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ABSTRACT

Existing stochastic models of the galactic magnetic field are considered

and found to suffer certain defects. A new model is proposed which overcomes

faults of the previous theories while retaining their strengths.
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I. INTRODUCTION

A random component of the galactic magnetic field was first pro-

posed by Fermi (1949) in order to explain the isotropy of cosmic rays.

This possibility was considered in much greater detail by Jokipii and

Parker (1969a, b), who showed that it offers a plausible mechanism for

the escape of cosmic rays from the Galaxy in the relatively short 106

years implied by observations of abundances of light cosmic ray nuclei.

The model was given further credibility by Jokipii, Lerche and Schommer

(1969), who showed that it is consistent with observed fluctuations in

the polarization of starlight, and by Jokipii and Lerche (1969), who

demonstrated a similar consistency in the case of Faraday rotation of

pulsar signals. Jones (1971a) refined the treatment of Jokipii and

Parker and derived results directly applicable to the determination of

the statistical properties of cosmic ray parameters.

The purpose of the present paper is to consider a further refine-

ment of the previous discussions which retains their strengths and over-

comes some of their weaknesses. In §II a brief summary of the theories

of Jokipii and Parker and of Jones is given. In §III an alternative model

is described and worked out in detail, and in §IV it is compared with

observations. §V presents conclusions and suggestions for further development.
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II. EXISTING THEORIES

Jokipii and Parker (1969a, b) point out that the velocity field of

the interstellar gas is turbulent and random. Since the electrical con-

ductivity is very high, the magnetic field is frozen into the gas motion,

and hence is itself random. On the assumption of homogeneous velocity

turbulence they are thus led to describe the magnetic field as a homogeneous

1 +
stochastic process The total field is the sum of the average field,Bo,

assumed to lie along the local spiral arm, and a fluctuating field, B
1
, of

much smaller magnitude. In a coordinate system with the x-axis along the

arm and the z-axis perpendicular to the galactic plane,

O X 1 (1)

Neglecting all terms of second order in the ratio IBll /B
o
, as well as

spatial derivatives of B1 perpendicular to Bo, the equations of a line of force

passing through the origin are

x [,y-B(: ')] t= zl= oy(x) = B dx',
o o

(2)

x[Lz'B1 (x')]y'= 0
z(x) = I ZB dx'.

0 0
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For distances along the mean field much greater than the correlation

length of the random field, L, the mean square displacement of a field line

from the x-axis can be derived from eqs. (2):

2 2
<y(x) > = <z(x) > = 1/2 Lx (3)

Regarding the escape of cosmic rays from the Galaxy, this is the principal

result obtained by Jokipii and Parker, because it shows that a field line

wanders in a direction perpendicular to the mean field an arbitrarily large

amount for increasing displacements along the average field. Therefore, any

given field line eventually migrates to the surface of the galactic disk,

allowing the cosmic rays trapped on it to escape (Jokipii and Parker 1969 b).

The major shortcomings of this treatment are the following: 1) It

assumes that IB1| << {BO , which certainly does not appear to be valid for the

magnetic field of the Galaxy (Serkowski 1962; Jokipii and Lerche 1969);

2 2
2) Eq. (3) can be expected to hold only for < z(x) > < ZD , where ZD is

the half-thickness of the galactic disk. This is because the actual field

2 1/2
of the Galaxy is confined to the disk (Parker 1969); 3) Equating <z > with

ZD gives only a very rough estimate of the distance along the mean field over

which a field line wanders to the surface of the disk.

The treatment of Jones (1971 a) attempts to overcome these difficulties.

He imagines an essentially two-dimensional situation in which the initial state

of the magnetic field consists of a uniform field along the spiral arm embedded
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in a quiescent gas. Turbulent motion of the gas then deforms the lines of

force in the z-direction, randomizing the field. The displacement, s(x), of

a field line from its initial position is assumed to be a random function of

position along the mean field, expressible as a Fourier series in x with

random phases. This implies that s(x) is a homogeneous Gaussian process,

i.e., that the multivariate probability density of s or its derivatives at

N (notnecessarily distinct) points has the general form

-t -N/2 -1/2 - -
f (m) = (2 ) / 2

IM-1/2 exp [-m-M-1 m/2, (4)

where the components of the N-tuple m are the values of s or its derivatives

at the N points, and M is the matrix whose elements are <mimj> . IMI is the

determinant of M.

