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Clinical Data1

John F. Speer,2 Victor E. Petrosky, Michael W. Retsky, and Robert H. Wardwell

Pero-ose Cancer Hospital, Colorado Springs, Colorado 80933

ABSTRACT

A new stochastic numerical model of breast cancer growth is
developed. First, the model suggests that Gompertzian kinetics
does apply but that from time to time, in random fashion, there
occurs a spontaneous change in the growth rate or rate of decay
of growth, such that the overall growth pattern occurs in a
stepwise fashion. According to the model, the average time for
the tumor burden to increase from one cell to detection is
probably in the range of 8 years. Secondly, the model suggests
that there is a linear relationship between the number of axillary
lymph nodes positive for metastasis at diagnosis and the number
of other metastatic sites. This can be described mathematically
by the equation S = 0.24 + 0.35W where S is the number of
other metastatic sites and N is the number of positive lymph
nodes. The model has been verified by simulating three data
sets: (a) the survival times of untreated breast cancer patients
as described by Bloom ef al. [Br. Med. J., 2: 213-221, 1962];

(o) the growth rates of breast cancers immediately prior to
diagnosis as described by Heuser and Spratt [Cancer (Phila.),
43: 1888-1894, 1979]; and (c) the disease-free survival time
postmastectomy as described by Fisher et al. [Surg. Gynecol.
Obstet., 740: 528-534, 1975]. This model could have implica
tions concerning the overall treatment rationale for breast cancer.

INTRODUCTION

Results of breast cancer treatment have improved in the past
10 years. This has largely resulted from increased efforts at early
detection and use of adjuvant chemotherapy after surgery for
high-risk patients. Nonetheless, significant numbers of patients
with local and regional disease at diagnosis go on to demonstrate
recurrent disease and eventually die. This necessitates the de
velopment of even more effective treatment. To do so will require
further refinements in our understanding of the disease process.

At present, the rationale for the postoperative use of so-called

adjuvant chemotherapy in patients at high risk for recurrence is
based on a group of "demiprinciples" derived from work on

animal tumor models and from correlations with clinical human
breast cancer data. These include the following: (a) patients who
have recurrence after curative surgery have cancer cells that
have spread to other sites in the body prior to surgery, thus
establishing "micrometastases"; (b) micrometastases grow ac

cording to the Gompertzian pattern thought to be reasonably
representative of how human cancers grow (14); (c) these rapidly
growing micrometastases are more sensitive to the effects of
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chemotherapy than is more slowly growing clinical disease, thus
making them more amenable to total eradication by systemic
chemotherapy; (d) Gompertzian (almost exponentially)-growing

small tumors are likely to undergo mutations similar to what is
seen in exponentially growing bacteria, and this could give rise
to clones of cells genetically resistant to chemotherapy (6). This
mechanism is currently thought to be responsible for the majority
of treatment failures, i.e., patients who go on to relapse later in
spite of surgery plus adjuvant chemotherapy.

Skipper ef al. (20, 21) have done studies which demonstrate
quantitative relationships between tumor burden, time of growth,
and chemotherapy treatment effectiveness in L1210 leukemia
and other animal tumor models. In their work, tumor growth rate
is expressed as "average doubling times." While this approach

has led to great insights, all agree that this representation has
been a substitution for what is known to be a more complex
phenomenon. Salmon (14) attempted to use the "log kill theory"

of Skipper in conjunction with a Gompertz representation of
tumor growth in order to develop a more realistic model of the
effectiveness of surgical adjuvant chemotherapy. Thus, instead
of an average tumor-doubling time, he used doubling times based

on tumor kinetic data extrapolated from in vivo and in vitro
human breast cancer studies. Calculations utilizing the Gompertz
growth formula resulted in doubling time values ranging from 2
days for the fastest micrometastases to as long as 10 days
when the tumor burden was relatively large, i.e., in the range of
1 x109 cells.

We became interested in considering new designs for surgical
adjuvant chemotherapy and decided that computer-based sim

ulations might provide valuable insights. We started by attempt
ing to reproduce much of the work of Skipper with the Salmon
modifications for tumor growth, but we were disturbed to find
that some of the calculations obtained were not in keeping with
our preconceived notions of the timing of the natural history for
this disease. In particular, we were impressed that, if the param
eter values used by Salmon were substituted into the Gompertz
formula, the time required for a tumor to grow from one cell to a
tumor large enough to be detected clinically, i.e., 1 x 109 cells,

would take about 4 months. This seems much shorter than we
would expect, especially in light of the length of time to recur
rence after mastectomy, which often takes a number of years.
Therefore, we undertook a systematic rÃ©Ã©valuationof the Gom
pertz equation as a valid representation of human breast cancer
growth.

