
OPERATIONS RESEARCH
Vol. 57, No. 5, September–October 2009, pp. 1220–1235
issn 0030-364X �eissn 1526-5463 �09 �5705 �1220

informs ®

doi 10.1287/opre.1080.0686
©2009 INFORMS

A Stochastic Multiple-Leader Stackelberg
Model: Analysis, Computation, and Application

Victor DeMiguel
Department of Management Science and Operations, London Business School, Regent’s Park,

London NW1 4SA, United Kingdom, avmiguel@london.edu

Huifu Xu
School of Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom,

h.xu@maths.soton.ac.uk

We study an oligopoly consisting of M leaders and N followers that supply a homogeneous product (or service) noncoop-
eratively. Leaders choose their supply levels first, knowing the demand function only in distribution. Followers make their
decisions after observing the leader supply levels and the realized demand function. We term the resulting equilibrium a
stochastic multiple-leader Stackelberg-Nash-Cournot (SMS) equilibrium. We show the existence and uniqueness of SMS
equilibrium under mild assumptions. We also propose a computational approach to find the equilibrium based on the sample
average approximation method and analyze its rate of convergence. Finally, we apply this framework to model competition
in the telecommunication industry.

Subject classifications : programming; noncooperative games/group decisions; Stackelberg game; equilibrium existence,
uniqueness; sample average approximation.

Area of review : Optimization.
History : Received October 2006; revisions received July 2007, February 2008; accepted September 2008.

Published online in Articles in Advance June 25, 2009.

1. Introduction
We consider an oligopoly consisting of M +N firms that
supply a homogeneous product (or service) noncoopera-
tively. The first M firms (herein leaders) have no capac-
ity installed and thus must make a decision at the present
time on their future supply quantities to allow themselves
enough time to build the necessary facilities. As a result,
leaders must choose their supply quantities before the
demand function is realized and thus know the demand
function only in distribution.1 The remaining N firms (fol-
lowers) have sufficient capacity installed and thus do not
have to make a decision today, but instead they can wait to
observe the quantities supplied by the M leaders as well as
the realized demand function before making a decision on
their supply quantities.
Each of the M leaders maximizes its expected profit

(where the expectation is taken with respect to the demand
function distribution) by explicitly taking into account the
future reaction of the N followers to the supply quanti-
ties of the leaders, but assuming that the rest of the lead-
ers will keep their supply levels fixed; that is, leaders
behave as Cournot firms with respect to other leaders, but
as Stackelberg firms with respect to followers.
Once the demand function is realized, the N follow-

ers maximize their profit by assuming all leaders, and the
rest of the followers keep their supply levels fixed; that
is, followers behave as Cournot firms with respect to both

leaders and other followers. We call the resulting leader fol-
lower equilibrium a stochastic multiple-leader Stackelberg-
Nash-Cournot (SMS) equilibrium.
We apply this framework to model a recurrent situation

of competition in the telecommunication industry. Assume
that a new service technology is about to enter a telecom-
munication market (for example, bandwidth). A few com-
panies (leaders) do not have any spare network capacity
and thus must decide whether to invest in expanding their
network (or installing a new network) and offer the new
service to the market. Because the capacity expansion pro-
cess is time consuming, these companies have to decide
the quantity they will supply to the market in advance, and
thus know the demand function only in distribution. A few
other companies (followers) already have sufficient capac-
ity installed to offer this service, and they need only to
decide how much of their capacity to re-allocate from other
existing services to the new service technology. Thus, fol-
lowers have the flexibility to wait until they observe the
supply levels of the leaders as well as the realized demand
function before deciding how much capacity to allocate to
the new service.
Our model is related to a few models in the literature.

The classical Stackelberg game (Stackelberg 1934) models
competition in a duopoly market composed of one leader
and one follower. The leader makes its decision taking
into account the reaction of the follower. The follower,
on the other hand, makes its decision assuming the leader
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will keep its supply quantity fixed. Sherali et al. (1983)
extended the classical Stackelberg model by considering the
case where there are several followers that reach a Nash-
Cournot equilibrium among themselves. Sherali (1984) fur-
ther extended the model by considering multiple leaders—
he gave conditions for the existence of equilibrium as
well as for the concavity and piecewise linearity of the
objective function of each leader. Sherali also showed the
uniqueness of equilibrium for the case where leaders are
identical (that is, leaders have identical cost functions)
and, in addition, identical leaders make identical decisions.
Ehrenmann (2004a, b) demonstrated that the assumption
that identical leaders make identical decisions is essential
to Sherali’s uniqueness result for the deterministic case.
In particular, Ehrenmann (2004a, b) gives a counterexample
that shows that identical leaders could reach multiple equi-
libria (in the deterministic case) if they can make different
decisions.
De Wolf and Smeers (1997) made an interesting exten-

sion of the single-leader Stackelberg-Nash-Cournot model
by incorporating demand uncertainty. Specifically, they
assumed that the demand function follows a discrete dis-
tribution; that is, they consider a finite number of demand
scenarios, each characterized by a different demand func-
tion. They applied the resulting model to the European gas
market. More recently, Xu (2005) extended the stochastic
single-leader model of De Wolf and Smeers by considering
the case where the demand function follows a continuous
distribution. Xu gives conditions under which there exists
an equilibrium for the stochastic single-leader model and
proposes a deterministic approach based on numerical inte-
gration to approximate the leader’s expected profit.
In this paper, we consider a stochastic multiple-leader

Stackelberg-Nash-Cournot (SMS) equilibrium model. Our
model extends Sherali’s deterministic multiple-leader
model (Sherali 1984) because it considers the case where
the demand function is stochastic. Our model also extends
the work by De Wolf and Smeers (1997) and Xu (2005)
because it focuses on the case with multiple leaders. Note
that although the majority of the analysis in Xu (2005)
focuses on the single-leader model, §6 in Xu (2005) dis-
cusses the case with two leaders and gives some prelim-
inary analysis under the stringent assumption that every
follower supplies a strictly positive quantity at equilibrium.
In our analysis, we consider the case with multiple leaders
(possibly more than two) and we do not assume that every
follower supplies a positive quantity at equilibrium.
Our contribution to the literature is threefold. First, we

show the existence and uniqueness of equilibrium for the
stochastic model. A crucial result is that we prove, in
contrast to the deterministic model, the objective func-
tion of each leader is smooth for the stochastic model.
This smoothness result allows us to apply the results by
Rosen (1965) to show the uniqueness of equilibrium for
the stochastic model under conditions that are weaker than
those assumed by Sherali (1984) for the deterministic case.

For example, we do not assume that leaders are identical.
Also, in the case when leaders are identical, our uniqueness
result does not require that identical leaders make identical
decisions.
Second, we propose a computational approach to find

the SMS equilibrium. Specifically, we use a sample average
approximation method (SAA) to approximate the leader
expected profits and show that the solutions to the SAA
problems converge almost sure to the unique SMS equilib-
rium and with probability approaching one exponentially
fast to an approximate SMS equilibrium. We then reformu-
late the SAA problems as mixed complementarity problems
(using a technique similar to that in Hu 2002 and Leyffer
and Munson 2005) and solve the resulting problems with
the solver PATH (Ferris and Munson 1998, Ralph 1994).
Note that an advantage of using the SAA method is that
it allows one to approximate the leader expected profits by
sampling directly from historical data. Hence, unlike the
numerical integration method proposed in Xu (2005), our
method does not require knowledge of the functional form
of the demand function distribution.
Our third contribution is to apply this framework to

model competition in the telecommunication industry. We
use the proposed computational approach to find the result-
ing telecommunication market equilibrium. We also per-
form a comparative static analysis to study how economic
variables such as the leader and follower supply levels and
profits, the market price, the consumer surplus, and the
social welfare depend on parameters such as the number
of leaders and followers, the leader cost functions, and the
variability in the demand function.
The rest of this paper is organized as follows. Section 2

gives a mathematical description of the model and reviews
some preliminary results. In §3, we investigate the dif-
ferentiability of the objective function of a leader. In §4,
we show the existence and uniqueness of the SMS equi-
librium. In §5, we propose a computational approach to
find the SMS equilibrium based on the sample average
approximation method and study its convergence. In §6,
we apply this framework to model and analyze competition
in the telecommunication industry. Section 7 concludes.
In addition, the online supplement contains two appendices:
Appendix A contains the proofs for some of the results in
our paper and Appendix B contains the statements of two
frequently used results from the literature. An electronic
companion to this paper is available as part of the online
version that can be found at http://or.journal.informs.org/.

