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Abstract Random search is a behavioral strategy used by organisms from bacteria to humans to

locate food that is randomly distributed and undetectable at a distance. We investigated this

behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described

nervous system. Here we formulate a mathematical model of random search abstracted from the

C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at

submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic

perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the

model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop

circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings

establish a unified theoretical framework for understanding C. elegans locomotion and a testable

neuronal model of random search that can be applied to other organisms.

DOI: 10.7554/eLife.12572.001

Introduction
Random search is an evolutionarily ancient set of foraging strategies that evolved as an adaptation

to environments in which prey items are undetectable at a distance and occur at unpredictable loca-

tions. Rather than attempting to exhaustively search a region of interest, the organism samples the

environment at randomly selected points. This is achieved by executing a series of straight-line

movements, called ’runs,’ terminated at random intervals by sampling episodes during which the

organism may or may not find prey. Sampling ends in a reorientation event, called a ’turn,’ such that

the next run is usually in a different direction from the preceding one. In optimal random foraging

strategies the probability distribution of run length is matched to the statistical distribution of iso-

lated food patches or prey items (Viswanathan, 2011), with power law distributions predominating
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when resources are sparsely distributed and exponential distributions predominating when resources

are densely distributed (Humphries et al., 2010; Sims et al., 2012; Humphries et al., 2012).

Random search has been documented in a wide range of species including microorganisms, nem-

atodes, insects, mollusks, fish, birds, and mammals including humans (Viswanathan, 2011;

Berg and Brown, 1972; Pierce-Shimomura et al., 1999). In humans this strategy is observed in

diverse contexts, from traditional hunter-gatherer societies (Brown et al., 2007; Humphries and

Sims, 2014) to technologically enhanced fishing industries (Bertrand et al., 2007). The formal simi-

larities between random search across widely diverse phyla and spatial scales (Viswanathan,

2011) may point to a common mechanism, even in organisms that are highly cognitive. Despite the

universality of random search, little is known about its neuronal basis, in part because of the difficulty

of recording and manipulating activity in the brain of an unrestrained animal while it explores a large

region of space.

The relatively small spatial scale of random search behavior in C. elegans, coupled with the sim-

plicity of its nervous system, provides a unique opportunity to identify the neuronal basis of random

search in this species. To the unaided eye, C. elegans search behavior consists of forward runs, each

terminated after a variable interval by a briefer period of reverse locomotion, which is also variable

in duration (Pierce-Shimomura et al., 1999; Zhao et al., 2003; Wakabayashi et al., 2004), with

apparently stochastic switching between these two behavioral states. Reversals are followed by

resumption of forward movement that frequently begins with a deep body bend. These bends are

highly variable in amplitude and lead to movement in a new direction. Thus, the sequence reverse–

forward–deep bend, called a ’pirouette’ (Pierce-Shimomura et al., 1999) is the fundamental turning

event in C. elegans random search, with functional analogies to tumbles in bacterial chemotaxis

(Berg and Brown, 1972). Careful inspection reveals a third state, called “pause,” in which locomo-

tion ceases for a fraction of a second or more (Croll, 1975; Shingai, 2000; Stephens et al.,

eLife digest An animal’s ability to rapidly and efficiently locate new sources of food in its

environment can mean the difference between life and death. As a result, animals have evolved

foraging strategies that are adapted to the distribution and detectability of food sources. Organisms

ranging from bacteria to humans use one such strategy, called random search, to locate food that

cannot be detected at a distance and that is randomly distributed in their surroundings. The

biological mechanisms that underpin random search are relatively well understood in single-cell

organisms such as bacteria, but this information tells us little about the mechanisms that are used by

animals, which use their nervous system to control their foraging behavior.

Roberts et al. have now investigated the biological basis for random search behavior in a tiny

roundworm called Caenorhabditis elegans. This worm forages for pockets of bacteria in decaying

plant matter and has a simple and well-understood nervous system. Roberts et al. used information

on how the cells in this worm’s nervous system connect together into so-called “neural circuits” to

generate a mathematical model of random searching.

The model revealed that the worm’s neural circuitry for random searching can be understood in

terms of two groups of neuron-like components that switch randomly between “ON” and “OFF”

states. While one group promotes forward movement, the other promotes backward movement,

which is associated with a change in search direction. These two groups inhibit each other so that

only one group usually is active at a given time. By adjusting this model to reproduce the behavioral

records of real worms searching for food, Roberts et al. could predict the key neuronal connections

involved. These predictions were then confirmed by taking electrical recordings from neurons. The

model could also account for the unexpected behavioral effects that are seen when a neuron in one

of these groups was destroyed or altered by a genetic mutation.

These findings thus reveal a biological mechanism for random search behavior in worms that

might operate in other animals as well. The findings might also provide future insight into the neural

circuits involved in sleep and wakefulness in mammals, which is organized in a similar way.

DOI: 10.7554/eLife.12572.002
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2008; Rakowski et al., 2013; Salvador et al., 2014). Thus, C. elegans locomotion consists of three

main behavioral states – forward, reverse, and pause – together with the transitions between them.

C. elegans subsists on a diet of bacteria that it finds mainly in rotting plant material (Frézal and

Félix, 2015). In the laboratory, search behavior is studied in worms foraging on agar plates contain-

ing one or more dense bacterial lawns, analogous to food patches in the ethological literature. Like

many other organisms, C. elegans can tune the spatial scale of random search to its physiological

state, the availability of food (Wakabayashi et al., 2004; Gray et al., 2005), and prior knowledge of

its distribution (Calhoun et al., 2014). The lowest values of search scale are observed during “crop-

ping,” (Jander, 1975) the exploitation of a dense food patch. In C. elegans, two substates of crop-

ping have been described: "dwelling," characterized by especially low crawling speed and frequent

(presumably short) reversals, and "roaming," characterized by somewhat higher speeds and less fre-

quent reversals. Transitions between dwelling and roaming, like the transitions between forward and

reverse locomotion, are stochastic (Ben Arous et al., 2009; Fujiwara et al., 2002; Flavell et al.,

2013). Intermediate values of search scale are observed during "local search" (Wakabayashi et al.,

2004; Hills et al., 2004) when, for example, the animal is suddenly transferred from a bacterial lawn

to a foodless region of the plate. The highest values of search scale are observed during “ranging,”

when food is exhausted, starvation sets in, and the need to find a new food patch becomes urgent

(Wakabayashi et al., 2004; Gray et al., 2005). Worms sometimes spontaneously leave a food patch

well before it is exhausted, with leaving rate inversely related to food quality and food density

(Shtonda and Avery, 2006; Harvey, 2009), which may reflect a trade-off between exploitation and

exploration (Bendesky et al., 2011).

At the heart of the C. elegans locomotion circuit are five pairs of premotor ’command’ interneur-

ons organized into two functional groups that promote forward and reverse locomotion, respectively

(Chalfie et al., 1985; Zheng et al., 1999; Stirman et al., 2010; Schmitt et al., 2012). The two

groups are reciprocally connected, and make output synapses onto distinct, non-overlapping sets of

motor neurons that control body-wall muscle. The locomotory state (forward or reverse) is believed

to be determined mainly by whichever set of motor neurons is more highly activated by input from

the command neurons (Kawano et al., 2011; Xie et al., 2013; Gao et al., 2015; Liu et al., 2014).

Command neuron activation depends upon influences that are both external and intrinsic to the

command neuron network, and appears to have a strong stochastic component that underlies

switching between forward and reverse locomotion. Some command neurons are tightly linked both

functionally and synaptically to upstream interneurons that also switch state stochastically in concert

and counterpoint to them (Gordus et al., 2015), providing a potential additional source of the sto-

chasticity on which random search depends. At least nine classes of chemosensory neurons and

twelve classes of upstream interneurons are required for normal regulation of the duration of for-

ward locomotion (Wakabayashi et al., 2004; Gray et al., 2005; Tsalik and Hobert, 2003; Fang-

Yen et al., 2015). Input from these neurons onto the command neuron network modulates the

mean run length and, thereby, the spatial scale of random search. Search scale also appears to be

modulated by neurons that release biogenic amines (serotonin, dopamine, and tyramine)

(Flavell et al., 2013; Hills et al., 2004; Bendesky et al., 2011) or peptides (Ben Arous et al., 2009;

Flavell et al., 2013; Gloria-Soria and Azevedo, 2008; Styer et al., 2008; Reddy et al., 2009;

Bhattacharya et al., 2014). These diverse signaling pathways may provide the means by which the

worm optimizes its search strategy in response to feeding history (Gray et al., 2005), the quality,

density and spatial distribution of food (Shtonda and Avery, 2006; Calhoun et al., 2015), and other

factors that constrain survival and reproduction (Gloria-Soria and Azevedo, 2008; Pujol et al.,

2001; Pradel et al., 2007; Lipton et al., 2004).

Although the neural circuitry for local search has been described in considerable detail, our

understanding of the system remains limited, partly for lack of key physiological data, but also for

lack of a model in which to interpret the data. Common sense suggests that the forward and reverse

command neurons should inhibit each other to minimize simultaneous occurrences of neuronal states

for incompatible behaviors (Zheng et al., 1999). A plausible anatomical substrate for such reciprocal

inhibitory connections between command neurons exists in the C. elegans connectome

(White et al., 1986), but anatomical data do not specify the signs or strengths of synaptic connec-

tions. A quantitative model that incorporates physiological properties of the command neurons and

their synaptic connections is needed to interpret experimental results, such as the unexpected

observation that silencing some of the reverse command neurons causes a reduction in forward
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dwell time, and conversely for forward command neurons (Rakowski et al., 2013; Zheng et al.,

1999). It is also needed to explain complex patterns of changes in dwell times observed across the

three locomotory states caused by introducing or eliminating tonic membrane conductances in the

command neurons, and to answer basic mechanistic questions about the control of C. elegans

locomotion.

At present, the experimental data are insufficient for creating a neuron-by-neuron model of the

command network that incorporates biophysical details such as synaptic and membrane conductan-

ces without introducing a heavy load of unconstrained parameters (Rakowski et al., 2013). Nor

would such a mechanistically detailed model necessarily provide the appropriate level of abstraction

in which to intuitively understand C. elegans search behaviors, including their strong stochastic com-

ponent. Instead, we have kept the level of biological detail to the minimum needed to predict the

statistical distributions of dwell times in forward, reverse and pause states, and other fundamental

aspects of the behavior. Each of the model’s three main assumptions remains within the bounds of

widely accepted experimental results; our mathematical analysis simply shows what follows necessar-

ily from these assumptions.

To provide an empirical basis for the model we quantified C. elegans search behavior in terms of

tangential velocity, defined as the speed and direction of worm’s movement along its sinuous trajec-

tory, which we recorded at higher resolution than previously possible. Behavioral data were then fit

to a four-state hidden Markov model in which each state corresponds to a unique pattern of activa-

tion across the command neurons. Importantly, rate constants governing probabilistic transitions

between states in the Markov model are expressed in terms of synaptic weights in an analytically

tractable version of the model. We were therefore able to validate the model by showing that it cor-

rectly predicts phenomena on which it was not fit, such as reciprocal inhibition between forward and

reverse command neurons in the biological network and the behavioral effects of perturbations

introduced by laser ablations and genetic mutations. Although the model is inherently probabilistic,

we found that it also makes accurate predictions concerning deterministic behaviors in C. elegans,

indicating a potentially high level of generality. The present findings thus establish a simple theory

of C. elegans locomotory control and provide a testable model of random search that can be

applied to other organisms.

Results
A neuronal model of random search in C. elegans is a theory of the relationship between activation

states of the command neurons and foraging behavior. Methods presently available for observing

neuronal activity in freely behaving C. elegans utilize calcium-sensitive probes that have insufficient

temporal resolution to observe the changes in neuronal activity associated with the rapidly changing

behavioral states, especially the frequent brief pauses that are an integral part of the behavior.

Therefore, as a proxy for command neuron state, we used the worm’s tangential velocity, defined as

the speed and direction of worm’s movement along its sinuous trajectory. We focused on tangential

velocity because in sinusoidal locomotion the net reactive forces produced by body-wall muscle con-

tractions acting against the substrate are tangential to the body surface (Gray et al., 2005). Tangen-

tial velocity therefore provides the most direct readout of which group of motor neurons and

command neurons (forward or reverse) is more active (Qi et al., 2013). Alternative measures of the

rate of translation such as centroid velocity (Pierce-Shimomura et al., 1999) or postural phase veloc-

ity (Stephens et al., 2011) have a less direct relationship to command neuron state because these

measures either depend in complex ways on the shape of the worm, or rely on a representation of

posture that ignores some of the thrust-generating components of the worm’s shape that come into

play unless the worm is moving along a fairly linear trajectory. To monitor tangential velocity as

directly as possible, we painted a microscopic black spot on the worm and used a motorized stage

controlled by a computer to keep the spot in the field of view (Figure 1A). The most common alter-

native method for measuring tangential velocity, tracking virtual points obtained by segmenting the

worm’s centerline, is subject to segmentation errors introduced by low contrast images of the

worm’s head and tail (see Cronin et al., 2005 ) which changes the distance between virtual points.

This method can also be compromised by dropped frames when the worm’s centerline crosses itself

during tight turns.

