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. let us suppose a whole generation of men to be born on the same day,
to attain mature age on the same day, and to die on the same day, leaving a
succeeding generation in the moment of attaining their mature age, all together.
Let the ripe age be supposed of twenty-one years, and their period of life thirty-
four years more, that being the average term given by the bills of mortality to
persons of twenty-one years of age. Each successive generation would, in this
way, come and go off the stage at a fixed moment, as individuals do now. Then
I say, the earth belongs to each of these generations during its course, fully
and in its own right. The second generation receives it clear of the debts and
incumbrances of the first, the third of the second, and so on. For if the first
could charge it with a debt, then the earth would belong to the dead and not to
the living generation. Then, no generation can contract debts greater than may
be paid during the course of its own existence.

Excerpt of a letter from Thomas Jefferson to James Madison

Paris, September 6, 1789

1 Introduction

The two basic infinite-horizon models of growth and monetary economics, are the
dynasty or everlasting individual model, and the overlapping generations model. The
dynasty model has, either explicitly or implicitly, an infinite-horizon separable utility
function being optimized, usually with a “natural” discount factor (see for example,
Harrod (1948) and Solow (1988)); the interpretation of the utility function can be
made in terms of a “dynasty” and the discount can be interpreted as a “coefficient of
concern" between successive members of the dynasty. The overlapping generations
(OLG) model has individuals who live for a finite length of time and are replaced
by new individuals. In general, the birth-and-death process is presented at a high
degree of abstraction with a single sex, and there is little modelling of the specific
aspects of individual birth and the raising of the young until they are independently
economically active. The origin of the overlapping generations model was in the work
of Allais (1947) and then Samuelson (1958). In both instances it was introduced in
connection with the consideration of aspects of a monetary economy.

Since the 1960’s there has been an explosion of OLG models. Much of the liter-
ature has been reviewed in the perceptive survey article of Geanakoplos (1987). In
this paper we consider the influence of inheritance rules and noneconomic transfers
of wealth at both ends of the life-cycle, and examine the differences between a non-
stochastic life-span and a stochastic span with the same expected length of life. Our
methods are based on earlier work of Karatzas, Shubik & Sudderth (1994), (1997)
(referred to as [KSS1] and [KSS2], respectively) and of Geanakoplos, Karatzas, Shu-
bik & Sudderth (1998) (referred to as [GKSS]) for the dynasty model. Here we extend
the formal results of [KSS1] to a stochastic OLG model.



2 A Few Crude Facts

No human life-span beyond 130 years has ever been verified. The record verified
span reported in the Guiness book of records of 1989 was for Mr. Shigechiyo Izumi
of Japan, who was 120 years and 273 days on the day of his death in 1986. The
change in life expectancy in the United States even in the last forty years has been
considerable, as indicated in Table 1. Using the 1993 statistics we note that the
probability of death in the United States for the first year of life is .835%, and it
decreases until the age of 10 when it is .14%. It then climbs at a relatively slow
but increasing rate until around the age of 60, when the increase becomes noticeably
faster until at 85 it has reached 32.4%.

Table 1. Life Expectancy and Death Probabilities by Age

Age Life expectancy Death Probability (*1,000)

1960 1971 1980 1989 1993 | 1960 1971 1980 1989 1993

at birth  69.7 71 73.7 753 75.5 | 26.1 19 129 9.86 8.35
1 70.6 714 73.7 75 75.2 | 1.74 1.18 088 0.69 0.63

2 69.7 70.5 727 741 742 | 1.04 0.8 0.68 0.52 047

3 688 695 T71.8 73.1 733 | 0.83 0.66 0.54 0.4 0.36

4 679 686 70.8 72.1 723 | 0.67 0.55 044 0.33 0.3

5 669 676 69.8 T71.1 713 | 0.65 0.61 0.38 0.29 0.26
6
7
8

65.9 66.7 689 702 703 | 055 049 034 026 0.23
65 65.7 679 69.2 69.3 | 0.47 0.38 0.3 0.24 0.21
64 64.7 669 682 684 | 04 031 027 021 0.19

9 63 63.8 659 672 674 ] 036 026 023 018 0.16
10 62.1 628 649 66.2 664 | 0.35 0.25 0.2 0.16 0.14
11 61.1 618 64 65.2 654 | 0.37 0.28 0.2 0.17 0.15

12 60.1  60.8 63 64.3 644 | 042 036 0.25 0.22 0.2
13 59.1  59.8 62 63.3 634 | 049 048 037 032 0.31
14 58.2  58.9 61 62.3 624 | 059 064 0.53 047 0.45
15 57.2 579 60 61.3 61.5 | 0.71 083 0.71 0.63 0.62
16 56.2 569 59.1 604 60.5 | 083 1.01 088 0.79 0.77
17 55.3 56 58.1 594 595 | 094 116 1.02 091 0.9
18 54.3 55.1 572 585 58.6 | 1.02 1.26 1.12 0.99 097
19 53.4 541 563 575 57.7 | 1.08 133 1.19 1.03 1