For a field line which passes through the origin, x=z=o, he uses eq. (4)

to derive the probability density for displacement above or below the plane

Z=o:

f(z;x)dz = 12<s2'>[1 -(x)]- exp - 2<s2 >[1-(x)] dz,

(5)

where 4,(x) is the correlation function of the random process s(x) .

Jones' model, as well as that of Jokipii and Parker, ignores gradients iy

IBI perpendicular to B0. This is, of course, inaccurate, since the Galactic

field is confined to the disk (Parker 1969). Note, however, that since

1
p(x)+o foe large x , eq. (5) implies that in Jones' theory the r.m.s. displace-

2
ment of a field line, <s > [l-p(x)], approaches a constant value as x --. Thus
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lines of force are confined to a bounded region in the z-direction, effectively

simulating a dropoff in JBI. The theory of Jokipii and Parker includes no

such compensatory feature, as is evident from eq. (3).

Jones goes on to derive an expression for the probability that a line of

force passing through the origin crosses the level z = ZD for the first time

in the interval (x,x+dx). Integrating this probability gives the probability

that the line reaches z = ZD in a distance along the mean field less than x.

These probability densities are parametrized by the ratio 6 = zD/2 <s2> 1/2

which can be related to the correlation length and to the average angular de-

viation of lines of force from the direction of the mean field. For various

possible values of 5 Jones finds that the median value of x/L, i.e., the

value for which the integrated probability of first crossing is 1/2, is as

given in Table 1. These results are in general agreement with those of Jokipii

and Parker, who estimate that a field line has a 50% chance of reaching the

surface of the disk in about two to six correlation lengths.

This brief outline makes it clear that Jones' theory has certain

advantages over that of Jokipii and Parker. As already mentioned, the former

model has a desirable asymptotic behavior for large values of x. Furthermore,

it makes no assumptions about the relative strengths of the mean and fluctuating

fields. Finally, it yields a probability density, which enables one to make

more precise statements about field line wandering than heretofore, and can be

used, for instance, to investigate the statistical properties of cosmic ray

parameters (Jones 1971 b).



Essential to Jones' model, however, is the assumption that sometime in

the past the field configuration was uniform along the spiral arm. Although

this initial condition appears only indirectly in the probability density (5)

[through <s2 > and ~(x)], it is undesirable that the theory must rely on such

an arbitrary and implausible hypothesis. The approach proposed in the next

section avoids any mention of initial conditions, but retains the desirable

features of Jones' theory, while incorporating the physical plausibility of

the treatment of Jokipii and Parker.
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III. GAUSSIAN FIELD MODEL

The point of view to be suggested here retains the general description of

2
the magnetic field embodied in eq. (1) , with certain refinements concerning the

fluctuating component, B

1. B is assumed to have only a z-component, B = B I . Generalization
1. 1 1 z

to two components transverse to B is straightforward, but does not

add significantly to the model; inclusion of a component parallel to

B will be discussed in § V. This assumption formalizes the approxi-

mation of Jokipii and Parker in which terms of order JB J? /Bl2

are neglected. Note, however, that in the present case B1 /Bo

is not necessarily small.

2. B. is assumed to be a function only of x. This is equivalent to

neglecting gradients in B1 transverse to B , as is implicitly done

by Jokipii and Parker. Adoption of such a slab model is not essential

and is not physically motivated; it's virtue is the mathematical

simplicity it affords.

3. B1(x) is assumed to be a homogeneous Gaussian process. The assumption

of Gaussian statistics is plausible physically, since the magnitude

of B 1 at any given time is the sum of a long sequence of random changes.

4. The statistical properties of Bl(x) are required to be such that the

r.m.s. displacement of a line of force is bounded in the z-direction.

The motivation for this requirement is to compensate for neglect of

gradients in the field strength perpendicular to the galactic disk.
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Using eq. (4), then, one can write the probability distribution for

B
1
(X) as

B B 2

f(Bl;x)dB = 2Tr<B 1 2> 2 exp {- 1 dB} (6)
2<B1 2>

The slope of a field line is

dz(x) B1 (x)
z'(x) = dx B(7)

dx B (7)
0

By combining eqs. (6) and (7) one obtains the probability density for z':

f(z';x)dz' = { <rz'2>,}
-
'2 exp { z,2 dz' (8)

2<z'2>

Consider the field line passing through the origin. The equation of

this line is

z(x) =/J z'(s)ds (9)