2. The Model and Some Preliminary
Results

2.1. The Model

The market demand is characterized by a random inverse
demand function p�q� �����, where p�q� ����� is the mar-
ket price, q is the total supply to the market, and �� �→�
is a continuous random variable. Specifically, for each real-
ization of the random variable �� � → �, we obtain a
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different inverse demand function p�q� �����. The uncer-
tainty in the inverse demand function is then characterized
by the distribution of the random variable �.
The ith leader’s cost function is Ci�xi�, where xi is the

ith leader’s supply quantity. Likewise, the jth follower’s
cost function is cj�yj�, where yj is the jth follower’s supply
quantity. Note that, because we assume that leaders have
no capacity installed, leaders’ costs will, in practice, be
substantially larger than those of the followers.
We will use the following notation. X denotes the

aggregate supply of all leaders (X = ∑M
i=1 xi), X−i the

aggregate supply of all leaders excluding the ith leader
(X−i = ∑

k �=i xk), and x−i the vector whose components
are the supplies of all leaders excluding the ith leader
(x−i = �x1� 	 	 	 � xi−1� xi+1� 	 	 	 � xM�). Y , Y−j , and y−j denote
homologous quantities for followers. Given a function
f �u� v�� �n×m → �, we denote by f �·� v�� �n → � the
function obtained by fixing the value of v in f �u� v�.
The jth follower chooses its supply quantity after observ-

ing the aggregate leader supply X and the realized demand
function p�·� �����. Thus, the total revenue of the jth fol-
lower is yjp�X+yj +Y−j � �����, and its total cost is cj�yj�.
Consequently, the jth follower profit is


j�yj� Y−j �X� �����= yjp�X+ yj + Y−j � �����− cj�yj��

and the jth follower’s decision problem is to choose the
supply quantity yj that maximizes its profit; that is,

max
yj�0


j�yj� Y−j �X� �����	 (1)

Note that when making its decision, the jth follower
assumes all other followers and the leaders will keep their
supply levels fixed. That is, the jth follower acts as a
Cournot firm with respect to the rest of the followers
and the leaders. A Nash-Cournot equilibrium among the
followers (given an aggregate leader supply X and an
inverse demand function realization p�·� ����� is a situ-
ation where no follower can increase its profit by uni-
laterally changing its supply. We denote this equilibrium
by �y1�X������� 	 	 	 � yN �X�������, where yj�X������ is
the global minimizer to problem (1). We also denote
Y �X������ = ∑N

j=1 yj�X������ and Y−j �X������ =∑
k �=j yk�X������. The existence and uniqueness of equilib-

rium among the followers are addressed in Proposition 2.6.
Leaders have no capacity installed and thus must choose

their supply quantities well in advance to allow themselves
enough time to install the necessary facilities. As a result,
they choose their supply quantities knowing the demand
function only in distribution. Also, because they make
their decisions earlier than the followers, leaders explic-
itly take into account the reaction of the followers to the
aggregate leader supply for each future demand function
realization. But because all leaders make their decisions
simultaneously, they choose their supply levels assuming
that all other leaders will keep their supply quantities fixed.

In other words, leaders act as Stackelberg firms with respect
to the followers, but as Cournot firms with respect to other
leaders. Thus, the ith leader decision problem is

max
xi�0

�i�xi�X−i�

�=Ɛ�xip�xi+X−i+Y �xi+X−i������������−Ci�xi�� (2)

where Ɛ denotes expectation with respect to the random
variable � and Y �X������ is the aggregate follower supply
given an aggregate leader supply of X and a realization of
the random variable ����.
A stochastic multiple-leader Stackelberg-Nash-Cournot

equilibrium is a situation where none of the leaders can
improve its expected profit by changing its supply level
while assuming that all other leaders keep their supply lev-
els fixed, and for any given leader aggregate supply, the
followers will reach a Nash-Cournot equilibrium in every
demand scenario. We now give a rigorous definition of the
equilibrium.

Definition 2.1. A stochastic multiple-leader Stackelberg-
Nash-Cournot equilibrium (SMS equilibrium) is an M+N
tuple �x∗

1� 	 	 	 � x
∗
M�y1�X

∗� ·�� 	 	 	 � yN �X∗� ·�� such that

�i�x
∗
i �X

∗
−i�=max

xi�0
�i�xi�X

∗
−i�� i= 1� 	 	 	 �M� (3)

yj�X
∗� ����� ∈ argmax

yj�0

j�yj� Y−j �X

∗� ������X∗� ������

j = 1� 	 	 	 �N � (4)

and �y1�X
∗� ������ 	 	 	 � yN �X∗� ������ is the Nash-Cournot

equilibrium among the followers for aggregate leader sup-
ply X∗ and realized inverse demand p�q� �����.

Herein, we assume that ���� is a continuous random
variable with density function ��t� and supporting set � .
Hence, the objective functions of leaders and followers can
be rewritten as

�i�xi�X−i�=
∫
�
xip�xi +X−i + Y �xi +X−i� t�� t���t�dt

−Ci�xi�� i= 1� 	 	 	 �M� (5)

and


j�yj� Y−j �X� t�= yjp�X+ yj + Y−j � t�− cj�yj��

t ∈� � j = 1� 	 	 	 �N 	 (6)

2.2. Assumptions and Preliminary Results

In this section, we first state a number of standard assump-
tions from the literature, and then in Proposition 2.6 we
show that, under these assumptions, there exists a unique
follower Nash-Cournot equilibrium.

Assumption 2.2. The cost function of each follower (cj�q�
for j = 1� 	 	 	 �N ) is twice continuously differentiable and
its derivatives satisfy c′

j �q�� 0 and c′′
j �q�� 0 for q � 0.
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This assumption requires that the cost function of each
follower be nondecreasing, convex, and sufficiently smooth.
This is also assumed in Sherali et al. (1983) and De Wolf
and Smeers (1997).

Assumption 2.3. The inverse demand function p�q� t� sat-
isfies the following�
(i) p�q� t� is twice continuously differentiable in q and

p′
q�q� t� < 0 for q � 0 and t ∈� ;
(ii) p′

q�q� t�+ qp′′
qq�q� t�� 0 for q � 0 and t ∈� .

Note that Assumption 2.3 holds, for example, for a
random linear inverse demand function p�q� t� = ��t� −
��t�q with ��t�� � → � and ��t�� � → � such
that ��t����t� > 0 for all t ∈ � , where the condition
��t����t� > 0 implies that when the total supply is zero,
the price is positive, and that the inverse demand function
is strictly decreasing in the total supply. It is easy to show,
on the other hand, that Assumption 2.3 (ii) does not hold
in general for the isoelastic demand function. The linear
inverse demand function also satisfies all other assumptions
required in our analysis. This, together with its tractabil-
ity, makes the linear inverse demand function appropriate
for our analysis. Note that a worrying feature of the linear
inverse demand function is that, for each realization t of the
random variable ����, the associated inverse demand func-
tion p�q� t� might take negative values for large aggregate
supply q. This, however, is not a serious concern in practice
because leaders and followers are unlikely to choose supply
quantities that may lead to negative prices under certain sce-
narios. In fact, in our numerical results the price is positive
under every scenario for all equilibria we have computed.
Finally, note that all previous works in the literature assume
linear inverse demand functions with only additive noise in
their analysis (Sherali 1984, De Wolf and Smeers 1997, Xu
2005); that is, they all assume that � is deterministic. Thus,
our assumptions on the linear inverse demand function are
weaker than those made previously in the literature.
Assumption 2.3 is similar to the assumptions used by

Sherali et al. (1983) and De Wolf and Smeers (1997), with
the main differences derived from our using a continuous
distribution for the demand uncertainty. To better understand
this assumption, consider a monopoly market with an extra-
neous supply K � 0. If the monopolist supply is q, then
its revenue at demand realization ����= t is qp�q +K� t�
and its marginal revenue is p�q + K� t� + qp′

q�q + K� t�.
The rate of change of this marginal revenue with respect to
an increase in the extraneous supply K is p′

q�q + K� t�+
qp′′

qq�q + K� t�. Assumption 2.3 (ii) implies that this rate
is not positive when K = 0 for any t ∈� . In other words,
any extraneous supply will potentially reduce the monopo-
list marginal revenue at any demand realization. See Sherali
et al. (1983) for a similar explanation for the deterministic
model. This assumption is used in Xu (2005) to prove the
strict concavity of the revenue function. For convenience,
we review this result here.

Lemma 2.4 (Xu 2005, Proposition 2.4). Under Assump-
tion 2.3,
(i) for fixed K � 0,

p′
q�q+K�t�+qp′′

qq�q+K�t��0 for q�0� t∈� � (7)

(ii) qp�q + K� t� is strictly concave in q for q � 0,
t ∈� .

Note that the strict concavity of qp�q+K� t� is not suffi-
cient to ensure the boundedness of its maximizer for K > 0,
which is needed to prove the existence of a follower Nash-
Cournot equilibrium. To address this issue, we make one
more assumption.

Assumption 2.5. For each follower (j = 1� 	 	 	 �N ),
there exists a capacity limit yuj such that c′

j �yj� �

p�yj� t� for yj > y
u
j � t ∈� .

The assumption implies that even if the jth follower was
a monopolist, its marginal cost above the capacity limit yuj
would exceed any possible market price. Thus, none of
the followers would optimally choose to supply a quan-
tity beyond its capacity limit yuj . See a similar assump-
tion in Sherali et al. (1983) and a discussion therein, and
De Wolf and Smeers (1997). We are now ready to establish
the existence and uniqueness of the follower Nash-Cournot
equilibrium.