20 524 532 553 566 56.7 | 1.14 139 1.25 1.06 1.02
21 51.5 523 544 556 558 | 1.21 1.45 1.32 1.1 1.05
22 50.6 51.3 53.5 54.7 548 | 1.25 148 136 1.13 1.08
23 49.6 504 52,5 53.8 539 | 1.27 148 137 1.15 1.1
24 487 495 516 528 529 | 1.27 146 136 117 1.11
25 477 486 50.7 519 521 | 1.27 143 134 118 1.13
26 46.8 476 49.7 50.9 51. 1.28 141 1.32 1.2 1.14
27 459 46.7 488 50 49.2 1.3 1.4 131 1.23 1.18
28 449 458 479 491 483 | 1.33 142 131 1.27 1.23
29 44 448 469 481 473 | 1.38 147 131 132 131
30 43 43.9 46 472 464 ] 144 153 133 138 1.39
31 42.1 43 45.1  46.2 455 | 1.51 1.6 1.35 145 147
32 41.2 42 44.1 453 445 1.6 1.69 1.38 1.51 1.55
33 40.2 411 432 444 436 1.7 1.79 143 159 1.63
34 39.3 40.2 422 435 427 | 1.82 1.92 1.5 1.66 1.71
35 384 393 413 425 418 | 197 207 159 1.75 1.8




Table 1 (continued)

Age Life expectancy Death Probability (*1,000)
1960 1971 1980 1989 1993 | 1960 1971 1980 1989 1993
36 3.7 38.3 404 416 40.8 | 213 224 169 1.8 1.89
37 36.5 374 394 407 399 | 232 242 181 194 1.99
38 35.6  36.5 385 398 39 253 263 1.96 2.04 2.08
39 34.7 356 37.6 388 381 | 2.77 286 212 214 2.18
40 33.8 347 36.7 379 3r2 | 3.04 311 231 225 2.3
41 329 338 357 37 36.3 | 3.34 339 253 238 2.43
42 32 329 348 36.1 354 | 3.67 3.68 2.77 2.53 2.56
43 31.1 32 33.9 352 345 | 4.03 4 3.04 271 2.69
44 30.2 31.2 33 343 336 | 443 434 335 292 2.84
45 29.4 303 321 334 327 | 4.85 4.7 3.68  3.19 3.01
46 285 294 313 325 31.8 | 5.32 511 4.04 341 3.2
47 277 286 304 316 309 | 585 556 444 3.71 3.43
48 26.8 277 295 30.7 30 6.46 6.07 489 4.05 3.7
49 26 269 28.7 29.8 292 | 713 6.63 5.38 4.43 4
50 252 261 278 289 283 | 788 725 591 485 4.35
51 244 25.3 27 281 274 | 866 791 648 531 4.73
52 23.6 245 261 272 266 | 943 861 7.09 5.84 5.14
53 22.8 237 253 263 257 | 10.2 935 7.72 6.43 5.61
54 22 229 245 256 249 | 109 103 839 7.08 6.12
55 21.3 221 23.7 247 241 | 11.7 11 9.1 7.79 6.66
56 20.8 214 229 239 233 | 126 11.9 9.88 855 7.24
57 19.8 206 222 231 225 | 13.6 129 10.7 9.37 7.88
58 19 199 214 223 217 | 149 141 11.7 103 8.59
59 183 19.2 206 216 209 | 16.3 154 127 11.2 9.34
60 17.6  18.5 19.9 20.8 202 | 179 169 13.8 123 10.14
61 169 178 172 201 195 | 19.6 184 15 13.4 10.96
62 16.3 17.1 185 193 187 | 21.3 20 16.3 14.5 11.8
63 15.6 164 17.8 18.6 18 23 21.5 177 15.7 12.64
64 15 15.8 17.1 179 176 | 24.8 23 19.2  16.9 13.48
65 143 151 164 172 173 | 26.7 246 20.8 18.2 14.35
66 13.7  14.5 28.7  26.3
67 13.1 139 31 28.4
68 125 13.1 33.5 309
69 11.9  12.7 36.4  33.9
70 13.2 139 14 30.9 273 19.21
75 104 109 109 45.7 413 24.52
80 7.9 8.3 8.3 69 63.7  29.38
85 & over 5.9 6.2 6 1000 1000 324.28




In the United States Federal and State death taxes are high for estates above
$600,000, with margins going above 45%, but there are many legal loopholes and
thus in comparison to income tax the revenue raised is relatively modest. In 1996
GNP was 7,637.7 billion, the Federal budget was 1,453 billion and income taxes were
1,500 billion with estate taxes accounting for 18 billion.

