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This paper presents a new stochastic multidimensional scaling vector threshold model de- 
signed to analyze "pick any/n" choice data (e.g., consumers rendering buy/no buy decisions 
concerning a number of actual products). A maximum likelihood procedure is formulated to 
estimate a joint space of both individuals (represented as vectors) and stimuli (represented as 
points). The relevant psychometric literature concerning the spatial treatment of such binary 
choice data is reviewed. The nonlinear probit type model is described, as well as the conjugate 
gradient procedure used to estimate parameters. Results of Monte Carlo analyses investigating 
the performance of this methodology with synthetic choice data sets are presented. An application 
concerning consumer choices for eleven competitive brands of soft drinks is discussed. Finally, 
directions for future research are presented in terms of further applications and generalizing the 
model to accommodate three-way choice data. 
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I. I n t roduc t i on  

The  analysis  of b ina ry  choice d a t a  has  been the focus of a number  of var ious  

me thodo log ies  in psychomet r ics  and  econometr ics .  The  economet r ic  l i tera ture  p r imar i ly  

deals  with mode l ing  " p i c k  1/n" d a t a  in a nonspa t i a l  manner .  The co r re spond ing  econo-  

metr ic  models  descr ib ing choices from a l imited number  of  a l ternat ives  a t t empt  to  relate  

the cond i t iona l  p robab i l i t i e s  of  a pa r t i cu la r  choice being m a d e  to var ious  exp l ana to ry  

factors that  include the a t t r ibu tes  of  the choice a l ternat ives  as well as the character is t ics  of  

the decis ion maker .  Cond i t i ona l  logit  ( M c F a d d e n ,  1976), cond i t iona l  p rob i t  ( H a u s m a n  & 

Wise, 1978), and  so on, are  typical  app roache s  uti l ized in app l i ed  economic  s tudies  to  

analyze  such d a t a  (see Chow,  1983; M a d d a l a ,  t986, for a review of  such techniques).  

The  psychomet r i c  l i te ra ture  provides  a different  perspect ive to  the  analysis  of  such 

two-way  b ina ry  choice d a t a  where  interest  typica l ly  lies in der iv ing  a spa t ia l  repre-  

sen ta t ion  of  the  e lements  of  the rows and  co lumns  of  such d a t a  (see Bock & Lieberman ,  

1970; Bar tho lomew,  1980; Chris toffersson,  1975; C o o m b s ,  1964; K ruska l  & Shepard ,  

1974; Muth6n,  1978; 1981; Torgerson ,  1958). Pe rha ps  the  mos t  p o p u l a r  m e t h o d o l o g y  

t r ad i t iona l ly  uti l ized to  spat ia l ly  analyze  such d a t a  is co r re spondence  analysis  (Benz6cri, 

1973) and  its many  variants .  Cor r e spondence  analysis  is typica l ly  app l ied  to aggrega ted  

choice d a t a  in the form of  a f requency matr ix ,  a l t hough  it can a lso  a c c o m m o d a t e  the 

analysis  of  the raw b ina ry  data .  I t  der ives a jo in t  space of  row and  co lumn elements  based  
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on an eigenstructure analysis of the normalized frequency matrix. Greenacre (1984) and 

Lebart, Morineau, and Warwick (1984) discuss extensions of the procedure to multiple 

correspondence analysis. Other related optimal scaling approaches such as dual scaling 

methods (Nishisato, 1980) and homogeneity analysis (de Leeuw, 1973; Girl, 1981 a, 198 lb; 

Heiser, 1981) have been shown (Tenenhaus & Young, 1985) to be equivalent forms of 

correspondence analysis. In fact, Levine's (1979) centroid method for "pick any" data can 

also be viewed as a special case of correspondence analysis where an alternative normal- 

ization is employed. 

Recently, two unfolding methodologies have been introduced into the psychometric 

literature which have purposely been devised for the analysis of "pick any/n" data. 

Takane's (1983) unfolding procedure treats such binary data as a special type of successive 

categories data in whichthere are only two response categories. Each item (stimulus), 

rather than each category of an item, is represented as a separate poinL and individuals 

are assumed to choose or not choose the item according to its proximity to their respec- 

tive ideal points. Takane develops an EM algorithm (see Dempster, Laird, & Rubin, 1977) 

to maximize ~i marginal likelihood in order to estimate the joint space. DeSarbo and 

Hoffman (1986, 1987) develop simple and weighted unfolding threshold models for the 

spatial representation of such "pick any/n" data. Their methodology, in  the simple un- 

folding case, estimates a joint space of ideal points for individuals, coordinate points for 

stimuli, and individual specific threshold values such that when the squared distance 

between individual i and stimulus j exceeds a threshold value c*, the model predicts no 

choice. Similarly, when this squared distance is less than this threshold value, a choice is 

predicted. Thus, the proximity of a stimulus to an individual's ideal point indicates the 

degree or the magnitude of the probability of choice. DeSarbo and Hoffman devise a 

nonlinear logit formulation utilizing maximum likelihood procedures to estimate the 

relevant set of parameters. The vector threshold methodology to be presented in the next 

section can be viewed as a nonlinear probit, vector model extension of the DeSarbo and 

Hoffman unfolding methodology. 

The goal of this research is to develop a new MDS based choice model for the 

estimation of a joint space of individuals and stimuli from pick any/n binary choice data. 

Most of the techniques described thus far are data analytic procedures which posit no 

explicit theory on how choice is made. Few of these models provide statistical tests to 

identify dimensionality of "best" model representations. Only one allows for the possible 

reparameterization of individuals and/or stimuli to aid in the interpretation of the re- 

sulting solution and allow for predictions of individuals/stimuli (within the range of the 

calibration data) not included in the analysis, The new spatial model of choice developed 

in the next section can be described as a stochastic model utilizing a vector or scalar 

products representation (see also Bechtel, Tucker, & Chang, 1971; Cooper & Nakanishi, 

1983; DeSarbo & Keramidas, 1983; DeSarbo, Oliver, & DeSoete, 1986; and DeSoete & 

Carroll, 1983; for other types of stochastic vector MDS models mostly applied to paired 

comparisons data). Based on utility theory via an indirect utility function (McFadden, 

1976) which posits choice as a function of a latent variable and an error function, this 

formulation allows for (theoretically speaking) an asymptotic statistical test for- identifying 

the appropriate dimensionality and for nested models testing. It can accommodate vir- 

tually any type of binary data, but is especially appropriate for "pick any/n' ,  and has 

reparameterization options for individual and/or stimulus coordinates which allow for the 

prediction of individuals and/or stimuli not utilized in the analysis. We feel it is an 

improvement over most existing procedures in that its structure is more related to the 

actual choice process (rather than merely another data analytic procedure), the reparame- 

terization options allow for the direct and simultaneous investigation of features, at- 
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tributes, demographic, psychographic, and other variables; also, the proposed method- 

ology allows for predictive validation in a simple manner via the reparameterization 

options. 