Gompertz Model of Tumor Growth

Gompertz (7), a 19th-century actuarial scientist, formulated a

mathematical expression which has been used as a growth
representation (25). Beginning essentially as exponential growth,
as time goes on, the process becomes damped and eventually
stops. It can be represented by the mathematical formula:
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Sreasf Cancer Growth Model

N = exp [(/yÂ«)(1 - exp (-Â«,))]

where N \s the number of cells at some time after growth starts,
AC,is the initial specific growth rate, a is the proportional rate of
decay of A0, and f is the time after the start of growth.

Laird (10) published convincing evidence that Gompertzian
growth is representative of all biological growth. It is considered
to be the best mathematical descriptor of tumor growth, although
many other growth equations exist (17).

A New Model of Breast Cancer Growth

While Gompertzian growth "fits" intuitively with much of our

clinical experience, i.e., smaller tumors grow rapidly, large tumors
grow slowly as indicated previously, we became suspicious of
its validity. As a further attempt to consider its usefulness, we
decided to evaluate Gompertzian growth with a range of values
for AOand a. Values used by Salmon were based on his work
with human myeloma (23) and breast cancer cells grown in soft
agar (14). The myeloma data show a duration of subclinical
disease (**2.5 x 1011cells) to range from 91 to 575 days, with

an average of 223 days. As stated previously, when Salmon did
his breast cancer modeling, he used A0 = 0.3 (1/days) and a =
0.011 (1/days) resulting in growth to 1 x 109 cells in approxi

mately 120 days (4 months). Since this intuitively seems too
rapid, we substituted the published range of values for both A0
and a (23) into the Gompertz equation and generated the family
of curves illustrated in Chart 1. Unfortunately, as can be seen,
none of the curves result in growth from one cell to 1 x 109cells

in times in excess of 1 year, the minimum time we believed
necessary in order for the growth model to be a reasonable
representation.

We thus undertook to devise a new way to mathematically
represent growth. First of all, we decided to accept Laird's

observations that, when tumors do grow, Gompertzian kinetics
describes them satisfactorily. Secondly, we considered that tu
mors might grow in "spurts" instead of steadily, which is not

incompatible with what we can imagine biologically. It can be
shown that the factor which governs the ultimate size of the
tumor using the Gompertz equation is the rate/VÂ«. Any increase
in this ratio will result in an upward "translation" or a step in the

curve. After a mathematical evaluation, we found that it makes
little difference if A0 increases or a decreases. We arbitrarily
chose to decrease a as a method of producing a new growth
"spurt." Furthermore, we postulated that growth spurts would

occur in a stochastic or random fashion. The new model differs
from other models (3, 5, 11, 13, 16, 19, 22, 24) in that it is
stochastic, is numerical, and also generates individual tumors to
comprise a population. The model begins with one cell at zero
time and has specified values of A0, a, At, the probability that a
will undergo a change in a 5-day period, and A3, a determinant
of the amount of change in Â«.a and AQare in units of reciprocal
days, and A3 and A* are dimensionless. Time (f) is expressed in
days.

The program allows variations in the size at which detection
of the tumor will occur. Detection sizes, which were set to vary
from 1 x 109to 5 x 109,correspond to usual clinical experience.
The lethal size was arbitrarily set at 1 x 1012.A tumor of 1 x
109cells has a mass of about 1 g and a volume of about 1 ml,
while a tumor of 1 x 1012cells has a mass of about 1 kg and a

volume of about 1 liter.
The program evaluates the tumor burden using the Gompertz

equation and then inquires if the tumor burden is detectable.
Time is incremented by 5 days, and a random number between
0 and 1 is generated and compared to A4. If A4 is smaller, the
tumor continues to grow at the prior rate. If not, the program
reduces a by an amount depending on A3 and another random
(0 to 1) number [Â«= <*/(1 + random number x A3)]. Growth
continues in this fashion recording time of detection until a lethal
tumor burden is achieved or a preset time has elapsed (40 years
was used). Typical growth of 3 tumors is displayed in Chart 2. It
is important to note that, although each curve is different, each
was generated by running the identical program. The differences
are accounted for by the random chance of change and the
randomly determined amount of change.