Table 2 shows an estimate of the percent of family income devoted to taking care
of children:

Table 2. Estimated Percentage of Income Expenditure
on a Child in Rural Areas® (1995)

Income Range 1° Income Range 2 Income Range 3

Age AV = 21,200 AV = 45,300 AV = 85,700
0-2 23.7 15.8 12.6

3-5 24.2 16.2 12.8

6-8 24.9 16.4 12.8

9-11 25.4 16.5 12.8
12-14 29.0 18.1 12.6
15-17 28.6 18.4 14.1

Sources: M. Lino, 1996, Expenditures on Children by Families
1995 Annual Report, USDA, p. 20.

“The ranges are less than $34,000; $34,000 — $57,200 and greater than $85,000.
bFewer than 2,500 people outside a Metropolitan Statistical Area.

These figures do not include prenatal expenditures or college and other higher
education support for children older than 17.

Table 3 shows disposable personal income and population change in the United
States recently.

Table 3. Disposable Income and Population

Disposable personal

income Births  Deaths Population
(1992 dollars) (1,000)  (1,000) (1,000)
1960 8,660 4,307 1,712 179,386
1970 12,022 3,739 1,921 203,849
1980 14,813 2,743 1,988.80 226,546
1990 17,941 4,148  2,148.50 248,143
1995 18,757 3,961 2,286 261,626

Data sources: Statistical Abstract of U.S., 1996, 1980.



3 Modelling Considerations

There are several considerations which differentiate the infinite-horizon, nonstochas-
tic, dynastic equilibrium models, from an overlapping generations economy modelled
in terms of a noncooperative game (stochastic or not).

In particular, if we take the human life cycle into account, then we must consider,
following Modigliani (1986), the age-span and changes in economic activity of an eco-
nomic agent over the course of his life. A rough heuristic suggests that an individual
is scarcely economic before the age of around 10, and that (except in countries with
child labor) children are consumers, not producers, until around the age of 14 or
later. The representative individual at the start of the twenty-first century may then
be a producer from somewhere between the ages of 14-25 to somewhere around the
ages of 60-75.

We limit our investigation to an economy with a fixed quantity ) of a single
consumption good and stochastic shares Y of the income derived from its sale, thus
avoiding most of the problems concerning the variability of the money supply. Even
without this complication, the formulation of a complete process model requires that
we indicate how child support, old age support, inheritance, and the possibility of
death while in debt, are specified.

3.1 Modelling Specifications

Prior to presenting a formal model we note, then discuss after listing, the modelling
choices to be made:!

1. The number of sexes modelled: one or two?
2. The life span: infinite; finite and fixed; finite expectation.
3. Demographics: stationary; growing.

4. Span of economically productive life: birth to death; adolescence to death; ado-
lescence to retirement.

5. Intergenerational wealth transfer: mnone; rearing young; leaving inheritance;
rearing young and leaving inheritance; supporting parent.

6. Awvailability of loan market: none; money market; outside bank.
7. Bankruptcy rules: secured lending; fully secured with default penalty.
8. Awailability of insurance: none; guarantee of income; guarantee of debt.

9. Treatment of debt at death: inherited; forgiven; insured.

LIf we were to include the existence of a public good, then we would also be required to specify its
means of allocation. This specification is often politico-economic, and thus requires a specification
of the span of politically active life.



10. Taxes and government subsidies: none; various.

We discuss these ten items and indicate our modelling choices and the reasons for
the choices.

We consider a “unisex” model. The two-sex model of overlapping generations has
been highly difficult to develop analytically. As there are still many good questions
to be explored that do not require a two-sex model, we have decided to avoid it.

We concentrate on models with a fixed finite life-span, and on models with the
much more realistic feature of a stochastic life-span with finite expectation.

For simplicity, we shall confine our investigation to a demographically stationary
population.

In the equilibrium existence proofs, any span of economically productive life can
be considered. But in specific examples, considerable differences are encountered
in the need for insurance and in the need for intergenerational wealth transfer, as
age-span changes.

We consider several variants of inter-generational transfer, but observe that with
stochastic life-spans, and in the absence of insurance, even totally selfish individuals
may leave assets after death. A rule must be specified for their disposal.

In this paper we consider only models without borrowing or lending, as we did in
our first paper [KSS1] on immortal agents. We hope to extend our results to models
with borrowing and lending, as was done for the case of immortal agents in [KSS2]
and [GKSS].

In an economy with stochastic elements, insurance can be provided by government
tax and subsidy policies.

If a fully-defined process model of an overlapping generations economy is to be
built, it must cover all of the items noted above. The choices made and specified for
the model of this paper are now summarized:

1. A unisex model is constructed.
2. Life-span has a finite expectation (no uncertainty is a special case).
3. Demographics are stationary.

4. The span of economically productive life is treated in generality (parametri-
cally).

5. Inter-generational wealth transfer is specified, with some variants and problems
noted.

4 A Formal Model

Time in the economy is discrete and runs ¢ = 0,1,2,.... There is uncertainty about
future endowments, as well as about births and deaths. Both will be modelled by
random variables defined on a probability space (2, F,P).