Proposition 2.6. Under Assumptions 2.2, 2.3, and 2.5, the
following hold�
(i) For j = 1� 	 	 	 �N , 
j�yj� Y−j �X� t� is concave in yj

for yj in �0� y
u
j , and it has a unique global maximizer with

respect to yj .
(ii) The follower Nash-Cournot equilibrium problem (4)

can be reformulated as a complementarity problem

0� y ⊥G�X�y� t�� 0� t ∈� �

where

G�X�y� t� �= −p�X+ Y � t�e−p′
q�X+ Y � t�y+�c�y��

e = �1� 	 	 	 �1�T , and �c�y� �= �c′
1�y1�� 	 	 	 � c

′
N �yN ��

T .
Moreover, for fixed X � 0 and t ∈ � , the complementar-
ity problem has a unique solution �y1�X� t�� 	 	 	 � yN �X� t��,
which is a follower Nash-Cournot equilibrium. Further-
more, yj�X� t� ∈ �0� yuj  for j = 1� 	 	 	 �N .
(iii) For t ∈ � and X � 0, �y1�X� t�� 	 	 	 � yN �X� t�� is

piecewise smooth with respect to X.

Proof. Observe that the decision problems of the follow-
ers depend only on the aggregate supply of the leaders.
From the followers’ perspective, X is a constant regardless
of whether it comes from the decision of a single leader or
from those of several leaders. Consequently, the result fol-
lows straightforwardly from Propositions 2.4, 2.6, and 3.3
in Xu (2005), where a stochastic single-leader Stackelberg-
Nash-Cournot equilibrium model is considered. �
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A couple of remarks on Proposition 2.6 are in order.
First of all, note that the result follows in a straightforward
manner from the analysis in Xu (2005) regarding the model
with a single leader. In Xu (2005), the follower Nash-
Cournot equilibrium problem was reformulated as a non-
linear complementarity problem, and the properties of the
equilibrium were investigated by studying the properties of
the solution to the complementarity problem. This approach
to analyze the problem differs from the approaches used
in the literature (Sherali 1984, De Wolf and Smeers 1997),
although reformulating an oligopoly game as a complemen-
tarity problem is a well-known technique (Ferris and Pang
1997). Second, from part (iii) of the proposition, it is clear
that Y �·� t� is also piecewise smooth. At a point X where
Y �·� t� is not differentiable, we consider the Clarke subdif-
ferential (Clarke 1983). Recall that for a locally Lipschitz
continuous function h� �n → �, the Clarke subdifferential
of h at z ∈�n is

�h�z� �= conv
{

lim
zk∈Dh� zk→z

�h�zk�
}
�

where conv denotes the convex hull and Dh denotes the
set of points near z at which h is differentiable. A sim-
ple example is h�z� = �z�, which is differentiable every-
where except at z = 0. Using the definition of the Clarke
subdifferential, we obtain �h�0� = conv�−1�1� = �−1�1.
In our context, because Y �·� t� is piecewise smooth, then
�XY �X� t� is no more than the convex hull of its left and
right derivatives at point X, which is a closed interval.

3. Differentiability of the Leader
Expected Profit

In this section, we show that the objective function of each
leader (that is, its expected profit) is twice continuously
differentiable with respect to its own supply level. In the
deterministic model, the objective function of each leader
(that is, its profit) is not continuously differentiable every-
where (Sherali 1984). The nondifferentiability at a certain
supply level xi means that the marginal profit changes dis-
continuously when the leader’s supply reaches the level xi.
This discontinuity occurs at aggregate leader supply lev-
els for which the marginal profit of one of the followers
turns to zero. For aggregate leader supply levels above this
point, the aforementioned follower optimally decides to exit
the market, and this generates a discontinuity in the leader
profit. Needless to say, a leader must take this nondifferen-
tiability into account when making decisions. In this sec-
tion, we show that for the stochastic model, follower exits
at some realizations of the demand function may not be
significant enough to cause the nondifferentiability of the
leader expected profit.
We focus on the differentiability with respect to xi of the

ith leader objective function

�i�xi�X−i� �=
∫
�
�xip�xi +X−i + Y �xi +X−i� t�� t�

·��t�dt−Ci�xi��

where Y �xi + X−i� t� = ∑N
j=1 yj�xi + X−i� t� and y�xi +

X−i� t� is the followers’ equilibrium; that is, the solution to
the complementarity problem 0� y ⊥G�xi +X−i� y� t�� 0
with t ∈ � . From the definition of �i�xi�X−i� and our
assumptions on Ci�xi� and p�q� t�, we observe that the
only possible source of nondifferentiability is the function
Y �xi + X−i� t�, which is defined implicitly as the solu-
tion to a complementarity problem. Note that at a point X
where Y �X� t� is differentiable, we have by the chain rule
that Y ′

xi
�xi + X−i� t� = Y ′

X�xi + X−i� t�. Also, at a point X
where Y �X� t� is not differentiable, we have that �Yxi �xi +
X−i� t�= �YX�xi +X−i� t�. Thus, to characterize the differ-
entiability of Y �xi +X−i� t� with respect to xi, it is enough
to study the differentiability of the function Y �X� t� with
respect to X. In this section, we show that Y �X� t� is twice
piecewise continuously differentiable with respect to X, and
that for every value of X there are only a finite number of
values of t for which Y �X� t� is nondifferentiable. Because
Y �X� t� = ∑N

j=1 yj�X� t�, it is enough to characterize the
properties of yj�X� t� for j = 1� 	 	 	 �N .
We show in Lemma 3.3 that yj�X� t� is piecewise twice

continuously differentiable and nonincreasing in X as well
as globally Lipschitz continuous under certain conditions.
First, we state two assumptions that we use to prove the
result.

Assumption 3.1. The inverse demand function and the
leader and follower cost functions satisfy the following:
(i) cj�yj�, j = 1� 	 	 	 �N , is twice continuously differen-

tiable on �0� yuj  and there exists a positive constant � > 0
such that for j = 1� 	 	 	 �N ,

−p′
q�q� t�+ c′′

j �yj�� � ∀q � 0� t ∈� � yj ∈ �0� yuj 	
(ii) There exists a function L1�t� > 0 with

supt∈� L1�t� <
 such that

max��p′
q�q� t��� �p′′

qq�q� t��� < L1�t� ∀q � 0� t ∈� 	

Note that Assumption 3.1 (i) and (ii) hold, for example,
for convex follower cost functions and random linear
inverse demand function p�q� t� = ��t� − ��t�q, where
��t�� � →� and ��t�� � →� are such that ��t����t� > 0
for all t ∈ � and supt∈� ��t� < 
. The condition that
supt∈� ��t� <
 holds whenever � is a continuous function
and t has bounded support set � .

Assumption 3.2. For each leader (i = 1� 	 	 	 �M),
there exists a capacity limit xui such that C ′

i �xi� �

p�xi� t� for xi > x
u
i � t ∈� 	

This assumption implies that there is an implicit capac-
ity limit for the leaders. The assumption is reasonable from
a practical perspective because every real-world firm has a
limited capacity as a result of either the economic limita-
tions of its production technology or of regulatory restric-
tions. We will use this assumption also in our discussion on
existence and uniqueness of SMS equilibrium in the next
section.
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Lemma 3.3. Under Assumptions 2.2, 2.3, 2.5, 3.1, and 3.2,
the following hold:
(i) �XY �X� t�⊂ �−1�0 for X � 0.
(ii) yj�X� t�, j = 1� 	 	 	 �N , is piecewise twice continu-

ously differentiable and nonincreasing in X for X � 0.
(iii) For almost every t ∈ � , yj�X� t� is globally

Lipschitz continuous with respect to X with an integrable
module; that is, there exists a function L2�t� such that

�yj�X�1�� t�− yj�X
�2�� t��� L2�t��X�1� −X�2��

∀X�1��X�2�
� 0�

where
∫
� L2�t���t�dt <
.

The proof of Lemma 3.3 is given in Appendix A of the
online supplement. A few comments are in order. Note that
at a point X where Y �X� t� is differentiable with respect
to X, �XY �X� t�= Y ′

X�X� t�. Thus, for convenience herein
we will use �XY �X� t� to denote both the derivative and
Clarke’s subdifferential. Also, note that from part (ii) of
Lemma 3.3 we know that yj�X� t� is nonincreasing in X,
and thus there exists a unique point, denoted by Xj�t�,
at which yj�Xj�t�� t� turns from strictly positive to zero as
X increases. In economic terms, this is the aggregate leader
supply for which the jth follower marginal profit becomes
zero. Mathematically, Xj�t� is a degenerate point of the
complementarity problem (20) because at this point, both
Gj�Xj�t�� and yj�Xj�t�� t� are zero. Note that yj�X� t� will
not be differentiable with respect to X at such a point if
its left derivative is different from zero. The fact that there
exists a unique point Xj�t� at which yj�Xj�t�� t� turns from
positive to zero will be instrumental to prove that the leader
expected profit is twice continuously differentiable.
We are now ready to prove the differentiability of the

leader expected profit. We need the following assumption.