A. The Model  

Let: 

t 

i =  

j= 

YO = 

PO = 

air  -~- 

C i 

bj,= 

II. The Spatial Representation of Pick Any/N Data 

1 . . . . .  T dimensions (extracted in an MDS context); 

1 . . . . .  I individuals (or subjects); 

1 . . . . .  J stimuli (or products); 

{~ if individual i chooses stimulus j, 

otherwise; 

the probability individual i chooses stimulus j ;  

the t-th vector terminus coordinate for individual i; 

an additive constant for individual i; 

the t-th coordinate for stimulus j, 

We assume that the choice process of individual i choosing stimulus j is Bernoulli (inde- 

pendence is assumed across individuals and stimuli), with probability of choice given by 

Pij. Unlike the conditional legit (McFadden, 1976) and conditional probit (Hausman & 

Wise 1978), there need not be the constraint that ~.~ Po = 1 since the sum of the probabil- 

ities across stimuli is the expected number of picks for individual i which in many cases 

exceeds 1. By not requiring this constraint, the model can be utilized to accommodate 

choice situations, where, say, complementary or multiple-purchased products/brand are 

bought with correspondingly high probabilities. For example, large families may consis- 

tently buy two or more different brands of breakfast cereals on the same purchase oc- 

casion. This is why the methodology is more appropriate for pick any/n data. The inde- 

pendence assumption across individuals and stimuli presupposes that each choice is an 

independent "coin toss" with given probability Pij. This independence assumption may be 

questionable for certain applications. For example, in marketing research, one often en- 

counters/designs questionnaires where the order of presentation for products is not ran- 

domized across subjects. There can be order effects where the probability of a subject 

choosing the j-th product presented may be a function of the previous j - 1 products 

presented and the respective choice decisions made. The effects of some violations of this 

independence assumption are examined in the next section of the paper. 

Let us define a latent, unobservable utility variable u o as: 

T 

u o = ~, air bit q- c i + eij, (1) 
t = l  

where e 0 is an error term assumed to have a N(O, ~r/~) distribution where: 

C ° v  (e's' etu)= { ;  2i e l s e . i f r = t = i ' s = u = J '  

The right-hand side of Equation (1) contains the scalar product of the i-th individual's 
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vector coordinates with the j-th stimulus's coordinates. It is identical to a vector model 

(Tucker, 1960) of utility where individuals are typically represented by vectors and stimuli 

by points. The projection of a stimulus onto an individual vector indicates the degree of 

magnitude of utility--the larger the scalar products (i.e., the higher the projection of a 

stimulus onto an individual's vector), the higher is the utility of that stimulus for that 

individual (Slater, 1960). 

Here, uij is specified such that if uii < c* then we observe Yi~ = 0 (no choice), and if 

uq > c* we observe Y~i = 1 (a choice). T h e ,  c* is a threshold parameter which varies by 

individual. Therefore: 

e(Yij  = O) = P(ufj < c•) 

= P air bit + c i n t- e o ~ C 
t 

= 1" % <_ - Y ,  a,,/'1, + '~, = ~ s ) ,  (2) 
t z l  

where fit = c* -- c i, and ~(s) represents the standard normal distribution function evalu- 

ated at: 

I ~ i -  t~=lait bJ t )  

s (3) 
¢rij 

Similarly, 

P(Ylj = 1) = P(ulj > c*) 

= P e o > - ~ a .b j t  + 3i 

= 1 -- dP(s) = PO" (4) 

Thus, one can assume that a latent utility variable exists which, after reaching an 

individual specific threshold value, "produces"  the observed choice Yo = 1. This general 

specification is quite common in the econometrics literature (Chow, 1983; Maddala, 1986) 

where discrete choice models are tied into latent, indirect utility scores and threshold 

values. The theoretical justification for such a specification can be found in Lewin (1944), 

Siegel (1957), Simon (1959), and other works on aspiration levels and decision making. 

According to Simon (1959, 1978), economic agents engage in satisfying behavior rather 

than maximizing behavior. He claims that economic agents form thresholds or aspiration 

levels which "defines a natural zero point in the scale of utility (Simon, 1959; p. 264)". 

When the economic agent has alternatives to it that are at or above its aspiration level, 

this theory predicts that the agent will choose amongst these alternatives as opposed to 

those alternatives below this level. This appears to be congruent with multistage decision 

making/choice processes which combine compensatory and conjunctive rules (Coombs, 

1964; Dawes, 1964; Einhorn, 1970; and Green & Wind, 1973). 

The likelihood function can be expressed as: 

1 J 

L* = ] l  ~ E 1 -- ~s) lY ' ; r~  s)l" -Y'J', (5) 
i=1  j = l  
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and the log likelihood as: 

1 ,/ 

K* = In L* = ~ ~ [y~j In (1 -- ~(s)) + (1 -- Y0 In ~(s)]. (6) 
i = 1  j ~ l  

Given Y = ((Yi~)) and T, one wishes to estimate A = ((alt)), B = ((bit)) , 6 = ((6~)), and ~ij to 

maximize K* in (6). 

B. Program Options 

The spatial model can accommodate external analysis where A and/or B are given/ 

specified from, say, some previous analysis, or it can estimate both sets of coordinates 

(internal analysis). Several options also exist with respect to estimating a~j and & Clearly, 

one quickly runs out of degrees of freedom if one had to estimate all IJ  ai~ parameters, 

plus A, B, and 6. Given the form of (3), estimating a general t7 (a constant) or cr i (by 

individual) is not appropriate since it can be absorbed in the numerator. Therefore, 

without much loss of generality, we set tT~j = 1, V i, j, and assume a form of homoscedasti- 

city. Similarly, an option exists to set ~i = ~  or / i  can be freely estimated. 