-o

Doob (1942) has pointed out that the probability distribution of the integral

of a Gaussian process is itself a Gaussian process as long as the variance of

the integral, in the present case <z(x) > , is positive. Using eq. (9),

<z(x) > is just

<z(x)2 > =</Z' (s)ds fXz'(s')ds,>

o o

ds ds' <z'(s)z'(s)>

o

= a2 ds J ds' (s'-s)

0 0
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where o2 <z'2 > = <B1
2 >/B 0

2 , and ~ is the correlation function of the

process z'(x). Interchanging the order of integration, one obtains

2> = 2 2 (x ) p (s) ds
0

-o2 n(x)

(10)

(11)

Therefore, z(x) will be a Gaussian process as long as 4 is chosen so as to

satisfy the condition

n (x) _> (12)

The probability distribution for z(x) is then given by

f(z;x)dz = 1 2Tr 2 n(x) i exp - 2 t dz
202 rn(x)

(13)

Following Jones (1971 a), one can now derive an expression for the proba-

bility that the field line crosses the level z = ZD with positive slope in the

interval (x,x + dx). If the corresponding probability density is denoted p(x;zD)

then (Jones 1971 a)

(14)

X

p(x;zD)dx = dxf z' f(zD, z'; x) dz'

0
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where f(z,z';x) is the bivariate density for {z(x),z'(x)}, given by eq. (4)

with N = 2, m = {z,z'}, and

<z2> <z z'>
M =

<z'z> < z '2>

The cross correlation <z(x)z'(x)> is

<z(x)z (z)>
x

= <f |z'(s)ds

x

=/<Z'(s) z'(x)> ds

X

= a2 4 (s) ds

- G2 C(X)

Using the definitions (11) and (15) one has

IMI = 04 (n-_2),

and

1

a 2 (n-_ 2 )

(1

(15)

n
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Substituting these expressions in eq. (4),

f(z,z';x) = {4i 2 a
4
(n-2)} - Z2 + zx2 - 2.zz. . (16)

2a2 (n- 2 ) 

p(x;zD) is then obtained by inserting the right hand side of eq. (16) in

eq. (14) and performing the integration. The result is

_2 [] (17)
p(x;zVD) _-2 exp D (17)

20D 2¢'"qn 22r 2_D

+ D exp 2 ] 1 ( 5 ))

0o

where~ is the error function, O(s) = 2r- 2 Sexp(-t2 ) dt.
0o

The probability that the line crosses the level z = ZD for the first

time in the interval (x,x + dx) is (Jones 1971 a)

dF(x;zD) (18)
dF(X dx = p(x;zD ) exp - p(S;ZD)ds dx,()
dx D -fxP\s;zD

and the integrated probability of first crossing somewhere between O and x

is

F(x; D) =1 - -e xp { p(s;zD)ds (19)
0



13

In order to evaluate these probabilities numerically, a form for the

correlation function must be chosen. Even within the bounds of the mathe-

matical constraints (see note 1 and in eq. (12) ) this choice is not entirely

arbitrary, for the physical restriction that the r.m.,s. displacement of a

field line remain finite for large values of x must also be satisfied

(assumption 4). This requires that the integral

<z(x)2 > = 2a 2 (x-s) a(s) ds
o

be bounded as x + m which,in turn, requires that 4 be negative over part

of its domain. Although this requirement clearly is not sufficient to

determine 4 uniquely, it severely restricts the possibilities.3 One

function that meets all of the criteria is

(x) = (l x ) exp( 2L2 (20)
2L2

With this choice, the functions n and C [eqs. (11) and (15)] representing

the mean square displacement of a field line and the slope-displacement

correlation, respectively, are

(x) = exp (21)

(x) = xexp -) (22)L2/J

V(x) = x exp - (22)
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Figure 1 gives plots of p, n, 5.

A simple physical interpretation of the farm of the correlation function (20)

can be obtained as follows. Consider the conditional probability density for

the slope of a field line at a point x, given that the slope at x = 0 has a

particular value zo · Using eq. (4) this is

f[z(x)lz ] f[z' (x), z' (o)]
[ ( ]f[z' (o)]I

]271Z o, 01)2
= {2ra2 [1-(x)]2 }- exp {- )

22(5(l_2) ,

which is just a Gaussian of mean z~6(x). Thus, Figure 1 shows that within a

region o x ML, the field line has an average slope of the same sign as z0 ',

reflecting the influence of the initial condition. For x t L, on the other hand,

the average slope has the opposite sign from z0', which is necessary if the

field line is to be confined to the Galactic disk.