Assumption 3.4. The following conditions hold�
(i) There exists L3�t�� 0 such that

∫
t∈� L3�t���t�dt <


and

max��p�q� t��� �p′′′
qqq�q� t��� �Y ′′

XX�X� t���� L3�t�

for all q such that 0� q �
∑M

i=1 x
u
i +∑N

j=1 y
u
j , t ∈ � , and

X such that Y ′′
XX�X� t� exists.

(ii) p�q� t� is twice continuously differentiable with
respect to q and t, and there exists a � > 0 such that
p′
t�q� t� > � and p′′

qt�q� t� � 0 for t ∈ � and q such that
0� q �

∑M
i=1 x

u
i +∑N

j=1 y
u
j .

Note that Assumption 3.4 (i) regarding the inverse
demand function is satisfied, for example, by a random lin-
ear inverse demand function p�q� t�= ��t�−��t�q, where
��t�� � →� and ��t�� � →� are such that ��t����t� > 0
for all t ∈ � and supt∈� ��t� < 
. Assumption 3.4 (ii)
implies that the linear inverse demand is strictly increas-
ing in t and that its cross-partial derivative is nonnegative.
This is satisfied, for example, by a random linear inverse

demand function with �′�t� > � and �′�t�� 0; that is, by a
random linear inverse demand function whose intercept is
strictly increasing in t, with first derivative bounded below,
and whose slope is decreasing in absolute value in t.

Theorem 3.5. Suppose that Assumptions 2.2, 2.3, 2.5, 3.1,
3.2, and 3.4 hold. Then, �i�xi�X−i� is twice continuously
differentiable with respect to xi for xi ∈ �0� xui .
Proof. We divide the proof in two steps: First, we show
that �i�xi�X−i� is once continuously differentiable with
respect to xi, and second, we show that its second derivative
is also continuous.
Step 1. �i�xi�X−i� is once continuously differentiable.

To show this result, we use Ruszczyński and Shapiro
(2003), Proposition 2, which for the reader’s convenience
we have restated in Appendix B of the online supplement
as Lemma B.1. From Lemma B.1, it follows that it suffices
to show that the function

v�xi� t� �= xip�xi +X−i + Y �xi +X−i� t�� t�

satisfies the following two conditions. First, v�·� t� is dif-
ferentiable at xi for almost every t, and second, v�·� t� is
globally Lipschitz continuous with an integrable module;
that is, there exists a function L4�t� > 0 such that∫
t∈�

L4�t���t�dt <
 (8)

and

�v�x�1�i �t�−v�x�2�i �t���L4�t��x�1�i −x�2�i �
∀x�1�i �x�2�i ∈ �0�xui 	 (9)

We prove these conditions in two separate steps.
Step 1.1. The function v�·� t� is differentiable at xi for

almost every t. Note that, for given X−i and xi, the only
values of t at which v�·� t� might not be differentiable with
respect to xi are points t at which the supply of one of the
followers yj�X� t� turns from being strictly positive to being
zero. These are the only points at which Y �X� t� might not
be differentiable with respect to X and thus v�·� t� might
not be differentiable with respect to xi. We now prove that
for given values of X−i and xi, there exists only a finite
number of points t at which the supply of one of the fol-
lowers turns from being strictly positive to zero.
Let Xj�t� be the value of X at which the supply of the

jth follower turns from being strictly positive to zero. Then,
it suffices to show that Xj�t� is strictly increasing in t. To
see this, note that if Xj�t� is strictly increasing in t, we then
have that for each value of X there are at most N different
values of t for which the supply of one of the followers
turns from being strictly positive to zero, where N is the
number of followers.
We now show that Xj�t� is strictly increasing in t. To see

this, first note that by the definition of Xj�t�, we have that
yj�Xj�t� − �� t� > 0 for small positive �. Then, because
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by Assumption 3.4 (ii) we have that p′
t > 0 and p′′

qt � 0,
it follows from Xu (2005), Proposition 3.4, part (iii) that
yj�X� t� is strictly increasing in t for X = Xj�t�− � pro-
vided that � > 0 is small enough.2 Moreover, because p′

t >
� > 0 and p′′

qt � 0, it follows from Xu (2005), Proposi-
tion 3.4, part (iii) that the subdifferential of yj�X� t� with
respect to t is bounded below by a constant positive num-
ber. Also, we know that yj�X� t� is continuous because,
by Assumptions 2.3 and 3.4, the random inverse demand
function is continuously differentiable in both X and t, and
hence yj�X� t� (the solution to the parametric complemen-
tarity problem 0� y ⊥G�xi +X−i� y� t�� 0) is continuous
in both X and t. Hence, we have by continuity that Xj�t�
must be strictly increasing in t.

Step 1.2. v�·� t� is globally Lipschitz continuous with
an integrable module. We have shown in Step 1.1 that
v�·� t� is differentiable at xi for almost every t. At a point
where Y is differentiable with respect to X, by the chain
rule and the fact that X ′

xi
= 1, we have that

v′
xi
�xi� t�= p�xi +X−i + Y �xi +X−i� t�� t�

+ xip
′
q�xi +X−i + Y �xi +X−i� t�� t�

· �1+ Y ′
X�xi +X−i� t��	

By Assumption 3.4, p�q� t� is bounded by L3�t�; and
by Assumption 3.2, xi is bounded by xui . By Assump-
tion 3.1 (ii), p′

q is bounded by L1�t�; and by Lemma 3.3 (i),
1+Y ′

X is bounded by 1. Therefore, v′
xi
�xi� t� is bounded by

L3�t�+ xui L1�t�. Let L4�t� �= L3�t�+ xui L1�t�. Then, L4�t�
satisfies (8). By the mean value theorem,

∣∣v�x�1�i � t�− v�x
�2�
i � t�

∣∣
�

∫ 1

0

∣∣v′
xi

(
x
�2�
i + ��x

�1�
i − x

�2�
i � t�

)∣∣∣∣x�1�i − x
�2�
i

∣∣d�
� L4�t��x�1�i − x

�2�
i �	

This shows (9). From Lemma B.1, it follows that

��i�
′
xi
�xi�X−i�=

∫
t∈�

v′
xi
�xi� t���t�dt−C ′

i �xi�	

Step 2. The second derivative of �i�xi�X−i� is also con-
tinuous. We first show that the second derivative exists, and
then we show that it is continuous.

Step 2.1. The second derivative of �i�xi�X−i� exists.
To show this, we again apply Ruszczyński and Shapiro
(2003), Proposition 2, which for the reader’s convenience
we have restated in Appendix B of the online supplement
as Lemma B.1. It suffices to show that v′

xi
�·� t� is differen-

tiable with respect to xi for almost every t ∈ � , and there
exists L5�t� > 0 such that

∫
t∈�

L5�t���t�dt <


and∣∣v′
xi
�x

�1�
i � t�− v′

xi
�x

�2�
i � t�

∣∣� L5�t��x�1�i − x
�2�
i �

∀x�1�i � x�2�i ∈ �0� xui 	
At a point where Y ′

X is differentiable with respect to X, we
have

v′′
xixi
�xi� t�= 2p′

q�X+ Y �X� t�� t��1+ Y ′
X�X� t�� t�

+ xip
′′
qq�X+ Y �X� t�� t��1+ Y ′

X�X� t�� t�

+ xip
′
q�X+ Y �X� t�� t�Y ′′

XX�X� t�	

Under the assumptions of this theorem, it is easy to derive
that

�v′′
xixi
�xi� t��� L5�t� �= 2L1�t�+ xui L1�t�+ xui L1�t�L2�t�	

Because L1�t� is bounded and L2�t� is integrable, then
L5�t� is integrable. The rest follows from the mean value
theorem and Lemma B.1. This shows that �i�xi�X−i� is
twice differentiable and

��i�
′′
xixi
�xi�X−i�

=
∫
�

[
2p′

q�X+ Y �X� t�� t��1+ Y ′
X�X� t�� t�

+ xip
′′
qq�X+ Y �X� t�� t��1+ Y ′

X�X� t�� t�

+ xip
′
q�X+ Y �X� t�� t�Y ′′

XX�X� t�
]
��t�dt−C ′′

i �xi�	

Step 2.2. The second derivative of �i�xi�X−i� is con-
tinuous. To show the continuity of ��i�

′′
xixi
�xi�X−i�, we note

that v′
xi
�·� t� is continuous on �0� xui  for almost every t ∈�

and v′′
xixi
�xi� t� is dominated by L5�t�, which is integrable.