Finally, the model defined in (2) and (4) can be generalized to incorporate additional 

data in the form of individual and/or stimulus background variables. The coordinates for 

individuals (vector termini) and/or stimuli, as the case might be, can be reparameterized 

as linear functions of background variables (Bentler & Weeks, 1978; Bloxom, 1978; de 

Leeuw & Heiser, 1980; and Noma & Johnson, 1977, for constraining MDS spaces). If 

stimulus attribute data is available, then b~t can be reparameterized as 

K 

b~, = ~ Xjk~k,, (7) 
k = l  

where x~, is the value of feature k (k = 1 . . . .  , K) for stimulus j and ~k, is the impact of 

feature k on dimension t. As in CANDELINC (Carroll, Pruzansky, & Kruskal, 1979), 

Three-Way Multivariate Conjoint Analysis (DeSarbo, Carroll, Lehmann, & O'Shaugh- 

nessy, 1982), and G E N F O L D 2  (DeSarbo & Rao, 1984, 1986), one models the location of 

stimuli to be a direct function of their respective features. Thus, the x~k are quantified 

features which are related to subjective attributes (Lancaster, 1966, 1979). Similarly, when 

individual background data is available, a~t can be reparameterized as 

R 

air = y~ z ir~r , ,  (8) 
r = l  

where z~, is the value of characteristic r (r = 1 . . . . .  R) for individual i and %, is the impact 

of the r-th individual characteristic on dimension t. When both stimuli and individual 

background data are available, both sets of coordinates can be so reparameterized. (Note 

that one always has the option of performing general property fitting analyses in the 

non-reparameterized model with A and B if, for example, one did not have the "full set" 

of background variables to describe A or B fully.) An option in our methodology also 

exists to estimate a stretching/shrinking parameter, T~, when a ,  is so reparameterized to 

avoid potential problems with placing constraints on individual vectors as discussed in 

Carroll, Pruzansky, and Kruskal (1979) and DeSarbo, et al. (1982). This parameter, ~ ,  

would appear as a multiplicative term on the right-hand side of (8). 

C. The Algorithm 

Maximum likelihood methods are utilized to maximize K* = In L* in (6) with respect 

to the given set of unknown parameters specified in the particular model of interest. The 
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method of conjugate gradients (Fletcher & Reeves, 1964) with automatic restarts (Powell, 

1977) was utilized for this optimization problem. The specific steps or phases of the 

algorithm are as follows: 

Phase I: Input options. The user must specify T (the number of dimensions for the 

analysis), IT* (the maximum number of major iterations allowed), TOL (the convergence 

tolerance), whether or not A = ((a,t)) is reparameterized via A = Z~, whether or not 

B = ((bit)) is reparameterized via B = X~/and method of obtaining starting estimates. The 

matrices Y = ((y~j)), X = ((Xjk)), and Z = ((zi,)) must also be input, depending upon which 

model is to be fit. 

Phase II: Starting Estimates. The user has the choice of one of three methods to 

obtain starting estimates of A (or at), B (or "/), and fi = ((c~)): either random starting 

estimates, given starting estimates, or estimates obtained from an MDPREF (Carroll, 

1980) metric analysis on Y (with 6it = 0). Options exist in the methodology to perform 

external analyses with A and/or B is given and held fixed throughout the analyses. Set 

IT=O.  

Phase III: Estimate A (or 0t), B (or "1), and 6. Set IT  = IT  + 1. This phase of the 

algorithm estimates A (or 0t), B (or ~/), and & Estimates of these parameters are sought to 

maximize the In of the likelihood function in (6). The method of conjugate gradients 

(Fletcher & Reeves, 1964) is utilized to solve this unconstrained optimization procedure. 

Assuming the In of the likelihood function in (6) obeys typical continuity and regularity 

conditions, one can take partial derivatives of expression (6) with respect to the desired set 

of parameters: 

0K* ~ ( y,~ (1 - y,)'~ 
0a,--~ - ~ a,, 1 -- q~(s)-- ~(s) J '  (9) 

0K* 4,(s)~,_~, ( y,j (1 - y~)~ (lO) 
0bit - ~  aij 1- -O(s)- -  *(s) , / '  

oK* ,(s_)) ((1 - y , )  Y'J "~ (11) 
03 i - ~  aij \ O(s) -- 1--~(s) , ] '  

x*(s )a"x" ( y,, _ !1 - y,,r  
0~,,, . j  % i -  a,(s) ~ s )  ,/' 

~gK*__ ~ Z ziq~(s)b'tzi" ( yq _ _ ( 1 -  yq)~ (13) 

O~,, . ~ % I -  U s )  U s )  J' 

OK* ( (1 -- y,j)'~ OZ, = X ~°(s)bjta't Yq (14) 

j aoz , 1 - ~}(s) - *(s)"',]' 

where ~b(s) is the evaluation of the standard normal density function at s defined in (3). 

For external analyses, or analyses where z~ = 1, the relevant set of partial derivatives are 

set equal to zero. 

For sake of convenience, let's assume that the relevant parameters to be estimated 

are contained in the vector 0 and that VK is the vector of relevant partial derivatives for 

this desired set of parameters. Then the complete conjugate gradient procedure utilized 
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can be summarized as follows: 

(i) Start with initial parameter estimate 0tl~; set I T  = 1. 

(ii) Set the first search direction S ~1) = VK "). 

(iii) Find 0 t2) via: 

0 (2) = 0 (1) + •(1)S(1). (15) 

where 2 ") is the optimal step length (obtained through quadratic interpolation) 

in the direction S ¢1~. Set I T  = 2. 

(iv) Calculate VK ur) and set 

S (IT) = VK C/T) + (VK(IT))'(VK(IT)) S (IT). (16) 

(VKUT- I~),(VKUT- 1)) 

(v) Compute the optimal step length 2 ur) in the direction S urn, and find: 

O~1r + 1~ = OUr~ + 2Ur)SUT~. (17) 

(vi) If 0 ~xr+ i) is optimal and/or satisfies the iteration tests below, stop. Otherwise set 

I T  = I T  + 1 and go to step (iv) above (i.e., undertake another iteration). A 

number of convergence tests are performed in this estimation cycle to test wheth- 

er additional iterations of the conjugate gradient are required: 

- - I f  I T  > I T * ,  stop; 

- - I f  II V K  ur~ II < TOL, stop; 

- - I f  (K *ur~ -- K *ur-  1~) _< TOL, stop. (18) 

It has been shown that conjugate gradient procedures can avoid the typical "cycling" 

often encountered with steepest descent algorithms. In addition, they demonstrate valu- 

able quadratic termination (Himmelblau, 1972) properties, that is, conjugate gradient 

procedures will typically find the globally optimum solution for a quadratic loss function 

in H steps, where H is the number of parameters to solve for. This is relevant for our 

application only if a Taylor expansion of In L* around the optimum is dominated by its 

second order term. 