Roberts et al. eLife 2016;5:e12572. DOI: 10.7554/eLife.12572 4 of 41

Research article Computational and systems biology Neuroscience

http://dx.doi.org/10.7554/eLife.12572


At the start of a 10 min observation period an individual worm was transferred from a food-laden

culture plate to a bare agar surface devoid of overt sensory cues, thereby inducing a period of inten-

sive local search behavior (Jander, 1975; Hills et al., 2004). The (x, y)-coordinates of the centroid of

the spot were recorded with a temporal resolution of 33 ms (i.e., frame rate = 30 Hz) and a spatial

resolution of 0.5 mm that was limited mainly by the precision of the stage position encoder; the

Figure 1. Descriptive statistics of wild type worm tracks. (A) ðx; yÞ-coordinates of a worm during 10 min of foraging. Inset: Image of a worm showing the

black spot (arrow) used for optical tracking (scale bar = 200 mm). (B) The speed distribution computed from the distance moved between successive

video frames had a peak at 180 mm/s, which includes both forward and reverse locomotion. A second peak at 14 mm/s corresponds to pauses. The

decreased probability of observing speeds <14 mm/s (<0.47 mm/frame) is due to noise in the position measurement. (C) At least three time constants

were required to fit (red) the speed autocovariance function (black; grey shading shows ± 1 sem). (D) The worm’s heading remained nearly constant for

~10 s except for a transient peak at 1.4 s (!), which corresponds to the period of one half cycle of undulation during sinusoidal locomotion. The

dashed line shows random reorientation; shading shows ± 1 sem. (E) Example of vðtÞ showing periods of forward locomotion, reverse locomotion and

pauses of various durations. Upward triangles (~) mark forward-pause-forward (FPF) events; the downward triangle (!) marks a reverse-pause-reverse

(RPR) event. (F) Velocity distributions for the 5 wild type cohorts (5 colors) analyzed in this study. (G) Ensemble-averaged velocity during FPR transitions.

All FPR transitions in all wild type cohorts were aligned at the end of forward movement, grouped according to the duration of the pause (2–9 frames),

and averaged. Such transitions were defined using a threshold criterion of vj j < 50 mm/s to identify state P (Rakowski et al., 2013). Pauses lasting � 1

frame are not shown because of ambiguity in state identification; pauses lasting � 10 frames are omitted for clarity. (H) Identical to G except RPF

transitions are shown. (I) Cumulative probability distributions for dwell time in the pause state defined as in G and H for all FPR and RPF transitions of

duration >1 frame in wild type worms.

DOI: 10.7554/eLife.12572.003

The following figure supplements are available for figure 1:

Figure supplement 1. Optical tracking error.

DOI: 10.7554/eLife.12572.004

Figure supplement 2. The worm’s search behavior closely resembles a Brownian random walk on time scales longer than 10 s, but not on shorter time

scales.

DOI: 10.7554/eLife.12572.005
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optical tracking error was much smaller (Figure 1—figure supplement 1). A spatial resolution of

approximately 0.5 mm amounts to an approximately 10-fold improvement over previously published

tracking systems (Kocabas et al., 2012); thus worm speed (Figure 1B) could be extracted with

unprecedented accuracy. For statistical analysis, worms were grouped into cohorts having the same

genotype or neurons ablated (17–31 worms per cohort), which had been reared together and tested

in parallel as young adults within the same 2–3 day period. This approach yielded a comprehensive

data set containing a total of 8.3 million position measurements from 501 individuals in 20 cohorts.

Model-independent identification of locomotory states
Figure 1A– D describes important features of search behavior obtained by regarding the worm as a

point moving in an external reference frame (allocentric coordinates) without regard to the orienta-

tion of the body axis. The speed distribution was bimodal (Figure 1B) with a broad peak around 180

mm/s that includes both forward and reverse motion, and a narrower peak near zero that corre-

sponds to pauses. The speed autocovariance function had multiple exponential components

(Figure 1C), suggesting at least three locomotory states. The average change in heading angle

(jD’j), plotted as a function of the intervening time interval (Figure 1D), showed that worms main-

tained a nearly constant heading for up to 10 s (Stephens et al., 2010; Peliti et al., 2013), but reor-

iented randomly within ~30 s, establishing the shortest time scale over which the behavior can be

considered a Brownian random walk (Figure 1—figure supplement 2), the simplest form of random

search. On shorter time scales the path takes on the character of a truncated Lévy flight

(Mantegna and Stanley, 1994).

For more detailed analysis we distinguished forward from reverse movement by visual inspection

of the recorded videos, and defined velocity, vðtÞ, to be a signed scalar value that denotes the speed

of movement along the worm’s track in the direction of the head (+) or tail (-) (Figure 1E; see Materi-

als and methods). The probability distribution of vðtÞ (Figure 1F) showed two broad peaks that cor-

respond to forward and reverse movement, and a narrow third peak centered at zero that

corresponds to pauses. For the initial analysis we defined pauses using a fixed speed threshold of

0.05 mm/sec (Rakowski et al., 2013). Pauses occurred most frequently as transient interruptions of

forward locomotion, causing the worm to stutter as it moves (Figure 1E; Video 1); stuttering also

occurred, albeit less frequently, during reverse locomotion (Figure 1E; Video 2). Distinct pauses

were also observed during transitions from forward to reverse (Figure 1G; Video 3) and from

reverse to forward (Figure 1H; Video 4). Most pauses lasted longer than one video frame, indicating

the presence of a locomotory state having a detectable dwell time; thus pauses were not merely

zero crossings in plots of velocity versus time. We found that pauses during forward to reverse tran-

sitions were on average longer in duration than pauses during reverse to forward transitions

(Figure 1I; p<10–5 ; Mann-Whitney U-test). These findings are consistent with the predictions of the

model presented below, which uses a probabilistic criterion rather than a fixed velocity threshold to

identify pauses.

The stochastic switch model
Based on the results presented in Figure 1 and previous studies noted below, we propose a minimal

model for the control of random search behavior that involves two opposing neuron-like “units” that

can exist in four distinct states corresponding to forward locomotion, reverse locomotion, and two

pause states. This model differs from a previous model that represents the worm as a point in

“shape space” (Stephens et al., 2008) in that here velocity is measured directly by observing the

motion of a point on the body surface relative to the substrate, rather than indirectly by the tempo-

ral progression of shape changes. It also differs from previous models (Rakowski et al., 2013;

Zheng et al., 1999; Wicks et al., 1996; Kunert et al., 2014) by representing changes in locomotory

state as probabilistic transitions in a Markov process.

Ablation of individual premotor interneurons (Chalfie et al., 1985) has led to the hypothesis that

the direction of locomotion is controlled by a network comprising five pairs of premotor command

interneurons organized into two functional groups that promote forward and reverse locomotion,

respectively. Although the anatomical pattern of synaptic connectivity among these interneurons has

been established (White et al., 1986) (Figure 2A), this information does not yield an intuitive expla-

nation of how the direction of locomotion is regulated. Nor, in our view, does the present state of

Roberts et al. eLife 2016;5:e12572. DOI: 10.7554/eLife.12572 6 of 41

Research article Computational and systems biology Neuroscience

http://dx.doi.org/10.7554/eLife.12572


the anatomical connectivity provide the basis for

a neuron-by-neuron simulation of the network

(but see Rakowski et al., 2013), as neither signs

nor physiological strengths (weights) of synapses

in C. elegans can be inferred reliably from ana-

tomical structure or neurotransmitter type, and

almost nothing is known about the intrinsic

membrane currents of these neurons or how

they shape the input-output function of individ-

ual command neurons.

To establish a mathematically tractable framework for understanding how the command network

functions during search behavior, we created a minimal model based on three simplifying assump-

tions, each of which was biologically motivated. (i) Command neurons act like binary units (Hop-

field, 1982). This assumption was based on voltage recordings from command neurons in which we

regularly observed two stable membrane potentials with rapid transitions between them (Figure 2B;

also see Kato et al., 2015). It is also supported by the observation of a bimodal distribution of cal-

cium activity in AVA neurons and their upstream partners AIB and RIM (Gordus et al., 2015), and

the report of distinct up and down states in voltage recordings from motor neruons (Liu et al.,

2014). (ii) Command neurons switch state stochastically. This assumption was based on the observa-

tion that C. elegans locomotory behavior has a strong stochastic component, with exponentially dis-

tributed dwell times in forward and reverse states (Pierce-Shimomura et al., 1999; Zhao et al.,

2003; Flavell et al., 2013; Gordus et al., 2015; Stephens et al., 2011). (iii) Command neurons

within the forward pool are co-active, as are command neurons in the reverse pool. This assumption

is based on simultaneous calcium imaging data from multiple command neurons in freely moving

Video 1. Forward-Pause-Forward transition. The worm

is crawling on a foodless agar plate. The microscope

stage moves continuously to keep the tracking spot

near the center of the frame. Stage movement can be

assessed by monitoring the white streaks in the

background, which are segments of the worm’s track at

earlier times. Behavioral state is indicated in the upper

left corner of the frame. The indicated behavioral

transition is shown at normal speed, and slowed down

by a factor of 5. The worm is paused when the tracking

spot is stationary relative to the streaks.

DOI: 10.7554/eLife.12572.006

Video 2. Reverse-Pause-Reverse transition.

DOI: 10.7554/eLife.12572.007

Video 3. Forward-Pause-Reverse transition.

DOI: 10.7554/eLife.12572.008

Video 4. Reverse-Pause-Forward transition.

DOI: 10.7554/eLife.12572.009
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Figure 2. Assumptions with supporting data for the Stochastic Switch Model. (A) Connectivity of forward and reverse command neurons. Arrows with

single heads are monosynaptic connections inferred from the C. elegans connectome (White et al., 1986; Varshney et al., 2011) line thickness is

proportional to the number of presynaptic specializations seen in the reconstruction of each pairwise connection. Open, double-headed arrows indicate

synaptic pathways from or to the indicated pool of neurons outside the network. (B) Voltage recording from the command neuron AVA in the absence

of injected current. In this neuron, quasi-stable membrane potentials are seen at -17 and -32 mV. These results differ from previously published AVA

recordings, which were made in the presence of hyperpolarizing current (5–10 pA) that kept the membrane potential near -55 mV (Lindsay et al.,

2011). (C) Neuronal representation of the Stochastic Switch Model. Forward and reverse command neurons are represented as single binary neuron-

like units F and R, respectively. Arrows depicting cross connections (wFR, wRF) represent functional (net mono- and polysynaptic) connections

between forward and reverse units. Self-connections (wFF, wRR) represent synaptic connections between neurons comprising a given unit, voltage

dependent currents in these neurons, and polysynaptic recurrent pathways involving non-command neurons. Downward arrows (hF, hR) represent the

Figure 2 continued on next page
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animals which suggest that the activity of neurons within the reversal pool is tightly correlated

(Schrödel et al., 2013; Prevedel et al., 2014). Additionally, neurons in opposing groups are likely

to be reciprocally active, as indicated by simultaneous calcium imaging from AVA and AVB

(Prevedel et al., 2014; Faumont et al., 2011), as well as AVE and AVB (Kawano et al., 2011). A

fourth assumption, concerning the relationship between neuronal states and behavioral states, is

introduced below.

The three simplifying assumptions, together with the anatomical data (White et al., 1986),

lead to a model that has two binary stochastic elements, F and R, and six synaptic weights

(Figure 2C). Each type of weight has a specific interpretation. The cross-connections (wFR, wRF)

represent mono- and polysynaptic connections between command neurons in different groups.

The self-connections (wFF, wRR) represent connections between command neurons in the same

group, including recurrent polysynaptic pathways involving neurons outside the command net-

work. Self-connections also represent possible intrinsic voltage dependent currents within the

command neurons, such as C. elegans plateau currents (Mellem et al., 2008). The pair of con-

nections originating from an For R unit can have either the same sign or different signs. Allow-

ing a single unit to have opposing effects on different postsynaptic targets is justified by the fact

that synaptic weights in the model represent polysynaptic pathways, the effects of which can be

excitatory or inhibitory, and by the observation that some C. elegans neurons can monosynpati-

cally excite some postsynaptic neurons while inhibiting others (Chalasani et al., 2007). Two addi-

tional weights, hF and hR, represent inputs from sensory neurons, interneurons, neural

modulators, and any other sources outside the network (Gray et al., 2005; Fry et al., 2014),

plus intrinsic membrane conductances that produce sustained effects on membrane potential

(Zheng et al., 1999; Gao et al., 2015). The summed synaptic inputs onto F and R are, respec-

tively, SF tð Þ ¼ hF þ wFFbF tð Þ þ wRFbRðtÞ and SRðtÞ ¼ hR þ wRRbRðtÞ þ wFRbFðtÞ, where bFðtÞ

and bRðtÞ are the states of F and R at time t (1 = ON, 0 = OFF). The quantities hF and hR

were assumed to be constant during the 10 min observation period of local search behavior on a

bare agar surface.

State transitions of F and R were modeled as independent non-homogeneous Poisson processes

in which the transition rates are exponential functions of the summed synaptic input to the units, as

shown in Figure 2—figure supplement 1. Changes of the state of F and R can be regarded as

thermally-driven transitions across energy barriers of height proportional to SFðtÞ and SRðtÞ, respec-

tively. Inhibitory synaptic input increased the height of the barrier for OFFfiON transitions while

decreasing the height of the barrier for ONfiOFF transitions by the same amount; excitatory synap-

tic inputs had the opposite effect. The variable A (Materials and methods, Equations 26, 27) repre-

sents the fundamental timescale of the system, defined as the rate at which units F and R change

state when the summed synaptic input is zero. The present model is distinct from deterministic mod-

els of the command neuron network (Rakowski et al., 2013; Zheng et al., 1999; Wicks et al.,

1996; Kunert et al., 2014) in that it is inherently stochastic, like the behavior it is meant to predict.