Evaluationof the Model

Mathematical models are not reality, but they can be useful in
experimentation if they simulate reality. This section will cover
how closely this mathematical model simulates clinical data. In
order to evaluate the model, we decided to test it against a wide
spectrum of clinical data. Chart 3 summarizes the 3 data sets

6 249 12 15 18 2

MONTHS

Chart 1. Gompertz growth curves for the range of Aa and a as reported by
Sullivan and Salmon (23) for IgG myeloma.
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TIME (YEARS)

Chart 2. Computer run generating 3 typical tumors. Program was terminated
when one tumor reached the lethal limit set at 1 x 1012cells.
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J. F. Speer et al.

Chart 3. Summary of 3 data sets used to establish
the model. POST OP, postoperative.
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we used. The first is the plot of natural history of untreated
breast cancer patients reported by Bloom et al. (2) and Hender
son and Canellos (8). The survival curve is shown for 250
subjects who refused treatment for diagnosed breast cancer
between 1805 and 1933 in England.

The second data set, reported by Heuser ef al. (9), demon
strates unperturbed growth at the smallest detectable tumor
sizes. In Kentucky, 10,120 subjects were given yearly mammo-
grams. When cancer was detected, previous mammograms were
reexamined to determine if in retrospect tumor could be identified
and measured so that the growth rate could be calculated.

The third set from Fisher ef al. (4) addresses the regrowth of
tumor following surgical resection of primary disease. The per
centage of patients in complete remission following radical mas
tectomy is plotted separating groups by extent of nodal involve
ment.

This collection of clinical data covers the range from tumors
too small to be detected to those large enough to cause death.
Subjecting a growth model of breast cancer to these situations
was considered to be essential in determining the ability of the
model to simulate a group of patients.

The Bloom data were actually used to determine the best
values for A3 and At. A systematic search routine in the A3, A*
plane was used to find the best fit to the Bloom data. The figure
of merit used for comparison of fit was the absolute value of the
average error between the Bloom data and the model calculation
based on a sample of 480 patients per calculation.

Using this approach, we found optimized values for A3 = 0.3

and A* = 0.008, and this was true for any value of A0 from 0.1/
days to 0.7/days. Two such examples are illustrated in Chart 4
(A0 = 0.3 and ^0 = 0.7). For illustrative purposes, one curve
resulting from minimally different values (A3 = 0.4 and A* =
0.009) is also shown, demonstrating a significant deviation from
the Bloom data.

It is interesting to note that, if the optimum value of A* would
have been zero, then the resulting growth curve would have
been the classical Gompertzian pattern which, in fact, is thus
refuted on empirical grounds.

The fact that optimum values for A3 and A* are independent
of the initial specific growth rate (A0)is worth further considera
tion. What this observation means is that tumor growth from
detection to death, i.e., the time of clinicaldisease, is independent
of the initial specific growth rate of the tumor. A0 does make a
difference in the total life history of the cancer. This is shown in
Table 1, which indicates that the average time from detection to
death is fairly constant, approximately 3.3 Â±2.6 (S.D.) years,
whereas the time from one cell to detection varies from 0.2 to
26 years dependent on A0. Thus, A0 determines the preclinical
lifetime of the tumor.

While our initial intuitive impression led us to reject the straight
Gompertzian model because the preclinical lifetime of the tumor
was too short, we likewise believed that the range from 0.2 to
26 years was not specific enough. This led us to further attempt
to determine a more precise and meaningful range of time for
the preclinical life span of breast cancers. This was done by
considering the Heuser data.
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Breast Cancer Growth Model

BLOOM DATA

*O * 3 A 4

0.3 0.3 0.008

0.7 0.3 0.008

0.7 0.4 0.009

NUMBER OF
PATIENTS

480

480

480

0 5 10 15

YEARS AFTER FIRST SYMPTOM

Chart 4. Comparison of model results and Bloom data.