This conjugate gradient method is particularly useful for optimizing functions of 

several parameters since it does not require the storage of any matrices as is necessary in 

Quasi-Newton and second derivative methods. However, as noted by Powell (1977), the 

rate of convergence is linear only if this iterative procedure is "restarted" occasionally, 

that is, cycles back through previous search directions. Restarts have been implemented in 

this algorithm automatically depending upon successive improvement in the objective 

function. Also note that since K* in (6) has an upper bound of zero, and since each 

estimating phase (iteration) of the likelihood maximization can be shown to conditionally 

increase K*, one can use a limiting sum argument (Courant, 1965) to prove convergence 

to at least a locally optimum solution. 

P h a s e  I V :  Ou tpu t .  Several related goodness-of-fit measures are computed for the 

spatial representation: 

1. The In likelihood function: K*(A, 13, 5); 

2. The Deviance Measure (Nelder & Wedderburn, 1972; McCullagh & Nelder, 

1983): 

D = --2 Yij In (/~u) + (1 - -  Yu) In (1 --/~0) = --2K*, (19) 
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where ill j,  the estimated probability of Yii = 1, is expressed as in (4) using estimated values 

for a~t and bit. Note, one can (theoretically) asymptotically test nested models as the 

difference between respective deviance measures which is X 2 distributed with the difference 

in model degrees of freedom as the appropriate X 2 test degrees of freedom. This is 

appropriate in testing dimensionality and model structure because of the obvious nesting. 

However, one question that arises with the use of maximum likelihood procedures con- 

cerns the validity of the statistical properties of estimators and associated tests. This 

question is of paramount  importance with respect to the general choice model presented 

here due to the presence of incidental parameters  (e.g., At, B j,  fit) whose number  varies 

according to the order of Y. According to Andersen (1980), maximum likelihood esti- 

mators  in such cases may not be consistent. Andersen suggests the use of conditional 

maximum likelihood estimators in such cases. Takane (1983) also reports of such difficul- 

ties in his unfolding-type item response model. DeSarbo and Hoffman (1986) cite similar 

difficulties with an unfolding version of this choice model. We will present a small Monte  

Carlo analysis which will a t tempt  to shed some light on this problem. Clearly, massive 

simulations are needed to test this asymptotic property properly. 

3. The Akaike information criterion (AIC) statistic. The AIC statistic (Akaike, 1974) 

can also be utilized as a method of model selection. Here it is defined as: 

AIC = D + 2n, (20) 

where n is the effective number  of independent parameters estimated in the model and D 

is the deviance measure defined in (19). Typically, one selects the model/solution with the 

minimum value of AIC. However, as pointed out by Bozdogan (1987), one potential 

problem with the use of this model selection criterion is that the AIC statistic is "dimen- 

sion inconsistent" in that it typically over estimates the true dimensionality in such spatial 

models. Thus, caution must also be given here with use of such a test statistic. 

4. A sum of squares statistic: 

1 J 

SSQ = ~ ~ [Yij - /~o ]  z- (21) 
i = 1  j = l  

The point biserial correlation between Y and ~:  rpb(Y, P), where ~ = ((ffij)). 

The proport ion of correct predictions via the simple matching coefficient between 

. 

6. 

Y and ¢~. 

7. The phi coefficient calculated between Y and ~. 

Note  that the last three related measures are als0 given for row and column elements to 

examine goodness of fit for each individual and stimulus. 

The appropriateness of the dimensionality of a solution or the nesting of models can 

be evaluated by a simultaneous examination of all these measures. Theoretically, as 

previously stated, the difference between deviance measures is asymptotically distributed 

as Z 2 with degrees of freedom equal to the difference between the corresponding degrees 

of freedom of the two dimensionalities or the nested models. Yet with the presence of 

incidental parameters (except with complete reparameterization with 6 = 0), it is also a 

good idea to always examine the other various measures. This central X 2 distribution 

asymptotically holds (theoretically) when the "restr icted" model is the true model (vs. the 

"full"  model). In practice, the user rarely knows what the " t rue  model"  really is, especially 

concerning the appropriate  dimensionality. In fact, one can argue for the use of a non- 

central Z 2 if the full model is the true model and it is compared against a restricted model. 

For all these reasons, little credence is placed in such a test per se and a strong rec- 

ommendat ion is made to examine all of these measures simultaneously. 
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III.  Monte Carlo Analyses 

A. The Independence Assumption 

The relationship between a set of choice data and its spatial representation can be 

illustrated by a small synthetic data set. Such a data set was designed so that all possible 

choice patterns for J = 3 stimuli (except for the two patterns "choosing every stimulus" 

and "choosing no stimuli") would occur. The number  of stimuli was purposely limited 

with the expectation that the solution space would be of sufficiently low dimensionality to 

facilitate visual examination and interpretation. Several choice patterns were repeated in 

order to check the robustness of the methodology to violations of row and column 

independence. 

Synthetic data were constructed for I = 12 individuals evaluating J = 6 stimuli by 

repeating the patterns: 

Stimulus 

Pattern: 

A 

B 

C 

D 

E 

F 

1 2 3 

1 0 0 

0 1 0 

0 0 I = M  

1 1 0 

i 0 1 

0 1 1 

four times to create a 12 x 6 matrix Y: 

Each (hypothetical) individual's choices can be represented by one of these 6 patterns, 

where a "1" indicates that a stimulus was chosen by that individual and a "0"  that it was 

not chosen. It was desired to examine the performance of the algorithm in: determining 

the dimensionality of the space, producing a reasonable spatial representation of the 

structure in the data, examining whether individuals with the same choice pattern had the 

same coordinates (local opt imum solutions are possible with such an algorithm which 

might render different coordinates for individuals with the same choice values), examining 

whether stimuli with the same choice patterns had the same coordinates, and investigating 

what happens when the independence assumption is seemingly violated across both i and 

j. Table t presents the statistical summary for the general model without reparameteriza- 

tion for T = 1, T = 2, and T = 3. Note that the deviance measure for going from T = 1 

to T = 2 is significant, but the deviance measure for going from T -- 2 to T -- 3 is not, 

indicating that two dimensions appears to be the appropriate  dimensioriality. The AIC 

statistics also confirm this result. Even if the asymptotic Z ~ test were completely invalid, 

the other measures reported also clearly verify th~it two dimensions are the appropriate  

representation for such data. 