In particular, the synaptic input to a unit does not immediately determine its state, but instead modi-

fies the transition rates between ON and OFF states.

Figure 2 continued

combined effects of input from presynaptic neurons, including sensory neurons, and neuromodulation. (D) Markov model representation of the

command neuron network. The color of a unit indicates its state of activation (red on, white off). In addition to the forward state F and the reverse state

R, there are two pause states, X and Y. Arrows, with their associated rate constants, indicate transitions in which a single unit changes state. Transitions

in which two units change state simultaneously have probability zero because single-unit transitions are assumed to be statistically independent. (E) The

most likely sequence of states in the hidden Markov model (computed using the Viterbi algorithm) for a representative data segment.

DOI: 10.7554/eLife.12572.010

The following figure supplements are available for figure 2:

Figure supplement 1. Effects of synaptic input on transition rates in stochastic units F and R.

DOI: 10.7554/eLife.12572.011

Figure supplement 2. Velocity distributions in forward, reverse and pause states.

DOI: 10.7554/eLife.12572.012

Figure supplement 3. Cumulative dwell time distributions in states F, R, X and Y.

DOI: 10.7554/eLife.12572.013
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The two binary units of the model can exist in four states (F, R, X, Y; Figure 2D), and provide the

basis for a hidden Markov model having eight transitions in which a single unit changes state. The

model was further constrained by the synaptic model, which allows the eight transition rate con-

stants to be specified by only six synaptic weights as shown in Equations 31–35 (Materials and

methods). A Markov model was adopted to represent the biological system because dwell times in

Markov states, like the observed dwell times in forward and reverse states (Zhao et al., 2003;

Wakabayashi et al., 2004), are exponentially distributed. A hidden Markov model was required

because, as noted above, states of command neurons cannot be observed directly in freely moving

animals, even using optical recording methods.

The fourth assumption is a particular mapping between the states of the two command units and

behavioral states of the worm. The command units, F and R, are intended to represent the two

pools of forward and reverse command neurons, respectively, such that the worm moves forward

when F is ON and R is OFF (state F), backwards when R is ON and F is OFF (state R), and pauses

when both F and R are OFF (state X). These associations between states of the model and activa-

tion states of the command neurons are well supported by previous experimental evidence, includ-

ing studies showing that genetic ablation or silencing of all command interneurons induces

prolonged pauses (Zheng et al., 1999; Kawano et al., 2011), but they also assume the major simpli-

fication that all command neurons in a given pool act together as a unit.

The model also permits a fourth state, in which F and R are simultaneously ON (state Y).

Whether the corresponding co-activation state of forward and reverse command neurons normally

exists with any significant probability remains to be shown, but it has been observed that their down-

stream targets, the forward and reverse motor neurons, can be active simultaneously, causing the

worm to pause (Kawano et al., 2011). Given the existence of gap junction synapses between the

main forward and reverse command neurons and their respective sets of forward and reverse motor

neurons, it is reasonable to suppose that forward and reverse command neurons are co-active when

their motor neurons are co-active. Thus, there is some evidence to designate state Y as a second

pause state, which we consider to be a working hypothesis. Together, states X and Y comprise the

phenomenological pause state denoted P. In what follows, we explore the logical consequences of

the model’s four assumptions; it remains to be shown experimentally how closely the states of the

model correspond to activity states of the command neurons.

We used a maximum likelihood method (Colquhoun and Hawkes, 1995) (Materials and methods)

to estimate the set of transition rate constants that had the highest probability of generating the

observed time series vðtÞ. Direct transitions between F and R, and between X and Y, were disallowed

because the assumed statistical independence of the two command units implies that the probability

of simultaneous transitions in F and R is vanishingly small. (Note, however, that the model does

allow transitions between any two states during the interval between successive video frames by

making two or more non-simultaneous transitions; see Equation 21). We first fit the velocity distribu-

tion for each cohort with three overlapping probability distributions corresponding to forward,

reverse and pause states (Figure 2—figure supplement 2), then searched for the set of transition

rate constants that maximized the likelihood of the observed vðtÞ given the velocity distributions.

The resulting rate constants were used to compute the most likely sequence of states via the Viterbi

algorithm (Rabiner, 1989; Viterbi, 1967). The agreement between observed velocity data and the

sequence of states shown in Figure 2E was typical of the entire data set.

Wild type locomotion
The maximum likelihood rate constants for 5 wild-type cohorts, together with the predicted state

probabilities and mean dwell times computed from them, are given in column A of Table 1. The

model’s predicted mean dwell time in the reverse state (dR ¼ 1.94 ± 0.04 s) agreed with previously

reported values (Zheng et al., 1999; Kawano et al., 2011). In contrast, the predicted mean dwell

time in the forward state (dF ¼ 5.33 ± 0.25 s) was smaller than previously reported when dwell time

was measured by eye (13–35 sec) (Zhao et al., 2003; Zheng et al., 1999; Brockie et al., 2001;

Ryu and Samuel, 2002) or by velocity threshold crossings (9–16 sec) (Rakowski et al., 2013;

Stephens et al., 2011). To determine whether this difference arose because we used a hidden Mar-

kov model rather than a fixed velocity threshold, we also identified states based on a fixed velocity

threshold of 0.05 mm/s, and calculated the resulting mean dwell times: dF;0:05 ¼ 1.86 ± 0.03

s; dR;0:05 ¼ 1.23 ± 0.02 s; dP;0:05 ¼ 0.14 ± 0.001 s. We attribute the short mean dwell times in state F
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that we observed using either the hidden Markov model or a fixed velocity threshold to the fact that

our tracking system is capable of revealing briefer visits to state P, which interrupt forward runs,

than previous methods. Ignoring transient interruptions of forward locomotion (i.e., FPF transitions)

and using the fixed velocity threshold of 0.05 mm/s yielded longer a mean forward dwell time of

9.13 ± 0.15 s, which matches the value obtained by others using the same threshold (8.98 ± 0.57 s)

(Rakowski et al., 2013). Predicted mean dwell times in the two pause states differed substantially

from each other (dX ¼0.44 ± 0.03 s, dY ¼ 0.21 ± 0.02). We assigned the long and short pause states

to X and Y, respectively, based on the idea that the energetically expensive state in which both units

are on should be relatively short-lived.

In previous work, transitions between locomotory states in C. elegans have been analyzed by

choosing a speed threshold to distinguish pause states from the movement states (Rakowski et al.,

2013; Salvador et al., 2014; Stephens et al., 2011). The choice of threshold is important because it

affects the measured dwell times, yet is necessarily arbitrary because the velocity distributions of the

states overlap (Figure 1F). The hidden Markov model used here replaces arbitrary thresholds with

empirically determined state transition rates (i.e., the set of rates that maximizes the probability of

the observed velocity time series), from which one can determine the sequence of states that is most

likely to have generated the data (the Viterbi algorithm). The hidden Markov model thus offers two

advantages: (1) it provides a statistical criterion for selecting the best parameter values and (2) it

takes into account the uncertainties in identifying the state of the system from velocity data.

Under the assumptions of the hidden Markov model the state of the system cannot be observed

directly because the velocity distributions overlap, making it impossible to test directly whether the

predicted state probabilities agree with the observed velocity data. Nevertheless, an important test

of the model can be obtained using the Viterbi algorithm to identify the most likely sequence of

states given the observed velocity data, from which the histogram of dwell times in each state can

be computed and compared to the exponential distribution predicted by the Markov model (Fig-

ure 2—figure supplement 3). The degree of agreement between the distributions shows that our

model provides a good description of the system.

The initial rationale for including two pause states in the hidden Markov model came from our

model-independent analysis of the tracking data (Figure 1I), which showed different dwell time dis-

tributions for pauses at FPR and RPF transitions. To test whether having two pause states yielded a

statistically significant improvement in the ability of the model to fit the data, we eliminated one of

the pause states and asked whether the resulting reduction in likelihood was greater than could be

attributed to the reduction in the number of free parameters (see Table 1). For this comparison we

constrained the transition rates into state Y to be extremely small (aFY ¼ aRY ¼ 10-10 s-1), effectively

eliminating state Y and reducing the number of free parameters from six to four. The reduction in

likelihood caused by eliminating one of the pause states was highly significant, and cannot be attrib-

uted simply to the elimination of two parameters (p<10-100; likelihood ratio test). Separately, we con-

sidered the most general one-pause state model, which allows direct transitions between states F

and R and has no constraints on the 6 transition rates other than that they are all �0. The fit of this

model (Table 1 column C) converged to nearly the same set of transition rates as the one-state

model described above (Model B). These comparisons show that our model with two pause states

and six free parameters (the six synaptic weights) provides a much better fit to the data than models

with only one pause state. We conclude that the tracking data contain a statistically significant signa-

ture of two distinct pause states. The model explains the observation that the pause dwell times dur-

ing FPR transitions are longer than during RPF transitions (Figure 1I) in terms of the different dwell

times in states X and Y (dX > dY), and the strong tendency to cycle clockwise through state space,

exiting from state F to state X and from state R to state Y as shown by the fate diagram (Figure 3).

It has been reported that pauses in C. elegans locomotion occur at specific points in “shape

space” (Stephens et al., 2011), suggesting the worm pauses in preferred postures. To investigate

this possibility, we analyzed worm tracks before and after pauses, inferring posture from the path of

the tracking spot. This inference is justified by the fact that on an agar surface the worm moves with-

out slipping, such that each segment of the body traces the trajectory of the one before it. Thus, the

path of the tracking spot leading up to the pause reveals the worm’s posture posterior to the spot

during forward locomotion, and anterior to the spot during reverse locomotion (Figure 4).

Plotting mean curvature versus distance along the track (Figure 4A) reveals only a weak tendency

to stop in a particular posture in state X (r = 0.14; Figure 4B). Nearly all of the transitions into state
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X were either stutters during forward locomotion (FXF transitions) or reversals (FXR transitions);

when these were analyzed separately, similarly weak postural preferences were found at FXF transi-

tions (r = 0.14) and FXR transitions (r = 0.14). A nearly identical result (r = 0.14 ) was obtained using

a fixed velocity threshold of 0.05 mm/s rather than the hidden Markov model to determine state.

For the latter case, in which there is only one pause state, we analyzed the posture at all FP transi-

tions, which almost always correspond to FX transitions in the hidden Markov model because FY

transitions are extremely rare (see Figure 3 ).To test whether the failure to find a strong postural

Table 1. Maximum likelihood fits of transition rates in wild type C. elegans. Each cohort was fitted

separately; values are expressed as mean ± sem (n = 5 cohorts). Data from wild type cohorts were

obtained on the same days as the experimental cohorts for which they served as controls (Tables 3

and 4), but experimental cohorts in this study were separated by weeks to months. All transition rates

were constrained to be �0. Transition rates that were calculated using the synaptic constraints

(Equation 35) are shaded orange; other constrained values are shaded grey. Mean dwell times and

state probabilities were calculated from the transition rates. Column A shows fits using the standard

model, which has 8 rate constants with two synaptic constraints, resulting in 6 free parameters that

determine the 6 synaptic weights (Figure 2C,D; Materials and methods Equations 31–35). Column B

shows fits to a model that has only one pause state (X); this model was derived from the standard

model by imposing two more constraints: aFY ¼ aRY ffi 0, yielding 4 free parameters. To allow

comparison of models A and B by the likelihood ratio test, which requires that model B be a special

case of model A, aRY and aFY were set slightly >0 (10-10 s-1), thereby avoiding infinite values for aY F

and aYR when applying the synaptic constraints, while maintaining a vanishingly small probability of

being in state Y (pY < 10-18). The loge likelihood (summed over the 5 cohorts) for model B was 1854

less than for model A, with 30 degrees of freedom for model A (6 per cohort � 5 cohorts) and 20

degrees of freedom for model B (4 per cohort � 5 cohorts). Applying the likelihood ratio test, the

difference was highly significant (p<10-100; p=Chi-squared(2L, df), where L = 1854 and df = 30–20

=10. Model C is the most general 3-state (F, R, P) model, which allows all six transitions between the

three states. The fitted transition rates for model C were nearly identical to model B. Likelihood

values are relative to model A.

A B C
2 pause states

6 free parameters
1 pause state

4 free parameters
1 pause state

6 free parameters
D loge likelihood 0 -1854 -1836

Degrees of freedom 30 20 30
mean ± sem (n = 5) mean ± sem (n = 5) mean ± sem (n = 5)

aXR (s-1) 1.201 ± 0.099 1.019 ± 0.085 1.008 ± 0.090
aXF (s-1) 1.115 ± 0.087 1.915 ± 0.152 1.914 ± 0.152
aRX (s-1) 0.025 ± 0.008 0.507 ± 0.013 0.507 ± 0.013
aRY (s-1) 0.490 ± 0.015 10-10

aFX (s-1) 0.182 ± 0.007 0.198 ± 0.009 0.196 ± 0.008
aFY (s-1) 0.007 ± 0.002 10-10

aYR (s-1) 0.411 ± 0.019 >109

aYF (s-1) 4.575 ± 0.533 >109

aFR (s-1) 0.001 ± 0.001

aRF (s-1) 0.000 ± 0.000

dF (s) 5.329 ± 0.245 5.096 ± 0.235 5.135 ± 0.227
dR (s) 1.945 ± 0.043 1.975 ± 0.049 1.976 ± 0.049
dX (s) 0.441 ± 0.032 0.349 ± 0.026 0.351 ± 0.027

dY (s) 0.208 ± 0.019 <10-9

pF 0.762 ± 0.015 0.7641 ± 0.015 0.764 ± 0.014
pR 0.158 ± 0.007 0.158 ± 0.007 0.155 ± 0.007
pX 0.063 ± 0.006 0.081 ± 0.008 0.080 ± 0.008

pY 0.017 ± 0.002 <10-18
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preference at FX transitions was due to including very short pauses in the analysis, we repeated the

analysis after reclassifying all pauses shorter than a minimum duration as a continuation of the previ-

ous state, and obtained the same result; we found no strong postural preference at FX transitions

for minimum pause durations up to 2 s (r = 0.16, 0.19, 0.23, 0.3 for X dwell times > 0.33 s, 0.67 s,

1 s, and 2 s, respectively); longer dwells in state X were too rare to analyze. Thus, FX transitions can

occur at any locomotory phase and do not occur preferentially at a particular posture (Figure 4D); in

the case of FXR transitions the worm generally retreats along the same track. In contrast, we found a

strong tendency to stop in a particular posture in state Y (Figure 4A,C,E; r = 0.71). Almost all entries

into state Y were RYF transitions and these were associated with a ventral bend in the middle of the

worm (Figure 4E). These results suggest fundamental differences between the control of forward

and reverse locomotion. In our model, forward locomotion terminates when forward command neu-

rons turn OFF, and this can happen at any phase, whereas reverse locomotion terminates when for-

ward neurons turn ON, and this is most likely to happen at a particular phase. The latter could be

explained by phasic feedback from the locomotory pattern generator to the forward neurons

(Li et al., 2006).

