated or vice versa, there is still a chance that it is expressed,

given the right transcription factors. We implemented these rules

for all modules by the following Boolean formulas:

mA
e (t + 1) = mA

e (t ) ∧ ¬
(

mB
e ∨ mP

e (t )
)

∧ ¬mA
m (t )

mA
e (t + 1) = mA

e (t ) ∧ ¬
(

mB
e ∨ mP

e (t )
)

∧ ¬mA
hc (t )

(9)

The activation of the pluripotency network by the transduced gene

cocktail is also modeled explicitly. The pluripotency network has a

small chance of being activated by the artificially introduced genes.

These exogenic factors are deactivated when the cell has reached a

pluripotent state with the pluripotency module turned on and all

differentiated modules turned off. The probability of activation

is rather small compared to the probability of the pluripotency

module activating itself. Since only a small subset of pluripotency

regulators is transduced in reprogramming experiments (usually

4 transcription factors) we assume that the activation is happen-

ing rarely. The probability is directly connected to the number of

reprogramming factors transcribed, it can be increased to model

the influence of additional NANOG transduction, which has been

shown to be beneficial to the efficiency of reprogramming (Hanna

et al., 2009).

The deactivation of the transduced genes is achieved by

silencing of their promoters through methylation and chromatin

remodeling by histone deacetylation (For a review, see Hotta and

Ellis, 2008). In our model this process is triggered when the cell

reaches the iPS expression profile.

Since the transduced genes differ from the endogenous pluripo-

tency genes in their promoter region, some changes regarding

their transcriptional repression and interactions of methylation

and chromatin remodeling need to be done in comparison to the

other modules.

Due to the viral promoters the expression of the retroviral genes

only depends on their chromatin and methylation state and not

on any transcriptional inhibitors or activators.

mE
e (t + 1) = mE

hc (t ) ∨ mE
m(t )

mE
e (t + 1) = mE

hc (t ) ∧ mE
m(t )

(10)

The rules for methylation of the promoter of the exogenous genes

are very similar to the ones of the other modules except for the

probabilities which we chose to be smaller for dnmt and het-

erochromatin dependent DNA methylation. This is due to the

finding that after reprogramming, the retroviral genes can still be

active (class I iPSCs) or be silenced and thus fully reprogrammed

(class II iPSCs; Niwa, 2007; Mikkelsen et al., 2008) which suggests

that methylation of the viral promoters might not be fast and com-

plete which would lead to quick silencing. Moreover, methylation

does not seem to be needed to downregulate the activity of the

retroviral genes according to Pannell et al. (2000) which accounts

for these low probabilities as well.

Similar to the other modules, we also introduced slow, cell cycle

dependent DNA demethylation induced by variable expression of

DNMT1 after mitosis (Li et al., 1992; Table 2).

Since the remaining update rules for DNA methylation stay the

same with the sole difference of lower probability in comparison

to the other modules, this is the only structural difference:

mE
m (t + 1) = mE

m (t ) ∧ (¬demeth (t ) ∨ dnmt (t )) (11)

The chromatin modification rules of the retroviral genes mainly

depend on their own methylation state (just like the other mod-

ules) and on the expression of the endogenous pluripotency genes.

We hypothesize this interaction to be mediated by a complex sim-

ilar to the so-called NANOG and OCT4 associated deacetylase

(NODE) complex or by this complex itself. It consists of a histone

deacetylase (HDAC) and NANOG or OCT4 (Liang et al., 2008)

and was found to catalyze histone deacetylation on developmental

target genes thereby leading to heterochromatin formation. The

hypothesis that this complex or at least one with very similar prop-

erties and behavior is responsible for retroviral gene silencing is

based on the fact that de novo DNA methylation is not necessary

for retroviral silencing as mentioned above (Pannell et al., 2000)

and that there seems to be a complex of NANOG and the HDAC

which is responsible for this process (Hotta and Ellis, 2008). Thus,
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the only update rule differing from the other modules regarding

the heterochromatin structure depends on the expression of the

pluripotency module P:

mE
hc (t + 1) = mE

hc (t ) ∨ mP
e (t ) (12)

which completes our set of update rules.

3.2. SIMULATIONS OF A SINGLE MODULE

The basic building blocks of our model are modules of genes and

their epigenetic modifications. To analyze the general behavior

of these sub-networks, we start with simulations of the separate

blocks before describing different combinations of these.