.Figure 1 portrays the rotated joint space for such data (see Kruskal, 1981, for the 

indeterminacies of such two-way bilinear models). Individual vectors are labeled by capi- 

tal letters (A-L) and stimulus points by numbers (1-6). The configuration in Figure 1 

appears to be a parsimonious spatial representation of the underlying structure in this 



114 PSYCHOMETRIKA 

TABLE 1 

Summary of the analysis for the simulated data 

T d . f .  K*=In L* Deviance SSO rpb 

1 29 -16.33 32.66 5.43 0.83 .78 

2 44 -0.00 .00 0.00 1.00 1.00 

3 57 -0.00 .00 0.00 I~00 1.00 

Matching 
Coefficient Diff. D A.I.C. 

• 89 - 90.66 

1.00 32.65** 88.00 + 

1.00 0.002NS 114.00 

p < .01 

+ rain A.I.C. 

synthetic choice data set, Each pattern can be identified by a cluster of the individuals 

who indeed have that choice pattern [(A, G), (B, H), (C, I), (D, J), (E, K), (F, L)]. Individ- 

ual vectors with the same pattern have grouped Very tightly together in the space. Simi- 

larly, stimuli with the same patterns [(1, 4), (2, 5), and (3, 6)] are located close to one 

another. The positioning of the stimuli relative to the vector groups clearly reflects the 

choices made by an individual. Note how nicely the vectors are aligned so that stimuli 

1(4), 2(5), or 3(6) project highest on those individuals that solely chose 1(4), 2(5), or 3(6), 

respectively. Those individuals that chose multiple stimuli in Y (stimuli with truly different 

patterns) are represented by vectors in between the stimuli they chose. For example, those 

individuals (F, L) that chose stimuli 2(5) and 3(6) have vectors between stimuli 2(5) and 

3(6) indicating high positive projections of 2(5) and 3(6) on their choice vector and are 

reflections of those individuals (A, G) that did not choose 2(5) and 3(6), but chose solely 

1(4). Thus, individual choices can be assessed quickly and comprehensively. 

The analysis for the synthetic data was also performed using a different random start 

for initial estimates. The goal was to examine the stability of the resulting solutions 

obtained from the algorithm and to check for potential locally optimum solutions. Ca- 

nonical correlation was used as an approximate configuration matching technique to 

examine the similarity of the two solutions. Substantial congruence was found between 

the two solutions with canonical correlations of .997 and .996 for A, .999 and .999 for B, 

and .999 and .991 for the joint space. 

Other analyses with versions of this data set involving the introduction of other 

forms of dependency Such as the dropping of certain choice patterns, having different 

number of replications for each choice pattern, adding complementary (e.g., if brand A is 

chosen, so is brand B) and substitute (e.g., if brand A(B) is chosen, B(A) is never chosen) 

stimuli, etcetera, were also performed. In every case, the methodology produced a parsi- 

monious spatial representation which accurately described the respective choice patterns 

with similar results as presented in Table 1. While not every form of row/column depen- 

dency was tested, it does appear that this methodology is somewhat robust to these 

obvious violations to its independence assumptions. 
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FIGURE 1 

Rotated Two-Dimensional  Joint Space Plot for the Synthetic Data  Analysis. 

B. Algorithm Performance 

In order to examine the performance of the methodology more rigorously, a Monte 

Carlo analysis was performed where some eight independent factors were experimentally 

manipulated to create synthetic data. Table 2 presents the eight factors and levels investi- 

gated in this modest Monte Carlo analysis. A 2533 factorial design (Addleman, 1962) was 

utilized to generate appropriate combinations of these levels of factors allowing for main- 

effects-only estimation (see DeSarbo, 1982; and DeSarbo & Carroll, 1985, for similar 

types of Monte Carlo analyses). While this is clearly a limitation, it was done to reduce 

the number of runs from a total of 864 (complete enumeration of all possible combi- 

nations) to 27. Table 3 lists the specific 2s33 asymmetric fractional factorial design utilized 

here in this analysis. 

Three general areas of methodological performance were measured: (a) the amount 

of computer usage required; (b) a comparison between the actual binary data in ¥ and 

the model predicted values; and, (c) the recovery of the actual parameters of the model. 
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TABLE 2 

factors for Monte Carlo analysis 

Factor Levels Code 

A. T 2 0 
3 1 

S. [ 15 0 
30 1 

C. J 7 0 
12 1 

D. Threshold Parameters 8 =0 0 

g~ttmate 6 i 1 

E. S ta r t lng  Random 0 
Procedure SVD of  Y 1 

F. Reparametertze B No 0 
K=2 1 
K=4 2 

G. Reparametertze A No 0 
L=3 1 
L=5 2 

H. Error N(O,I) 0 
D l s t r l b u t l o n  Type I Extreme Value I 

Cauchy 2 

Computer usage for each trial run was operationalized in terms of the number of iter- 

ations required for convergence (CPU time was not available). Overall goodness of fit was 

measured for each trial via In L*, the point biserial correlation coefficient between Y and 

P, the phi coefficient between Y and ¢/, the sums of squares statistic between Y and P, and 

the simple matching coefficient between Y and ~. As previously discussed, these measures 

are the standard goodness of fit indices that are output with this methodology. Finally, 

parameter recovery for each trial was assessed by comparing A vs..i,, B vs. B, and the 

actual versus predicted joint space N' = (A, B)' vs. ~ '  = (,~, fi)'. Basically each trial or row 

in the fractional factorial design shown in Table 3 stipulated how each synthetic data set 

was to be constructed and analyzed. Dimensionality, the number of individuals and 

stimuli, whether the threshold parameters were to be fixed at zero or whether they were to 

be estimated, the type of start (random vs. a singular value decomposition of ¥ 

(MDPREF;  Carroll, 1980)), whether to estimate B or 7, whether to extimate A or ~t, and 

the type of error assumed (normal, extreme value, or Cauchy), were all varied. 

