A Stochastic Model of Investment, Marginal q and the Market Value of the Firm

Andrew B. Abel
University of Pennsy/vania

Follow this and additional works at: https://repository.upenn.edu/fnce_papers
Part of the Finance and Financial Management Commons

Recommended Citation

Abel, A. B. (1985). A Stochastic Model of Investment, Marginal q and the Market Value of the Firm. International Economic Review, 26 (2), 305-322. http://dx.doi.org/10.2307/2526585

A Stochastic Model of Investment, Marginal q and the Market Value of the Firm

Abstract

This paper presents closed-form solutions for the investment and valuation of a competitive firm with a Cobb-Douglas production function and a constant elasticity adjustment cost function in the presence of stochastic prices for output and inputs. The value of the firm is a linear function of the capital stock. The optimal rate of investmentis an increasing function of the slope of the value function with respect to the capital stock (marginal q). A mean preserving spread of the distribution of future price increases investment. An increase in the scale of the random component of a price can increase, decrease or not affect the rate of investment depending on the sign of the covariance of this price with a weighted average of all prices.

Disciplines

Finance and Financial Management

NBER WORKING PAPER SERIES

```
A STOCHASTIC MODEL OF INVESTMENT,
            MARGINAL q AND
        THE MARKET VALUE OF THE FIRM
```

 Andrew B. Abel
 Working Paper No. 1484

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 1984

The research reported here is part of the $N B E R^{\prime}$'s research program in Economic Fluctuations. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research.

A Stochastic Model of Investment, Marginal q and the Market Value of the Firm

ABSTRACT

This paper presents closed-form solutions for the investment and valuation of a competitive firm with a Cobb-Douglas production function and a constant elasticity adjustment cost function in the presence of stochastic prices for output and inputs. The value of the firm is a linear function of the capital stock. The optimal rate of investment is an increasing function of the slope of the value function with respect to the capital stock (marginal q).

A mean preserving spread of the distribution of future price increases investment. An increase in the scale of the random component of a price can increase, decrease or not affect the rate of investment depending on the sign of the covariance of this price with a weighted average of all prices.

> Andrew B. Abel
> Harvard University
> Littauer Center Ill
> Cambridge, MA 02138
> (617) $495-1869$

```
A Stochastic #odel of Thvestment, Targinal a and
the "ardet Yalve of the Fim
```

Andrew ?. Abel ${ }^{1}$

1. Introduction

In this paper we develop a stochasticmodel of the production and investment behavior of competitive fim and use this model to examine the effects of uncertainty on the optimal rate of investment. The framework for this analysis is a stochastic version of the q theory of investment. Following a 1 ine of argunent presented by Teynes [1936], Tobin [1969] defined (average) q as the ratio of the market value of a firm to the replacement cost of its capital and then argued that investment is an increasing function of q. A more rigorous foundation for the g theory of investment is based on the adjustment cost 1 iterature developed by Eisner and Strotz [1963], Lucas [1967], Gould [1968], and Treadway [1969]. It has been shown by Mussa [1977], Abel [1979, $1982]$ and Yoshikawa [1980] that in the presence of convex adjustment costs, investment is an increasing function of the shadow price of installed capital (marginal q). More recently, Mayashi [1982] has shown that under certain 1 inear honogeneity and price-taking assuptions, the shadow price of installed capital is equal to the maxket value of the firm divided by the replacement cost of its capital; that is, marginal q equals average q. In situations in which marginal a and ayerage are not equal, it is narginal q which is rel evant for investoent.

The literature cited above has developed the q theory in a deterministic framorl with adjustront costs. Stochastic models of investment in the
preserce of adjusthent costs have been develoner by bnoas and Prescott [1971], Tartman [1972], Dindyck [1902], and Abel [1993]. Using a discrete-time stochasticmodel, Fartman showed that for a competitive fim with constant returns to scale, increased uncertainty about future ontput prices or factor prices leads to increased current investment. "ore recently, Pindyck [1082] and Abel [1983] have analyzed investment behavior in continuous time models in which the price of output evolves according to an Ito process, and Abel demonstrated that "artman's results carry over to continuous time. This paper extends Abel [1983] by incorporating several variable factors of production, with stochastic prices, and analyzes the effects of increased uncertainty. By extending the model to include several stochastic prices, we are led to examine different types of increases in uncertainty. A payoff to this extension is that we find that different types of (mean-preserving) increases in uncertainty can have qual itatively different effects on the rate of investment.

In analyzing the effects of increased uncertainty about prices, we examine two types of increase in uncertainty: (1) a mean-preserving spread, and (2) an increase in scale. Although an increase in scale is a mean-preserving spread for a scalar random variable, we show that for a multivariate random variable, an increase in scale is not, in general, a mean-preserving spread. More importantly, we show that these two types of increase in uncertainty about prices have different effects on investment. As shown by yartman [1972], a mean-preserving spread tends to increase investment; however, an increase in the scale of the random component of a single price will raise, lower, or not affect the rate of investment depending on whether the covariance of this price with a weighted average of all prices is positive, negative, or zero.

Section 2 develops the model of the competitivefim and discusses the stochastic processes for the output price and the factor prices. The strategy of the paper is to restrict the specification of technology enough (constant elasticity) so that we can obtain explicit solutions for investment, marginal q and the market value of the fim. Ve present these solutions and provide an economic interpretation for them in Section 3. In Section 4 we define and analyze the effects of two alternative types of increase in uncertainty. The effects of increased uncertainty on the required rate of return are discussed in Section 5. Concluding remarks are presented in Section 6 .

2. The Model of the Firm

Consider a competitive fim with a neoclassical production function $F\left(X_{1 t}, \ldots X_{n t}, K_{t}\right)$ where $X_{i t}, i=1, \ldots, n$, is the amount of the ith variable factor used at time t and K_{t} is the amount of capital used at time t. Let p_{t} denote the price of output at time t and let $w_{i t}$ i $=1, \ldots, n$, denote the price of the i th variable factor at time t. The firn can accumalate capital by undertaking gross investment I_{t} at a cost $w_{n+1, t} C\left(I_{t}\right)$, where $w_{n+1, t}$ is a multiplicative shock to the adjustment cost function. Following the adjustment cost 1 iterature, we assume that $C\left(I_{t}\right)$ is an increasing convex function $\left(C^{\prime}>0, C^{\prime \prime}>0\right)$ and that $C(0)=0$. The accumulation of capital is given by

$$
\begin{equation*}
d Y_{t}=\left(I_{t}-\delta E_{t}\right) d t \tag{1}
\end{equation*}
$$

where δ is the constant proportional rate of depreciation.

The price of output, the prices of the variable factoxs, and the multiplicative adjustment cost shock are generated by Ito processes. To economize on notation, we let ${ }^{w} 0$, t denote the price of output p_{t} and specify the evolu-
tion of $w_{i t}, i=0, \ldots, n+1$ as

$$
\begin{equation*}
\frac{w_{i t}}{{ }^{w}}=\pi_{i t} d t+\sigma_{i} d{ }_{i} \quad i=0,1,2, \ldots, n+1 \tag{2}
\end{equation*}
$$

where $d 7$ are inener processes with mean zero and unit variance such that

$$
\begin{equation*}
E\left(d Z_{i} d Z_{j}\right)=\rho_{i j} d t \tag{3}
\end{equation*}
$$

The correlation coefficients $\rho_{i j}$ satisfy $-1 \leq \rho_{i j} \leq 1$ and $\rho_{i i}=1$.