For each t > 0, I; is a copy of the unit interval used to parametrize the collection
of agents alive at time ¢. Let I} ; be the subset of I; corresponding to agents of age

k at time t, so that
o
I = Ins-
k=0

We assume that each I} is a Borel subset of [0, 1].
Let ¢; be a non-atomic probability measure defined on B(I;), the Borel subsets
of Iy, that corresponds to the “spatial” distribution of agents at time ¢. Thus

ei(1r) = Z@t(lk,t) =1
k=0

and ¢;(Iy,) is the proportion of agents having age k at time ¢.

Associated with every agent « are two stochastic processes, representing his age
and his wealth in fiat money, respectively. The age-process has the simpler structure,
and we shall discuss it first.

4.1 The Age-Process

Let us fix a € I;;, meaning that agent o has age k at time t. We denote by 7
the probability that a survives to the next period, for every k& > 0. Thus « goes
on to Ipyq 441 with probability 7., and a dies at age k with probability 1 — 7.
More generally, we assume that a survives until period k + ¢ with probability 7, -
Mer1 *°° Mpre—1- Using a technique of Feldman & Gilles (1985), we can construct
age-processes for the collection of all agents so that these survival probabilities also
correspond to the proportions of agents who survive, in the sense that we have

Oi1Tpt1,041) = Mg - 9 (Ig),  for all k and ¢.

We shall assume throughout this paper, that agents are born at the same overall
rate at which they die. To simplify notation, whenever an agent o dies, we use the
same index « for a newborn agent. With this abuse of notation, we can employ the
same index set [ for every I;. Also we can represent the age-process corresponding
to an index a as a Markov chain {¢, ¢t = 0,1, ...} with transition probabilities

P =k + 1KY =k =ng, PG, =0KF =k =1-ne.  (41)

A necessary and sufficient condition for this chain to have a stationary distribution,
is that the expected lifespan of a newborn agent (i.e., the expected return time to
zero) be finite. This condition is equivalent to the requirement that the infinite sum

A =140+ n9m +nomng + - - (4.2)

be finite. We assume that A is finite, and let {vx, £ = 0,1,...} be a stationary
distribution. Then {v4} must satisfy

Vi1 = NV, kzovlv



hence
Vkt1 = MpMk—1 - Movo,  k=0,1,....

Using the normalization ) v = 1, we conclude that
vo=1/A, Vg1 =mNp_1 - - Mo/A  for k>0. (4.3)

Through the rest of this paper, we shall assume that the age-distribution is the
stationary distribution of (4.3): at every time ¢, the proportion of agents having age
k is vg. (In other words, for the sake of simplicity, we have ruled out the possibility
of a “baby boom” in our model.)

Here are two simple examples.

Example 4.1 (A constant death-rate) Suppose n, =n for all k=0,1,..., where
0 <n < 1. Then the sum A of (4.2) equals (1 —n)~! and the stationary age-
distribution of (4.3) is the geometric distribution given by vy = (1 — n)n* for all
k.

Example 4.2 (A nonstochastic life-span of length K) Supposen,=n, =---=
ng=1andn, =0 fork > K. Then A= (K+1)tandvy=v1 = =vg =
(K+1)"Y vy =0 fork > K.

4.2 The Wealth-Process

For each o € I_141 with ¢ > 1 and k > 1, the random variable Si¥ ;, ; denotes
the wealth in fiat money of an agent « of age k — 1 at the beginning of périod t. The
dynamics of the process {Sg ;, ;} depend on agent o’s spending, inheritance, and
endowment in each period, as We now explain.

In every period t, each agent a receives a random endowment Yk‘f‘t (w) in units of
a nondurable commodity. The distribution Ay of the random variable Y%, depends
on the age k of agent «, but not on the period ¢t. Endowments in different periods
are assumed to be independent, but the total endowment of the commodity in each
period t for agents of age k, namely

Qi = I Y&, (@), (da) (4.4)

is taken to be nonrandom, and constant from period to period. (The technique of
Feldman & Gilles (1985) gives a simple construction of jointly measurable functions
(a,w) = V% (w) = Ygu(o,w), k > 1, ¢ > 1, which are independent for each fixed «
but aggregate to a constant as in (4.4).) The total endowment for agents of all ages
in period ¢ is just the sum

Q=> Q. (4.5)
k=0

Consider now an agent «, of age k—1 and with wealth S ; ,_,(w) at the beginning
of period ¢ . The agent first decides on the amount

bi14(w) € 10,55 141 (w)] (4.6)

8



that he will bid in the commodity market. We assume that the bids are jointly
measurable in (o, w), so that a price p;(w) for the commodity can be formed as

pr(w) = QZ/} b1 () 911 (da) (4.7)

the ratio of total demand over total supply for the commodity. Our agent o then
receives his bid’s worth xf , (w) := bf_; ,(w)/p¢(w) in units of the commodity, and con-
sumes it immediately, thereby receiving an amount of utility equal to up—1 (x5 (w)).
Here uy_1 : [0,00) — [0,00) is a concave utility function common to all agents of age
k —1. If agent « is of age 0 at time g, then his total utility received over the course
of the game is

o
v (w) = 2(770771 o Mg1) - uk(x%,to—i—k)a (4.8)
k=1
where 197, -+ 1,_; is the probability that agent o survives to age k.