Table 4 presents the regression results for three of these various dependent measures 

for the main-effects only design. For  sake of brevity, one specific measure was selected 

from each of the three groups presented above. For  goodness of fit, the phi coefficient was 

selected for presentation since these results were quite similar to the point biserial and 

simple matching coefficient results (In L and the sums of squares statistics are excessively 

influenced by the size of Y, i.e., I and d). Similarly, the results presented for the joint space 
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TABLE 3 

25 33 Asymmetric fractlonal factorial Monte Carlo design 
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Factor: 

Trial A B C D g F G H 

1 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 2 I 2 
3 0 0 0 0 0 1 2 1 
4 0 1 1 0 0 i 2 2 
.5 0 1 1 0 1 0 0 1 
6 0 1 1 0 0 2 1 0 
7 0 0 0 1 0 2 1 1 
8 0 0 0 1 1 1 2 0 

9 0 0 0 1 0 0 0 2 

10 1 0 1 1 0 1 1 1 

11 1 0 1 1 1 0 2 0 

12 1 0 1 1 0 2 0 2 

13 1 1 0 0 0 2 0 0 

14 1 1 0 0 1 1 1 2 

15 1 1 0 0 0 0 2 1 

16 1 0 0 0 0 0 2 2 

17 1 0 0 0 1 2 0 1 

18 1 0 0 0 0 1 1 0 
19 0 0 0 0 0 2 2 2 

20 0 0 0 0 I 1 0 1 

21 0 0 0 0 0 0 I 0 

22 0 1 0 1 0 0 I 1 

23 O 1 0 1 1 2 2 0 

24 0 1 0 1 0 1 0 2 

25 0 0 1 0 0 1 0 0 

26 0 0 1 0 1 0 1 2 

27 0 0 1 0 0 2 2 1 

recovery (the average canonical correlation between N and Iq) were quite similar to those 

for A and B recovery. (Given that phi and canonical correlations vary between 0 and 1, 

arc sin and logit transformations were applied to each and the corresponding regressions 

were also performed on them. The results were not very different than those presented in 

Table 4 and thus are not discussed.) 

From an inspection of this table, it appears that the number of iterations appears to 

be affected significantly by the number of parameters to be estimated. Here, setting T = 3 

and estimating the threshold coefficients significantly increase the number of iterations 

required for convergence. The nearly significant and positive coefficients for I = 30, 

J = 12, K = 4, and L = 5 also support this conclusion. Oddly, the Cauchy error level 

appears to enhance the speed of convergence (perhaps leading to "quicker" locally opti- 

mal solutions). This regression is highly significant as shown by the corresponding F-test. 

Concerning the overall goodness of fit as measured by the phi coefficient, better 

recovery appears to be associated with higher dimensions. The SVD start appears to 

detract significantly from this goodness of fit statistic suggesting that its use could possibly 

lead to locally optimal solutions. The most significant variable is the Cauchy error level 
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TABLE 4 

Monte Carlo regression results 

Number of Phi Jo in t  Space 
Independent Variable  I t e r a t i o n s  Coef f i c i en t  Recovery 

I n t e r c e p t  18.20 0 .90 0.81 

T=3 5.89* 0.09* -0.02 

1-30 5.22 -0.02 0.03 

J=12 3.56 -0.06 -.03 

Estimate 6 i 9.22* 0.06 -0.04 

SVD s t a r t  -2.61 -0.07* -0 .11"  

g=2 -6.00 -0.06 0.02 

K=4 3.22 -. 00 O. 07 

Lffi3 -1.67 -0.03 O. 09 

L=5 4.89 -0.02 0.05 

Extreme Error -2.22 -0.01 0.09 

Cauchy Error -7.22* -0.13.* -0.08 

S.B 6.59 0.08 0.I0 

a 2 0.74 0.73 0.64 

adJ R 2 0.55 0.53 0.37 

F 3.87"* 3.64* 2.40 

• p < .05 
• * p < .01 

which significantly detracts from the phi coefficient value as expected since the Cauchy 

distribution has undefined moments  (moments > 1 are infinite). This regression equation 

is significant at the .05 level. 

Finally, concerning the recovery of the joint space, the only significant variable is the 

SVD start which appears to detract significantly from parameter  recovery. This was also 

the case in the analyses performed for A and B separately (not shown) indicating that this 

starting method might lead to locally opt imum solutions. Note  also that, while not 

significant, the Cauchy error variable also possesses a hefty negative coefficient indicating 

that it has some negative effect on subsequent parameter  recovery. However, this regres- 

sion equation is not significant at the .05 or .01 levels. 

The results of this preliminary Monte  Carlo analysis appear  to demonstrate the 
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somewhat consistent performance of the methodology. Larger data sets (and more param- 

eters to estimate) will naturally require additional computer demands. Severe misspecifi- 

cation with a distribution with undefined moments should detract from data and parame- 

ter recovery. Perhaps the most surprising result concerned the results of using a SVD 

analysis of Y (MDPREF---a  metric vector model; Carroll, 1980) as a possible rational 

starting method and finding that it can lead to poorer results. Note the consistent fitting 

over all different model types involving the various reparameterization options. These 

results should only be considered as preliminary due to the small scope of this reported 

Monte Carlo analysis. Clearly, a full factorial design with replications would have been 

preferred had computer expense been unlimited. Also, additional factors and perhaps 

additional levels per factor might also have been desirable. These are left as avenues for 

possible future research. 

IV. An Application to Soft Drinks 

A. Study Description 

A group of N = 50 male and female MBA students from Columbia University were 

asked to indicate, for a variety of popular soft drinks, which soft drinks they purchased 

and consumed within a given time period. The collected data were coded as 1 to indicate 

purchase and consumption at least every other week and 0 to indicate purchase and 

consumption less than every other week. The data for five of the 50 individuals were 

discarded since they claimed not to drink any soft drinks. Eleven brands of soft drinks 

were initially tested (see Hoffman & Franke, 1986): 

Plot Code 

1. Coke ® A 

2. Diet Coke ® B 

3. Diet Pepsi ® C 

4. Diet 7UP ® D 

5. Dr. Pepper ® E 

6. Mountain Dew ® F 

7. Pepsi ® G 

8. Pepsi Light ® H 

9. Sprite ® I 

10. Tab ® J 

11. 7UP ® K. 