There are several properties of these stochastic processes for ${ }^{\text {w }}$ it which
 and the instantaneous variance of $w_{i t}$ is $w_{i t}^{2} \sigma_{i}^{2}$. The instantaneous covariance
 future value of w_{i}, say $w_{i s}, s>t$, is log-normally distributed with mean $w_{i t} e^{\pi_{i}(s-t)}$ and variance $\left[e^{\sigma_{i}^{2}(s-t)}-1\right] e^{2 \pi \pi_{i}(s-t)}{ }_{w_{i t}^{2}} 0^{3}$ Thus,

$$
\begin{equation*}
E_{t}\left(w_{i s}\right)=w_{i t} e^{\pi_{i}(s-t)} \quad s \geq t \tag{4}
\end{equation*}
$$

where $E_{t}()$ denotes the expectation conditional on information at time t. Observe in (4) that the conditional expected value of ${ }^{w}$ is $s \geq t$, is independent of the variance of the process generating ${ }_{i}{ }^{*}$

The value of a risk-nentral firm at time t is the maximized expected present value of net cash flow fron time t onward. Assuming that the discount rate r is constant, the value of the $f i m$ can be expressed as a time invariant function of $w_{i t}, i=0, \ldots, n+1$, and the capital stock K_{t}.
(5)

$$
\begin{gathered}
V\left(w_{0, t} \ldots \cdots, w_{n+1, t}, K_{t}\right)= \\
\max F_{t} \int_{t}^{\infty}\left[w_{0 s} F\left(X_{1 s}, \ldots, X_{n s}, K_{s}\right)-\sum_{i=1}^{n} w_{i s} X_{i s}-w_{n+1, s} C\left(I_{s}\right)\right] e^{-r(s-t)} d s
\end{gathered}
$$

where the maximization in (5) is over the decision variables I and X_{1}. . . . X_{n} and is subject to the constraints in (1) and (2). Optimality requires that

Equation (6) has a simple economic interpretation. The term in square brackets on the right hand side of (6) is the net oash flow over a small interval dt of time and the term $d y$ is the change in the value of the fim. Fquation (6) simply states that the expected rate of return on the fimm (net cash flow plus capital gain divided by the valve of the fimp must be equal to the discount rater.

To calculate dV we use Ito's Lema to obtain
(7) $\quad d V=\sum_{i=0}^{n+1} \frac{\partial V}{\partial w} d w_{i t}+\frac{\partial V}{\partial F_{t}} d F_{t}+\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} \frac{\partial^{2} V}{\partial w_{i t} \partial w_{j t}}(d w i t)\left(d w t_{j}\right)$

$$
+\sum_{i=0}^{n+1} \frac{\partial^{2} V}{\partial w_{i t}^{\partial Y_{t}}}\left(d w_{i t}\right)\left(d F_{t}\right)+\frac{1}{2} \frac{\partial^{2} V}{\partial Z_{t} \partial K_{t}}\left(\partial V_{t}\right)^{2}
$$

The expected valne of $d y$ is easily calculated using (1) and (2) and the fact that $F_{t}\left(d Z_{i}\right)=0=d t^{2}=F_{t}(d t)\left(d{ }_{i}\right)$ to obtain
(8) $F_{t}(d V)=$

$$
\begin{aligned}
& \left.+\sum_{i=0}^{n+1} V_{i} \pi_{i}{ }^{w}{ }_{i t}+\left(I_{t}-\delta_{t}\right) V_{V}+\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} V_{i j}{ }^{\rho}{ }_{i, j} \sigma_{i} \sigma_{j}{ }^{w}{ }_{i t}{ }^{w}{ }_{j t}\right\}
\end{aligned}
$$

The nonl inear partial differential equation in (9) is the ?ellman equation. In general, the gellman equation cannot be solved explicitly. The strategy in this paper is to restrict the specification of technology enough to obtain a closed form solution to the ?ellman equation.

2.1 Constant E1asticity Technology

In order to make the Bellman equation easily solvable we assume that the production function is Cobb-Douglas and that the adjustment cost function C(I_{t}) has a constant elasticity. Specifically

$$
\begin{equation*}
F\left(X_{1}, \ldots, X_{n}, K\right)=X_{1}^{a_{1}} X_{2}^{a_{2}} \ldots X_{n}^{a_{n}}{ }^{q} q \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{i}>0 \quad i=1, \ldots, n \quad \text { and } \quad q=1-\sum_{i=1}^{n} \alpha_{i}>0 \tag{10a}
\end{equation*}
$$

and

$$
\begin{equation*}
C\left(I_{t}\right)=I_{t}^{\beta} \quad, \beta>1 \tag{11}
\end{equation*}
$$

Given this specification of technology we can now maximize the right hand side of (9) with respect to ${ }_{1 t}$, . . . $X_{n t}$. Since $X_{i t}, i=1, \ldots, n$, affect only current output and current variab: cost, they are chosen to anximize current cash flow. It is straightforward to show that with the Cobb-houglas
production function in (10),
(12)
(12a) where $\quad a_{0}=-1, \quad \gamma \equiv \emptyset\left[\prod_{j=1}^{n} a_{j}^{a}\right]^{\frac{1}{q}}$

The optimal rate of investment is found by differentiating (9) with respect to I_{t} and setting the derivative equal to zero. Using the fact that $C^{\prime}\left(I_{t}\right)=\beta I_{t}^{\beta-1}$, the optimal rate of investment satisfies $W_{n+1, t^{\beta I}}^{\beta-1}=V_{V}$ from which it follows that
(13)

$$
I_{t}=\left[V_{R} /\left(w_{n+1, t} \beta\right)\right]^{\frac{1}{\beta-1}}
$$

and

$$
\begin{equation*}
{ }^{-w+1, t} C\left(I_{t}\right)+I_{t} V_{Y}=(\beta-1) w_{n+1, t} C\left(I_{t}\right) \tag{14}
\end{equation*}
$$

Substituting (12) and (14) into (9), letting $p_{t} F_{T}$ denote the marginal revenue product of capital, observing that $C\left(I_{t}\right)=I_{t}^{\beta}$, and using (13), we obtain

$$
\begin{align*}
r V=p_{t} F_{\mathbb{F}} \mathbb{K}_{t} & +(\beta-1) w_{n+1, t} C\left(I_{t}\right)-\delta r_{t} V^{W} \tag{15}\\
& +\sum_{i=0}^{n+1} V_{i} \pi_{i}{ }^{w} i t+\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} V_{i j} \rho_{i j} \sigma_{i} \sigma_{j} w_{i t}{ }^{W} j t
\end{align*}
$$

(15a)

$$
\begin{array}{r}
\text { where } \quad p_{t} \sum_{r}=\gamma \prod_{j=0}^{\frac{n}{1}} \frac{-a}{q} w_{t} \\
C\left(I_{t}\right)=\left[V_{r} /\left(w_{n+1}, t^{\beta}\right)\right]^{\frac{\beta}{\beta-1}} \tag{15b}
\end{array}
$$

The solution to the nonl inear partial differential equation in (15) is derived
in Appendix A and is discussed in the next section.