After the price p¢(w) has been formed as in (4.7), agent « receives the value of
his endowment in fiat money. This amounts to p;(w)Yy,(w) and, at this stage, agent
« has wealth 5

Sie(w) = Sp10-1(w) = b1 ¢ (@) + (@)Y (). (4.9)
If the agent survives into the next period (an event that occurs with probability
Me_1) , he begins the next period with the wealth (4.9) together with any inheritance
Zp(w) that he may receive in that period. If the agent does not survive, his wealth
becomes part of the total legacy. Thus, with probability n,_;, agent o survives with
wealth

Ske(w) = Sp 1 1(w) = b 14 (w) + pe(w) Yy (w) + Zigy (w) (4.10)
= Sl?,t(w) + Zlg,t(w)'

If the agent « is newborn at the end of period ¢, then

So(w) = Zg4(w).
The total legacy in the period is

o

Liw) =3 (1) / 82 (w)gr_1 (da), (4.11)

k=1 Tp—1,4—1

which must be equal to the total inheritance

S | zideredda. (4.12)
k=0" 1kt

If only the newborn receive an inheritance at any given time (cf. Assumption 5.1
below), then the expression of (4.12) simplifies to || 1o, Z01(w)p(de). Notice that
an agent’s survival in any period is independent of hlS wealth and endowment in
that period. This simplifying assumption is, of course, not valid for many real-world
economies.



4.3 The Conservation of Wealth

The dynamics of the economy, as described above, have the property that the total
supply of fiat money is conserved from period to period. To see this, let W;_1(w) be
the total wealth of all agents at the beginning of period ¢, namely

Wi-a( Z / Sio1t-1(W)ey 1 (da).

Iy 141

Aft~er bids and income, but before births, deaths or inheritance, an agent a’s wealth
is Sp,(w) as in (4.9), and the total wealth

Z / 52, ()i (da) (4.13)

Iy 141

remains equal to W;_;(w), thanks to (4.9), (4.4), (4.5) and (4.7). The total wealth
of the living, after births and deaths but before inheritance, is

-1 gat(w) t—1(da).
;nk / v i(w)e

Tp_1,0-1

Added to the total legacy L¢(w) of (4.11), this gives total wealth W;(w) as in (4.13)
at the end of period ¢, which is equal to Wi_1(w).

4.4 The Distribution of Wealth

Because of the stochastic nature of our model, agents of the same age k£ may hold
different amounts of money at the same time t. We denote by & ,(-,w) the random
measure that corresponds to the wealth distribution for agents of age k£ at time t.
Thus, for Borel subsets A of [0, 00),

Epi(Aw) == ¢, ({fore Iy : Spa(w) € A})

is the measure under ¢, of the set of agents a of age k having wealth in the set
A. The random measures {{;,(-,w), k = 0,1,...}, together with the stationary age
distribution {vy} of (4.3), completely determine the joint distribution (,(A,k,w) of
wealth and age at any given time ¢. That is, for any bounded measurable function
(s,k) — f(s,k) of wealth s and age k, we have

% , /A f(s, k)¢ (ds, k,w) = ; Vi /A f(s,k) 4 (ds,w) (4.14)

for any Borel subset A of [0,00) and any w € Q.

10



4.5 The Many-Person Stochastic Game

The model described above can be viewed as a stochastic game with a continuum of
players. A strategy m“ for an agent o € I specifies the bids b%, as random variables
satisfying (4.6) and measurable with respect to the o-field Fk,i generated by all past
prices, endowments, wealth, and actions. A collection {7, « € I} of strategies is
admissible, if the functions (o, w) — b, (w) are B(I) ® Fj_1-measurable for all £ and
t. We will always assume that the collection of strategies played by the agents is
admissible, so that the prices are well-defined by (4.7).

Each agent a seeks to maximize the expected value of his total utility given by
(4.8). There may be some confusion about the collection of agents, because there
are births and deaths in every period. Recall that the age-distribution given by (4.3)
is stationary, and we have made the convention that whenever an agent « dies, the
index « is reassigned to a newborn agent. By a strategy 7%, we mean, on the one
hand, the entire infinite sequence of bids specified by all the agents with index c. On
the other hand, each agent seeks only to maximize his own expected utility, not that
of other agents, past or present, with the same index. Nevertheless, for simplicity
we shall continue to refer to an agent o € I, and mean by this the agent currently
alive having index a. When we use the term optimal to refer to a strategy 7%, we
mean that the strategy n“ is optimal for each of the agents who, in their respective
lifetimes, are assigned index a.