A module consists of three nodes – the expression node, the

DNA methylation node, and the chromatin structure node – with

the DNA methylation node being connected to the main epige-

netic modifier variables namely dnmt and demeth (represented by

their actions, i.e., DNA methylation or DNA demethylation respec-

tively in Figure 1). We distinguish two different cases to describe

the complete set of different modules. First, there are the entities A

and B that only regulate their own expression and do not regulate

the expression of dnmt and demeth, which are the components

responsible for differentiation. The second class of modules are

the pluripotency regulators P, which regulate their own activation,

but also influence the activity of epigenetic modifiers.

Unsurprisingly, we found the differences in behavior between

the two classes to be substantial. We analyzed the modules under

different conditions, different parameter settings, and applied

disturbances like knockout or overexpression experiments and

quantified the effects in regard to the outcome distributions. For

each one of them, we built a model containing only the respective

module and external signals influencing it.

The pluripotency module P is the central point, as it has the

strongest connections to the main regulators of epigenetics demeth

and dnmt. Its dynamic behavior and steady states reflect various

experimental results. The state in which the pluripotency module

is active is stable. Even if the chromatin state is set to heterochro-

matin, the model has a high chance to return to the pluripotent

state. This changes if DNA methylation is activated, which silences

the genes and also locks the states of chromatin in the silencing

state. If one of the other genes is constantly expressed, the module

is suppressed by this gene and silenced by its epigenetic factors.

A relatively large fraction of cells is transferred to the respective

state. This shift happens rather fast, because during the activation

of the pluripotency genes the entities that enable changes in the

methylation states are active and are disabled in the resulting states

(Figure 5).

All modules are stable if their respective genes are the only ones

expressed and there are no further disturbances. The behavior of

the modules A and B in the unperturbed state is very similar to the

pluripotency module P, but they are also more stable when per-

turbed. If one of the other non-pluripotency modules is switched

on – or over-expressed – the genes of the module are repressed,

but not irreversibly silenced. The gene is silenced quickly, and

the chromatin state changes to heterochromatin. But this state

cannot be stabilized by the formation of methylated DNA and is

therefore dynamically changing and after a few steps it reaches an

equilibrium (Figure 6B).

The response of the differentiation modules A and B is dif-

ferent for overexpression of pluripotency genes. If in a module

of differentiation the pluripotency genes are over-expressed – a

situation comparable to simplified reprogramming – the mod-

ule’s epigenetic factors enter a hyperdynamic state while its gene

expression is repressed (Figure 6A). This state has been observed in

differentiation genes in pluripotent cells (Niwa, 2007). The active

methylation factors enable changes in DNA methylation states and

in the equilibrium state there is a relatively high probability to be

in a methylated state for the module A. If the signal is switched off

after some time the system will not return to the start state com-

pletely, but will be locked in non-physiological undesired states

where no genes are expressed anymore.

Overexpression of reprogramming factors has a strong effect

on other modules, that can already be witnessed in this small sub-

model. The question remains why the efficiency of reprogramming

is so low when it seems to work so quickly and effectively in single

modules. To tackle that question, we need to combine the single

modules A, B, and P to a model of the different competing net-

works in the cell and we also need to introduce the reprogramming

factors module E and its very own regulation to the system.

Changing key parameters of the system we will clarify which

alterations have the strongest effects on the systems behavior. For

example changing the probabilities of either changes in DNA

methylation or chromatin remodeling has very different effects

on the outcome of simulations.

3.3. STABLE CELL STATES AND DIFFERENTIATION OF COMBINED

MODULES

When combining the single modules to a more complex model

of two differentiated states and the pluripotency network (A, B,

P model; Figure 1 without the exogenous factors), we see more

complex dynamics of state transitions. Gene expression in each

module is mutually exclusive with all other modules and a module

that is shut off once can only be activated by an external sig-

nal combined with epigenetic activation. The steady state of the

pluripotency module consists of a number of different states, that

represent the hyperdynamic characteristics in epigenetic factors of

the pluripotent cells (Meshorer et al., 2006). These states have dif-

ferent probabilities to differentiate, depending on the current epi-

genetic configuration. Similar kinds of population differences have

been shown for pluripotent cells and the expression of NANOG

(Kalmar et al., 2009).