3. Investment, G, and the Valuation of the Eirm

In this section we present and analyze explicit solutions for the value of the firm, marginal q and the optiral rate of investment. As shown in the Appendix, the value of the firm can be virten as

$$
\begin{equation*}
V\left(w_{0 t}, \cdot \cdot, w_{n+1, t}, K_{t}\right)=\mu_{1} p_{t} F_{z_{t}} E_{t}+\mu_{2}(\beta-1) w_{n+1, t} C\left(I_{t}\right) \tag{16a}
\end{equation*}
$$

or (equival ently)
(16b)

$$
\begin{aligned}
& \text { where } \alpha_{n+1} \equiv \phi / \beta
\end{aligned}
$$

where
(16c)

$$
\begin{align*}
& \mu_{1}=\left[r+\delta+\sum_{i=0}^{n} \frac{c_{i}}{q}\left(\pi_{i}-\frac{1}{2} \sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{c_{i}}{q} \frac{\alpha_{j}}{q} \rho_{i j} \sigma_{i} \sigma_{j}\right]^{-1} \\
& \mu_{2}=\left[r+\sum_{i=0}^{n+1} \frac{\beta a_{i}}{(\beta-1) q}\left(\pi_{i}-\frac{1}{2} \sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1}\left[\frac{\beta a_{i}}{(\beta-1) q}\right]\left[\frac{\beta \alpha_{j}}{(\beta-1) q}\right] \rho_{i j} \sigma_{i} \sigma_{j}\right]^{-1} \tag{16d}
\end{align*}
$$

Fquations (16a) and (16b) are equivalent to each other; equations (16c) and (16d) give the values of the constants μ_{1} and μ_{2}. Equation (16b) expresses
 T. Fquation (16a) expresses the value of the fim in terms of more easily interpretable economic variables. Fxamination of the equations in (16) 1eads
to several results.

Gesult 1: The valve of the finn at tine t is a incarty homogeneous function of $w_{0, t}, w_{1, t}, \ldots, w_{n+1, t}$

To derive this result observe thet the sumi of the exponents of ${ }^{\prime} j t$ in the first term in $(16 b)$ is $\sum_{j=0}^{n} \frac{-a}{q}$ and the sum of the exponents of $j t$ in the second term in (16b) is $\frac{p}{\rho-1} \sum_{j=0}^{n+1} \frac{-a}{\phi}$. Pecalling that $\alpha_{0}=-1, a_{n+1}=q / \beta$ and $q=1-\sum_{j=1}^{n} a_{j}$, it is clear that each of the sums of coefficients is equal to one. Therefore, ve obtain Result 1 .

Pesult 2: ${ }^{5}$ The value of the fim at time t is a 1 inear function of f_{t}.

The slope of the value function with respect to ${ }^{Y} t^{\prime}$ i.e., $V_{V,}$, is equal to
 present value of the marginal revenue products of capital. Since the firm is a price-taker and the production function is 1 inearly homogeneous, the marginal revenne product of capital is independent of the 1 evel of the capital stock. Hence, the expected present value of marginal revenue products is

In order to show that V_{z} is equal to the expected present value of the marginal revenue products of capital, we first present the following lema which pernits easy calculation of the expected present value of the marginal products of canital.

 value of $\mathrm{N} s \mathrm{~s} \geq \mathrm{t}$ discounted at rate λ is

$$
\begin{equation*}
E_{t} \int_{t}^{\infty} e^{-\lambda(s-t)} d s=\frac{e^{-1} \sum_{i=1}^{n+1} c_{i}\left(\pi{ }_{i}-\frac{1}{2} \sigma_{i}^{2}\right)-\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i} c_{j}{ }^{0}{ }_{i j} \sigma_{i} \sigma_{j}}{\lambda+\sum_{i=0}} \tag{17a}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{C_{t}}{\lambda+\frac{1}{d t}\left[E_{t}\left(d \ln G_{t}\right)-\frac{1}{2} \operatorname{var}\left(d \ln G_{t}\right)\right]} \tag{17b}
\end{equation*}
$$

Proof. See Appendix ?.

If we let the discount rate λ be $r+\delta$ and 1 et G be the marginal revenue
 and $c_{n+1}=0$, then it follows immediately from (16c) and Lemma 1 that $\mu_{1} p_{t} F_{t}$ is the expected present value of marginal revenue productsaccruing to capital from time t onward. The discount factor λ reflects both the rate of interest r as well as physical depreciation at rate δ. Thus $H_{1} p_{t} F_{t}$ is the expected present value of marginal revenue products accruing to the undepreciated portion of a unit of capital which is in place at time t.

It is convenient to define q_{t} as the marginal valuation of capital divided by ${ }^{w}+1, t$ (the shock to the adjustment cost function). Therefore, from (13) we obtain
(18b)

$$
\begin{gather*}
I_{t}=n^{\frac{1}{1-\beta}} \frac{1}{q_{t}^{1-1}} \tag{18a}\\
\text { where } \quad q_{t}=V_{r, t} / w_{n+1, t}
\end{gather*}
$$

Inspection of (18) leads to

Result 3: The optimal rate of investment is an increasing function of q with elasticity $\frac{1}{\beta-1}$ where ρ is the (constant) elasticity of C(T) with respect to I. Also, g_{t} and I_{t} are homogeneous of degree $z e r o$ in $w_{0, t}, \cdots, w_{n+1, t^{*}}$

The relation between the valuation of the fim and the rate of investment can be interpreted with the use of Figure 1.

The optimal rate of investment is chosen to equate the marginal valuation of capital. $V_{K_{t}}$, with the marginal adjustment cost ${ }_{n+1}, \mathrm{C}^{\prime}\left(I_{t}\right)$, as showninfigure 1. Thus the optimal rate of investment is related to the siope (with respect to X_{t}) of the valuation of the fim. The constant term in the valuation equation is related to the shaced area in Figure 1. This shaded area is equal to $T_{t} V_{t}-W_{n+1, t} C\left(T_{t}\right)$, which is the expected present value of rentals accruing to infra-marginal units of investment at date t it is the amount by which the valuation of current investment, $\mathcal{I}_{t} y_{y}$, exceeds the cost of current investment $w_{n+1, t} C\left(I_{t}\right)$. According to (1A) this present valne of infra-
merginal rents is equal to $(0-1) w_{n+1, t} C(I)$. Therefore, the constant term in the valuation equation (16a) is equal to the area of the shaded region in Figure 1 rultiplied by μ_{2}. Since $(\beta-1) w_{n+1, t} C\left(I_{t}\right)$ is equal to
 term in the valuation equation is equal to the expected present value of infra-marginal rents to current and future investment (To apply Lemma 1 , 1et $\lambda=r$ and $c_{i}=\frac{-\beta \alpha_{i}}{(\beta-1) \sigma}$ for $\left.i=0,1, \ldots, n+1\right)$.