Ablation of command neurons
To determine the contributions of individual command neurons to the overall function of the com-

mand network, we separately ablated the pair of neurons that comprises each command neuron

class, then tracked ablated and sham operated animals during local search. Mean velocities in F and

R, if significantly changed, were reduced (Pokala et al., 2014) (Figure 5A; $$), as was the fre-

quency of undulations during forward and reverse locomotion (Table 3). In many organisms, the fre-

quency of rhythmic behaviors is regulated by the amplitude of tonic excitatory drive to the

associated pattern generator (Weeks, 1978; Satterlie and Norekian, 2001; Böhm and Schild-

berger, 1992; Deliagina et al., 2000; Dembrow et al., 2003; Hedwig, 2000; Sirota et al., 2000).

To explain our results we propose that ablation

of the locomotory command neurons reduces

tonic drive to the presumptive locomotory pat-

tern generator (Xie et al., 2013; Gao et al.,

2015).

A previous study found that ablating a subset

of the reverse command neurons (AVAL and

AVAR) reduces dwell time in the reverse state

but also paradoxically reduces dwell time in the

forward state (Zheng et al., 1999). Similarly par-

adoxical effects have been reported following

ablation of the reciprocally connected brain

stem nuclei that regulate sleep and wakefulness

(Saper et al., 2010). The stochastic switch

model predicts and explains such effects. In prin-

ciple, the ablation of a subset of neurons in a

pool of co-active neurons can have widespread

effects on the pool’s overall input and output

connectivity. Widespread effects can be

expected because ablation removes not only the

outgoing synaptic connections from the ablated

neurons, but also the targets of incoming synap-

tic connections. In the C. elegans command neu-

ron network, ablating a reverse command

neuron such as AVA potentially reduces four of

the six weights in the network: hR, wRR, wRF,

and wFR. Thus, a single ablation can move the

system a considerable distance in weight space

toward the uncoupled state in which all weights

are zero. In the limiting case of a fully uncoupled

network, all dwell times approach a value of

Figure 3. Fate diagram of the model. The system

typically cycles clockwise through states F, X, R, Y, with

state F frequently interrupted by FXF transitions,

leading to state sequences of the form . . .(FX)nRY

(FX)nRY. . .. Nearly unidirectional transitions out of a

given state are shown by red arrows; blue arrows

indicate nearly equiprobable transitions. The width of

the arrows and the numbers beside them show the

probability that the transition out of the state at the tail

of the arrow is into the state at the head. The area of

each circle is proportional to the probability of the

corresponding state (Table 1, column A).
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Figure 4. Relationship between pauses and posture. (A) Average track curvature upon entry in to the pause state

in wild type worms. Prior to computing curvature, tracks of individual worms were mirror-imaged as needed such

that positive curvature corresponds to a ventral bend. Tracks in the vicinity of pause events were aligned

according to the location of the tracking spot in the pause state, converted to curvature, then averaged over all FX

transitions (solid blue line; n = 1907), and all RY transitions (red; n = 295) for which the track length was >1.5 mm;

shading shows ± 1 S.D. The trace depicts the curvature of the worm posterior to the tracking spot at the end of

forward movement (FX transitions) and anterior to the tracking spot at the end of reverse movement (RY

transitions). The dashed blue line shows the average curvature at FXR transitions (i.e., excluding FXF stutters). (B)

Locomotory phases at which FX transitions occurred, plotted as blue dots on the unit circle. The phase at each FX

transition was computed as ’ ¼ 2pz1=ðz2 � z1Þ, where z1 and z2 are the positions of the two downward zero

crossings of curvature preceding the pause as indicated in panel A, right. The uniform distribution of points

around the circle, and therefore the small magnitude of the vector strength (r ¼ 0:14; arrow), shows that there was

only a small (but statistically significant) phase preference at the end of forward motion (p < 10�16; Rayleigh test).

(C) Same as B, but for RY transitions. Vector strength is large (r ¼ 0:71), indicating a strong tendency to end

reverse runs at a particular phase (p < 10�63), with a ventral bend in the middle of the body. (D) Average posture at

Figure 4 continued on next page
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1=2A, where A is the intrinsic switching time of the stochastic units (see Materials and methods,

equations 31–34); henceforth we will use d0 to denote the uncoupled dwell time. Dwell times that in

intact animals are greater than d0 will be reduced by ablation, whereas dwell times that are less

than d0 will be increased. In particular, if dF and dR are both greater than d0, ablation of a reverse

command neuron is expected to reduce both dwell times; the same is true for ablation of a forward

command neuron. Thus the observed paradoxical effects of ablations are to be expected if d0 is

below dF and dR.

To determine the actual relationship between d0 and dwell times in the forward and reverse state,

we estimated the rate constants in ablated animals and sham operated controls, and computed the

corresponding dwell times (Figure 5B; Table 4). Dwell times in F and R, if significantly altered by the

ablation ($$), were reduced, indicating that d0 is indeed below dF and dR. Additionally, dwell times

in the pause states dX and dY were increased, with one exception (dY, AVB). Thus, the observed pat-

tern of dwell time changes is consistent, overall, with a value of d0 that is between the dwell times of

the movement states and the dwell times of the pause states. This finding allowed us to place

bounds on d0. Specifically, d0 must be less than or equal to the lowest post-ablation value of dR, and

greater than or equal to the largest post-ablation value of dX; thus, 0.58 � d0 � 1.24 sec. Further-

more, because A ¼ 1=2d0, we can infer that 0.40 Hz � A � 0.86 Hz. This inequality provides an esti-

mate of the fundamental time scale of stochastic switching in C. elegans locomotion. For

subsequent analysis, we defined Amin ¼ 0.40 Hz and Amax ¼ 0.86 Hz.

Synaptic weights in the stochastic switch model
Having placed bounds on A, we were able to compute synaptic weights in the model (Table 2). This

was done by deriving expressions for the weights in terms of the rate constants (Materials and meth-

ods, Equations 36–38) and substituting into these equations our estimates of rate constants

together with the values of Amin and Amax. We found that input weights, hF and hR, are small and

positive, suggesting that these inputs may provide modest but steady excitation to the system

(Figure 6A). The self-connections wFF and wRR are also mainly positive, indicating that the

ON states may be stabilized by intrinsic or extrinsic positive feedback. The cross-connections wFR

and wRF are negative, indicating reciprocal inhibition, as expected for neurons that activate oppos-

ing behavioral states. Furthermore, the magnitude of wFR is greater than the magnitude of wRF,

suggesting that the animal spends more time in the forward state than the reverse state in part

because the forward neurons inhibit the reverse neurons more strongly than the reverse neurons

inhibit the forward neurons.

Synaptic weights in an abstract network model such as this one, where neuronal state is activation

rather than voltage, are not generally interpretable as synaptic conductances. Rather, they represent

the functional effects of one neuron on another, such as the degree of excitation or inhibition pro-

duced by a unit change in activation. Thus, synaptic weights in the Stochastic Switch model cannot

be said to predict the magnitude of synaptic conductances, but they can be said to predict aspects

of functional connectivity in certain cases. For example, as command neurons AVA and AVB are

behaviorally much more important than the others (Chalfie et al., 1985) (see also Figure 5A,B), it is

reasonable to assume that the signs of their functional synaptic connections match the signs of the

net functional connections in the biological network. Thus, the model predicts reciprocal inhibition

(Qi et al., 2012) between AVA and AVB under this assumption. We tested this prediction by photo-

activating either AVA or AVB with channelRhodopsin-2 and recording electrophysiologically from

AVB or AVA, respectively (Figure 6B,C). We found that the reversal potential of optically induced

synaptic currents in AVA and AVB was more negative than the zero-current potential in these

Figure 4 continued

FXR transitions, calculated by integrating the average curvature, computed over all tracks that persisted for >1.5

mm in state F before the pause and >1 mm in state R after the pause. Arrows indicate direction of motion along

the track (blue, forward; red, reverse). FXR transitions were typically a simple reversal along the same track. (E)

Same as D but for RYF transitions that persisted for >1.5 mm in state R before the pause and >1 mm in state F

after the pause. RYF transitions at the end of reverse runs that persisted for >1.5 mm were usually associated with

a ventral bend that resulted in a ~180˚ change of direction as previously described (Gray et al., 2005).
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neurons (Figure 6B,C,D), indicating synaptic inhibition as predicted by the model. This inhibition is

likely to be monosynaptic as C. elegans command neurons are cholinergic and express inhibitory

postsynaptic receptors that respond to acetylcholine (Pereira et al., 2015). Additionally, the connec-

tion from AVB to AVA appeared to be stronger than the connection from AVA to AVB (Figure 6E),

measured in terms of the amplitude of the synaptic current at a holding potential approximately

equal to the membrane potential when command neurons are in their depolarized state (Figure 2B).

However, we do not exclude the possibility that AVB was more strongly activated than AVA as a

result of differential expression of the photoprobe. These findings demonstrate the feasibility of

Figure 5. Ablation of command neurons. (A) Velocity distribution of ablated cohorts (red) compared to sham operated controls (grey) when the

indicated command neuron was killed. Stars indicate significant reduction in velocity for the indicated peak (p<0.05 without ($) or with ($$) correction

for multiple comparisons; Table 3). (B) Dwell times in F, R, and P in ablated (red) and sham operated animals (grey). Stars indicate significant

differences from sham (as defined in Table 4). Horizontal lines indicate the estimated range of d0, the dwell time in the uncoupled state. Each group of

ablated animals was tested in parallel with a distinct set of sham operated controls to minimize the effects of variation between populations. Error bars

for dwell times are not shown because statistical significance was calculated using the likelihood ratio test (see Table 4 legend), which does not

generate sem estimates, and calculation of confidence intervals would have required an excessive amount of computation time. Stars indicate p<0.05

without ($) or with ($$) correction for multiple comparisons (Table 4).
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using the worm’s velocity, vðtÞ, a simple behavioral measure, to predict functional synaptic connec-

tions between populations of neurons in a biological neural network, at least under certain assump-

tions concerning the relationship between model network weights and physiological synaptic

strengths.

Genetic effects on command neuron function
Two classes of ion channel mutants that affect membrane conductances in the command neurons

are also known to alter locomotory behavior in systematic ways, thus providing key insights into

command neuron function (Zheng et al., 1999). The hyperpolarizing class (“HYP”) comprises three

genotypes in which release of the excitatory neurotransmitter glutamate, presumed to be tonic, is

disrupted by mutations that affect either presynaptic (eat-4(ad572), eat-4(ky5)) or postsynaptic

mechanisms (glr-1(n2461)). These mutations are hypothesized to cause chronic hyperpolarization of

the command neurons by reducing depolarizing currents. The depolarizing class (“DEP”) comprises

two genotypes in which a constitutively activated glutamate receptor is expressed in the command

neurons (glr-1::glr-1(A/T), nmr-1::glr-1(A/T)). These mutants are hypothesized to chronically depolar-

ize the command neurons.

We found that the frequency of locomotory undulations was decreased in HYP mutants and

increased in DEP mutants compared to wild-type controls (Table 5), consistent with the likely effects

of respectively increasing and decreasing tonic drive to the presumptive pattern generator for loco-

motion. Importantly, however, it is possible that both classes of mutation also alter the input resis-

tance of the command neurons. The closure or removal of glutamate receptors in HYP mutants

should increase input resistance whereas the introduction of constitutively active glutamate recep-

tors in DEP mutants should decrease it. Thus, the previously observed effects of these mutations on

locomotory state transitions (Zheng et al., 1999) could be the result of changes in membrane poten-

tial (DV), input resistance (Dr), or both.

Table 3. Effects of command neuron ablations on undulation frequency, forward velocity and reverse velocity. Values were computed

separately for each worm and are shown as mean � sem (n = 19–29 ). Undulation frequency was estimated as one-half of the

reciprocal of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and

are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after

Bonferroni correction for 15 comparisons.