Table 1

Natural history of breast cancer from the model for various values of A,

MVdays)0.1

0.20.3

0.4
0.5
0.6
0.7Time

to detection(yr)26.2

Â±6.9a

16.6 Â±5.4
11.5 Â±5.2
7.8 Â±3.9
4.7 Â±2.9
2.3 Â±2.0
0.2 Â±0.04Time

to 1 x 10"

cells(yr)29.6

Â±6.8
19.9 Â±5.9
14.8 Â±5.7
11.3 Â±5.0
8.0 Â±3.8
5.5 Â±3.3
3.5 Â±2.5Time

from detec
tion to 1 x10iz

cells(yr)3.4

Â±2.7
3.3 Â±2.6
3.3 Â±2.8
3.5 Â±3.0
3.3 Â±2.7
3.1 Â±2.6
3.2 Â±2.5

a Mean Â±S.D.

In the Heuser study, 10,120 women had annual screening
mammograms for 3 years. One hundred nine cancers were
detected, of which 45 were diagnosed on the first mammogram.
Of the 64 diagnosed on subsequent mammograms, 17 were not
visible in retrospect on previous mammograms, 15 were visible
but not measurable, and 32 were both visible and measurable
allowing for the determination of growth rates. Tumors that grew
to visible size in less than 1 year, specifically between mammo
grams, were not measurable, causing a bias in the results. The
average tumor burden was 1 x 10912 at detection; on the

previous mammogram 313 days earlier, the average size was 1
x 10881. These data are summarized in Chart 5.

To test our model, we calculated the growth rate for 313 days
past the time when the tumor burden was 1 x 10881 cells. The

results are shown on Chart 6 together with the similarly analyzed
clinical data. The 32 measured tumors are displayed in the
histogram in Chart 6a. The question mark (?) is there to remind
us that there are at least 17 more tumors that grew too rapidly
to be measured and would show up as having faster growth
rates than did the 32 displayed tumors. Chart 6, b to d, shows
the calculated similar situations for various A0 values as indicated.

With a significant fraction of the tumors not measurable and
the data biased, it would be guesswork to specify precisely
which AOin our model would best represent the complete situa

tion. AO= 0.4 may best represent the case for all 64 tumors that

Heuser tried to measure.
Curiously enough, 9 of Heuser's tumors did not grow by a

measurable amount in the year between mammograms, as can
be seen in Chart 5. Likewise, as illustrated in Chart 2, our model

FINAL TB = 10S '2Â±Â°Â«3

Â»T313.75 Â±136.00 DÂ»YS

32 TUMORS THAT HAD
MEASURABLE QROWTH

200 300
TIME (DAYS)

Charts. Summary of Heuser data. The data for each tumor consist of a
determination of tumor size at 2 different times approximately 1 year apart. The
first tumor size is plotted on the time = 0 axis. A straight line connects the initial
point and the final point for each tumor. TB, tumor burden.
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1 1 ,
0-1 1-2 2-3 3-4 4-6 5-6 6-7 7-8
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Chart 6. Histogram of the growth rate of the tumors from the Heuser data are
shown in a. Growth rate is defined as 103 x [A tog (tumor burden)]/days. b, c, and

d show the equivalent model results for various values of Aa.
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J. F. Speer et al.

generates tumors that exist in a steady state for years at a time.
We summarize the relationship between our model and Heu-

ser's data as follows. Our model with A0 = 0.4 seems to agree

with the clinical data. More specifically, the model generates
tumors that grow at the same rate as the clinical data indicated.
Also clinically and from the model, some tumors did not grow at
all in 1 year.

Referring to Table 1, it might be reasonable to conclude that
our model indicates that breast tumors grow for 7.8 Â±3.9 years
before detection. The model would simultaneously agree with
both Bloom and Heuser under these conditions.

At the suggestion of S. Piantadosi,3 we examined variations

of the Gompertz equation to evaluate the sensitivity of our model
to the exact shape of the growth curve.

We decided to try various growth patterns while retaining both
the initial exponential growth and the ultimate cessation of
growth. This was done by using the Gompertz equation and
varying A0 and Â«(initial) while restricting (A0/a) to be constant.
All of the growth curves matched the Bloom data with the same
values of A3 = 0.3 and A* = 0.008. We concluded that the model

shows little sensitivity to the exact form of the equation. Thus,
the essence of our model is in the random change of the growth
parameters.