Since we already include three different levels of regulation in

our model, we refrain from adding detailed signaling pathways to

the system to regulate differentiation. We simulate differentiation

by simply activating the gene expression of gene module A with a

certain probability. This causes the system to leave the pluripotent

state very fast. After about 300 time steps it reaches its steady state

with the differentiated state being the main attractor (Figure 2A).

The system also reaches a state, in which all proteins are unex-

pressed. This state is reached because the differentiation signal is

strongly simplified and does not guarantee the correct timing of

events. If the pluripotency genes are switched off before the cor-

rect methylation pattern is in place, differentiation related genes

may not yet be properly expressed while pluripotency genes and

thus de novo DNA methylation and pluripotency related DNA
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FIGURE 5 | Dynamics (A) and state space (B) of the pluripotency

module during overexpression of differentiation factors. The

network quickly leaves the pluripotent state and passes across a

number of transient states into two different attractors. The node in

blue (lower right) is a point attractor in the completely differentiated

state and the nodes in brown are part of a cyclic attractor consisting of

the unmethylated state in either a euchromatin or heterochromatin

structure.

demethylation mechanisms are already silenced. This behavior

could be prevented by a proper regulation of gene expression by

signaling molecules.

Nonetheless, de-regulation occurs in biological systems as well,

caused by, i.e., transcriptional noise, epigenetic variability, or exter-

nal factors. The undefined cell state could be identified with cell

death or other fatal events caused by the introduction of the stim-

ulus. Despite the simplicity of the mechanism we use, the model

differentiates very quickly and produces stable differentiated cell

lines.

3.4. INTEGRATING REPROGRAMMING FACTORS

To analyze reprogramming, we combined the four single modules,

i.e., the retroviral transcription factors E, the endogenous pluripo-

tency genes P, and the two model cell lineages A and B into one

model (Figure 1). We simulated the model in a Markov simulation

for various starting distributions and systematically analyzed the

temporal dynamics of the model for typical start scenarios.

First, we analyzed the situation in which the system is initialized

with only one defined state that corresponds to either one of the

two cell lineages A and B, i.e., the state, where the set of master

regulator genes associated with lineage A is expressed, unmethy-

lated, and in an open chromatin configuration, while the module

for lineage B and for exogenous (E) and endogenous (P) pluripo-

tency genes has the opposite configuration, meaning the genes are

downregulated, methylated, and in a closed chromatin formation.

For this specific start state, the network remains in its differen-

tiated cell lineage over the complete time of simulation, i.e., the

defined cell lineage is stable without any outer perturbation (data

not shown).

Second, when the simulation starts from a state that corre-

sponds to the fully reprogrammed cells, i.e., where module P has

the active configuration, while the other modules are silenced,

we observe a shift of states into states which are closely related

(visualized by their proximity to the pluripotency state in the epi-

genetic landscape) to the pluripotency state. This behavior can be
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FIGURE 6 | Dynamics and state space of single modules of

differentiation regulators. (A) Time course of a differentiation module with

the constant activation of the pluripotency genes included. Methylation and

demethylation are activated, the module’s genes are silenced and the model

reaches an equilibrium in a hyperdynamic state switching between open and

closed chromatin and varying DNA methylation. (B) Overexpression of

another differentiation module leads to silencing of the gene, but does not

enable methylation changes.

observed in iPSCs and ESCs as well and is often referred to as a

hyperdynamic plasticity. The cells have a fast changing chromatin

structure in general and different methylation states on several loci

(Meshorer et al., 2006). This plasticity leads to a distribution across

different states in our model as there is no single point attractor.

This effect may also be responsible for the priming of iPSCs to

quickly differentiate into various different cell types upon external

signals (Ang et al., 2011), as we also observe states that can more

easily differentiate than the defined pluripotent state.