Undulation frequency (Hz) Forward velocity (mm/s) Reverse velocity (mm/s)
Neuron Class Sham Ablated p < Sham Ablated p < Sham Ablated p <

AVB Forward 0.355 ± 0.009 0.230 ± 0.007 7x10-11 236 ± 6 109 ± 4 5x10-20 -327 ± 7 -302 ± 8 0.04

PVC Forward 0.283 ± 0.011 0.290 ± 0.010 0.5 187 ± 7 192 ± 7 0.7 -253 ± 8 -248 ± 6 0.7

AVD Reverse 0.270 ± 0.008 0.236 ± 0.008 0.009 173 ± 6 141 ± 5 0.0002 -243 ± 4 -229 ± 5 0.06
AVA Reverse 0.302 ± 0.005 0.254 ± 0.009 4x10-5 195 ± 5 155 ± 7 4x10-5 -293 ± 7 -69 ± 3 3x10-22

AVE Reverse 0.264 ± 0.007 0.256 ± 0.008 0.6 165 ± 4 160 ± 5 0.5 -235 ± 4 -211 ± 6 0.003

DOI: 10.7554/eLife.12572.019

Table 2. Synaptic weights derived from the transition rate constants. The rate constants were taken

from Table 1, column A. Two values of the fundamental switching time, A, corresponding to the

minimum (0.40 Hz) and maximum (0.86 Hz) values consistent with the ablation results were used in

Materials and methods, Equations 36–38 to calculate the corresponding synaptic weights.

A¼ 0.4 Hz
mean ± sem (n = 5)

A¼ 0.86 Hz
mean ± sem (n = 5)

hF 1.01 ± 0.08 0.25 ± 0.08
hR 1.09 ± 0.08 0.32 ± 0.08
wFR -5.40 ± 0.43 -5.40 ± 0.43
wRF -0.81 ± 0.06 -0.81 ± 0.06
wFF -0.22 ± 0.06 1.31 ± 0.06

wRR 1.90 ± 0.33 3.43 ± 0.33

DOI: 10.7554/eLife.12572.018
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Changes in membrane potential and input resistance can both be represented in the stochastic

switch model by changes in synaptic weights. We modeled the effects of DV by adding an increment

Dh (�1 � Dh � 1) to wild type h values, with negative Dh for HYP mutations and positive Dh for DEP

mutations. We modeled the effect of Dr as a change in the magnitude of synaptic weights (h and

w quantities). This representation of Dr is appropriate because changes in input resistance alter the

magnitude of the voltage change that would be produced by a fixed postsynaptic current. All

weights were scaled by a common factor z (1 < z < 2 for HYP mutants; 0 < z < 1 for DEP mutants).

Here we consider the effects of DV and Dr on dwell times in the stochastic switch model to enable

direct comparison with the original study of HYP and DEP strains (Zheng et al., 1999). Dwell times

can be written as functions of weights:

dX ¼ aXFþ aXRð Þ�1 ¼ ½A expðhFÞþA expðhRÞ�
�1 (1)

dF ¼ aFXþ aFYð Þ�1 ¼ ½A expð�hF�wFFÞþA expðhR þwFRÞ�
�1 (2)

dR ¼ aRXþ aRYð Þ�1 ¼ ½A expð�hR �wRRÞþA expðhFþwRFÞ��1 (3)

dY ¼ aYRþaYFð Þ�1 ¼ ½A expð�hF�wFF�wRFÞþA expð�hR�wRR�wFRÞ�
�1 (4)

These equations show that the DV and Dr hypotheses make qualitatively distinct predictions. The

simplest case is dwell dX, which depends only on hFand hR. Equation 1 shows that dX rises and falls

Figure 6. The Stochastic Switch Model correctly predicts the sign and strength of synaptic connections. (A) Synaptic weights (mean ± sem, n = 5

cohorts) from maximum likelihood fits to velocity data from wild type worms. (B, C) Left, synaptic current in AVB or AVA when the indicated presynaptic

neuron was photoactivated (blue line). Right, mean synaptic current during the first 100 ms of the stimulus plotted against holding potential in the

postsynaptic neuron (I-V curve). Lines show linear fits to the data at negative holding potentials which were used to estimate vRev. (D), Zero-current

holding potential and reversal potential of synaptic currents (mean ± sem) in the indicated postsynaptic neuron (paired t-tests: AVA to AVB, p= 0.043, n

= 9; AVB to AVA, p= 0.019, n = 17). (E), Scatter plot of synaptic currents recorded at a holding potential of -15 mV (unpaired t-test: p= 0.010, n � 25).
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as h terms are made more negative or positive, respectively. Thus, under the DV hypothesis, dX
should rise in HYP mutants and fall in DEP mutants (Figure 7A, row 4). In contrast, under the Dr

hypothesis, in which weight magnitudes ( wj j and hj j) decrease in DEP mutants and increase in HYP

mutants, dX should rise in DEP mutants and fall in HYP. To distinguish between these hypotheses,

we measured dwell times in mutants and wild type animals during local search. The pattern of

observed changes in dX matched the pattern predicted by the DV hypothesis but not the Dr hypoth-

esis (Figure 7C, row 4). Thus, the effects of membrane potential appear to dominate the effects of

changes in synaptic strength in the case of mutant values of dX.

In contrast to dX, dF and dR depend on w terms as well as h terms. Under the DV hypothesis, the

h terms but not the w terms would be affected by the mutations. Positive and negative increments

in h have the effects shown in Figure 7A, rows 1 and 2; dF and dR are predicted to shift in opposite

directions. Changes in dF are dominated by the effects of hF on the first term in Equation 2 (which

represents aFX) because the second term in the equation (which represents aFY) remains close to

zero in the mutants. Analogously, changes in dR are dominated by the effects of hF on the second

term in Equation 3 (aRY) because the first term in the equation (aRX) remains close to zero in the

mutants.

The Dr hypothesis makes a distinctly different prediction. In this version of the model, w terms

and h terms would both be affected by the mutations. Now, the predicted pattern of dwell time

changes across both dF and dR is such the both dwell times shift in the same direction (Figure 7B,

rows 1 and 2); specifically, dwell times in DEP and HYP mutants move toward or away from their

uncoupled dwell times, respectively. Taken together, the pattern of observed changes in dF and dR
matched the pattern predicted by the Dr hypothesis (Figure 7C, rows 1 and 2) but not the DV

hypothesis. We conclude that changes in synaptic strength may dominate the effects of changes in

membrane potential on mutant values of dF and dR.

Neither hypothesis predicts the observed changes in dY (Figure 7C, row 5) which resembled the

pattern of changes in dX (Figure 7C, row 4). However, the DV hypothesis correctly predicts observed

dwell times in the overall pause state dP (Figure 7C row 3). This is because dP is dominated by dX
and changes in dX are well-predicted by the DV model as noted above. Overall, our analysis of the

effects of HYP and DEP mutations in terms of the Stochastic Switch Model points to a role for

changes in both membrane potential and input resistance in regulating dwell times.

Regulation of search scale
The Stochastic Switch Model immediately suggests a family of models for the regulation of the spa-

tial scale of random search in response to the availability of food and the worm’s physiological state.

The scale of random search is determined primarily by mF, the mean distance traveled during a for-

ward run. In C. elegans, a run begins with a transition from state R (via P) into state F and continues

until the next transition into state R. Any run may include one or more visits to state P, but FPF tran-

sitions are not usually associated with changes in heading. In terms of the Stochastic Switch Model,

mF ¼ vFpF=fRPF, where vF is the average velocity in state F, pF is the probability of being in state F,

and fRPF is the frequency of RPF transitions (Materials and methods, Equation 39), which coincide

Table 5. Effects of mutations on mean undulation frequency, mean forward velocity and mean reverse velocity.Values were computed

separately for each worm and are shown as mean � sem (n = 25–31). Undulation frequency was estimated as one-half of the reciprocal

of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and are shown

without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni

correction for 15 comparisons.

Undulation frequency (Hz) Forward velocity (mm/s) Reverse velocity (mm/s)
Genotype Class Wild type Mutant p < Wild type Mutant p < Wild type Mutant p <

eat-4(ad572) HYP A 0.272 ± 0.011 0.222 ± 0.007 4x10-4 156 ± 5 122 ± 4 1x10-5 -228 ± 5 -236 ± 9 0.5
eat-4(ky5) HYP B 0.317 ± 0.011 0.256 ± 0.009 2x10-4 184 ± 7 143 ± 6 5x10-5 -262 ± 10 -271 ± 7 0.5

glr-1(n2461) HYP C 0.294 ± 0.008 0.291 ± 0.010 0.9 158 ± 5 166 ± 6 0.3 -236 ± 6 -236 ± 5 1

glr-1::glr-1(A/T) DEP A 0.272 ± 0.011 0.642 ± 0.029 6x10-13 156 ± 5 112 ± 5 3x10-7 -228 ± 5 -143 ± 5 2x10-15

nmr-1::glr-1(A/T) DEP B 0.294 ± 0.008 0.695 ± 0.037 2x10-12 158 ± 5 138 ± 5 0.011 -236 ± 6 -144 ± 5 7x10-15
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Figure 7. Predicted and observed effects of HYP and DEP mutations on dwell times. (A) Predicted effects of changes in membrane potential. (B )

Predicted effects of changes in input resistance. (C) Dwell times in F, R, and P for cohorts of HYP mutants, DEP mutants, and wild type animals. Stars

indicate significant change in dwell time (p<0.05 without ($) or with ($$) correction for multiple comparisons; Table 6). In A-C wild type dwell times

are indicated by gray bars. Horizontal lines indicate the estimated range of d0, the dwell time in the uncoupled state. In the DV model, h terms were

made more negative to model HYP mutants and more positive to model DEP mutants by subtracting or adding a constant Dh = 0.6; qualitatively similar

results were obtained for 0 < Dh � 0.8. In the Dr model, h and w terms were scaled by (1 + f) to model HYP mutants and by (1 - f) to model DEP

mutants, with f = 0.6; qualitatively similar results were obtained for 0 < f � 1. Strains, HYP A: DA572 eat-4(ad572); HYP B: MT6308 eat-4(ky5); HYP C: KP4

glr-1(n2461); DEP A: VM1136 lin-15(n765); akIs9 [lin-15(+), Pglr-1::GLR-1(A/T)]; DEP B: VM188 lin-15(n765); akEx52[lin-15(+), Pnmr-1::GLR-1(A/T)].
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with random reorientations. Importantly, under the approximation aFY ffi 0 (Table 1, column A), mF

is can be expressed as a function of just three of the six weights in the network:

mF ffi
vF
A

�
expðhFÞþ expðhRÞ

expðhR �hF�wFFÞ
(5)

We refer to these weights as potential control points in the network. In a minimal model of search

scale regulation, mF could be controlled by sensory inputs represented by hF and hR (Figure 8A).

Search scale (mF) together with the frequency of reversals (FPR transitions), have been used to

define the three search modes commonly recognized in C. elegans: cropping, local search, and rang-

ing. To find minimal models for regulation of search mode, we performed exhaustive searches of

subregions of network’s six-dimensional weight space. Subspaces, defined by one, two, or three

weights, were scanned across a wide range of values (-6 � w � 6) while other weights remained

fixed at their wild type levels (Figure 7B–H). The performance of each configuration of the network

was scored according to whether it matched the range of mF magnitudes and reversal frequencies

characteristic of each mode (see Materials and methods). Another consideration was the number of

distinct search modes available; accordingly, we also noted the density with which the plane defined

by reversal frequency and mF was covered in the scan (Figure. 8B-H, gray symbols).

All three search modes were available in the subspace defined by the control points

ðhF; hR; wFFÞ (Figure 8B, Figure 8—figure supplement 1). However, only cropping and local

search were available in the complementary subspace ðwRR; wFR; wRFÞ (Figure 8C); thus, to achieve

the full set of search modes, at least one of the weights in equation 5 must be free to change. None

of the control-point weights was sufficient on its own to produce all three search modes (Figure 8D–

F). Scanning the subspaces ðhF, wRRÞ and ðhR, wFRÞ showed these pairs of weights to be sufficient

for all modes (Figure 8G,H), but a three-dimensional subspace containing at least one of the con-

trol-point weights was a necessary condition for both dense coverage of this plane and the presence

of all three search modes (Table 7). We suggest that these three-weight subspaces constitute the

most likely minimal models for the regulation of search in C. elegans. They could be tested by

chronic manipulation of control-point weights utilizing a variety of approaches, such as chemical or

optical probes that alter tonic inputs to the command network from sensory neurons and interneur-

ons represented by the parameters hF and hR.

Biased random walks
Mean forward run length is also modulated during biased random walks, increasing or decreasing

when the animal is moving in a favorable or unfavorable direction, respectively (Pierce-

Shimomura et al., 1999; Block et al., 1982; Iino and Yoshida, 2009; Luo et al., 2014). When C.

elegans is engaged in chemotaxis toward an attractive substance, the direction of motion relative to

the gradient is represented by specialized chemosensory neurons that respond either to increases

(ON cells) or decreases in concentration (OFF cells) (Thiele et al., 2009) ; moreover, interventions

that activate ON cells or OFF cells promote runs and pirouettes, respectively (Suzuki et al., 2008).

Thus, in one simple model of random-walk chemotaxis, ON cells increase hF and decrease hR,

whereas OFF cells do the opposite. Simulations show that this model is sufficient to generate realis-

tic chemotaxis in a point model of search behavior in C. elegans (Figure 8—figure supplement 2)

when the worm is below the target concentration of attractant. Similar circuitry can explain biased

random walks in response to other physical gradients (Lockery, 2011).