A strategy 7 is called stationary if, in every period t, the bid b by 7* depends
only on the current wealth and age of agent «, together with the price; that is,
there is a measurable function (s, k,p) — c(s,k,p) on [0,00) x N x (0, 00), such that
0 <ec(s,k,p) <sand

biga(w) = e(Sge-1(w), ks pr1(w))-

We are particularly interested in whether the economy of our model admits an
equilibrium in which prices and wealth distributions remain constant, while the wealth
processes of individual agents fluctuate according to the dynamics described above.

Definition 4.1 Let {n%, « € I} be an admissible collection of stationary strategies,
let p € (0,00), and let py, be a measure defined on B(Iyq) for every k =0,1,---. We
say that {m*}, p, and {u} form a stationary Markov equilibrium if, when the initial
price is pg = p, the initial wealth distribution for agents of age k is § o(-,w) = py
for all k and w, and every agent o € I plays 7, the following hold:

(i) p(w) =p and &, (-, w) =y, , for allk =1,2,... and t = 1,2, ....

(ii) for every o € I, ™% is optimal among all strategies for agent o when every
other agent 3 # o plays ©°.

In the next section, we study the one-person optimization problem faced by a
single agent when the many-person game is in stationary equilibrium. The results
obtained for the one-person game will enable us to prove the existence of stationary
equilibrium for the many-person game in Section 6.

We shall concentrate on two specific inheritance rules, which we call egalitarian
and individual inheritance. For both rules the entire legacy L; of (4.11) is left to the
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newborn agents of period t. The egalitarian rule is that the newborn share the legacy
equally, while the individual inheritance rule is that the wealth S’g‘t of each individual
agent « is left to an individual newborn agent — which, for Con\;enience, we assume
has the same index a. Our methods could be adapted to handle a variety of other
rules.

5 The One-Person Game

Suppose that the many-person model of Section 4 is in stationary Markov equilibrium
with a fixed price p € (0,00), and consider an agent with wealth s of age & who
seeks to maximize total expected discounted utility over the course of his remaining
lifetime. Let Vi (s) = V (s, k) be his optimal reward. (We omit the superscript « in
this section.)

Here is the first of several assumptions we shall make — in addition to those
already made in Section 4.

Assumption 5.1 Only the newborn agents receive an inheritance; that is, Zy(w) =
0 for k> 1 and all (t,w).

Under this assumption, Bellman’s equation takes the form

Vie(s) = sup [ug(b/p) + ng - EViy1(s — b+ pYiqa)] (5.1)
0<b<s
where Yj41 is a generic random variable with distribution Agy;.
Here are three additional assumptions.

Assumption 5.2 (i) For each k, the utility function ug(-) is strictly concave, non-
decreasing, differentiable on (0, 00), with uk(0) = 0.

(i1) Survival probabilities are bounded away from 1: n* := sup, n;, < 1.

(11i) Expected endowments are bounded away from infinity: m := sup, EY) < oco.

The theorem below gives some of the basic properties of the optimal reward
function and of an optimal strategy.

Theorem 5.1 (a) For each k, the function Vi () is concave and increasing.

(b) There is a unique optimal stationary plan m = m, corresponding to a bid
function c(s, k) = c(s,k;p) such that 0 < c(s,k) <s for alls >0 and k=0,1,....

(c) For each k, the functions s — c(s,k) and s — s — c(s, k) are nondecreasing
and continuous in S.

(d) For s >0 and all k, c(s,k) > 0.

(e) For all k, the function Vj(-) is differentiable on (0, 00)

1 k
Vi(s) = 2—9 ul <—C(SI; )> , s>0.

This theorem is a close relative of Theorem 4.2 of [GKSS| and the proof is fairly
similar, so we will only sketch the major steps.

12



5.1 The Proof of Theorem 5.1

First we define the one-day operator

(Tw)(s.k) = sup [us(b/p) + 1 - Buo(s = b+ p¥ic)]

for measurable functions w : [0,00) x N — [0,00). Let
V(s k) = (T0)(s, k)

and
Vet (s, k) = (TV™)(s,k), n>1.

Then V(™ (s, k) corresponds to the optimal n-day return for an agent starting at
(s,k). We have also

lim V™ (s, k) = V(s k),

n—oo
and thus we can establish properties of V' by first proving them for the V(") and then
passing to the limit.

The crucial step is to show that certain properties are preserved by the one-day

operator T'. Note that in this proposition and below, we write w'(s, k) for %w(s, k).

Proposition 5.2 Let w : [0,00) x N — [0,00), and assume that the function s +—
w(s, k) is concave and increasing, differentiable on (0,00), withw! (0,k) < %(uk);(O),
for every k € N. Then the same properties hold for Tw.

The proof of the proposition is similar to, in fact somewhat easier than, that of
Proposition 4.1 in [GKSS], so we omit the proof.

Now V(s k) = (T0)(s,k) = ug(s/p) obviously satisfies the hypotheses of the
proposition. Consequently, so do all the V(™). Theorem 5.1 can now be proved by
the arguments of Theorem 4.2 in [GKSS].