The third focus of our simulation was the model starting in

the sharp states of the differentiated cell lineages when the retrovi-

ral transcription factors are expressed, unmethylated, and in open

chromatin. These simulations can be related to classical direct

reprogramming. As shown in Figure 2B, the starting state will be

left quickly for transient states that lie along the path to pluripo-

tent cells. When analyzing the landscape it becomes clear that

cells will transit into states that resemble pluripotent cells more

and more until they eventually reach the fully reprogrammed

state with a certain probability. This probability can be consid-

ered as the reprogramming efficiency that increases with time (or

cell cycles) as demonstrated before by Hanna et al. (2009). The

state space of the simulation (Figure 3) reveals further details

about the timing and order of the states that are passed on the

way to reprogrammed cells. Since we are dealing with a model

of 14 variables, the whole state space has 214 states and since we

use a probabilistic approach it could in theory be fully connected,

i.e., every node of the state space could possibly have 214 outgoing

and incoming edges. Therefore we only show those states that

can be reached from our starting state, and reach a probability

larger than 0.0001 in the course of the simulation. These most

relevant states are the ones that some cells will probably pass dur-

ing the process of becoming iPS cells. Surprisingly these states

clearly show different events that are crucial in the reprogram-

ming process and resemble the order of events described in the

literature (Papp and Plath, 2011). We simulated the model over

500 time steps, until it came close to a steady state of probabil-

ities. The states that have the highest probability to be reached

in the beginning (time steps ∼1 − 100) show a slow unpacking

of the pluripotency genes, but about 10% also show modifica-

tions to the genes in the other lineage. After this stage all cells can

enter the next phase which lasts for about 150 time steps. Nearly

all states in this phase share the property that the differentiation

genes are already shut down, but endogenous pluripotency genes

are still silenced. From this stage there is a non-negligible possi-

bility that the cells enter a non-functional state where nothing is

expressed anymore, and which cannot be left. This state creates a

small attractor that prevents the cells from successful reprogram-

ming. The phase that follows with a much higher probability is

the first stage of reprogrammed states. Cells in this state have been

characterized as class I iPS cells (Niwa, 2007; Mikkelsen et al.,

2008), as they express the endogenous pluripotency genes, but

also still express the exogenous reprogramming cocktail that is

not epigenetically silenced yet. From these states there is a slow

transition to the states with a stable silencing of the exogenous
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factors expression of pluripotency genes, and a hyperdynamic state

in the differentiation modules. Cells reaching one of these states

can have taken any existing path through the state space. In the

visualized subspace, which makes up about half of the states reach-

able from the start state, there are 146 states and 2473 edges with

only one connected component. As there are so many possibili-

ties, the probability for each path is infinitesimally small. The most

probable single path from the start state to the iPS state only has

a probability of 9.3 × 10−12 and consists of 7 state transitions.

When looking at the state space structure it becomes obvious that

the phases described above cluster together in the graph and that

some states are much more central to the transition than others.

Most states are not essential to the reprogramming, since there are

nearly always paths that can avoid them. But there is one tran-

sition that is absolutely essential for reprogramming. This is the

transient activation of the pluripotency module relatively early in

the process after removal of their methylation marks. This enables

the suppression of the differentiation genes and enables further

reprogramming.

At the end of the process there is a large probability that cells

are in the reprogrammed state. This corresponds to the findings by

(Hanna et al., 2009), who showed that in a drug inducible repro-

gramming system all cells are able to reprogram given enough

time.

As illustrated by the most probable path, not all of the described

phases will be passed by all cells. There is often the probability of

shortcuts like the one shown. In cells with a demethylation of all

modules in an early phase, the pluripotency genes can be activated

much faster compared to the rest.

As described in the materials and methods section, when look-

ing at cell populations even of defined cell lineages, we are always

dealing with a distribution of slightly different cells which can or

cannot express certain factors and whose chromatin and methy-

lation structure might be slightly different. Due to this fact, it

might be more appropriate to characterize start distributions

rather than sharp start states. We already described above how

these distributions are generated. Interestingly, when starting in

these distributions for differentiated cell lineages, in the absence

of the retroviral genes we can observe a maintenance of a distri-

bution around the differentiated state which accounts for stable

cell lineages. When simulated from a distribution of states around

the pluripotent state P the system also reaches the hyperdynamic

state distribution mentioned above. However, we have to make

sure that the retroviral genes are silenced because their expression

ultimately results in reprogramming (Figure 7).

3.5. PARAMETER VARIATIONS OF THE MODEL

In order to analyze the stability of our model and its behav-

ior upon parameter variation, we varied the strength of the

epigenetic modifications, i.e., DNA methylation and chromatin

changes. We defined a parameter range including the parame-

ters of our main model, a decreased and an increased probability

of changes in methylation and heterochromatin formation and

analyzed the effect on the reprogramming efficiency (Figure 8).

Interestingly, we can observe that in the time range of 2000 time

steps our main model nearly seems to have a maximal saturation

for its reprogramming efficiency which is only very slightly sur-

passed by increasing the probability for euchromatin formation.