The Stochastic Switch Model and deterministic behaviors
In addition to random search, the command neurons in C. elegans are required for a variety of

escape responses (Hart et al., 1995) that are deterministic in that pR closely approaches unity for

strong stimuli (Wittenburg and Baumeister, 1999; Tobin et al., 2002; Liu et al., 2012;

Mohammadi et al., 2013). C. elegans escape responses can be produced by two pathways, one

that requires the reverse command neurons (Chalfie et al., 1985) and one that does not

(Piggott et al., 2011). Three distinct circuit motifs for the functional connectivity underlying escape

responses requiring reverse command neurons are conceivable (Figure 9A). In the Push motif, noci-

ceptive neurons excite reverse command neurons via hR thereby increasing the rate constants for

transitions in which R turns ON (aXR and aFY), and decreasing the rate constants for transitions in
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which R turns OFF (aRX and aYF). In the limit where hRfi ¥, both aXR and aFYfi ¥, whereas aRX and

aYFfi 0 (Figure 9B). The system now inhabits only states R and Y, and pR ¼ aYR=ðaYR þ aRYÞ. In the

Pull motif, nociceptive neurons inhibit the forward command neurons via hF. In the limit where hFfi

-¥, the system switches only between states R and X and pR ¼ aXR=ðaXR þ aRXÞ. In the third motif, in

which Push and Pull are combined, R becomes an absorbing state (pR ¼ 1Þ. Using the rate constants

shown in column A of Table 1 to compute limiting values of pR in each motif, we found that the Pull

and Push-Pull motifs are sufficient for deterministic escape, whereas the Push motif is not

(Figure 9B). Thus, inhibition of forward command neurons is required for deterministic escape, pre-

dicting that nociceptive neurons functionally inhibit these neurons.

To test this prediction we examined the ASH neurons, a pair of nociceptive sensory neurons

required for the majority of escape responses in C. elegans. ASH neurons have anatomically defined

monosynaptic and polysynaptic connections to both the behaviorally dominant command neurons

AVB and AVA (Chalfie et al., 1985; White et al., 1986). We have previously shown that the func-

tional connection from ASH to AVA is excitatory (Lindsay et al., 2011). To test whether the func-

tional connection from ASH to AVB is inhibitory, we photoactivated ASH neurons while recording

from AVB (Figure 9C,D). The reversal potential of this connection was more negative than the zero

current potential, indicating inhibition as predicted by the model. Thus, ASH-mediated escape may

be controlled by a Push-Pull motif, further demonstrating the feasibility of using behavioral data to

predict population-level synaptic connectivity. The source of the AVB inhibition could be the inhibi-

tory connection from AVA, polysynaptic pathways from ASH to AVB, or both.

Notably, the Pull and Push-Pull motifs are equally effective in driving pR to 1.0 (Figure 9B). Never-

theless, computation of the expected latency to the first reversal event when a forward moving

Figure 8. The Stochastic Switch Model accounts for the three main modes of random search in C. elegans. (A) Plot of mean forward run length versus

the weights hF and hR, illustrating a minimal model of search-scale regulation. (B-H) Calculated effects on search mode of the weights indicated in

parentheses. The frequency of reversals (fFPR) is plotted against mF while these three weights are scanned from -6 to 6 weight units in steps of 0.4.

Each point was categorized as cropping (magenta), local search (green), ranging (blue), or indeterminate (grey) according to value of fFPR and mF, and

whether or not the associated value of mR (not shown) indicated a short or long reversal; see Materials and methods for definitions of search modes.

Yellow diamonds mark the scanned points modeled in Figure 8—figure supplement 1. A = 1 Hz; similar results were obtained for A ¼ Amax and A ¼

Amin (Table 7).

DOI: 10.7554/eLife.12572.025

The following figure supplements are available for figure 8:

Figure supplement 1. Simulated worm tracks illustrating cropping, local search, and ranging as defined in the model.

DOI: 10.7554/eLife.12572.026

Figure supplement 2. Extension of the Stochastic Switch Model to chemotaxis.

DOI: 10.7554/eLife.12572.027
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animal suddenly encounters a strong nociceptive stimulus indicates a 2.3-fold reduction in latency

for the Push-Pull motif (Figure 9B, parenthetical values). We conclude that the ASH mediated

escape circuit in C. elegans may be specialized for short latency escape responses.

Discussion
The Stochastic Switch Model is cast at a level of biological detail that is minimally sufficient to cap-

ture the stochastic dynamics of C. elegans locomotion in neuronal terms. Despite its simplicity, the

Table 7. Regulation of search mode. The weights in each subspace were scanned from -6 to 6 weight

units in steps of 0.4 with A ¼ Amin or A ¼ Amax. The letter x means that the indicated search mode

was present for at least one point in the subspace when A ¼ Amin and when A ¼ Amax; the letters y

and z mean that the mode was present only when A ¼ Amin or A ¼ Amax, respectively. See Materials

and methods for definitions of search modes. Control-point weights as defined by the theoretical

relationship between weights and search scale (Equation 5) are shown in bold. Only the three-weight

subspaces are sufficient for producing all three search modes and full coverage of the plane defined

by reversal frequency and mF plane as shown in Figure 8.

Subspace Cropping Dwelling Ranging Coverage

hF x � � �

hR x x � � �

wFF x x � � �

wRR x . . .
wRF x . . .

wFR x . . .

hF, wRR y x x . . .
hF, wFR x x . . .
hF, wRF x x . . .
hR, wRR x x . . .
hR, wFR x x x . . .
hR, wRF x x . . .
wFF, wRF x x . . .
wFF, wFR x x . . .
wFF, wRR x x . . .
hR, wFF x x . . .
hF, hR x x . . .
hF, wFF x x . . .
wRR, wFR x x .......
wRR, wRF y . . .

wFR, wRF x .......

hF, wRF, wFR x x x .......
hR, wRF, wFR x x x .......
wFF, wRF, wFR x x x .......
hF, wRR, wFR x x x .......
hR, wRR, wFR x x x .......
wFF, wRR, wFR x x x .......
hF, wRR, wRF x x x .......
hR, wRR, wRF z x x .......
wFF, wRR, wRF x x x .......
hF, hR, wFR x x x .......
hF, hR, wRR x x x .......
hF, hR, wRF x x x .......
hF, wFF, wRR x x x .......
hF, wFF, wFR x x .......
hF, wFF, wRF x x .......
hR, wFF, wFR x x x .......
hR, wFF, wRF x x x .......
hR, wFF, wRR y x x .......
hF, hR, wFF x x x .......

wRR, wRF, wFR x x .......

DOI: 10.7554/eLife.12572.028
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model predicts the unexpected effects of neuronal ablations and genetic manipulations. It also pre-

dicts the sign and strengths of key synaptic connections, which were confirmed by combining opto-

genetics with electrophysiology. The model is immediately extensible to random search at a variety

of spatial scales, biased random walks such as chemotaxis, and deterministic escape behaviors. The

predictive success of the model indicates that random search in C. elegans can be understood in

terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of sto-

chastic neurons. Two likely sources of stochastic state transitions are quantal synaptic transmission

and ion channel gating. Both of these sources derive their randomness from thermal fluctuations at

the molecular level, a phenomenon that is common to all nervous systems. The stochasticity underly-

ing search behavior in C. elegans could be intrinsic to the command neurons, their presynaptic neu-

rons (Gordus et al., 2015), or both.

The simplifying assumptions of the model introduce several limitations worth noting. (i) By repre-

senting the ten command neurons as only two functional units, the model ignores possible functional

differences between individual neurons within each group. (ii) By design, the model predicts expo-

nentially distributed dwell times, but Figure 2—figure supplement 3 shows that this relationship is

only approximate. (iii) The model also has no provision to explain the strong correlation between

locomotory phase and entry into state Y (Figure 4), although this could be added by modeling feed-

back from the pattern generator as a time-varying component of hF and hR. (iv) The model does

not take into account temporal correlations in velocity, but instead uses only the present velocity,

along with the present state, to compute transition probabilities. For example, the fact that locomo-

tion gradually slows before the worm enters the pause state (Figure 1G,H) suggests that transition

probabilities might be more reliably calculated by including the recent velocity history, rather than

just the present velocity. (v) Finally, the model does not attempt to explain the observation that the

number of command neurons that are present and the degree of command neuron activation has an

effect on velocity and undulation frequency (Figure 5A, Table 3, Table 5). Velocity modulation could

be incorporated by relaxing the assumptions that command neurons within pools are co-active and

have a single non-zero level of activation.

Although the model correctly predicts several unexpected and even paradoxical observations at

the behavioral and electrophysiological levels, it would be premature to conclude that the biological

system functions as assumed. This caution extends to all of the model’s assumptions, including the

mapping relationship between pause states X and Y and their behavioral correlates. We view the

pause states as theoretical constructs having an epistemological status akin to theoretical constructs

in many widely accepted models, such as the gating particles that were proposed in the Hodgkin-

Huxley model of the squid action potential to explain the voltage sensitivity of ion channels.

An altogether different method for analyzing locomotory states in C. elegans also proposed the

existence of two pause states (Stephens et al., 2008). In that work, each pause state was associated

with a particular locomotory phase. In contrast, we found that only state Y occurred in association

with a particular posture (a ventral bend in the middle of the body), whereas state X occurred with

essentially no postural preference. The reason for this discrepancy may be that pauses are identified

in different ways in the two studies. Here pauses are identified in terms of tangential velocity. In Ste-

phens et al. (Stephens et al., 2008; 2011; 2010), however, pauses are identified in the phase space

defined by the amplitudes of first two principle components of the worm’s instantaneous shape. For

the two approaches to yield the same result, minima in the magnitudes of tangential and phase

velocity would have to be coincident at all times. We believe this outcome is unlikely because the

third and fourth principle shape components, which account for approximately 30% of the shape var-

iance (Stephens et al., 2008), meet the necessary and sufficient conditions for generating tangential

thrust: a gradient of curvature along the worm’s centerline (Gray, 1946; Gray, 1953; Gray and Liss-

mann, 1964); this is one way thrust is believed to be generated during omega turns

(Stephens et al., 2008). Thus, the worm can be moving with respect to the substrate even when

phase velocity is zero. Overall, we speculate that pauses in phase velocity are a subset of pauses in

tangential velocity. The extent to which this is true could be determined by performing spot tracking

and shape analysis on the same individual worms.

It will be interesting to test several additional predictions of Stochastic Switch Model:
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Figure 9. Extension of the Stochastic Switch Model to deterministic behaviors. (A) Three functional circuit motifs

for deterministic escape behavior initiated by the nociceptive neuron ASH. (B) Predicted steady-state probability

of reversal behavior in the resting state and the activated state of the three motifs shown in A. Plotted values are

means across the five wild type cohorts shown in Figure 1F. Error bars are ± sem. Numbers in parenthesis are

predicted mean first latency to a reversal response. (C) Left, synaptic current in AVB when ASH was photoactivated

(blue line). Right, mean synaptic current during the first 100 ms of the stimulus plotted against holding potential in

AVB. The line is fit to the data at negative holding potentials. (D) Mean zero-current holding potential and mean

reversal potential of synaptic currents (± sem) in AVB (paired t-test: p= 0.013, n = 4).

DOI: 10.7554/eLife.12572.029
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1. The sign of the input weights, hF and hR predicts tonic excitation of the network. This could
be the result of constitutive excitatory synaptic inputs, or depolarizing leakage currents in indi-
vidual command neurons as has been proposed (Gao et al., 2015).

2. The sign of the self-connections wFF and wRR predicts one or more mechanisms of self-excita-
tion within command neuron pools. These might include excitatory connections between com-
mand neurons, or intrinsic membrane currents capable of producing plateau potentials
(Mellem et al., 2008).

3. The fate diagram (Figure 3) predicts that forward commands neurons generally lead the
changes in direction during spontaneous locomotion. For example, transitions from F to R
almost always begin with the F unit turning off, whereas transitions from R to F almost always
begin with the F unit turning on. This prediction could be tested by calcium imaging in com-
mand neurons in freely moving animals (Nguyen et al., 2015); Venkatachalam et al., 2015).

4. Finally, the prediction that forward command neurons lead the changes in direction, coupled
with the observation that transitions from R to Y occur at a particular phase, predicts that the
forward command neurons are the predominant site at which phasic feedback from the loco-
motion pattern generator influences the network. Direct observation of neuronal activity in
freely moving animals would be the ideal experiment to confirm the existence of the two
pause states proposed in the Stochastic Switch Model (Nguyen et al., 2015;
Venkatachalam et al., 2015). In particular, it will be necessary to show that whenever all com-
mand neurons are OFF, or all are ON, tangential velocity goes to zero. These experiments will
be challenging because they must be done by imaging neuronal activity in freely moving ani-
mals at a temporal resolution that exceeds what can be obtained with the current generation
of calcium probes. In fact, it may be necessary to use voltage probes rather than calcium indi-
cators because even a very fast calcium probe will be limited by the dynamics of calcium accu-
mulation, which is slow on the time scale of the pause dwell times predicted by the model.
Another potential complication is that velocity may not change instantaneously with changes
in the state of the command network, but with a delay imposed by time constants in the motor
system. A less direct approach, although one with much higher temporal resolution, would be
to make whole cell current clamp recordings from command neurons or motor neurons in
restrained animals, which cycle through global brain states analogous to forward and reverse
locomotion (Kato et al., 2015) even though they cannot move. Instances in which both motor
systems are OFF or ON would provide evidence for states X and Y, respectively.