The final data set which we considered in the development of
this model was the disease-free survival time of patients following

mastectomy where varying numbers of axillary lymph node mÃ©
tastases existed, as reported by Fisher ef a/. (4). Skipper et al.
(20, 21) reasoned that these data were similar to data that they
generated in mice inoculated with varied but precisely defined
quantities of L1210 leukemia. Their conclusion was that time to
recurrence (disease-free survival) is related to the quantity of

tumor left behind in micrometastatic deposits. Furthermore, they
then concluded that on the average there is a relationship
between the number of nodes positive and the average quantity
of tumor remaining postoperatively. Thus, more positive nodes
predict a shorter time to recurrence.

Our model is also intuitively compatible with Fisher's data;

with more positive nodes, disease-free survival is shorter. How

ever, in our model, this occurs for an entirely different reason.
The statistical nature of our model implies that the time interval
between individual sites reaching a detectable size decreases as
the number of sites increases. Thus, if 2 tumors started growing
at approximately the same time, they would not necessarily
reach the detection level simultaneously. Rather, one would be
detected first. Likewise, if 3 tumors started growing at approxi
mately the same time, the likelihood is that the time between the
first and second tumors reaching detection would be shorter
than the previous example.

From repeated clinical studies, it is absolutely clear that the
more numerous the positive lymph nodes, the shorter will be the
disease-free interval. As we have demonstrated with our model,

there is also a relationship between the number of sites and the
disease-free interval, implying that there must be a relationship

between the number of sites and the number of positive lymph
nodes. The simplest expression of this relationship is

S = Ci + C2 x N

where S is the average number of individual metastatic sites, d
and C2 are constants, and A/ is the number of positive nodes at

diagnosis. In order to evaluate this hypothesis, we chose to test
it empirically, considering the probability of disease-free survival

at any point in time for various subsets of patients, i.e.: those
with no positive nodes; those with 1 to 3 positive nodes; and
those with ^4 nodes. Thus, the probability of a single metastatic
site not growing to 3=1x 109 cells at any point along one of the

disease-free survival curves can be expressed as Pi(f). Likewise,
the likelihood of none of the S sites reaching 1 x 109 cells at

time t is Ps(t). Because each metastatic site is independent of
each other, it follows that Ps(t) = Pis(f). By substitution, this
expression becomes p^c^c^(t) which can be restated as

In considering Fisher's data, we have defined the node-nega

tive population as Data Set 0. Likewise, in this analysis, we have
arbitrarily represented all patients with 1 to 3 nodes positive as
Data Set 2 and those with ^4 nodes positive as Data Set 5.
Thus,

since N = 0,

Data 0 = P,c'(0*Picy"(f)= Pic'(0

Data 2 = P,c'(f)*PiC2"(f)

since N = 2, and likewise,

Data 5 = P^O'

because N = 5. By substitution

Data 2 = Data O'P,

and

Data 5 = Data O'

Thus, the empiric prediction

Data 2\1/2 /Data 5\1/s

Data O/ \DataO

Again, substituting actual values from Fisher's disease-free sur

vival probability curves, we obtain at 5 years:

/Data 2\1/2 = / 0.5 \1/2=

and

o 7ft
\DataO/ V0.82/

/Data_5V'5 = /021 V's =

\Data O/ \0.82/

and repeating the same calculations at 10 years:

/Data 2\1/2 = /a35\1/2 =

\Data 0 \0.7B
0.68

3 S Piantadosi, personal communication, 1982.

and

Thus, since this empiric test of our theoretical prediction S = Ci
+ C2/V was reasonably accurate, we decided to evaluate it
further.
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Sreasf Cancer Growth Model

Chart 7 shows the disease-free survival for 0, 1,2, and 3

metastatic sites from our model (using A0, Â«,A3, and A4 values
as determined previously). Combining the data from Chart 7 and
Fisher's data, Chart 8 was generated showing the relationship

between the number of metastatic sites and the number of
positive nodes. All of these data may be represented by a single,
best-fit straight line with the y-axis intercept at 0.24 Â±0.05 and

a slope of 0.35 Â± 0.10. Thus, according to the relationship
between metastatic sites and positive nodes previously devel
oped, we have

S = 0.24 + 0.35N

The value of S for zero positive nodes is 0.24 which implies that
24% of the persons with zero positive nodes actually have a
metastatic site growing. This agrees with the asymptotic limit of
Fisher's N = 0 curve (24% treatment failures at 10 years). We

can use these values for Ct and C2 to further develop the
numerical relationship between disease-free survival and nodal

involvement. Continuing from the previous development,

100
8 9 10456

YEARS

Chart 9. Family of curves generated by the model using the equation data N =
data o"*'4*". This is the model simulation of remission versus time with number
of positive nodes (W)as parameter and may be compared directly to Fisher's data.