The complete 45 × 11 data set is presented in Table 5.,The associated row and column 

marginals are also reported. This particular data set appears well suited for analysis via 

the spatial methodology since most students did consume multiple brands of soft drinks 

during the time period studied (e.g., only Subject 1 in Table 5 has a row sum of one). One 

can use arguments of variety seeking and/or situational differences in consumption to 

justify multiple brand consumption and the independence assumption over brands. 

In addition to these choice data, background information about the individuals and 

brands were also collected. Concerning the individuals, specific demographic and psycho- 

graphic responses were collected and initially examined for individual differences. Unfor- 

tunately, given the fact that these individuals were all students, these responses (outside of 

gender) were rather homogeneous and not very valuable in explaining the large individual 

differences in soft drink choice behavior witnessed in Y in Table 5. However, given the 
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TABLE 6 

X Matrix of brand features 
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,, , , , ,  

Feature: 

Brand______: X 1 X 2 X 3 X 4 X 5 X 6 X 7 

A 1 0 0 1 0 21.8 1 

B 1 0 1 1 0 5.1 1 

C 1 0 1 1 1 2.9 1 

D 0 1 1 0 1 1.4 0 

B 1 0 O 1 0 5.1 O 

F 0 1 0 1 1 2.7 0 

G 1 0 0 1 1 17.0 1 

H 1 1 1 1 1 0.2 0 

I 0 I 0 0 0 3.3 0 

J 1 0 1 1 0 1.6 0 

K 0 1 0 0 1 5 .2  0 

Coding: 

Xl = ~ i f  cola, X5 = ~ i f  Coca Cola b r ~ d .  
else; If Pepsi brand; 

~ t f  f r u i t y  t a s t i n g , e l s e ;  X6 = ~ 985 Market Share' 

~ ! f  diet.else; X7 = ~ i f  ~ v  S ° d t u m ' e l s e .  

~ f contains caf fe ine ,  
else; 

X 2 

X 3 

X 4 

previous marketing literature on the market structure of soft drinks (Hoffman & Franke, 

1986; Lehmann 1985) where similar brands of soft drinks appeared to be perceptually 

differentiated on the basis of Diet-NonDict and Cola-NonCola characteristics, a design 

matrix of some seven brand features was utilized to reparameterize B. Table 6~presents the 

seven features/attributes most often mentioned by students (in a pretest) that were most 

relevant to them in the selection of a soft drink. Price was not included in this Table since 

most 12 oz cans are comparably priced, especially in vending machines. While small price 
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differences exists for larger volume containers, often times store promotions discount 

certain brands during various times of the year. Note,  Market  Share here is a proxy for 

the students'  mention (in the pretest) of"popular i ty" .  

B, Other Analyses 

A correspondence analysis was performed on the "undoubled"  data in Table 5. 

Three or four dimensions appear  to adequately account for the structure in the choice 

data with proport ions of inertia of .143, .159, .100, and .098 respectively. Unfortunately, 

only the first dimension was clearly interpretable (Diet-NonDiet) as ascertained by a 

supplemental points analysis with X (in Table 6) on the resulting space and visual inter- 

pretation. 

Treating the data as metric, an M D P R E F  (Carroll, 1980) analysis was also conduct- 

ed on Y in Table 5 given that this is a type of vector model. Based on goodness of fit, two 

or three dimensions appear  to parsimoniously describe the structure in the data. The 

variance accounted for statistics were .499, .238, and .069 respectively for each dimension. 

Utilizing correlation as a type of property fitting procedure between X in Table 6 and the 

resulting brand coordinates, the first dimension was most  highly correlated with Market  

Share (r = --731), while the second was clearly related to Diet-NonDiet  (r = .961). The 

third is a bit harder to interpret but appeared to be related to sodium content (r = 

- . 7 7 1 ) .  

~. The Vector Threshold Methodology 

The spatial vector model of choice was estimated in T = 1, 2, 3, and 4 dimensions 

with o-ij = 1, z~ = 1, and the reparameterization option: B = Xy. The columns of X were 

initially standardized to zero mean and unit variance in order to aid in the interpretation 

of the resulting 7- As Table 7 shows, the T = 3 dimensional solution appears  most  

appropriate  as delineated by the asymptotic  Z 2 test and AIC statistics. Even if these tests 

Were completely invalid, the accompanying goodness of fit measures also provide substan- 

tial evidence of the appropriateness of the T = 3 dimensional solution. 

TABLE 7 

Analyses of soft drink choice data 

Hatching Deviance 

d f K*=InL* Deviance SS [pb ~ Coefficlent Difference A.I.C. 

1 96 -254.18 508.36 86.77 .55 .49 .75 700.36 

2 145 -187.69 375.38 59.34 .74 .69 .84 132.98"* 665.38 

3 192 -56.75 113.50 17.47 .92 .90 .95 261.88"* 487.50 + 

4 228 -49.37 98.74 14.76 .94 .92 .97 14.76NS 554.74 

p<. 01 
+ rain A.I.C. 
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Table 8 presents the correlation between the rotated solution brand coordinates (B) 

and the design matrix X presented in Table 6. As this table depicts, the first brand 

dimension is dominated by Market Share (and perhaps sodium), the second by Diet- 

NonDiet, and the third by Cola-NonCola, caffeine (which tends to be associated with cola 

beverages), and perhaps fruity-nonfruity (which is usually negatively correlated with cola 

TABLE 8 

Correlatlons betveen B and X and threshold parameters 

Correlations 

Dimension: 

Brand Feature: I II III 

X I Cola -.201 -.169 .948 

X 2 Fruity Tasting .394 .060 -.761 

X 3 Dlet .392 -.958 .140 

X 4 Caffeine -.072 .015 .868 

X 5 Manufacturer .149 -.019 -.315 

X 6 Market Share -.953 .439 .250 

X 7 Sodium -.691 -.094 .392 

Estimated 

Threshold Parameters 

Individual 6 i Individual 6 i Individual 6 i 

1 3.112 16 1.415 31 1.697 

2 1.894 17 .595 32 -1.594 

3 -1.549 18 .384 33 -1.306 

4 1.894 19 1.276 34 2.000 

5 1.894 20 .056 35 .199 

6 1.894 21 .357 36 2.353 

7 .412 22 2.353 37 2.353 

8 .334 23 .340 38 .595 

9 -.170 24 -.192 39 1.371 

10 .056 25 -.585 40 .056 

11 -1.540 26 2.522 41 .334 

12 -1.443 27 2.578 42 1.549 

13 .334 28 -2.293 43 1.506 

14 .216 29 -1.217 44 .506 

15 .334 30 .535 45 1.579 
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drinks). Thus, according to these loadings, we can tentatively label Dimension I as a 

"Popular i ty"  dimension, Dimension II as a "Diet -NonDiet"  dimension, and Dimension 

III as a "Cola-NonCola"  dimension. As mentioned previously, these dimensions have 

also been uncovered in various perceptual studies performed in this market. 