In addition to providing a model that satisfies assumption 4, eq. (20)

has the following advantage. When substituted in eq. (17) it allows p(x;zD),

dF(x;zD)/dx and F(x;zD) to be expressed in terms of x and the single dimension-

less number A E zD/aL. Then, by equating the mean square slope deviation in

the present model with that in Jones' model, one obtains a relation between A

and Jones' parameter 6:

8A = 6 (23)
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Using eq. (23) one finds that p(x;A), dF(x;A)/dx and F(x;A) are identical to the

corresponding expressions in Jones' theory. Thus, it is possible to reproduce

the results of the latter theory without making any assumptions whatsoever about

the initial condition of the magnetic field.
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IV. COMPARISON WITH OBSERVATIONS

The range of the parameter A can be obtained from the values of ZD' a

and L inferred from observations. A summary of the available information is

presented in Table 2. From this data one deduces that

0.7 < A < 1.9 (24)

Eqs. (17) - (20) were used to obtain measures of the distance along the

average field traversed by a field line between the origin and its point of

first escape. In Figure 2 the most probable, median and mean values of this

distance are plotted as functions of A in the range (24). The striking

feature is the large differences among the different measures of the escape

distance for a particular value of A. Further illustration of the inherent

indeterminacy of the escape distance is given in Figure 3, where the probability

density for the escape point, dF(x;A)/dx, is plotted for A = 1.3.

It would appear that the escape distance of a field line is not a very

useful concept. What is useful is the probability density dF(x;A)/dx. It

can, among other things, be used to investigate the effect of the stochastic

magnetic field on the statistical properties of the propagation and confine-

ment of cosmic rays in the Galaxy (Jones 1971 b).
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V. SUMMARY AND DISCUSSION

Existing stochastic theories of the galactic magnetic field have been reviewed

and used to formulate an eclectic model in an attempt to overcome the diffi-

culties of the previous work. It has been found possible to reproduce the

results of Jones' treatment (1971 a) while retaining the physical plausibility

underlying the work of Jokipii and Parker (1969 a,b).

The new model shares a weakness common to both previous theories in that

the longitudinal component of the fluctuating field has been neglected. That

such fluctuations are not a priori negligible is clear, since the mechanism

randomizing the field is the motion of the interstellar gas, which certainly

has components such as to generate fluctuations in the longitudinal direction.

Furthermore, ignoring these fluctuations prevents the possibility of a field

line doubling back on itself, and such reversals of direction of the field are

observed to occur. It is not clear what effect inclusion of longitudinal

fluctuations will have on the probability distribution dF/dx. Although such

effects are not expected to change radically the nature of the results already

obtained, the question is worthy of future investigation.
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NOTES

1. A homogeneous

of position.

The two-point

and falls off

process is one whose statistical properties are independent

For such a process, g(x),

<g(x)2> = <g2> = constant.

correlation function of g is translation invariant

<g(x)g(x')> = <g2> *(lx'-xl),

rapidly for large values of Ix-x'l:

jI(Ix'-xl)l<< 1, Ix-x'l >> L.

The length L is called the correlation length. (Yaglom 1962)

2. A fundamentally different model has been put forward by Mathewson

(1968), who proposes a helical pattern for the lines of force. Recent

observations by Manchester (1971), however, contradict this picture,

and are, in fact, consistent with an average longitudinal field along

the spiral arm.

3. Two correlation functions commonly used in stochastic process theory

2 2
are the Gaussian, exp (-x /L ), and the exponential, exp(-Ixl/L).

Since both of these functions are positive definite, neither can be

used in the present application.
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TABLE 1

Median distance along the average field necessary for a

field line to reach the surface of the Galactic disk for

various values of 6(Jones 1971 a).

6 x/L

0.5 2.2

0.8 4.3

1.0 6.7

TABLE 2

Values of the parameters ZD' a and L inferred from observations.

Parameter Minimum Maximum Reference

ZD (pc) 100 200 Schmidt (1956)

a (rad.) 0.7 --- Serkowski (1962)

L (pc) 150 Jokipii, Lerche &
Schommer (1969)

L (pc) 2 ZD Jokipii & Lerche (1969)

2z

D

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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FIGURE CAPTIONS

The functions X, n and 5 defined in Eqs. (20), (22) and (23).

Most probable, median and mean values of the distance along

the average field traversed by a field line between the origin

and its point of first escape as functions of A EzD/O L.

Probability density, dF (x;A)/dx, for first crossing when

A E zD/O L = 1.3.

Figure 1.

Figure 2.

Figure 3.
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