We need two additional properties of the optimal bid function c¢(s, k) of Theorem
5.1. To establish them, we impose some further assumptions.

Assumption 5.3 (i) a := inf, uj(z) > 0.
(i1) up(x) > uj(x) > uh(x) >---, VawekR.

Assumption 5.3(i) says that newborn agents have marginal utility for consumption
that never falls below a given positive constant a, while (ii) postulates that marginal
utility shrinks with age. Notice that because ug(0) = 0 for all & by Assumption 5.2(i),
we have uy(x) = [ (ug) (y)dy, > 0, and so

up(x) > ui(x) > ug(x) >---, VrxeR

Lemma 5.3 lim,_, ¢(s,0) = oco.
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Proof Suppose the assertion is false. Then, by Theorem 5.1(c), there exists a finite
constant b* such that ¢(s,0) < b* for all s > 0. We shall show, by induction on k,
that c(s, k) < b*,Vs > 0 holds for every k =0,1,2, ....

Suppose that this property holds for k, but not for k 4+ 1. Then, by Theorem
5.1(c), there is an sg such that c(s,k + 1) > b* for all s > sg. Consider s > sg + b*.
Since ¢* := ¢(s, k) < b* < s, the function

() = ug(b/p) + 1y - EVira (s — b+ pYy)

attains its maximum over [0, s] at the interior point ¢* € (0,s). Thus,

1, <b*> 1, <C*> , .
—up | — | < —up | — | = - BV (s —c +pYs
P k P P k P k k+1( )

< V(s =)

1, (c(s—c*,k+1))
= Uy | T
p p

1, (c(s —c*k+ 1))
p

p
1, (b
S —Up | — |,
p p

a contradiction. (The next to last inequality is by our assumption that uj_ (-) <
uy (), and the last inequality holds because s—c* > s—b* > sy andso ¢(s—c*, k+1) >
c(so, k+1) >0b*)

We conclude that ¢(s, k) < b* for all s and k. But then

IN

up(s/p) < Vo(s) < ug(b*/p) +ng - ur(b™/p) +nony - uz(b*/p) +- -
< up(0*/p) (X +ng +ngm ++++)
< 00,

an impossibility because ug(s/p) — oo as s — oo. [ |
Lemma 5.4 The function s — s — ¢(s,0) is bounded.

Proof Similar to, and simpler than, that of Lemma 4.2(a) in [GKSS]. |

5.2 The Wealth Process as a Markov Chain:
Egalitarian Inheritance

Consider a stochastic process {(S,,,K;,) : n =0,1,...} that corresponds to the wealth
and age of an individual agent playing in the one-person game with fixed price p up
to the time of his death, and then corresponds to the wealth and age of a second
agent born in the period of the first agent’s death until the second agent dies, and so
on. Each agent in this succession is assumed to play the optimal stationary plan of
Theorem 5.1. We also assume in this section that the inheritance of every newborn
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is the same positive constant /. (In the next section, we shall consider an individual
inheritance rule.) The process {(Sy,/;,)} is a Markov chain with dynamics given by

(s Kpir) = (Sn — ¢(Sn, Kn) + pYic,,+1, K + 1), with probability ny
nly onetd (4,0), with probability 1 —nc [
(5.2)
For the time being the legacy parameter ¢ is arbitrary, but eventually we shall specify
it carefully.
Notice that the state (¢,0) is a regeneration point for the chain, and let 7 be
the first hitting time of this state. The following lemma is an easy consequence of
Assumption 5.2(ii).

Lemma 5.5 Py o[r >n] <(n)", foral n=1,2,...

Hence, 7 is stochastically dominated by a geometric random variable and has
finite moments of all orders. It follows (cf. Asmussen (1987), p. 152) that the Markov
chain has a stationary distribution (,(d(s, k)) that can be represented by

1 T—1
/deZ = E(g’o)T ’ E(E,O) (Z f(STh Kn)) (5'3)

n=0

for measurable f : [0,00) x N — [0, 00].

Under ¢, the marginal distribution of the age K,, must be the stationary dis-
tribution for the age process, namely, the distribution {4} of (4.3). In fact, the
age-process {K,,} does not depend on the parameter ¢ and, in particular, EgoTisa
positive constant independent of ¢, and bounded from above by 1/(1 —n*).

Lemma 5.6 Under the stationary distribution (,, the marginal distribution of wealth
has a finite mean.

Proof Recall from Assumption 5.2(iii) that m = sup, EY} < co. Suppose that the
chain begins at the regeneration point (¢,0). Then for n < 7 we have

So =/
Si = £ c(0,0) +pYy < 0+ pY

Snt1 = Sn—c(Sn,n) +pYn <L+pYo+ -+ Y,

Hence,

T7—1 0o
E0 (Z Sn> = Eq <Z Sn1{7'>n}>

n=0 n=0
< S+ mpm) ()" < oo
n=0
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The lemma now follows from (5.3) with f(s,k) = s. |

We now want to select the legacy parameter ¢ so that, under the stationary
distribution (,, the amount of money inherited by the newborn is equal to the amount
bequeathed by the dying in each period. The proportion of newborn agents is v¢ and
each of them inherits the amount ¢. Thus, in view of (4.9) and (4.11), the desired
result is the following:

Lemma 5.7 There exists £ > 0 such that
val = [{(1=m0)(s = els, ) + PEV) Yol d(s. ).