To sumarize, the value of the fim at time t is a 1 inear function of K_{t}. The 1 inear term in ${ }_{t}$ represents the expected present value of marginal revenue products accruing to capital currently in place at time t. The constant term represents the expected present value of rents to infra-marginal units of current and future investment.

4. The Effects of Increasing Uncertainty

In this section we examine the effects of increased uncertainty on the optimal rate of investment and on the market value of the $f i m$. In a discrete-time mode1, Hartman [1972] has shown that if $w_{i t}$ i=0,... $n+1$, undergoes a mean preserving spread, then there is an increase in the rate of investment. In a continuous time model with a single variable factor of prom duction, Abel [1983] has shown that Hartman's result continues to hold.

In this section we extend the results of Abel [1983] to a model with several ($n+2$) random variables. The extension is non-trivial as explained below. Ve consider two types of increases in uncertainty: (1) a mean preserving spread (MPS); and (2) an increase in the scale of one of the random
variables (TS). In the case of a single ravdom variable, an increase in scale is a mear preserying spread, However, with several random variables, ar increase in the scale of one variable is a mean preserving spread if and only if that variable is uncorrelated with all other randon variables; if the variable whose scale is increased has a nonzero covariance with any other random variable, then an increase in scale is not a mean preserving spread.

The effect s of an lop increase in uncertainty differ from the effects of an IS increase in uncertainty. We will show that, consistent with rartman's findings, an P increase in uncertainty will increase investment. However, the effects on investment of an IS increase in the uncertainty associated with $w_{j, t}$ depends on the covariance of $\ln w_{j, t} w i t h \sum_{i=0}^{n} \frac{C_{i}}{q}\left(\ln \left(w_{i} / w_{j}\right)\right)$. De pending on whether this covariance is positive, Degative, or zero, an is increase in uncertainty will increase, decrease or leave unchanged the rate of investment.

We will examine the effects on investment of increasing uncertainty holding constant the current values of $w_{i, t}$. Since investment is an increasing function of q_{t}, we can focus on the effects of uncertainty on q_{t}. For given valnes of $w_{i, t} i=0, \ldots, n$, the effects on q_{t} and investment can be determined simply by determining the effects on μ_{1} : the effects on q_{t} and investment are in the same direction as the effects on H_{1}.

We will first corpare optimal inyestment meer certainty and under uncertainty. In all cases we will examine changes in uncertainty which leave $F_{i}\left(w_{i s}\right), s \geq t$, uncharged. Observe from (G) that $T_{t}\left(w_{i s}\right)$ is independent of all σ_{j} and all $\rho_{i x}$. Therefore, the certainty case relevant for comparison to any uncertainty case is obtainer simply by setting all o equal to zero. From (16c) it follows that H_{1} (anemence g_{t} and T_{t}) is greater under uncertainty
that uncer certainty if and only if

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{r_{i}}{q} \sigma_{i}^{2}+\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{\sigma_{i}}{q} \frac{a_{i}}{q} o_{i j} \sigma_{i} \sigma_{j}>0 \tag{19}
\end{equation*}
$$

We can prove that (19) holds by using

Lemma 2. Suppose $x_{i}>0$ for $i=1,2, \ldots, m$ and that $\sum_{i=0}^{m} x_{i}=-1$. Define $S\left(x_{0}, \cdots, x_{m}\right) \equiv \sum_{i=0}^{m} x_{i} \sigma_{i}^{2}+\sum_{i=0}^{m} \sum_{j=0}^{m} x_{i} x_{j} \rho_{i j}{ }^{\sigma}{ }_{i} \sigma_{j} \quad$ where $\rho_{i j}=\operatorname{cov}\left(d Z_{i}, d Z_{j}\right)$. Then $S\left(x_{0}, \ldots, x_{m}\right) \geq 0$ with strict inequality unless $\operatorname{Var}\left(\sigma_{i} d_{i}-\sigma_{0} d Z_{0}\right)=0$ for all i.

Proof. See Appendix C.

If we let $x_{i}=\frac{\alpha_{i}}{\phi}$ and $m=n$, then (19) follows immediately from Lenma 2 (provided that there is not perfect correlation among all $d Z{ }_{i}$). Hence, as shown by Martman [1972] and Abe1 [1983] the optimal rate of investment is higher under uncertainty than under certainty.

4.1 Mean Preserving Spread

We follow Tartman's extension to several random variables of the Rothschild-Stiglitz [1970] definition of a mean preserving spread. Specifically, if x is a random vector and if u is a random vector (with the same dimension as x) such that $E(u \mid x)=0$, then the distribution of the random vector $y=x+u$ is a mean preserving spread of the distribution of x. Observe that the covariance matrix of y exceeds the covariance matrix of x by a nonnegative definite matrix (we all ow some el enents of u to be nonstochastic).

We now consider the effects of a mean preserving spread on the distribution of the W iener process $d Z$. In particular, we add an uncorrelated process to the Ito process for $\frac{d w i t}{w_{i t}}$ to obtain

$$
\begin{equation*}
\frac{d w_{i, t}}{w_{i, t}}=\pi_{i} d t+\sigma_{i} d V_{i}+\sigma_{i}^{* d Z} Z_{i}^{*} \quad i=0,1, \ldots, n+1 \tag{20}
\end{equation*}
$$

where $E_{t}\left(d Z_{i}\right)\left(d Z_{j} *\right)=0$ and $E_{t}\left(d Z_{i}{ }^{*}\right)\left(d Z_{j} *\right)=\rho_{i j} * d t$. The expected growth rate of ${ }^{w}{ }_{i t}, \frac{1}{d t} E_{t}\left(\frac{d w}{w_{i t}}\right)$, is equal to $\bar{\pi}_{i}$ as before. mowever, the instantane ous variance of $w i t$ is now $w_{i t}^{2}\left(\sigma_{i}^{2}+\sigma_{i}{ }^{2}\right)$ and instantaneous covariance of wit and ${ }^{W}{ }_{j t}$ is now ${ }^{w} t^{W}{ }_{j t}\left(\rho_{i j} \sigma_{i} \sigma_{j}+\rho_{i j}{ }^{*} \sigma_{i}{ }^{*} \sigma_{j}{ }^{*}\right)$. The effect of performing this MPS on $d Z_{i}$ is to reduce μ_{1}^{-1} by $A^{*}=\frac{1}{2} \sum_{i=0}^{n} \frac{a_{i}}{q} \sigma_{i} *^{2}+\frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{a_{i}}{q} \frac{c_{j}}{q} \rho_{i j} * \sigma_{i} * \sigma_{j} *$. It forlow immediately from Lemma 2 that $A^{*}>0$ and hence that a prs increases in uncertainty leads to an increase in γ_{1}, q_{t} and investment.

4.2 Increase in Scale

Consider a scalar random variable Z with mean \bar{Z}. We will say that the scalar random variable y represents an increase in scalefor the random variable Z, if $y-\bar{Z}=(1+b)(Z-\bar{Z})$ for sone constant $b>0$. Thus from (2) an Is increase in uncertainty of $\frac{d w}{w_{i t}}$ corresponds to an increase in σ_{i} but has no effect on the distribution of d^{\prime}. Thus, in a multivariate context, an IS

 has $\rho_{i j}$ as the $(i+1, j+1)$ element. The effect on the covariance matria of $\left(\frac{d y}{w}\right)$ is to multiply row (i+1) and col (i+1) by some constant greater than 1 .