Like the Stochastic Switch Model, a previous model of the command neuron circuit by Rakowski

et al. (Rakowski et al., 2013) predicts reciprocal inhibition between command neurons. Although

the two models analyze locomotion behavior in terms of the same three behavioral states – forward,

reverse, and pause – the models have essentially no points of mathematical contact. In the Rakowski

model, neurons are deterministic electrical compartments and only the long-term average state

probabilities of the network are computed. In the Stochastic Switch Model, by contrast, neurons are

inherently stochastic and instantaneous state is computed. These disparities are significant because

only the Stochastic Switch Model can predict temporal phenomena including such fundamental

quantities as transition rates and mean dwell times. The fact that the both models predict reciprocal

inhibition may reflect that fact that the behavioral signal of reciprocal inhibition is strong enough to

transcend large differences between models.

Mammalian sleep, like C. elegans locomotion, is composed of numerous abrupt alternations

between opposing behavioral states. Sleep is punctuated frequently by brief periods of wakefulness,

and dwell time distributions in sleep and wake states indicate that switching between them is a sto-

chastic process (Lo et al., 2004). Sleep and wakefulness are controlled by mutually inhibitory brain-

stem nuclei, implying a reciprocal inhibition motif. In a significant parallel to the effects of command

neuron ablations on dwell times in C. elegans locomotion (Figure 5B), lesions of sleep-related nuclei

simultaneously reduce the dwell times in both sleep and wake states, as do lesions of wakefulness

nuclei (Saper et al., 2010). Thus the relationship between synaptic uncoupling of the circuit and

changes in dwell times may be a general principle of reciprocal inhibition in stochastic neuronal net-

works. Further study of invertebrate models of this circuit motif would be a productive means of

identifying the genetic and physiological underpinnings of such circuits.

The debut of the essentially complete wiring diagram of the C. elegans nervous system raised the

prospect of the first account of the entire behavioral repertoire of an organism at single-neuron reso-

lution (White et al., 1986; Varshney et al., 2011). To date, the repertoire of behaviors commonly

recognized in C. elegans can be divided into three main functional categories, subsuming 23
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different elementary actions (Faumont et al., 2012). Because the command neurons considered

here are required for almost half of this repertoire, the Stochastic Switch Model is a significant step

toward a comprehensive understanding of the neuronal basis of behavior in this animal, bringing us

closer to the goal of computing the behavior of an entire organism. Though abstract by design in its

representation of individual neurons and synapses, the model accommodates not only random

search at multiple spatial scales (Figure 8), but also biased random walks (Figure 8—figure supple-

ment 1) and deterministic escape behaviors (Figure 9). We propose, therefore, that the Stochastic

Switch Model could serve as a multipurpose module for computing C. elegans behavior. Combining

this mathematically tractable module with others representing sensory inputs, modulatory states,

and the presumptive pattern generators for forward and reverse locomotion, could lead to essen-

tially complete models of the C. elegans nervous system that are at once predictive and intuitively

comprehensible (Abbott, 2008).

Materials and methods

Strains
All strains were cultivated at 22.5˚C on low-density NGM (nematode growth medium) agar plates

seeded with the E. coli bacteria (OP50) as described by Brenner (Brenner, 1974). Transgenic lines

were made using standard protocols (Mello and Fire, 1995).

Experiment Figure Strains and genotypes

Wild type 1-8 N2

AVA fi AVB synaptic current 5B XL238 ntIs[Prig-3::ChR2, Punc-122::dsRed];
ntIs35[Psra-11::tdTomato]; lite-1(ce314)

AVB fi AVA synaptic current 5C XL237 kyEx3801[Psra-11::ChR2::GFP,
Punc-122::dsRed]; ntIs29[Pnmr-1::tdTomato];
lite-1(ce314)

AVA ablation 4 N2

AVD ablation 4 XL59 akIs [lin-15(+); Pnmr-1::GFP]

AVE ablation 4 XL59 akIs [lin-15(+); Pnmr-1::GFP]

AVB ablation 4 N2

PVC ablation 4 XL59 akIs [lin-15(+); Pnmr-1::GFP]

HYP A† 6 DA572 eat-4(ad572)

HYP B† 6 MT6308 eat-4(ky5)

HYP C† 6 KP4 glr-1(n2461)

DEP A† 6 VM1136 lin-15(n765); akIs9 [lin-15(+),
Pglr-1::GLR-1(A/T)]

DEP B† 6 VM188 lin-15(n765); akEx52[lin-15(+),
Pnmr-1::GLR-1(A/T) ]

ASH fi AVB synaptic current 8 XL194 ntIs27 [ Psra-6::ChR2::YFP,
Punc-122::dsRed]; ntIs35 [Psra-11::tdTomato];
lite-1(ce314)

†Internal reference HYP A = HYP16, HYP B = HYP 56, HYP C = HYP20, DEP A = DEP14, DEP B = DEP19.

Physiological solutions
External saline for electrophysiology (mM): 5 KCl, 10 HEPES, 8 CaCl2, 143 NaCl, 30 glucose, pH 7.2

(NaOH); internal saline for electrophysiology (mM): 125K-gluconate, 1 CaCl2, 18 KCl, 4 NaCl, 1

MgCl2, 10 HEPES, 10 EGTA, pH 7.2 (KOH). Medium for behavioral assays (mM): NH4Cl 2, CaCl2 1,

MgSO4 1, and KPO4 25, pH 6.5; M9 Buffer (grams): 3 KH2PO4, 6 Na2HPO4, 5 NaCl, 1 ml 1 M

MgSO4, H2O to 1 liter.
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Behavior and tracking system
Prior to each assay, an individual adult hermaphrodite was picked to a bacteria-free agar transfer

plate by means of a platinum-wire pick. The worm was then washed in M9 to remove excess

bacteria, then transferred in a pipette filled with assay medium to a 10 cm petri plate containing

1.7% agarose in assay medium. A black dot approximately 40 microns in diameter was applied to

the center of the body as shown in Figure 1A (see Spotting procedure). The worm was allowed to

recover from transfer and handling for 2 min., then recorded for 10 min. The assay plate rested on a

motorized microscope stage (Applied Scientific Instrumentation MS-2000, Eugene, OR USA) fitted

with position encoders (Gurely Precision Instruments LE-1800, Troy, NY USA) having a resolution of

0.5 mm. Behavior was recorded using an analog video camera (CCD Sony XC-ST70, 29.97 frames per

second) fitted with a 12� zoom lens (Navitar 50486D, Rochester, NY USA). For tracking purposes,

video was analyzed in real time by custom software to calculate the eccentricity of the ink spot rela-

tive to the center of the field of view, and to compute the stage movements required to re-center

the spot. Motion blur was minimized by making stage speed during corrective movements an

increasing exponential function of target eccentricity such that small corrections were made more

slowly than large corrections. Position encoders were read in synchrony with the video stream and

this information was stored for off-line analysis. The overall trajectory of the worm was computed by

combining the location of the spot in the field of view with stage position in each video frame. The

direction of movement (forward or reverse) at the start of each recording was keyed by the observer

and subsequent assignments were made automatically by computer. Each recording was spot-

checked for correct assignments at four or more points during the recording. In experiments involv-

ing neuronal ablations or genetic mutations, recordings of sham operated controls or wild type

worms, respectively, were interleaved with worms in each treatment group.

Spotting procedure
The animal was immobilized by a stream of humidified CO2 emitted by a 1.5 mm diameter glass

pipette positioned near the worm. The spotting ink was comprised of petroleum jelly (1 ml), mineral

oil (1 ml), and black iron oxide (3 g). Ink was applied by means of 1.5 mm diameter glass rod that

had been pulled to a fine point, fire polished to produce a bulbous tip, and dipped in the ink. The

rod was positioned by means of a micromanipulator. To control for the effects of the spotting proce-

dure, we compared the speed of locomotion of worms that had been immobilized, or immobilized

and spotted, to untreated worms. There were no significant differences between these three

groups.

Electrophysiology
Worms were glued to an agarose coated coverslip using cyanoacrylate adhesive as previously

described (Lindsay et al., 2011). The coverslip formed the bottom of the recording chamber, which

was filled with external saline. The cell body of the neuron to be recorded was exposed by making a

small slit in the cuticle using a finely drawn glass rod. Recording pipettes had resistances of 10–20

MW when filled with internal saline. Voltage- and current-clamp recordings were made with a modi-

fied Axopatch 200A amplifier (Lockery and Goodman, 1998). In reversal potential measurements,

recordings of photostimulation-evoked synaptic currents were filtered at 2 kHz and sampled at 10

kHz. Postsynaptic neurons (AVA, AVB) were identified using a combination of fluorescent markers

and distinctive voltage clamp currents as described (Lindsay et al., 2011). Presynaptic neurons

(AVA, AVB, and ASH) were activated by expression of ChannelRhodopsin-2 expressed under the

control of neuron-specific promoters as described (see “Strains”). Worms were photostimulated in

electrophysiological experiments using the blue channel (470 nm) of a dual-wavelength LED module

(Rapp OptoElectronic, Wedel, Germany) that was focused by a 63�, 1.4 NA oil immersion objective

lens (Zeiss, part number 440762–9904). Irradiance (12.5 mW/mm2) was determined by measuring

the power emitted from the objective using an optical power meter placed above the front lens of

the objective and dividing by the area of the field of illumination at the focal plane of the

preparation.
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Ablations
Neurons were ablated using a laser as described previously (Bargmann and Avery, 1995). L1 larvae

were mounted on 2.5% agarose pads containing 5–7 mM of the immobilizing agent NaN3. AVA and

AVB neurons were ablated in N2 animals and identified by position. AVD, AVE and PVC were

ablated in animals expressing nmr-1::GFP and identified by a combination of position and GFP

expression. To limit potential behavioral differences in the two strains, we outcrossed (4�) the nmr-

1::GFP strain to the N2 strain used for AVA and AVB ablations. All animals were remounted 1–3 hr

after surgery to confirm the ablation; those with collateral damage were discarded. Sham-operated

animals were treated in the same manner except that the laser was not fired.

Statistical tests
Statistical significance for the results shown in Figures 4B and 6C, and in Tables 4 and 6 were

obtained using the likelihood ratio test (see Table 1 and 4 legends). Otherwise, two-tailed t-tests or

2-tailed Mann-Whitney U tests were used.

Descriptive statistics
The worm’s position in video frame k is represented as the row vector:

RðtkÞ ¼ x tkð Þ; y tkð Þ½ � k¼ 1; 2; . . . ; Nð Þ (6)

where xðtkÞ and yðtkÞ are the coordinates of centroid of the tracking spot in the frame of reference

of the agar plate, tk ¼ kDt, Dt ¼33 ms, and N ffi18000 is the number of video frames analyzed in a

continuous recording of one worm. We made the following definitions:

Row vectors
Velocity:

VðtkÞ ¼
Rðtkþ1Þ�RðtkÞ

Dt
(7)

Heading:

HðtkÞ ¼
VðtkÞ

sðtkÞ
(8)

Scalar quantities
Speed:

sðtkÞ ¼ V tkð Þk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V tkð Þ �Vt tkð Þ

q

Vt � transpose of V
� �

(9)

Mean speed:

s ¼
1

N � 1

X

N�1

k¼1

s tkð Þ (10)

Instantaneous turn rate:

D’

Dt

�

�

�

�

�

�

�

�

ðtkÞ ¼
cos�1 H tk�1ð Þ �Ht tkð Þ

� �

Dt
0� D’�pð Þ (11)

Mean heading change:

D’j j tj
� �

¼
1

N � j� 1

X

N�j�1

k¼1

cos�1 H tkþ tj
� �

�Ht tkð Þ
� �

0� D’�pð Þ (12)

Speed autocovariance:
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AsðtjÞ ¼
1

N � j� 1

X

N�j�1

K¼1

sðtkþ tjÞ� s
� �

� sðtkÞ � sð Þ (13)

Velocity autocorrelation:

AV ðtjÞ ¼
1

N � j� 1

X

N�j�1

K¼1

Vðtkþ tjÞ �V
tðtkÞ (14)

Heading autocorrelation:

AHðtjÞ ¼
1

N � j� 1

X

N�j�1

K¼1

Hðtkþ tjÞ �H
tðtkÞ (15)

Mean squared displacement:

r2ðtjÞ ¼
1

N � j� 1

X

N�j�1

k¼1

jjRðtkþ tjÞ�RðtkÞjj
2 (16)

Maximum likelihood estimation of state transition rates in a hidden
Markov model
To analyze locomotory states we converted the velocity vector, VðtÞ, into a signed scalar quantity

vðtÞ that represents the component of velocity in the direction of the worm’s track, with positive val-

ues indicating forward movement. We first smoothed xðtÞ and yðtÞ using an 11 frame window,

assigned a direction to the smoothed track with respect to the head/tail orientation of the worm,

and projected VðtÞ onto the smoothed track to obtain vðtÞ. For each cohort of worms we collected

all vðtÞ values into a single velocity distribution gðvÞ. The central peak of gðvÞ was fit by a Cauchy dis-

tribution with median 0 and half-width b = 18 mm/s (Figure 2—figure supplement 2), which we used

to approximate the pause velocity distribution for states X and Y for all worms:

gXðvÞ ¼ gYðvÞ ¼ gPðvÞ ¼
b

pðb2 þ v2Þ
(17)

We used a Cauchy distribution because it has long tails that describe the pause velocity distribu-

tion better than a Gaussian distribution (i.e., the worm does not stop instantaneously when it

switches from forward or reverse locomotion into one of the pause states). We estimated the for-

ward and reverse velocity distributions gFðvÞ and gRðvÞ by scaling gPðvÞ to fit the peak at v ¼ 0, sub-

tracting it from the overall distribution and splitting the remaining distribution into gFðvÞ for v > 0

and gRðvÞ for v < 0. Velocity distributions were scaled to be probability densities (area =1) and col-

lected into a row vector:

GðvÞ ¼ ½gFðvÞ; gRðvÞ; gXðvÞ; gYðvÞ� (18)

where giðvÞ is the estimated probability density that worms move at velocity v when in state i.