-60 <

YEARS AFTER MASTECTOMY

Chart 7. Remission versus time for the model with number of sites as parameter.

0.24

1 23456

NUMBER OF NODES POSITIVE

Chart B. Relationship between the number of metastatic sites and number of
positive nodes as derived from our model and Fisher's data. This was done by

eliminating time as a variable.

which may be rewritten as

or

Data N = Datau"*14""1

Thus, Data 0 = Data O1, Data 1 = Data O246,Data 2 = Data
O392,Data 3 = Data O538,etc. Finally, from these relationships,
it is possible to recreate Fisher's data curves as well as data

curves for patient populations with each individual number of
nodes positive as shown in Chart 9.

The development described above is compatible with the
actual disease-free survival as documented by Fisher. Its major

significance lies in showing that our model suggests that the
number of positive lymph nodes at diagnosis predicts the number
of other metastatic sites rather than the number of tumor cells
left behind following curative surgery.

Fisher's data may be very accurately represented by a math

ematical power series as illustrated in Chart 9. This indicates to
us that probabilistic effects, such as used in our model, dominate
tumor kinetics.

DISCUSSION

The model of breast cancer kinetics developed above can be
important in a number of ways.

1. It represents a different approach in that it is both stochastic
and numerical, contrary to other models which are based on
differential equations. We used this approach because it offered
us more versatility than did the differential equation method.
Thus, we were able to develop mathematical representations of
concepts expressed from words rather than formal equations.
Our model generates every individual in the population rather
than a group of means or averages representing the population.

2. It fits human breast cancer data in a unique fashion. Al
though it was developed to match published statistical data, it
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does so by counting the sum of every individual in the model. It
is a model of individuals. Thus, the individuals generated by the
model are a meaningful representation of a clinical population of
breast cancer patients both individually and collectively.

3. It adequately accounts for the heterogeneity seen in human
breast cancers. It is well known that the natural history of breast
cancer can vary by several orders of magnitude between patients
with essentially identical clinicalpresentations. Our model creates
a population of individuals that encompasses the entire spectrum
of the disease commonly referred to as "heterogeneous."

4. It suggests that a major cause for resistance to adjuvant
chemotherapy could be due to large numbers of nonproliferating
cells. In particular, this model suggests that, during the natural
history of the disease, a number of time periods can exist during
which the tumor is not changing in size. This could be the result
of one of 3 possibilities: (a) tumor is growing at exactly the same
rate as the rate of cell decay; (b) the growth fraction is zero; and
(c) some combination of a and b. In any case, the implication
exists that if cells were present in a nonproliferating state they
would be resistant to adjuvant therapy as suggested by Alex
ander (1). If this is so, our model implies that current approaches
to adjuvant chemotherapy based on simpler growth models (6,
12, 14, 15, 18, 20, 21, 26) could be inadequate. It further
suggests that some form of long-term maintenance therapy
could be more effective.

In summary, we have developed a stochastic numerical model
representing the growth of breast cancer. The model suggests
that Gompertzian kinetics does apply but that from time to time,
in random fashion, there occurs a spontaneous change in the
growth rate or rate of decay of growth, such that the overall
growth pattern occurs in a stepwise fashion. Time from one cell
to detection, according to this model, is variable depending on
the initial growth rate but probably is in the range of 8 years.
Also, the model suggests that there is a linear relationship
between the number of axillary lymph nodes positive for mÃ©tas
tases at diagnosis and the number of other metastatic sites as
described by the equation S = 0.24 + 0.35/V.

Data from clinical disease studies are simulated well by our
model. Due to the excellent fit of this model to clinical data, it is
not unreasonable to assume that it applies to smaller tumor
burdens as well. If this is the case, there are significant implica
tions about adjuvant chemotherapy. Resistance in patients with
resected breast cancer who are at high risk for recurrence may
be due in part to nonproliferating cells rather than entirely to
other mechanisms of resistance. Thus, further work with this
model in conjunction with a model for treatment effect could
provide new insights in designing therapy trials.
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