This effect on the covariance matrix is to be contrasted (see Lemma below) with the effect of a PPS increase in uncertainty which adds a positive semidefinite matrix to the covariance matrix of $\frac{d w}{w}$.

We examine the effects of an $I S$ increase in uncertainty by differentiating μ_{1} with respect to σ_{i} holding constant all $\rho_{i j}$ and $\sigma_{j}, j \neq i$. Differentiating (16c) with respect to σ_{i} we obtain

$$
\begin{equation*}
\frac{\partial \mu_{1}}{\partial \sigma_{i}}=\mu_{1}^{2} \frac{\alpha_{i}}{\phi_{\sigma}}\left(\sigma_{i}^{2}+\sum_{j=0}^{n} \frac{\alpha_{j}}{q^{\prime}} \rho_{i j} \sigma_{i} \sigma_{j}\right) \tag{21}
\end{equation*}
$$

Pecalling that $\sum_{j=0}^{n} \frac{a j}{q}=-1$, equation (21) may be rewritten as

$$
\begin{equation*}
\frac{\partial \mu_{1}}{\partial \sigma_{i}}=\mu_{1}^{2} \frac{\alpha_{i}}{\phi_{\sigma_{i}}}\left(\sum_{j=0}^{n} \frac{\alpha_{j}}{\alpha^{\prime}}\left(\rho_{i j} \sigma_{i} \sigma_{j}-\sigma_{i}^{2}\right)\right) \tag{22}
\end{equation*}
$$

Now observe that $\operatorname{Cov}\left(\ln \left(w_{j} / w_{i}\right), \ln w_{i}\right)=\rho_{i j} \sigma_{i} \sigma_{j}-\sigma_{i}^{2}$ so that (22) can be expressed as

$$
\begin{equation*}
\frac{\partial \mu_{1}}{\partial \sigma_{i}}=\frac{\alpha_{i} \mu_{1}^{2}}{\phi_{\sigma_{i}}} \operatorname{Cov}\left[\sum_{j=0}^{n} \frac{\alpha_{i}}{\alpha} \ln \left(w_{j} / w_{i}\right), \ln w_{i}\right] \tag{23}
\end{equation*}
$$

Fron equation (23), $\frac{\partial \mu_{1}}{\partial \sigma_{i}}$ is positive, negative, or zero depending on whether the covariance of $\sum_{j=0}^{n} \frac{\alpha_{i}}{\phi} \ln \left(w_{j} / w_{i}\right)$ and $\ln w_{i}$ is positive, negative, or zero. Thus an $I S$ increase in uncertainty will increase, decrease or have no effect on the optimal rate of investment depending on whether $\operatorname{Cov}\left[\sum_{j=0}^{n} \frac{a_{i}}{q} \ln \left(w_{j} / w_{i}\right), \ln w_{i}\right]$ is positive, negative or zero. Observe from (21) that in the special case in which $\rho_{i j}=0, i \neq j, \frac{\partial \mu_{1}}{\partial \sigma_{i}}=\mu_{1}^{2} \sigma_{i} \frac{\alpha_{i}}{\phi}\left(1+\frac{\alpha_{i}}{\phi}\right)>0$ so that an IS increase on uncertainty leads to an increase in the rate of investment.

At first glance it may appear inconsistent that the effect on investment of ar mps increase in uncertainty is unambiguously positive, whereas the effect on investment of an $T S$ increase in uncertainty can be positive, negative, or zero. These two fincings are reconciled by the fact that, in gereral, an is increase in uncertainty is not an "PS increase in uncertainty. Only if $d Z_{i}$ is uncorrelated with all $d \gamma_{j} j \neq i$, is it the case that an IS increase in uncertainty of $\frac{d w i t}{w_{\text {it }}}$ is an MPS increase in uncertainty.

To show that an IS increase in uncertainty of $d Z$ is not, in general, a MIS, we will use the following lema:

Lemma 3. Let $\lambda_{1}, \ldots, \lambda_{\text {n }}$ be the eigenvalues of

$$
A=\left[\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{m} \\
a_{2} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
a_{m} & 0 & \cdot & 0
\end{array}\right]
$$

where $a_{1}>0$ and $m \geq 2$. Then $\lambda_{1} \lambda_{2}=-\sum_{i=2}^{m} a_{i}^{2} \leq 0, \lambda_{1}+\lambda_{2}=a_{1}>0$ and, if $m \geq 3, \lambda_{3}=\cdots=\lambda_{m}=0$.

Proof. See Appendiz .

Using the fact that all eigenvalues of a symetric nonnegative definite matrix are non-negative we obtain the following

Corollary. The matrix A in Loma 3 is nonnerative definite if and only if

$$
a_{2}=\cdots=a_{12}=0
$$

Tring the corollary above we can now prove the following
 uncertainty unless d_{i} has zero correlation with all d $^{\prime}, j \neq i$.

Proof. "ithout loss of generality, we examine an is increase in uncertainty of $\frac{d W_{0, t}}{W_{O}, t}$ which increases the covariancematrix fron $\Sigma \equiv\left(\rho_{i j} \sigma_{i} \sigma_{j}\right)$ to $\Sigma+D$ where

$$
\mathrm{D}=\left[\begin{array}{cccc}
\mathrm{b}^{2} \sigma_{0}^{2} & b \rho_{01} \sigma_{0} \sigma_{1} & \cdots & \cdot \\
b \rho_{0 n} \sigma_{0} \sigma_{n} \\
b \rho_{01} \sigma_{0} \sigma_{1} & 0 & \cdots & 0 \\
\cdot & \cdots & & \cdot \\
\cdot & \cdot & & \cdot \\
b \rho_{0 n} \sigma_{0} \sigma_{n} & 0 & \cdots & \cdot \\
\hline
\end{array}\right.
$$

Fron the Corollary to Lemma 3 , D is nonnegative definite if and only if $\rho_{0 i}=0$ for $i=1, \ldots, n$. Since an MPS increase in uncertainty causes the covariance matrix to increase by a nonnegative definite matriz, the IS increase in uncertainty cannot be a MDS if $\rho_{0 i} \neq 0$ for any $i \geq 1$. On the other hand, if $\rho_{0 i}=0, i=1, \ldots, n$, then the $I S$ increase in uncertainty is equivalent to the following MPS: In (20) let $\sigma_{0} *=b \sigma_{0}$ and let $\sigma_{i}^{*}=0, i=1, \ldots, n . \quad$ q.e.d.

In this section we have examined two different concepts of increasing uncertainty in a multivariate context: an Mrs increase in meertainty and an IS increase in uncertainty. We have shown that an mps increase in uncertainty unambiguously raises the rate of investment whereas an IS increase in
uncertainty will raise, lower or leave unchanged the rate of investment depending on whether a certain covariance is positive, negative, or zero.