By the Lebesgue dominated convergence theorem,

lim
z→xi

��i�
′′
xixi
�z�X−i�=

∫
�
lim
z→xi

v′′
xixi
�z� t���t�dt−C ′′

i �xi�

=
∫
�
v′′
xixi
�xi� t���t�dt−C ′′

i �xi�

= ��i�
′′
xixi
�xi�X−i�	

This completes the proof. �

4. Existence and Uniqueness
of Equilibrium

It is well known that a multiple-leader-follower Nash game
might not have an equilibrium; see, for example, Pang and
Fukushima (2005). Sherali (1984), however, showed the
existence and uniqueness of equilibrium for the determinis-
tic multiple-leader Stackelberg-Nash-Cournot model under
certain conditions. In this section, we prove the existence
and uniqueness of SMS equilibrium under conditions that
are either similar to or weaker than those used by Sherali
(1984).
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4.1. Existence

We start by showing that the expected profit function of a
leader is concave. Under certain conditions, Sherali (1984)
demonstrated the strict concavity of the profit of each leader
for the deterministic game. Here we show that this property
also holds for the stochastic case under similar or weaker
conditions. We then move on to investigate the existence
of SMS equilibrium.

Theorem 4.1. Assume that Y �X� t� is convex with respect
to X for all t ∈ � . Assume also that Assumptions 2.2, 2.3,
2.5, and 3.2 hold and that Ci�xi� is convex on �0� x

u
i  for i=

1� 	 	 	 �M . Then, �i�xi�X−i� is concave in xi for xi ∈ �0� xui 
and i= 1� 	 	 	 �N .

Proof. Under Assumptions 2.2, 2.3, 2.5, and 3.2, it follows
from Sherali’s work for the deterministic model (Sherali
1984, Lemma 1) that the function xip�xi + X−i + Y �xi +
X−i� t�� t� is concave with respect to xi for every t ∈ � .
Integrating this function with respect to t preserves this con-
cavity. Thus,

∫
� �xip�xi + X−i + Y �xi + X−i� t����t�dt is

concave in xi. Moreover, because Ci�xi� is assumed to be
convex, then we have that �i�xi�X−i� is concave in xi. �

Note that to show the concavity of the expected profit
of a leader, we have assumed that the follower aggregate
reaction function Y �X� t� is convex in X. This assump-
tion does not hold in general, but in the following propo-
sition we show that it holds under certain conditions such
as linearity of the inverse demand function and either con-
vex quadratic or symmetric follower cost functions. Sherali
showed similar results for the deterministic model (see
Sherali 1984, Theorem 3, and its corollary), but our results
are stronger in two senses. First, we allow for a gen-
eral (multiplicative) random linear inverse demand function
p�q� t�= ��t�−��t�q, while Sherali’s results hold only
for the additive random linear inverse demand function
p�q� t� = � − �q + t. Second, we allow for the follower
cost functions cj to be quadratic and possibly different for
each of the followers, while Sherali’s results hold only for
either linear or symmetric cost functions.

Proposition 4.2. Let p�q� t� be a random linear
inverse demand function p�q� t� = ��t� − ��t�q,
where ��t�� � →� and ��t�� � → � are such that
��t����t� > 0 for all t ∈ � , let cj�yj�, j = 1� 	 	 	 �N , be
convex functions, and let Assumptions 2.2, 2.3, 2.5, 3.1,
and 3.2 hold. Then, Y �X� t� is convex for X � 0 if one of
the following conditions holds�
(i) The follower cost functions (cj�yj�, j = 1� 	 	 	 �N )

are quadratic and convex (c′′
j �yj�� 0) and possibly differ-

ent for each follower.
(ii) The follower cost functions are convex and identical

(that is, cj�yj� = c�yj� for j = 1� 	 	 	 �N with c′′�y� � 0)
and c′′′�y�� 0.

The proof of Proposition 4.2 is given in Appendix A
in the online supplement. Now that we have established
the concavity of the expected profit of each leader, we are
ready to show the existence of SMS equilibrium.

Theorem 4.3. Suppose that the assumptions in Theo-
rem 4.1 hold. Then, there exists an SMS equilibrium.

Proof. The existence follows from Rosen (1965), Theo-
rem 1 because the expected profit of leader i ��i�xi�X−i��,
i= 1� 	 	 	 �M , is concave in xi for xi ∈ �0� xui . �

4.2. Uniqueness

To show uniqueness, we apply Theorem 2 in the paper by
Rosen (1965). Let the ith leader expected profit as a func-
tion of its own supply xi and the aggregate supply of the
rest of the leaders X−i be �i�xi�X−i�. Define the function

��x� r� �=
M∑
i=1

ri�i�xi�X−i��

where x = �x1� x2� 	 	 	 � xM� and r = �r1� r2� 	 	 	 � rM�.
According to Theorem 2 in Rosen (1965), if ��x� r� is
diagonally strictly concave for some r > 0, then the lead-
ers equilibrium x∗ = �x∗

1� x
∗
2� 	 	 	 � x

∗
M� is unique. Moreover,

Theorem 6 in Rosen (1965), gives a sufficient condition
for ��x� r� to be diagonally strictly concave. Concretely,
Rosen shows that if the Jacobian �xg�x� r� of the function

g�x� r� �=

⎛
⎜⎜⎜⎝

r1��1�
′
x1
�x1�X−i�

			

rM��M�
′
xM
�xM�X−M�

⎞
⎟⎟⎟⎠

is negative definite for all x ∈ �0� xu1  × �0� xu1  × · · · ×
�0� xuM, then ��x� r� is diagonally strictly concave, and
thus the leader’s equilibrium is unique.
In the following theorem, we give conditions under

which the Jacobian matrix �xg�x� r� corresponding to our
model is indeed negative definite, and thus there exists a
unique leader equilibrium.
We note that applying the uniqueness analysis in §3

of Rosen (1965) to our model requires the functions
�i�xi�X−i� to be continuously differentiable with respect
to xi—this assumption is stated in Rosen (1965, p. 523).
Hence, our smoothness analysis in §3 is what allows us to
apply Rosen’s results.

Theorem 4.4. Let the assumptions of Theorems 3.5
and 4.1 hold. Define

�i �=
∫
t∈�

[
p′
q�1+ Y ′

X�+ xip
′′
qq�1+ Y ′

X�
2 + xip

′
qY

′′
X

]
��t�dt

and

�i =
(∫

t∈�
p′
q�1+ Y ′

X���t�dt−C ′′
i �xi�

)
	

Suppose that there exists a constant vector r = �r1�
r2� 	 	 	 � rM� such that r > 0,

M∑
i=1

ri�i < 0� (10)
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and

M∑
i=1

ri�i +
√
M

M∑
i=1

r2i �
2
i + 2 max

i=1�			�M
ri�i < 0	 (11)

Then, there exists a unique SMS equilibrium.

The proof of Theorem 4.4 is given in Appendix A in the
online supplement. Note that Sherali (1984) established his
uniqueness result for the deterministic game under three
conditions (among others): (a) the demand function is linear
with a deterministic parameter �, (b) leaders are identical
(that is, they have identical cost functions), and (c) identi-
cal leaders make identical decisions. Our uniqueness result
requires weaker conditions because we allow � in the lin-
ear demand to depend on the random shock ����, and we
do not require conditions (b) or (c).
To see that our conditions are weaker than Sherali’s, we

first show that if conditions (a), (b), and (c) hold, then
conditions (10) and (11) hold. To see this, note that con-
dition (10) holds (with any r > 0) for the random lin-
ear inverse demand function p�q� t� = ��t�− ��t�q with
��t����t� > 0 for all t ∈ � . In particular, observe that
p′
q�1+ Y ′

X�+ xip
′′
qq�1+ Y ′

X�
2 + xip

′
qY

′′
X < 0 for all xi, X−i,

and t because p′
q < 0, p′′

qq = 0, 1+ Y ′
X > 0 by Lemma 3.3,

and Y ′′
X > 0 by Proposition 4.2. This gives �i < 0 for

all i, and hence (10) holds. Note that this also implies
that condition (10) holds for the linear inverse demand
function with deterministic �. Also, condition (11) holds
when identical leaders make identical decisions because
x1 = x2 = · · · = xM , and hence �1 = �2 = · · · = �M < 0; con-

sequently
∑M

i=1 �i+
√
M

∑M
i=1 �

2
i = 0. Moreover, for the lin-

ear demand function, we have that �i < 0 because p′
q < 0,

1+Y ′
X > 0 by Lemma 3.3, and C ′′ � 0 by the convexity of

the leader cost functions. This shows that Sherali’s condi-
tions (a), (b), and (c) imply (10) and (11). Finally, note that
conditions (10) and (11) might also hold in general for the
cases in which the leader cost functions are not identical,
or for the case where the leaders have identical cost func-
tions, but they might make different decisions. To see this,
simply note that conditions (10) and (11) do not require in
general �i or �i to be identical for i= 1� 	 	 	 �M .