This increase could experimentally be reached through a hete-

rochromatin formation inhibiting agent such as VPA (Section 1;

Table 3).

However, the reprogramming timing can obviously be influ-

enced by parameter variations. While an increase in methylation

dynamics, i.e., faster demethylation, speeds up the reprogramming

process with a reprogramming efficiency peaking at approximately

0.8 after 2000 time steps, we observe slower reprogramming for

increased probabilities of heterochromatin formation and DNA

methylation.

3.6. STRUCTURAL MODIFICATIONS OF THE MODEL

To check the sensitivity of the model to structural modifications

and how its behavior corresponds to responses of reprogramming

cells in reality, we searched the literature for various experiments

that can be mimicked by slight modifications (Table 3).

In the following sections we describe such modifications and

their effects on the reprogramming process with a focus on

efficiency.

3.6.1. Spontaneous methylation

Since the exact mechanism of action of DNMTs in DNA methyla-

tion is still not fully understood, we modified the model to include

spontaneous methylation. Hence, we introduced an interaction

FIGURE 7 | Epigenetic landscapes of start distributions (64 states). (A)

Distribution around the differentiated state B without reprogramming factors.

The start states converge into just a few remaining states. The differentiated

states and the non-expressing states being the highest. (B) A distribution

around the pluripotent state. (C) A simulation starting from a distribution

around the differentiated state B with active reprogramming factors.
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FIGURE 8 | Reprogramming efficiencies of the model variants.

Efficiency is plotted as the sum of probabilities of all states that are closely

connected to pluripotency.

that accounts for methylation of the different modules by dnmt

independently of other factors with a certain probability.

We found that in comparison to the original model, there

was an overall decrease in the reprogramming efficiency, i.e., the

steady state probability is approximately 10 times lower than in

the original model after 500 time steps. However, the spontaneous

methylation model reaches its steady state distribution slightly

faster. Another interesting feature of the spontaneous methylation

model is the fact, that it reaches a new specific state with a high

probability. In this state, which we will call the undefined state, all

modules are silenced except for the retroviral ones. We will discuss

this state below.

3.6.2. Spontaneous heterochromatin formation

Similar to DNA methylation, the exact mechanisms of chromatin

modifications are still a matter of debate. In our model, introduc-

ing spontaneous formation of heterochromatin as an independent

term is a general de-regulation of these mechanisms, that could

happen during reprogramming due to factor induction.

Even more pronounced than in the spontaneous methylation

model, the steady state reprogramming efficiency is more than 40

times lower than in the main model. However, interestingly, in the

first 50 time steps the probability to be in a reprogrammed state is

higher than in the original or the methylation model and it is only

at later time points that this changes. This may be due to the fact

that the differentiation related state is downregulated much faster

(results not shown). As in the methylation model, the undefined

state mentioned above is also attained with a high probability.

3.6.3. Spontaneous demethylation

In contrast to DNA methylation and chromatin modifications,

which have been in the focus of research for many years

already, active DNA demethylation has long remained in the

dark until recent discoveries have unraveled a new perspective.

Thus, DNA demethylation seems possible via the intermediate

5-hydroxymethylcytosine and different enzyme driven modifica-

tions which transform it back to unmethylated cytosine (Bhutani

et al., 2011). To account for uncertainty in spontaneous demethy-

lation, we transformed the modules of the model in order

to be able to randomly lose their methylation with a certain

probability.

Of all our model variants, spontaneous demethylation reaches

the highest reprogramming efficiency after 500 time steps although

it is still 3–4 times lower than in the original model. Interestingly,

this model variant shows a slightly different behavior than the

two previous ones. Although its reprogramming efficiency stands

back behind the original model in every time point, its differen-

tiated state shows a fast decrease at the beginning, followed by a

much longer second phase of slow decay very similar, in fact, to

the reprogramming experiment of the original model (Figure 8).

3.6.4. Stronger interaction between methylation and

heterochromatin

We analyzed the effects of the debated interaction between methy-

lation and chromatin formation which we described above and

in Table 2. The overall reprogramming efficiency after 500 time

steps was approximately reduced by the factor 5. The dynamics of

the differentiated state are very similar to the ones of the original

model although it decreases even slower and remains with a higher

probability at the end. Interestingly, another state is reached with

a high probability, which is very similar to the differentiated state

of the other cell lineage, except that the pluripotency module is

already demethylated and in an open chromatin formation but still

not expressed. This state is transiently present with a high probabil-

ity which slightly decreases though over time. This phenomenon

could be interpreted as trans-differentiation during reprogram-

ming without passing the pluripotency state (Vierbuchen et al.,

2010).