Figures 2-3 depict the two dimensional joint spaces for this T = 3 dimensional 

solution. Here, the eleven brands are represented by the letters A-K, while individuals' 

vectors have been normalized to a constant length for convenience and their termini are 

represented as "o's".  Note, because of several common locations or "overstrikes," we 

cannot singularly represent all 45 vectors in these plots. The 7 coefficients for the seven 

soft drink feature variables are designated by (normalized) vector termini numbered 1-7. 

By examining these 7 coefficient plots, one can confirm the interpretation of the three 

dimensions as given by the loadings in Table 8. The figures clearly show the obvious 

preference of these individuals for those more popular brands with higher market share 

such as Coke ®, Pepsi ®, 7UP ®, and Sprite ®. However, preference for Diet-NonDiet or 
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FIGURE 2 

Joint  Space Plot  of  Dimens ions  1 vs 2 for the Soft Dr ink  Analysis. 
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FIGURE 3 

Joint Space Plot of Dimensions 2 vs 3 for the Soft Drink Analysis. 
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Cola-NonCola brands is much more diverse as evidenced by the wider variance in indi- 

vidual choice vector orientations on Dimensions II  and I I I  (as shown in Figure 3). While 

the correlations between dimensions for A and B will vary according to the particular 

rotation utilized, for this particular solution, no dimension shared more than 10% 

common variance with any other dimension in A or B indicating that these dimensions 

are providing somewhat " independent"  views of the structure in the data. 

Another interesting perspective to this analysis concerns the estimated threshold 

constants / i  displayed in Table 8 together with the predicted scalar products (not shown). 

As mentioned, assuming the model holds with no error, these fit can be viewed as esti- 

mated threshold values by individual which governs the choice process. According to the 

random utility model and latent variable approach,  whenever the latent variable u~j is 

greater than some threshold c*, a choice is made. These additive constants 6i represent an 

estimate of these threshold values. In comparing them with the computed scalar products, 

one can make predictions concerning the brands selected by each individual. 
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D. Prediction of Stimuli Not Included in the Analysis 

Two hold-out brands, Pepsi Free ® and Sugar Free Dr. Pepper ®, were also tested 

with this same set of students as to their purchase and consumption frequency. In order to 

illustrate a unique feature of the brand/stimulus reparameterized methodology, we will 

a t tempt to predict the individual choices for these two brands given only their attributes 

or features as specified in Table 6. Since we have the actual purchase/consumption data, 

we can compare  the predictions with the actual data  in order to assess some degree of 

predictive validation. The brand reparameterization allows the user to translate the fea- 

tures for a brand, given an estimated 7, into predicted coordinates. Once these predicted 

coordinates have been calculated, one can take their scalar products with A and compare 

them to the estimated threshold constants by individual (see Table 8) to obtain predic- 

tions. Table 9 lists the features/attributes for these two hold-out soft drink brands accord- 

ing to the seven variables specified in Table 6. The table also presents the predicted 

coordinate locations and the resulting proport ion of correct choices for the 45 students. 

Note that each of these proport ions is significantly greater than the random or chance 

proport ion of .50. This prediction to stimuli not included in the analysis can be very 

useful in marketing studies, for example, where one is interested in predicting 

TABLE 9 

Predictive validation for softdrinks 

Features:  

~I ~2 ~3 ~4 ~5 ~6 ~7 

I. Pepsi Free 1 0 0 0 0 1.4 1 

2. Sugar Free Dr. Pepper 1 0 1 1 0 1.0 0 

Predicted Coordinates:  

Dimension: 

I II III 

1. Pepsi  Free 2.44 3.30 1.61 

2. Sugar Free Dr. Pepper 2.54 -2.40 1.48 

Proportion of Correct Predictions: 

i. Pepsi Free .711 

2. Sugar Free Dr. Pepper .733 
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choice/market share for new brand entries. Naturally, like regression analysis, the predic- 

tive aspects of this vector threshold model are valid for stimuli that have feature/back- 

ground data within the range of such data for the stimuli included in the calibration. 

(Note that this could also be easily extended for individuals not included in the study if 

one had selected the reparameterization option for A.) 

V. Discussion 

Thus, the vector threshold model appears to provide a better description of the 

structure of the softdrink choice data as compared to the MDPREF and correspondence 

analysis solutions. In addition, the resulting solution is much easier to interpret and the 

resulting dimensions correspond to those previously derived in MDS studies presented in 

the marketing literature. As shown, the reparameterization option allows for the predic- 

tion of choice probabilities for stimuli (and/or individuals) not included in the original 

analysis. One could also generalize the DeSarbo and Hoffman (1987) combinatorial opti- 

mization methodology to such a reparameterized vector threshold solution to derive 

optimal (in terms of profitability) new brands. Two other major areas for further investi- 

gation can be defined. 

A. Other Applications 

The spatial vector model of choice presented can be utilized in a variety of ways to 

analyze binary data. In addition to analyzing "pick any/n" or "pick any" data as de- 

scribed in the application, the spatial vector choice model could also provide a spatial 

representation of binary profile data, for example, brands having or not having certain 

attributes or benefits. Or, the methodology could be applied to two-way, one or two- 

mode binary asymmetric proximities to provide a spatial representation of both row and 

column individuals. For example, one could utilize this methodology to analyze word 

association data where the general entry Yij would be a 1 if the column response was 

evoked with the row stimulus. 

B. Future Work 

A number of interesting research directions have been suggested by the development 

of this procedure for spatially representing binary data. Further massive Monte Carlo 

runs should be performed on all model versions under a diverse set of conditions to test 

the algorithm for local minimum or other potential problems such as other types of 

violations to the independence assumption. Also, the small sample properties of the X 2 

test must be further examined, as should the consistency of the estimated parameters 

given the problem of incidental parameters. Finally, Jedidi (1988) has extended this meth- 

odology to handle three-way choice arrays where, for example, choices are obtained from 

subjects for products purchased/chosen over time or across different situations. 
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