5. Computing Equilibria
To compute the SMS equilibrium, our first step is to deal
with the expected value in the leader objective functions.
To do this, we propose a sample average approximation
(SAA) method to approximate the leader expected profits
and analyze the convergence of the solutions to the SAA
problems as the sample size increases.
For a fixed sample, the SAA problem is a deterministic

equilibrium program with equilibrium constraints (EPEC).
Our second step is to solve this deterministic EPEC. We
use a popular method initially proposed by Hu (2002) and
used by many others (e.g., Hu and Ralph 2007, Ehren-
mann 2004b, Leyffer and Munson 2005), which refor-
mulates the deterministic EPEC as a mixed nonlinear

complementarity problem, and then we use the commercial
solver PATH (Ferris and Munson 1998, Ralph 1994) to solve
this mixed complementarity problem.

5.1. Sample Average Approximations

SAA is a popular method in stochastic programming; see
Robinson (1996), Gürkan et al. (1999), and Shapiro (2003)
and the references therein. The basic idea behind the SAA
method is to approximate the expected value function by
the sample average of the random function. An advantage
of the SAA approach is that it requires only a sample
of ���� rather than the distribution of ���� as in other dis-
cretization methods. Samples of ���� could be obtained,
for example, from historical data or computer-based simu-
lations without the need to know the exact distribution of
the random variable ����.
Let �1� 	 	 	 � �k be an independent identically distributed

(i.i.d) sample of ����. We approximate the ith leader’s
decision problem by the following SAA problem:

min �ki �xi�X−i� �=
1
k

k∑
l=1

xip�X+Y �X��l���l�−Ci�xi�

s.t. xi∈ �0�xui 	
(12)

If �xk1� 	 	 	 � x
k
M� satisfies �ki �x

k
i �X

k
−i� = maxxi∈�0� xui  �

k
i ·

�xi�X
∗
−i� for i = 1� 	 	 	 �M� then we say �xk1� 	 	 	 � x

k
M� is a

stochastic multiple-leader Stackelberg-Nash-Cournot equi-
librium of the SAA problem (SAA-SMS equilibrium, for
brevity). It is not difficult to prove that under the conditions
of Theorem 4.3, an SAA-SMS equilibrium exists.
Our focus here is to investigate the convergence of a

sequence of SAA-SMS equilibria as the sample size k
increases. To simplify notation, let

fi�x1� 	 	 	 � zi� 	 	 	 � xM� �����

�= zip
(
zi +X−i + Y �zi +X−i� ������ ����

)−Ci�zi��

F �x� z� ����� �=
M∑
i=1

fi�x1� 	 	 	 � zi� 	 	 	 � xM� ������

and

��x� z� �= Ɛ�F �x� z� �����	

We first note that x∗ = �x∗
1� 	 	 	 � x

∗
M� is an SMS equilibrium

if and only if

��x∗� x∗�=max
z∈�

��x∗� z��

where� �= �0� xu1 × · · ·× �0� xuM. If the conditions of The-
orem 4.1 hold, then the function fi�x1� 	 	 	 � zi� 	 	 	 � xM� �����
is concave with respect to zi. Moreover, if the conditions
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of Theorem 3.5 hold, then ��x∗� z� is differentiable at x∗.
Therefore, x∗ is an equilibrium if and only if the first-order
optimality conditions hold:

0 ∈ �z��x∗� x∗�+�� �x
∗�� (13)

where �� �x
∗� denotes the normal cone of � at x∗; that is,

�� �x
∗� �= {

u ∈�M� uT �x′ − x∗�� 0 ∀x′ ∈�
}
	

From a numerical point of view, it might be difficult
and/or unnecessary to obtain an exact SMS equilibrium.
Hence, we are also interested in an approximate equilib-
rium defined as follows:

0 ∈ �z��x∗� x∗�+�� �x
∗�+��� (14)

where � is a small positive number and � denotes the unit
ball in �M ; that is, �= �x ∈�M such that �x� = 1�.
We now turn our attention to the SAA problem (12). Let

�k�x� z� �=
1
k

k∑
l=1

F �x� z� �l�	

Then, xk = �xk1� 	 	 	 � x
k
M� is an SAA-SMS equilibrium if and

only if

�k�x
k� xk�=max

z∈�
�k�x

k� z�	 (15)

If the conditions of Theorem 4.1 hold, then fi�x1� 	 	 	 �
zi� 	 	 	 � xM� ����� is concave with respect to zi. Moreover,
if the conditions of Lemma 3.3 hold, then fi is piecewise
twice continuously differentiable with respect to zi. Then,
xk is an SAA-SMS equilibrium if and only if

0 ∈ �z�k�x
k� xk�+�� �x

k�� (16)

where � denotes the normal cone of � at xk and �zFk
denotes the subdifferential of the concave function Fk with
respect to z; that is, if h�x� is a concave function, then
�h�y� is the set of vectors u such that

uT �z− y�� h�z�−h�y� ∀ z	
Note that the reason we have to consider subdifferential is
that �k�x

k� z� might not be differentiable at xk.
Theorem 5.1 gives two results regarding the convergence

of �xk� as the sample size k tends to 
. First, �xk� con-
verges to x∗ w.p.1. Second, �xk� converges at an exponen-
tial rate to an approximate equilibrium satisfying (14). The
proof is given in Appendix A in the online supplement.

Theorem 5.1. Suppose that the conditions in Theorem 4.4
hold and ���� has a bounded support set. If xk =
�xk1� 	 	 	 � x

k
M� is an SMS equilibrium of the SAA prob-

lem (12), then�
(i) with probability one the sequence �xk� converges to

the unique SMS equilibrium x∗,
(ii) with probability approaching one exponentially fast

with the increase of the sample size, the sequence �xk� con-
verges to an approximate SMS equilibrium satisfying (14).

5.2. Solving the Sample Average
Approximation Problem

The sample average approximation problem for the
ith leader is

max
xi

1
k

k∑
l=1

xip�X+ Y �X��l�� �l�−Ci�xi�

s.t. xi � 0�

(17)

where Y �X��l� is defined implicitly as the equilibrium for
the follower Nash-Cournot game given the aggregate sup-
ply of all leaders X and demand scenario �l. Note that
under Assumption 3.2 the maximizer of problem (17) lies
in the interval �0� xui . Thus, to simplify notation, we do
not explicitly include an upper bound xui for the variable xi
in problem (17). Moreover, from Proposition 2.6 we know
that Y �X��l�= eT yl�X��l�, where e is the N -dimensional
vector of ones and yl�X��l� is the solution to the non-
linear complementarity problem 0� yl ⊥G�X�yl� �l�� 0,
and G�X�y� �l�= −p�X+Y � t�e−p′

q�X+Y � t�y+�c�y�.
Thus, the ith leader problem can be written as the following
mathematical program with equilibrium constraints:

max
xi� y

l

1
k

k∑
l=1

xip�X+ Y l� �l�−Ci�xi�

s.t. 0� yl ⊥G�X�yl� �l�� 0 ∀ l�
xi � 0	

(18)

Moreover, this mathematical program with equilibrium
constraints can be reformulated as the following standard
nonlinear program:

max
xi� y

l

1
k

k∑
l=1

xip�X+ Y l� �l�−Ci�xi�

s.t. yl � 0 ∀ l�
G�X�yl� �l�� 0 ∀ l�
−yl G�X�yl� �l�� 0 ∀ l�
xi � 0�

(19)

where  represents the Hadamard (componentwise) prod-
uct. The KKT optimality conditions for this problem are:

1
k

k∑
l=1

[
p�X+ Y l� �l�+ xip

′
q�X+ Y l� �l�

]−C ′
i �xi�

+
k∑
l=1

�Til�G
′
X�l −

k∑
l=1

�Til y
l  �G′

X�l +�i = 0�

1
k
xip

′
q�X+ Y l� �l�e+ �G′

y�
T
l �il + i

− �il�G+ yl  �G′
y�l= 0 ∀ l�

0�G�X�yl� �l�⊥ �il � 0 ∀ l�
0� yl ⊥ il � 0 ∀ l�
0�−yl G�X�yl� �l�⊥ �il � 0 ∀ l�
0� xi ⊥�i � 0 ∀ i�
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where �G′
X�l = G′

X�X� y
l� �l� and �G′

y�l = G′
y�X� y

l� �l�.
To find an SMS equilibrium for the SAA problem, it is
enough then to compile these KKT conditions for all M
leaders and then solve the resulting mixed nonlinear com-
plementarity problem using a solver such as PATH (Ralph
1994, Ferris and Munson 1998). This methodology is sim-
ilar to that proposed by Hu (2002) and used by others for
solving deterministic equilibrium problems with equilib-
rium constraints (Hu and Ralph 2007, Ehrenmann 2004b,
Leyffer and Munson 2005).

6. Modeling Competition in
the Telecommunication Industry

We apply the proposed framework to model a recurrent
situation of competition in telecommunication markets. We
use the proposed computational approach to find equilibria
for this market. Finally, we perform a comparative static
analysis to study how economic variables such as the leader
and follower supply levels and profits, the market price,
the consumer surplus, and the social welfare depend on
parameters such as the number of leaders and followers,
the leader cost functions, and the uncertainty in the demand
function.
This section is divided into three parts. In the first part,

we describe the competition model. In the second part, we
discuss the parameters used for our computations. Finally,
in the third part, we discuss the numerical results.