As a final comment on the effects of uncertainty, it should be emphasized that it is uncertainty of relative prices which has an effect on investment. If all $w_{i t}$ are perfectly (positively) correlated and have the same proportional variance, then all relative prices $w_{i t} / w_{j t}$ are non-stachastic. In this case, the rate of investment under uncertainty is the same as under certainty.

5. The Reguired Rate of Return ${ }^{6}$

Up to this point our analysis of the fin's behavior has been conducted under the assunption of risk-neutrality. In particular, we have assumed that the required rate of return on thefirm's equity, r, remains unchanged when the uncertainty of output price and factor prices is changed. It should be noted that risk-neutrality per se is not required for the invariance of r with respect to changes in uncertainty. lore generally, in the traditional capital asset pricing model, the required rate of return on a fim is independent of the variance of its own prices (output prices and factor prices) if the rate of return on the fim is uncorrelated with the return on the market portfolio. In the context of more recent asset pricing models of Lucas (1978) and Rreeden (1979), the required rate of return on a firm will be independent of the variances of prices if the rate of return on the fim is uncorrelated with the marginal utility of consumption. Thus, risk-nentrality per se is not required for the results in this paner to hold.

If we drop the assumption that the returr on the fim is morrelated with the market portfolio (or with the marginal utility of consunption), then

Abstract

the required rate of return on the f im is an increasing function of the covariance of the firm's return with the return on the market portfolio. If the increase in price uncertainty causes this covariance to incrase, then the required rate of return also increases which tends to decrease both quand investment. Alternatively, if the increase in price uncertainty leads to a decrease in the relevant covariance, then the required rate of return decreases so that q_{t} and investment each tend to increase.

It is clear that to reach any conclusions about the effect of uncertainty on the required rate of return we would have to impose some structure on the covariance of the rate of return on the fim and the rate of return on the market portfolio (or the marginal utility of consumption). The results in earlier sections can be used to calculate the random component of the rate of return on the firm. However, without developing a complete general equilibrium dynamic stochasticmodel, we have tremendous latitude in specifying a stochastic process for the rate of return on the market portfolio and thus could "derive" results which show the required rate of return increasing or decreasing in response to an increase in uncertainty.

The analysis of this paper is explicitly partial equilibriun in nature. We have argued above that to reach any conclusions about the effect of increased uncertainty on the required rate of return (without, in effect, being free to assume the conclusion by strategically specifying the stochastic process for the rate of return on themarket portfolio) would require a general equilibrim model. Of course, in a general equilibrium framework, the analysis of uncertainty should focus not on the effects of price uncertainty but rather on the effects of uncertainty about preferences and technology. Such analysis is beyond the scope of this paper.

6. Concluding Pemarks

Abstract

Te bave analyzed the optimal production and investment behavior of a competitive fing facing random prices for output and factors of production. By restricting the production function to be Cobb-rouglas and the adjustment technology to have constant elasticity, we were able to obtain closed-form solutions for investment, narginal q and the market value of the fim. In particular, the market value of the fim is a linear function of the firm's capital stock; investment is an increasing function of the slope of this value function.

Using the closed-form solution for the optimal rate of investment, we examined the effects on investment of two alternative types of increase in uncertainty about the random vector of prices. The effect of a meanpreserving spread is to increase investment. However, the effect of an increase in the scale of the random component of a single price is to increase, decrease, or leave unchanged the rate of investment depending on whether the covariance of this price with a (geonetric) weighted average of all prices is positive, negative, or zerc.


```
                                    Tarvard Universi ty
                                    and
National Pureav of Ficonomic Pesearch
```

1. T thent Frost "ernet, Finmey Fischer, "ofort "oneld, Peter "errill and
 I al so thant the participants in morbshons at Colwoia Thiversity, Oarvart Iniver sity and ". T. and two anomyous referees for their holpful comerts. Desearch suport from the Pepartment of parey and the Mational Science Fompation is gratefuly ackowledged.
2. For good discussions of stochastic calculus set in an conomic context, the reader is referred to roct, Thow [1981], Fischer [1975], and ferton [1971].
3. The solution to the stochastic differential equation in (2) is

$$
\begin{equation*}
\left.w_{i s}=W_{i t} \exp r\left(\pi_{i}-\frac{1}{2} \sigma_{i}^{2}\right)(s-t)+\sigma_{i} \int_{t}^{s} \prod_{i}\right] \tag{*}
\end{equation*}
$$

(See, for example, Fischer [197.5], ecuation (13A)). The solution may be rewritter as
(**)

$$
\ln w_{i s}=\ln w_{i t}+\left(\pi_{i}-\frac{1}{\partial \sigma_{i}^{2}}\right)(s-t)+\sigma_{i} \int_{t}^{s} d Z_{i}
$$

frow which it follows that 1 n is is nomally distributed with mean $\ln w_{i t}+\left(\pi_{i}-\frac{1}{2} \sigma_{i}^{2}\right)(s-t)$ and variance $\sigma_{i}^{2}(s-t)$ 。 Hising the facts that if $\ln x$ is normally distributed with mean H and variance σ^{2}, then $E(x)=\exp \left[\mu+\frac{1}{2} \sigma^{2}\right]$ and $\operatorname{Var}(x)=\left[\exp \left(\sigma^{2}\right)-1\right] \cdot\left[\operatorname{cop}\left(2 p+\sigma^{2}\right)\right]$, we find

 $F()$ is the Cobbonotas prometion function in (10) yietas

$$
\begin{equation*}
\frac{w_{i}{ }^{X}}{a_{i}}=p^{F} \quad i=1, \ldots, n \tag{4.1}
\end{equation*}
$$

which reflects the fact that a_{i} is the (constant) share of variable factor i. Using (4.1) for X_{i} and y_{j} yields

$$
\begin{equation*}
X_{j}=\frac{w_{i} X_{i}}{a_{i}} \frac{a_{j}}{w_{j}} \tag{4.2}
\end{equation*}
$$

Substituting (4, 2) into the production function for $j=1, \ldots, n$ yields

$$
\begin{equation*}
F=\left(\frac{w_{i} X_{i}}{\alpha_{i}}\right)^{\frac{\sum=1}{n} \alpha^{n}}\left[\prod_{j=1}^{n}\left(\alpha_{j} / w_{j}\right)^{\alpha_{j}}\right]_{K^{q}}^{q} \tag{4.3}
\end{equation*}
$$

Combining (4,I) and (4, 3) and recalling that $q=1-\sum_{j=1}^{n} c_{j} y i e l d s$

$$
\begin{equation*}
\left(\frac{w_{i} X_{i}}{\alpha_{i}}\right)^{q}=p\left[\prod_{j=1}^{n}\left(\alpha_{j} / w_{j}\right)^{\alpha}{ }^{\underline{n}}\right] K^{q} \tag{4.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
w_{i} X_{i}=\alpha_{i} p^{1 / \phi}\left[\prod_{j=1}^{n}\left(\alpha_{j} / w_{j}\right)^{\alpha_{j}} j^{1 / \phi} \underset{K}{ }\right. \tag{4.5}
\end{equation*}
$$

From (4.1) the maximized value of $p F-\sum_{i=1}^{n} w_{i} \dot{X}_{i}$ is equal to qup which n using (4.1) and (4.5) is equal to

$$
\begin{equation*}
q_{p}^{1 / \phi}\left[\prod_{j=1}^{n}\left(\alpha_{j} / w_{j}\right)^{\alpha_{j}}\right]^{1 / \phi} \tag{4.6}
\end{equation*}
$$

Equation (4.6) is equivalent to equation (12) in the text.
5. Mussa [1974] showed that for a linearly homogeneous production function, the value of the firm under certainty is linear in y_{t}.
6. I thank an anonymous referee for suggesting that I consider the effects of uncertainty on the required rate of return.