3.6.5. No methylation

In a model variant, where methylation has no influence on gene

expression or heterochromatin formation we observe a very differ-

ent behavior than in all the models before. In fact, without methy-

lation effects, the model is neither able to reprogram anymore nor

to differentiate. What we can observe instead is a re-distribution

of the different start states, i.e., the pluripotency related or the

differentiation related states, into very close similar states but no

transition to any states that are further away in the state space. This

is most likely due to the fact that methylation is needed in the long

run to determine the heterochromatin structure after cell divi-

sion and to fully silence gene expression. Without these features
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Table 3 | Experimental findings from literature compared to simulation results.

Experimental finding Theoretical validation by our model

Somatic cells can be reprogrammed to iPSCs upon viral delivery

of pluripotency factors with a very low efficiency (Takahashi, 2006)

Reprogramming experiment of our main model (Figure 2B)

iPSCs can be re-differentiated into various kinds of tissues (all

three germ layers; Takahashi, 2006)

Differentiation experiment of our main model (Figure 2A)

ESCs have more euchromatin and accumulate high condensed

heterochromatin as differentiation progresses (Francastel et al.,

2000)

In the differentiation of the pluripotent state, which still consists of a distribution

across several different chromatin and methylation configurations, we can observe a

transition to more sharply defined states, which mostly include heterochromatin and

methylation compositions (Figure 2A)

DNA methylation is essential for chromatin structure during

development (Hashimshony et al., 2003)

In models lacking DNA methylation, differentiation as well as reprogramming are

abolished and cells will not be able to pass to other states in the state space

(Section 3.6.5)

Treatment of partially differentiated ES cells with the DNA

demethylating agent 5-azacytidine (5-AzaC) induces

de-differentiation (Tsuji-Takayama et al., 2004)

When starting from partly differentiated states in models with spontaneous

demethylation mimicking 5-AzaC treatment, we observe de-differentiation and even

efficient reprogramming (Section 3.6.3)

Knockdown of DnmtI reactivates retroviral genes (Wernig et al.,

2007)

In models mimicking DnmtI knockdown (e.g., spontaneous demethylation in Section

3.6.3 or no methylation in Section 3.6.5 simulation from the iPS state leads to partial

reactivation of retroviral genes

Dnmt3a and Dnmt3b are not required for retroviral silencing in the

first 10 days of reprogramming (Pannell et al., 2000; Hotta and

Ellis, 2008)

In models without dnmt activity we can still observe silencing of retroviral genes

(results not explicitly shown)

The histone deacetylase (HDAC) inhibitor valproic acid is capable

of enhancing reprogramming efficiency (Huangfu et al., 2008)

In models where the probability for heterochromatin formation is downregulated

(mimicking inhibition of HDAC) we observe a slight increase in the reprogramming

efficiency (Figure 8)

active modules cannot be silenced and thus inactive modules stay

transcriptionally inhibited although they might be demethylated

and in an open chromatin structure.

3.6.6. Polycomb repressor complexes (PRCs)

In an attempt to model the mechanisms of Polycomb repressor

complexes (PRCs) described in Table 3 we introduced a pos-

itive interaction into the equation for heterochromatin forma-

tion depending on the pluripotency genes. In other words, the

pluripotency genes directly promote heterochromatin formation

of differentiation related genes, i.e., our lineage master regulators.

Simulation and analysis of that particular model yielded a very

similar result to the main model, which is probably due to the

fact that the mutual transcriptional repression between our mod-

ules describes a very similar effect. Since this mechanism does not

seem to significantly improve our model we decided to leave that

interaction out.

3.6.7. Summary

The effects of the analyzed model variants on the reprogramming

efficiency are summarized in Figure 8. For every model variant the

reprogramming efficiency increases over time except for the model

without methylation. What becomes apparent at first sight is that

obviously all model variants seem to have a strongly decreased

reprogramming efficiency after 2000 timesteps.

Overall, we find, that all variants resulted in de-regulating mod-

ifications of the original model, i.e., modifications that reduced the

level of tight regulation of the epigenetic processes involved, which

in turn have a direct effect on the expression of important genes.