6.1. Model

Assume that a new service technology is about to enter a
telecommunication market (for example, bandwidth). A few
companies (leaders) have no spare network capacity and
thus must decide whether to invest on expanding their net-
work capacity (or install a new network) and offer the new
service to the market. Because the network expansion pro-
cess is time consuming, these companies have to make a
decision in advance and thus know the demand function for
the new technology only in distribution. A few other com-
panies (followers) already have sufficient network capacity
installed to offer this technology and they just need to decide
how much of their capacity to re-allocate from other exist-
ing services to the new technology. Thus, followers have the
flexibility to wait until they observe the leaders supply deci-
sion as well as the realized demand function before deciding
how much of their network capacity to allocate to the new
service. This situation can be seen as one of a few compa-
nies that are established in the telecommunication market
(incumbents), and a few other companies that are consider-
ing entering this market (entrants) to offer the new service
technology but need to install their network capacity.3

This situation can be modeled as the stochastic multiple-
leader Stackelberg-Nash-Cournot model that we have ana-
lyzed in this paper. We assume a random linear inverse
demand function p�q� �� = ���� − ����q, where � is a
random variable. The follower cost functions are assumed

to be quadratic, cj�yj� = �jyj + �!j/2�y
2
j , where yj is the

network capacity allocated by the jth follower (incumbent)
to the new technology. This cost represents the opportunity
cost of allocating capacity to the new service technology
as opposed to previously existing technologies. The leader
cost functions are also quadratic, Ci�xi�= �ixi + �!i/2�x

2
i ,

where xi is the capacity of the network installed by the
ith leader (entrant). The leaders’ costs represent the instal-
lation cost associated with the new capacity and thus are
much larger, in general, than follower costs.

6.2. Parameterization

For simplicity of exposition, we assume a symmetric game.
We consider a base case with the following values of
the different model parameters. We assume that there are
two leaders (entrants) and two followers (incumbents). The
coefficients for the cost functions of the leaders are �i = 0	4
and !i = 0	4, and for the cost functions of the followers
are �j = 0	25 and !j = 0	25. This implies the total cost
of the leaders, which includes installation cost, is substan-
tially larger than that of the followers. For the linear inverse
demand function, we assume that the intercept is ���� =
1	5− � and the negative slope is �= 1	0. That is, for the
base case we assume that all the uncertainty in the demand
function arises from the intercept �. We assume that the
random variable � follows a truncated normal distribution
with zero mean, standard deviation of 0.25, and is truncated
at two standard deviations above and below the mean. For
the base case, we solve a sample average approximation
problem with 200 samples.
We then perform comparative static analysis with respect

to the number of leaders (M ranging from 1 to 15), the
number of followers (N ranging from 1 to 15), the leader
cost coefficients (�i equal to !i and ranging from 0.4
to 0.8), and the uncertainty in the demand function. Finally,
to illustrate the convergence properties of the SAA method-
ology, we solve problems with a number of samples rang-
ing from 5 to 500.
We must note that the quadratic cost functions and the

linear inverse demand function we use for the base case
and for all of our comparative static analysis satisfy the
assumptions made for our analysis in previous sections.
Thus, our theoretical results guarantee that there exists a
unique SMS equilibrium and that the solutions to the SAA
problems converge to the true unique equilibrium.

6.3. Numerical Results

We first solve the case corresponding to the base case
parameters given in §6.2. For the base case, the supply by
each leader is 0.208 and the average supply of each fol-
lower is 0.251. Also, each leader obtains an average profit
of 0.0253, whereas each follower obtains an average profit
of 0.0760.4 That is, for the base case, on average, the lead-
ers supply less and make less profit than the followers. The
reason for this is twofold: Leaders lack perfect information
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Figure 1. Comparative static analysis with respect to
the number of leaders.
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Notes. The horizontal axis gives the number of leaders ranging from 1
to 15. The vertical axis gives the leader production (circles and solid
line), average follower production (crosses and solid line), average price
(pluses and dashed line), average leader profit (circles and dotted line),
average follower profit (crosses and dotted line), average consumer surplus
(diamonds and dashed dotted line), and average welfare (triangles and
dashed dotted line).

on demand at the time when they make their decisions, and
they incur higher costs than the followers (because they
have to install their network capacity).
We perform comparative static analysis with respect

to the number of leaders, the number of followers, the
leader cost coefficients, and the uncertainty in the demand
function. For each of these parameters, we set all other
parameters to their base case values and then study how
the equilibrium changes when we vary the parameter under
study.
The results are given in Figures 1–3. Each figure depicts

the different values of the parameter under study on the hor-
izontal axis. The vertical axis depicts six different equilib-
rium variables: the supply of each leader (circles and solid
line), the average supply of each follower (crosses and solid
line), the average price (pluses and dashed line), the average
profit of each leader (circles and dotted line), the average
profit of each follower (crosses and dotted line), the aver-
age consumer surplus5 (diamonds and dashed dotted line),
and the average welfare6 (triangles and dashed dotted line).

Figure 1 depicts how the market equilibrium changes
when the number of firms potentially interested in entering
the market to offer the new service technology (i.e., the
number of leaders) increases from 1 to 15. Note that
the case with one leader corresponds to the stochastic
single-leader Stackelberg-Nash-Cournot model proposed by

Figure 2. Comparative static analysis with respect to
the number of followers.
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Notes. The horizontal axis gives the number of followers ranging from
1 to 15. The vertical axis gives the leader production (circles and solid
line), average follower production (crosses and solid line), average price
(pluses and dashed line), average leader profit (circles and dotted line),
average follower profit (crosses and dotted line), average consumer surplus
(diamonds and dashed dotted line), and average welfare (triangles and
dashed dotted line).

De Wolf and Smeers (1997) and studied by Xu (2005).
From the figure, we observe that when additional leaders
enter the market, the average supply of each of the two
followers decreases. Also, the supply of each of the leaders
decreases, but their total supply increases (because there are
more leaders in the market).7 As a result, the average total
supply of all firms (leaders plus followers) increases, and
consequently, the average market price decreases. Also, the
profit of each firm (leader or follower) decreases with the
presence of additional leaders, and the average consumer
surplus increases. Summarizing, the presence of additional
leaders (potential entrants) in the market increases compe-
tition and as a result the price for the new service tech-
nology decreases, leader and follower profits decrease, and
consumer surplus increases.
Figure 2 gives the results for the case where the number of

followers increases from 1 to 15. Note that the average sup-
ply of each follower and leader decreases with the presence
of additional followers. Moreover, the two leaders decide
not to supply the new service technology whenever there
are nine or more followers. Nonetheless, the average total
supply of all firms (leaders plus followers) increases when
there are more followers in the market, and thus the average
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Figure 3. Comparative static analysis with respect to
the leaders’ cost.
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Notes. The horizontal axis gives the leaders’ unit variable cost (�i equal
to !i and ranging from 0.4 to 0.8). The vertical axis gives the leader
production (circles and solid line), average follower production (crosses
and solid line), average price (pluses and dashed line), average leader
profit (circles and dotted line), average follower profit (crosses and dotted
line), average consumer surplus (diamonds and dashed dotted line), and
average welfare (triangles and dashed dotted line).

price decreases. As a result, consumer surplus and social
welfare increase sharply with the number of followers.
It is also interesting to compare the results for the case

where the number of leaders increases (Figure 1) to those
for the case where the number of followers increases (Fig-
ure 2). In both cases, the presence of additional firms in
the market (leaders or followers) increases competition and
thus leads to lower prices, higher consumer surpluses, and
lower profits for each individual firm. The figures, however,
demonstrate that increasing the number of followers has a
larger impact in competition than increasing the number of
leaders. To see this, note that when the number of followers
increases the price cuts are more substantial than when the
number of leaders increases.
There are two reasons why followers are more com-

petitive than leaders. First, followers have their capacity
already installed and thus face lower costs than the lead-
ers. Second, followers observe the realized demand func-
tion before they decide their supply quantities. Leaders, on
the other hand, only know the demand function distribu-
tion when they make their decisions. A consequence of the
higher competitiveness of followers is that when there are
nine or more followers in the market, leaders do not find
it profitable to enter the market at all, and thus they decide

to stay out of the market. When the number of leaders
increases up to 15, on the other hand, followers decide to
stay in the market.
Note that our model is the first in the literature that

allows a sensible comparison of the impact that increasing
the number of leaders and followers has on competition.
Concretely, unlike previous models in the literature (Sherali
et al. 1983, Sherali 1984, De Wolf and Smeers 1997),
our model considers both multiple leaders and stochastic
demand. These two aspects are necessary to carry out a fair
comparison of the impact on competition of increasing the
number of leaders and followers.
Figure 3 depicts how the equilibrium changes when the

leader cost coefficients increase (�i equal to !i and ranging
from 0.4 to 0.8). This represents an increase in the capacity
installation costs to supply the new service technology. As
these costs increase, the supply of each leader decreases,
and leaders decide not to enter the market for �i and !i
above 0.7. The average supply of each follower, on the
other hand, increases. But the average total supply decreases
and, as a result, the average price increases substantially.
Thus, while the profit of each leader decreases, the profit of
each follower increases substantially. The consumer surplus
decreases dramatically. Clearly, when the leaders’ costs are
very high, the leaders do not find it profitable to supply high
quantities (or even to enter the market), and thus the follow-
ers increase their profits by exercising their market power
and driving prices up.
We now perform comparative static analysis with respect

to the uncertainty in the demand function. We first consider
the case where, as in the base case, all the uncertainty in
the demand function originates from the intercept (����=
1	5−� and �= 1	0), but we study the effect of changing the
standard deviation of the random variable �� from 0 to 0.5.8