References

Abel, Andrew B., Investment and the Value of Capital (New York: Gar1and Pub1ishing Co., 1979).
\qquad , "Dynamic Effects of Permanent and Temporary Tax Policies in a q Mode1 of Investment," Journal of Monetary Economics, 9 (May 1982), 353-73.
> , "Optimal Investment Under Uncertainty, American Economic Review, 73,1 (March 1983), 228-233.

Breeden, Douglas, "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities," Journal of Financial Economics, (September 1979), 265-296.

Brock, William A., "Introduction to Stochastic Calculus: A User's Manual," mimeo, University of Chicago.

Chow, Gregory C., Econometric Analysis by Control Methods (New York: John Wiley and Sons, 1981).

Eisner and Strotz, "Determinants of Business Investment," in Commission on Money and Credit, Impacts of Monetary Policy (Englewood Cliffs, NJ: Prentice-Ha11, 1963). pp. 59-337.

Fischer, Stanley, "The Demand for Index Bonds," Journal of Political Economy 83 (1975), pp. 509-534.

Gould, John P., "Adjustment Costs in the Theory of Investment of the Firm," Review of Economic Studies 35 (January 1968), pp. 47-55.

Hartman, Richard, "The Effects of Price and Cost Oncertainty on Investment," Journal of Economic Theory 5 (October 1972), 258-66.

Hayashi, Fumio, "Tobin's Marginal and Average q: A Neoclassical Interpretation," Econometrica, 50 (January 1982), 213-224.

Keynes, John Maynard, The General Theory of Employment, Interest and Money (London: Macmillan, 1936).

Lucas, Robert E., Jr., "Adjustment Costs and the Theory of Supply," Journal of Political Economy 75 (August 1967), pp. 321-34.
\qquad , "Asset Prices in an Exchange Economy," Econometrica (November 1978), 1429-1445.
and Prescott, Edward C. "Investment Under Uncertainty,"
Econometrica, 39.5 (September 1971), 659-681.

Merton, Robert C., "Optimum Consumption and Portfolio Rules in a ContinnousTime Mode1," Journal of Economic Theory 3 (December 1971), pp. 373-413.

Massa, Michael, "Market Value and the Investment Decision in an Adjustment Cost Model of Firm Behavior," Department of Economics, University of Rochester Discussion Paper 74-15, July 1974.
\qquad , "External and Internal Adjustment Costs and the Theory of Aggregate and Firm Investment, Economica 47 (May 1977), 163-78.

Pindyck, Robert S.s "Adjustment Costs, Demand Uncertainty, and the Behavior of the Firm," American Economic Review, 72 (June 1982), 415-27.

Tobin, James, "A General Equilibrium Approach to Monetary Theory," Journal of Money, Credit and Banking 1 (February 1969), 15-29.

Treadway, Arthar B., "On Rational Entrepreneurial Behavior and the Demand for Investment," Review of Economic Studies 36 (1969), 227-239.

Yoshikawa, Hiroshi, "On the "q" Theory of Investment," American Economic Review 70 (September 1980), 739-743.

Aprendix A

We solve the Rellman equation in (15 wing the nothof of unetrmined coefercients. Ve hypothesize that the solution takes the form

(Ala) where $V^{(1)}=\mu_{1} p^{F}{ }_{E}=\mu_{1} \gamma \prod_{j=0}^{\frac{n}{W}}{ }_{j}^{-a} j^{1 \phi}$
(AIb)

$$
V^{(2)}=\mu_{2}(\beta-1) w_{n+1} C(T)=\mu_{2}(\beta-1)\left(\frac{n_{1} \gamma}{\beta}\right)^{\frac{\beta}{\beta-1}}\left[\prod_{j=0}^{n+1} w_{j}^{-a_{j}}\right]^{\beta-1}
$$

 and (A1b) to obtain
(A2)

$$
\begin{equation*}
Y_{i}^{?} v_{i j}^{(1)}=\frac{a_{i}}{\phi}\left(1+\frac{\sigma_{i}}{d}\right) v^{(1)} \tag{A3}
\end{equation*}
$$

(A5)

$$
\begin{equation*}
v_{i} w_{j}^{v} v_{i j}^{(1)}=\frac{a_{i}^{c} i_{v}(1)}{q^{2}} \quad i \neq j \tag{A4}
\end{equation*}
$$

(A6)
(A7)

$$
w_{i}^{2} v_{i i}^{(2)}=\frac{a}{n-1} \frac{c_{i}}{p}\left(1+\frac{n}{n-1} \frac{r_{i}}{n}\right) v^{(2)}
$$

(A8)
 (A2)-(A?) into (15) to obtain

A-2

(A9)

Tonating the coefficients of $V^{(1)}$ on both sides of (A9) yields the value of $\because 1$ shorn in (160) and equating the coefficients of $V^{(2)}$ on both sides of (A9) yields the valve of r_{2} in (16d).

$$
\begin{aligned}
& r^{(1)}+V_{V}^{(2)}=V_{1}^{-1} V^{(1)}+\because V^{-1}(2)-V_{V}^{(1)}+\sum_{i=0}^{n}\left(\frac{-\sigma_{i}}{\alpha} T_{i}+\frac{1}{2} \frac{\sigma_{i}}{\phi} \sigma_{i}^{2}\right) V^{(1)} V
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=n}^{n+1}\left(\frac{0}{0-1}\right)^{2 n} \frac{n}{\phi} \frac{\sigma_{i}}{\phi}{ }_{i j} \sigma_{i} \sigma_{j}{ }^{(2)}
\end{aligned}
$$

Amencix?