The goal of the maximum likelihood fitting procedure is to find the set of state transition rates

faXF; aFX; aXR; aRX; aFY; aYF; aRY; aYRg that maximize the probability of the observed velocity time

series vðtÞ given the velocity distribution GðvÞ. All transition rates were constrained to be � 0, and

usually were additionally constrained to correspond to valid synaptic weights as described

below: The likelihood is most conveniently calculated using matrix notation as follows; see

Colquhoun and Hawkes, 1995 for a more complete explanation of these computations. Let:

Q¼

�ðaFXþaFYÞ
0

aXF

aYF

0

�ðaRXþaRYÞ
aXR

aYR

aFX
aRX

�ðaXF þ aXRÞ
0

aFY
aRY
0

�ðaYFþaYRÞ

2

6

4

3

7

5
(19)

Element qij (i 6¼ jÞ of matrix Q is the transition rate from state i to state j (i.e., the instantaneous

probability per unit time that the system in state i will make a transition to state j, and element qii is

the negative of the total transition rate out of state i, which is related to the mean dwell time in state

i by:
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di ¼�1=qii (20)

Matrix Q is composed of instantaneous transition rates, which can be converted into the matrix of

transition probabilities during a brief time interval of duration " by multiplying Q by " and adding 1

to each diagonal element (i.e., by calculating " �QþI, where I is the 4�4 identity matrix). If " is suffi-

ciently small that multiple state transitions can be ignored, then element ij of matrix " �Qþ I is the

probability that the system is in state j at the end of a time interval of duration " given that it was in

state i at the beginning of the interval. For longer time intervals during which multiple state transi-

tions may occur, transition probabilities can be calculated by repeatedly multiplying matrix " �Qþ I

by itself. Thus, if

M¼ ð" �Qþ IÞK (21)

then M is the matrix of transition probabilities during a time interval of duration K". If K and " are

chosen such that Dt ¼ K", then element ij of matrix M is the transition probability from state i to

state j during one video frame of duration Dt. We chose K ¼ 230 and let " ¼ Dt=K ¼ 30:7 picosec-

onds, a time interval during which multiple state transitions can safely be ignored. Since K was cho-

sen to be a power of 2, M could be rapidly and accurately calculated by 30 serial multiplications

using 64-bit floating point arithmetic.

Let PðtÞ be the row vector of history-dependent state probabilities:

PðtÞ ¼ ½ pFðtÞ; pRðtÞ; pXðtÞ; pYðtÞ� (22)

where piðtÞ is the probability of being in state i at time t given vðuÞ for all u up to and including the

present time (u � t). The matrix product PðtÞ �M is the state probability vector at time tþ Dt prior to

accounting for the observed velocity at time tþ Dt. To account for vðtþ DtÞ we used the information

contained in G
�

vðtþ DtÞ
�

and applied Bayes theorem:

PðtþDtÞ ¼ l �PðtÞ �M�diag G
�

vðtþDtÞ
�h i

(23)

where diag G
�

vðtþ DtÞ
�h i

is the 4�4 matrix with the elements of G
�

vðtþ DtÞ
�

along the diagonal,

and l is the scalar multiplicative factor required for the sum of the four elements of Pðtþ DtÞ to equal

1 (i.e., Pðtþ DtÞ is a vector of probabilities). Initially (t ¼ 0) we set Pð0Þ equal to the steady-state

probability vector P¥, which is given by:

P¥ �Q¼ 0 ) P¥ ¼U4 � ðQa �Q
t
aÞ

�1 (24)

where U4 is the 1� 4 row vector of ones and Qa is the 4� 5 matrix constructed by appending a col-

umn of ones to Q. To break the symmetry between the behaviorally indistinguishable states X and Y,

we identified X as the state with higher steady-state probability.

We then calculated the log-likelihood, summed over all worms in the cohort:

ln Lð Þ ¼
X

t;w

ln
�

PwðtÞ �G
t
�

vwðtÞ
��

(25)

where vwðtÞ is the velocity and PwðtÞ is the history-dependent state probability vector of worm w at

time t.

We used a random optimization algorithm to find the set of transition rates that maximized ln Lð Þ.

Initial guesses for 6 of the 8 rates were chosen independently from log uniform distribution between

0.01 Hz and 10 Hz. The remaining 2 rates were calculated to satisfy the constraints needed to gener-

ate valid synaptic weights (see below). At each iteration, each of the 6 independently chosen rates

was altered by adding a random number chosen from a Cauchy distribution with median 0 and width

brandom (initially brandom ¼ 0.01 Hz), and the remaining 2 rates were recalculated. To avoid getting

trapped in local likelihood maxima, the new rates were rejected and another set was calculated if

any of the new rates were <0.01 Hz. If the new rates generated an increased likelihood, the new

rates were accepted and brandom was increased by 3%. Otherwise the old rates were retained and

brandom was decreased by 0.5%. The procedure was iterated until brandom < 0.001 Hz. The random

optimization procedure was replicated 10 times for each cohort using different randomly chosen
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initial guesses. In 71% of the replicates the procedure converged on a set of transition rates in which

none of the transition rates differed from the best set by more than 5%. The best set of transition

rates was then refined by applying the optimization procedure using a success criterion of

brandom < 10-5 and constraining transition rates to be � 10–4 Hz.

The likelihood calculations described above use only past and present velocity observations to

calculate PðtÞ, but once the optimal transition rates were determined, the Forward-Backward algo-

rithm (Rabiner, 1986) can be used to yield a better estimate of the state probabilities based on

past, present and future velocity observations, and the Viterbi Algorithm can be used to find the

sequence of states with the highest probability of producing the observed velocities (Figure 2E).

Stochastic model neurons
We expressed the effect of synaptic inputs to command units F and R by equations of the form:

aON ¼A � eS (26)

aOFF ¼A � e�S (27)

where aOFF is the transition rate from ON to OFF, aON is the transition rate from OFF to ON, and S

is the total synaptic input to the unit. We do not attach any mechanistic significance to these equa-

tions, but note that they are analogous to the Arrhenius Equation (Stiller, 1989) an approximation

commonly used to describe the rates of chemical reactions in terms of an activation energy, E:

a¼A � e
� E

kBT (28)

where a is the reaction rate constant, A is an empirically determined constant, kB is the Boltzmann

constant, and T is the absolute temperature. Under this interpretation, S is analogous to activation

energy expressed in units of kBT . Thus, F and R are assumed to be symmetrical bi-stable units that

change state at rate A when S ¼ 0. Deviations from this baseline condition are modelled as external

synaptic inputs hF and hR.

We represented the total synaptic input onto units F and R, respectively, by:

SF ¼ hFþ bF tð ÞwFFþ bR tð ÞwRF (29)

SR ¼ hR þ bR tð ÞwRRþ bF tð ÞwFR (30)

where bF tð Þ and bR tð Þ are the states of F and R (1 = ON, 0 = OFF), wRF and wFR are the synaptic

weights from R onto F and from F onto R, respectively, and wFF and wRR represent synaptic

interactions among command neurons of the same class, plus any intrinsic membrane properties

that may promote bistability. Applying these definitions to the rate constants in Figure 2C gives:

aXF ¼A expðhFÞ aXR ¼A expðhRÞ (31)

aFX ¼A expð�hF�wFFÞ aRX ¼A expð�hR�wRRÞ (32)

aRY ¼A expðhFþwRFÞ aFY ¼A expðhR þwFRÞ (33)

aYR ¼A expð�hF�wFF�wRFÞ aYF ¼A expð�hR �wRR �wFRÞ (34)

In these experiments the sensory environment was kept constant (e.g., no chemical or tempera-

ture gradients). Therefore hF and hR were assumed to be constant. For simulations of chemotaxis

hF and hR varied with position in the chemical gradient.

Equations 31–34 express the 8 transition rates in terms of 6 parameters and yield the following

two constraints on the transition rates:

aFX aXF ¼ aRY aYR aFY aYF ¼ aRX aXR (35)

The inverse relations between transition rates and synaptic parameters are:

hF ¼ lnðaXFÞ� ln Að Þ hR ¼ lnðaXRÞ� ln Að Þ (36)

wRF ¼ lnðaRY=aXFÞ wFR ¼ lnðaFY=aXRÞ (37)

wFF ¼�lnðaXF aFXÞþ 2 � ln Að Þ wRR ¼�lnðaXR aRXÞþ 2 � ln Að Þ (38)
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Derivation of the mean distance traveled during a forward run
The time series of the worm’s locomotory states can be divided into forward runs, during which the

worm is in either the F or P state, and reverse runs, during which the worm is in either the R or P

state. Forward runs always begin with an RPF transition and end with the next FPR transition, which

marks the beginning of a reverse run. Thus forward runs and reverse runs occur in strict alternation,

such that the number of forward runs equals the number of reverse runs.

Let mF denote the mean distance traveled during a single forward run, assuming that forward

runs are straight. The value of mF is most easily calculated by dividing time into non-overlapping

epochs, each of which begins with an RPF transition and ends immediately before the next RPF tran-

sition. Each epoch thus contains exactly one forward run, which includes all visits to state F during

the epoch. Therefore, mF is also equal to the mean distance travelled while in the forward state dur-

ing a single epoch:

mF ¼
vFpF
fRPF

(39)

where vF is the mean velocity in the forward state and fRPF is the frequency of RPF transitions. Since

FPR and RPF transitions occur in strict alternation they must occur in equal numbers: fRPF ¼ fFPR.

Thus, eq. 39 can also be written with fFPR in the denominator, which is more useful for the calcula-

tion that follows, although the form shown above is more directly interpreted in terms of the fre-

quency of random reorientations, which occur at the RPF transitions. It is straightforward to calculate

fFPR given pF, aFX, aFY, and the probabilities that the transitions out of states X and Y will be into

state R:

probðX�!RÞ ¼ aXR=ðaXFþ aXRÞ (40)

probðY�!RÞ ¼ aYR=ðaYFþaYRÞ (41)

fFPR ¼ pF aFX
aXR

aXFþ aXR

þ aFY
aYR

aYFþaYR

� �

(42)

Combining eqns. 39 and 42 yields:

mF ¼ vF
ðaXFþ aXRÞðaYFþaYRÞ

aFXaXRðaYFþ aYRÞþaFYaYRðaXFþ aXR

�

0

@

1

A (43)

An approximation to mF in terms of synaptic weights is obtained by noting that transitions from F

to Y were extremely rare (aFY ¼0.007 s-1; Table 1). Setting aFY ffi 0 yields:

mF ffi vF
aXFþ aXR

aFXaXR

� �

¼
vF
A

expðhFÞþ expðhRÞ

expðhR �hF�wFFÞ

� �

(44)

Simulations of worm behavior
In Figure 8—figure supplement 1 and 2, the worm was represented as a point that moved forward

or backward at speeds of 0.2 and 0.3 mm/sec, respectively, and was stationary during the pause

state. Rate constants were calculated according to equations 31–34 based on the weights that per-

tain under random search or chemotaxis, using either A ¼ Amin or A ¼ Amax. Weights were used to

compute the state transition matrix M. At each time step (Dt = 33 ms), the next state was selected

randomly according to the state probabilities given by M. When an RPF transition occurred, a new

direction of movement (heading) was selected from a uniform distribution. The random component

of the heading was modeled as Gaussian noise having a standard deviation of 0.001 degrees. In the

case of chemotaxis simulations, the values of hFand hR were updated at every time step according

to the direction in which the worm was heading, leading to an updated set of weights and a new M

matrix.

Definition of modes of random search in C. elegans
To date, these behaviors have been defined mainly in operational terms. Following the terminology

of Jander 1975: (i) cropping is the locomotory behavior exhibited by well-fed worms on plates with
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densely populated patches of bacteria; (ii) local search (also “area restricted search” (Hills et al.,

2004) or “pivoting” (Wakabayashi et al., 2004) is exhibited by well-fed worms within about 10 min

after being transferred to a foodless plate; and (iii) ranging (“dispersal” (Gray et al., 2005) or “trav-

eling” (Wakabayashi et al., 2004) is exhibited by well-fed worms tens of minutes after being trans-

ferred to a foodless plate. Each mode can be associated with approximate ranges of three

parameters: mean forward run length (mF), mean frequency of reversals (fFPR), and mean reverse

run length (mR). Local search serves as a useful reference point. During cropping, mF is greatly

reduced, fFPR is greatly increased, and mR is also reduced, being limited to “short reversals” (the

distance traveled in one or two head sweeps, or about 0.5 mm (Gray et al., 2005); during local

search, reverse runs are almost always “long” (the distance traveled in at least three head sweeps).

During ranging, mF is greatly increased, fRPF is reduced, and reversals are long. Cutoff values for

search modes, inferred from behavioral data (Wakabayashi et al., 2004; Gray et al., 2005;

Fujiwara et al., 2002; Hills et al., 2004) were: Dwelling – short forward run length (mF < 0.5 mm),

high reversal frequency (fFPR > 6.0/min), short reversals (mR < 0.5 mm); Local search – moderate for-

ward run length (0.5 mm � mF < 5.0 mm), moderate reversal frequency (2.0/min � fFPR < 6.0/min),

non-short reversals (mR � 0.5 mm); Ranging – long forward run length (mF � 5.0 mm), low reversal

frequency (fFPR< 2/min), non-short reversals (mR � 0.5 mm).

Data archive
All data and the analysis program are publicly available at doi:10.5061/dryad.35qv6.
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