Note that the case with zero standard deviation corre-
sponds to the deterministic multiple-leader Stackelberg-
Nash-Cournot model of Sherali (1984).9 We study how the
value of the stochastic solution (that is, the percentage profit
loss incurred by a leader who ignores uncertainty) changes
when the standard deviation of � ranges from 0 to 0.5.10 We
observe that, as expected, the value of the stochastic solution
is zero for the case where demand is in fact deterministic,
�� = 0. But the value of the stochastic solution grows with
�� and is 4.93% for �� = 0	5. Thus, for the range of stan-
dard deviations considered, a leader might lose up to 5% of
its profits by ignoring demand.
From our comparative static analysis, we also observe

that market prices vary substantially for different realiza-
tions of the demand function. For example, the price for
the deterministic case �� = 0 is 0.567, but for the case with
�� = 0	25, market prices range between 0.386 and 0.762,
and for the case with �� = 0	5, market prices range between
0.142 and 0.959. Likewise, the market share of the two fol-
lowers is 70% for the deterministic case �� = 0, whereas it
ranges between 51% and 80% for the case with �� = 0	25,
and between 0% and 85% for the case with �� = 0	5. Our
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results confirm that ignoring uncertainty can lead to large
losses for the leaders and that the market structure might
change dramatically for different realizations of the demand
function.
We have also performed comparative static analysis to

check whether the insights discussed above are also robust
with respect to origin (intercept or slope) of the uncertainty
in the demand function. Specifically, we have considered
situations where the uncertainty in the demand function
arises from both the intercept and the slope. To do this,
we have considered the cases where ���� = 1	5 − "�
and �= 1	0−�1	01−"��, with �� = 0	25 and for values of
" = 0	01�0	26�0	51�0	76�1	01.11 Note that the case with
" = 1	01 is almost identical to our base case; that is, in this
case, almost all the uncertainty is associated with the inter-
cept of the demand function. For the case with " = 0	01,
on the other hand, virtually all the uncertainty is associ-
ated with the demand function slope.12 Other values of "
correspond to situations where part of the uncertainty orig-
inates from the intercept and part from the slope. Overall,
we have kept a similar “amount” of uncertainty by using
the parameter " to split the effect of the random variable �
between the intercept and the slope.
Our results (not reported in any figure, for brevity) show

that the main insights from our analysis in this section
are robust to whether the uncertainty originates from the
demand function intercept or slope. Concretely, we have
observed that most average equilibrium quantities (aver-
age leader and follower supply levels and profits, aver-
age market price, average consumer surplus, and average
social welfare) are relatively similar in equilibrium regard-
less of whether the uncertainty arises from the demand
function intercept or slope. We must note, however, that
the source of the demand function uncertainty (intercept or
slope) does make a difference to the equilibrium quantities
for different demand function realizations. For example, we
have observed that for the case with " = 1	01 (i.e., for
our base case), market prices range between 0.386 and
0.762, whereas for the case with " = 0	01, market prices
range only between 0.480 and 0.694. This is because inter-
cept variability affects prices equally at all supply levels,
whereas slope variability affects prices more substantially
for larger aggregate supply levels. Hence, although most
of the insights discussed in this section are robust to the
source of the uncertainty (intercept or slope), the equi-
librium quantities and, more specifically, the equilibrium
quantities across different demand function realizations,
differ substantially depending on the source of the uncer-
tainty (intercept or slope).
Finally, we also study how the SAA solutions change

when the number of samples ranges from 5 to 500. We
observe that the SAA solutions converge to the true equilib-
rium at a fast rate. In particular, for the number of samples
below 150, there is some degree of variability in the solu-
tions to the SAA problems, but the solutions to the SAA
problems with the number of samples on or above 200 are
practically identical.

7. Conclusion
We have studied the stochastic multiple-leader Stackelberg-
Nash-Cournot model, which is an extension of Sher-
ali’s deterministic multiple-leader model (Sherali 1984)
and De Wolf and Smeers’ stochastic single-leader model
(De Wolf and Smeers 1997). We have shown the existence
and uniqueness of equilibrium under conditions that are
either similar or weaker than those in the literature (Sherali
1984). We have also shown the twice continuous differen-
tiability of the leader objective function—a result that con-
trasts with the existing results for the deterministic model.
In addition, we have proposed a computational approach

to find equilibria based on the SAA method, and we have
shown that the solution to the SAA problems converges
to an approximate equilibrium to the true problem at an
exponential rate. The exponential convergence of the SAA
method for solving stochastic optimization problems has
been recently shown by Shapiro and Homem-de-Mello
(2000) and Shapiro (2003). But to the best of our knowl-
edge, our result is the first extension of these convergence
results to the case where the SAA method is applied to a
class of stochastic equilibrium programs with equilibrium
constraints.
Finally, we have applied the proposed model to inves-

tigate competition in the telecommunication industry. One
interesting economic insight from the comparative static
analysis is that the followers have an important competitive
advantage over the leaders because they incur substantially
lower costs and have perfect information on the demand
function. As a result, a sufficient number of followers in
the market might prevent leaders from entering the mar-
ket, whereas followers stay in the market even in situations
where there is a very large number of leaders.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
The following references are cited only in the electronic

companion: Artstein (1974), Artstein and Vitale (1975),
Murphy et al. (1982), Papageorgiou (1985), Patriksson and
Wynter (1999), Ralph and Xu (2005), Rockafellar and Wets
(1998), Rubinstein and Shapiro (1993), and Shapiro and
Xu (2008).

Endnotes
1. For computational purposes, we do not require that lead-
ers know the demand function distribution; we require only
that leaders can sample the demand function distribution.
2. Note that the analysis in Xu (2005), Proposition 3.4,
part (iii) is made under the assumption p′′

qt = 0, but it is
easy to see that yj�X� t� is increasing in t even for the
case where p′′

qt � 0. Also, Xu (2005), Proposition 3.4, part
(iii) is proven under the assumption that at least one of the
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followers supplies a strictly positive quantity, but this is
definitely the case at points X =Xj�t�−� with � > 0 small
enough.
3. We apply the term “leaders” to the entrants because they
lead the decision-making process. Concretely, the entrants
have to make their supply quantity decisions today. Incum-
bents, on the other hand, can wait to observe the entrants’
decisions and the realized demand function before making
their decisions, and thus they make their decisions at a later
stage than the entrants. In this sense, the entrants lead the
decision-making process.
4. Averages are taken with respect to the samples used in
the SAA problem, with 200 samples in the base case.
5. The consumer surplus per unit of product is the differ-
ence between the consumer willingness to pay and the price
paid.
6. The social welfare is the total firm profit plus the con-
sumer surplus.
7. Although total leader (follower) supply is not shown in
the figure, it can be inferred from the figure by multiply-
ing the supply of a single leader (follower) by the number
of leaders (followers), because our numerical example is a
symmetric game.
8. That is, � follows a truncated normal distribution with
zero mean, standard deviations of �� = 0	00–0	50, and
truncated at two standard deviations above and below the
mean.
9. Sherali (1984) gives an analytical solution to the
symmetric deterministic multiple-leader Stackelberg-Nash-
Cournot model. For our numerical experiments, we consider
the symmetric stochastic multiple-leader Stackelberg-Nash-
Cournot model, which, to the best of our knowledge, can
not be solved analytically.
10. To compute the value of the stochastic solution, we
first solve the problem with deterministic demand �� = 0
and thus determine the supply level of a leader for the
deterministic case xdet . We then compute the followers’
Nash-Cournot equilibrium for an aggregate leader supply
of X =Mxdet but with �� > 0. From this follower equi-
librium, we compute the corresponding market prices and
the resulting average profit of a leader who ignores uncer-
tainty and thus supplies xdet . This profit is then compared
to the optimal average leader profit obtained by the leaders
when they take uncertainty into account. For a discussion
of value of the stochastic solution, see Birge and Louveaux
(1997).
11. Note that because " > 0, �′��� > 0 for all cases con-
sidered. All other assumptions in our analysis in the pre-
vious sections are also satisfied by the demand functions
considered.
12. This case can also be interpreted as having uncertainty
in the demand elasticity because it is easy to see that the
smaller the value of � in the inverse demand function, the
larger the demand elasticity.
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