Proof of leman 1

 $E_{t}\left(\ln W_{i s}\right)=\ln w_{i t}+\left(\pi_{i}-\frac{1}{2} \sigma_{j}^{2}\right)(s-t) a n d \quad \operatorname{cov}{ }_{t}\left(\ln _{i w^{\prime}} \ln w_{j s}\right)=\rho_{i j} \sigma_{i} \sigma_{j}(s-t)$ which yields
(BI)
(B2)

$$
E_{t}\left(1 n \Gamma_{s}\right)=\sum_{i=0}^{n+1} c_{i}\left[1 n w_{i t}+\left(\pi_{i}-\frac{1}{2} n_{i}\right)(s-t)\right]
$$

$$
\operatorname{Var}_{t}\left(\ln \sigma_{s}\right)=\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i} c_{j} \rho_{i j} \sigma_{i} \sigma_{j}(s-t)
$$

Since 1 n wis is (conditionally) normally distributed, so is 1 n (s . Therefore

$$
\begin{equation*}
\left.\eta_{t}\left(G_{s}\right)=\exp _{t}\left(\ln \sigma_{s}\right)+\frac{1}{2} \operatorname{Var}_{t}\left(\ln न_{s}\right)\right] \tag{B3}
\end{equation*}
$$

Substituting (M) and (P2) into (m) yields
(B4)

$$
\left.\exists_{t}\left(\theta_{s}\right)=\sigma_{t} \exp \left\{\sum_{i=0}^{n+1} c_{i}\left(\pi_{i}-\frac{1}{2} \sigma_{i}^{2}\right)+\frac{1}{2} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i} c_{j} \rho_{i j} \sigma_{i} \sigma_{j}\right\}(s-t)\right\}
$$

recognizing that $\int_{t}^{\infty} \int_{t}^{\infty} e^{-\lambda(s-t)} d s=\int_{t}^{\infty} \sum_{t}\left(C_{s}\right) e^{-\lambda(s-t)}$ ds, equation (ra) immediately implies (17a). The equivalence of (17a) and (17h) follows from noting

$\left.\left.\frac{1}{d t} \operatorname{Var}_{t}\left(\ln _{t}\right)=\frac{1}{d t} \operatorname{var}_{t} \sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i} c_{j}\left(d \ln w_{i t}\right) \ln \ln _{j}\right)\right]=$
$\sum_{i=0}^{n+1} \sum_{j=0}^{n+1} c_{i} c_{i} \rho_{i j}{ }_{i}{ }^{\sigma}{ }_{j}$.

$r-1$

Arnendix
proof of Lerma 2

It will be converient to define $x=\left(x_{1}, \ldots . x_{m}\right), i=(1, \ldots, 1)$ and $\Sigma_{0}=\left(\rho_{01} \sigma_{0} \sigma_{1}, \ldots \rho_{0_{n} \sigma_{0} \sigma_{n}}\right)^{\prime}$. Let Σ be theman atrix with (i,j) element
 equal to σ_{i}^{2}. Observe that $g()$ may be written as
(Cl)

$$
S\left(x_{0}, x\right)=x_{0} \sigma_{0}^{2}+x \cdot d i a_{\varepsilon} \bar{\Sigma}+x_{0}^{2} \sigma_{0}^{2}+2 x_{0} x^{\prime} \Sigma_{0}+x \cdot \Sigma x
$$

The constraint $\sum_{i=0}^{m} x_{i}=-1$ can be written as $x_{0}=-\left(1+x^{\prime} i\right)$. Substituting this expression for x_{0} into (C1) allows us to express the value of $S\left(x_{0}, x\right)$ subject to this constraint as a function $\mathbb{S}^{*}(x)$
(C2)

$$
s *(x)=\left(1+x^{\prime} i\right)\left(x^{\prime} i\right) \sigma_{0}^{2}-2\left(1+x^{\prime} i\right) \Sigma_{0}^{\prime} x+x^{\prime} d i a g(\overline{2})+x^{\prime} \Sigma x
$$

Combining the 1 inear terms in x together and the quadratic terms together we obtain

$$
\begin{equation*}
S *(x)=x \cdot\left[\sigma_{0}^{2} i-2 \Sigma_{0}+\operatorname{diag}(\Sigma)\right]+x \cdot\left[\sigma_{0}^{2} i i^{\prime}-i \Sigma_{0}^{\prime}-\Sigma_{0} i^{\prime}+\Sigma\right] x \tag{C3}
\end{equation*}
$$

Let \cap denote the mam covariance matrix with (i,j) element equal to $\operatorname{cov}\left(\sigma_{i}{ }^{d Z}{ }_{i}-\sigma_{0} d Z_{0}, \sigma_{j} d Z_{j}-\sigma_{0}{ }^{d Z_{0}}\right)$. Therefore

$$
\begin{equation*}
n=\Sigma-i \Sigma_{0}^{\prime}-\Sigma_{0} i^{\prime}+\sigma_{0}^{2} i i^{\prime} \tag{C4}
\end{equation*}
$$

Substituting (C4) into (C3) yields
(C5)

$$
S *(x)=x^{\prime} d i a g(n)+x^{\prime} n_{x}
$$

If $\operatorname{var}\left(\sigma_{i} d Z_{i}-\sigma_{0} d f_{0}\right)=0$ for $i=1, \ldots, m$, then $\cap=0$ and $S *(x)=0$ for all $x \geq 0$. If $\operatorname{var}\left(\sigma_{i}{ }^{d Z}{ }_{i}-\sigma_{0} d Z_{0}\right) \neq 0$ for any i, then \cap has at least one strictly positive el ement on its diagonal. In this case, if $x>0$ then $S *(x)>0$ (since \cap is nonnegative definite).

Proof of Lemma 3

$$
\text { Define } A_{j}=\left[\begin{array}{cccc}
a_{1}-\lambda & a_{2} & \cdots & a_{j} \\
a_{2} & -\lambda & & 0 \\
\vdots & & \ddots & \\
a_{j} & 0 & & -\lambda
\end{array}\right]
$$

and observe that the eigenvalues of themxm natrix A satisfy det $A_{m}=0$. Al so observe that det $A_{1}=a_{1}-\lambda$ and det $A_{2}=-\lambda \operatorname{det} A_{1}-a_{2}^{2}$. In general, expanding around the last row of A_{j}, we have
(D1) $\quad \operatorname{det} A_{j}=-\lambda \operatorname{det} A_{j-1}+(-1)^{j-1} a_{j} \operatorname{det}\left[\begin{array}{cccc}a_{2} & { }^{a_{3}} & \cdots & a_{j} \\ -\lambda & 0 & \cdots & 0 \\ & \ddots & & \vdots \\ 0 & & -\lambda & 0\end{array}\right]$

Expanding the second determinant on the righthand side of (01) around its 1ast colun we obtain

$$
\begin{equation*}
\operatorname{det} A_{j}=-\lambda \operatorname{det} A_{j-1}-a_{j}^{2}(-\lambda)^{j-2} \tag{D2}
\end{equation*}
$$

$$
j=2,3, \ldots
$$

Equation (D2) is a first-order difference equation with initial condition det $A_{2}=\lambda^{2}-a_{1} \lambda-a_{2}^{2}$. The solution to the difference equation is
(D3)

$$
\operatorname{det} A_{j}=(-\lambda)^{j-2}\left[\lambda^{2}-a_{1} \lambda-\sum_{i=2}^{\frac{j}{2}} a_{i}^{2}\right]
$$

Therefore, the eigenvalues of A are the m roots of

$$
(-\lambda)^{m-2}\left[\lambda^{2}-a_{1} \lambda-\sum_{i=2}^{n} a_{i}^{2}\right]=n
$$

Py inspection, m-2 roots are equal to zero. The remaining two roots satisfy $\lambda^{2}-a_{1} \lambda-\sum_{i=2}^{m} a_{i}^{2}=0$ implying that these two roots have a sum of a_{1} and a product of $-\sum_{i=2}^{m} a_{i}^{2}$.
q.e.d.