In the landscape of these model variants (which are not shown

here), we could observe a general transition from a few defined

states, that could be reached in the original model, to a strongly

increased number of states. In the original model, we can reach a

total of 2592 states after 500 time steps in a reprogramming sim-

ulation, while the spontaneous methylation model variant could

reach 10,240 states in the same time. However, the efficiency of

reprogramming was approximately 10 times lower (Figure 8) in

the spontaneous methylation model. The 366 reached pluripo-

tency related states in both models are the same except for their

probability to be reached after 500 timesteps.

DISCUSSION

In this study we developed, to our knowledge, the first model of

processes in somatic cell reprogramming that explicitly includes

the virally transduced factors and their regulatory interactions.

The model is also unique in its representation of the different epi-

genetic factors that regulate cell states and their interactions. Our

modeling approach qualitatively reproduces experimental results

from reprogramming as well as differentiation experiments. The

probabilistic Boolean state space in combination with the epige-

netic landscape plots of the simulations gives insights into different

possible ways which reprogramming cells take in this scenario.

Combined these visualizations can be related to the potential

landscapes that have been developed for continuous modeling

approaches. They show the direction the system is moving toward

as well as the probability for each state to be reached under specific

conditions. The stategraph also makes it possible to identify differ-

ent phases during reprogramming that are important milestones.
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These simulation phases are coherent with the sequence of events

reported in many experiments.

The reprogramming efficiency of the system seems high

(p = 0.8 after 2000 time steps) compared to experimental results

from transduction experiments, but one has to keep in mind that

the model leaves out major experimental hurdles and regulatory

mechanisms. We neither include immune response of cells nor

varying transduction rates. The general efficiency shows a simi-

lar behavior to experiments done in inducible stem cell systems,

which also showed sigmoidal efficiency curves with saturation at

high levels. After a long simulation time we reach a high steady state

of reprogrammed cells in a relatively broad distribution of states.

Nevertheless, this high reprogramming rate indicates that there

are mechanisms not included in our model that are suppressing

reprogramming in differentiated cell.

Differentiation in our model is also possible and happens a lot

faster than reprogramming, although it is impaired by the lack of

regulatory factors. In order to improve the representation of the

course of differentiating cells the model would need to be extended

by signaling pathways. This would enable a more precise modula-

tion of the activity of the important model components and would

moreover enable the system to sense the influence of external fac-

tors. Another interesting extension of the model would consist in

the integration of further branches of differentiation for other cell

lineages to depict the path from stem cells over progenitors to fully

differentiated cells. These extensions are simplified by the modular

structure of our model.

The model is very much centered on the mutual inhibition of

master transcription factors and their connection to epigenetic

factors, which is an important mechanism, but other regulatory

processes, not captured by this approach, certainly play crucial

roles during phenotype transitions. Cell types are generally viewed

as different steady states of gene regulatory networks. This is

reflected in the model by various attractors that represent dif-

ferent cell types. Nevertheless it does not account for cell types

that express a mixture of regulatory genes, as for example progen-

itor cells would. These states can occur as cyclic attractors, but are

unstable to stochastic perturbations and are therefore left quickly.

Because the model is very abstract, predictions cannot aim

to completely reflect biological reality, but they can show trends

and general effects that hold true for the modeled entities. The

modifications we introduced show how the system reacts to per-

turbations in the epigenetic regulations. Most of the structural

changes showed a devastating effect on the reprogramming effi-

ciency, demonstrating the need of tight regulation of the process.

The only two modifications, in which efficiency can be sustained

at an adequate level, are those that increase the influence of the

gene regulatory networks on the epigenetic factors.

Improvements of the reprogramming efficiency can only be

achieved by two modifications. First, higher probabilities for

changes in DNA methylation status lead to a faster increase of the

reprogrammed cells, but also to a lower probability in the steady

state. Therefore a de-regulation can have beneficial effects on the

process, but also has drawbacks. Higher probabilities for changes

in chromatin state lead to a mild increase in efficiency, resembling

the effects of small molecules like VPA.

A better understanding of the underlying processes of somatic

cell reprogramming is the key to a clinical application of iPS cells

in the future. The proposed model, although very abstract and

limited, goes a step into this direction. It outlines the possible epi-

genetic regulations that play a role in reprogramming, elucidates

their connections, and partly explains experimental observations

in reprogramming although it ignores large parts of the complex

gene regulatory network of developmental genes.
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