Proof The right-hand side of the desired equality can be written, by (5.3), as

T—1

1
oo B0 <nz% f(Sn;,Cn)> (5.4)

where f(s, k) = (1—n;)(s—c(s, k)+pYy). Consider a coupled family of Markov chains
{{(S%,K5)} : 0 < ¢ < 0o} on a common probability space with initial conditions
(S§,K5) = (¢,0) and dynamics as in (5.2) based on the same income variables {Y,}.
We can rewrite (5.4) in the form

o <§ f(g,t;,;cg)> | (5.5)

By Lemma 5.2, there is a constant B € (0, 00) such that s —c(s,0) < B for all s, and
an argument similar to that of the previous lemma shows

T7—1 T7—1
> F(ShKR) <D (BApYo + - +pYn) =i Z. (5.6)
n=0 n=0

The final sum Z is an integrable random variable. Also, the expression on the left-
hand side in (5.6) is continuous in ¢ for almost every w in the probability space (i.e.,
for every w such that 7(w) < 0o). By dominated convergence, the expression in (5.5)
is also continuous in ¢, and is bounded from above by EZ/ET.

A simple continuity argument completes the proof. |

If we assume that expected endowments are strictly positive (EY) > 0 for all k),

then the legacy ¢ of Theorem 5.5 will also be strictly positive.
Now fix a value of ¢ as in the previous lemma, and write { for {, below.

Lemma 5.8 p= %.['c(s,k)((d(s,k)).
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Proof Consider the chain {(Sy,/Ky)} starting with the stationary distribution (.
Let A be the event that the agent alive at time ¢ = 0 survives to the next day. Then
the equation for Sj can be written

Sy = (So — C(So, ’Co) +pYIC0+1)1A + flAc. (57)
Notice that

B(01,0) = £ [ (1= n)(ds. ) = €31 = = b,

k=0

Take expectations in (5.7) and use the previous lemma, to get
ES; = /(s —c(s,k) + pEYy)n,C(d(s, k))
+ /(s —c(s,k) + pEY;) (1 —ny)C(d(s, k))

= [(s = el by + PRV (s, )
= E{So — C(SO,’C) —l—pY]C}.
By stationarity and Lemma 5.4, ES; = ESy, a finite number. Hence,

_ Jels k)Cld(s, k) _ [ e(s, k)C(d(s, k)

2noVnEYn Q

5.3 The Wealth Process as a Markov Chain:
Individual Inheritance

As in the previous section, we consider a Markov chain {(Sy,K,) : n = 0,1,...}
corresponding at each time-period n to the wealth and age of an agent. However,
rather than (5.2), the dynamics are given now by

(Sner, Knsr) = (Sn — c(Sn, Kn) + pYi,+1, K + 1), with probability 7y
o At (Sn, — (S, Kn) +pYic, +1,0), with probability 1 —mne [
(5.8)
Thus, the age-process {K,,} is the same as before, but now the wealth of an agent
who dies is passed directly on to a newborn agent.

Our main object, as in the previous section, is to show that the Markov chain
has a stationary distribution with finite mean. However, unlike that of the previous
section, the chain of this section need not have a regeneration point. Consequently,
we shall need a different argument.

The first step in the argument is to observe that the chain is a (weak) Feller chain.
That is, for every bounded, continuous function f : [0,00) x N — R, the function

(Pf)(s, k) == E[f(51,K1)[(S0, Ko) = (s, k)] (5.9)

is also continuous. This follows from (5.8) and the continuity of the function ¢ (cf.
Theorem 5.1(c)).
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Lemma 5.9 There exists a stationary distribution C for the Markov chain {(Sn, Kn)}.

Proof By Theorem 12.1.2(i) of Meyn & Tweedie (1993, p. 287), it suffices to show
that there is a compact set C' C [0, 00) x {0,1,...} such that

S|

- ZHZP[(Sn,/Cn) € C|(S0,Ko) = (s, k)] (5.10)
i=1

does not converge to 0, as n — oo, for some initial state (s,k). To see this, let us
recall that the number

By =:sup{s — ¢(s,0) : 0 < s < c0}. (5.11)

is finite by Lemma 5.2. Next, choose By finite such that P[Y; < By] > 1/2, where
Y7 has the distribution of the income variable for an agent of age 0. Then, given
{K,, = 0}, we have

Sn—l—l = Sn - C(SH,O) +pYi < By +pBQ

with probability at least 1/2. Also, for n > 1, the probability of the event that
{K,, = 0} is at least 1 —n*, where n* is the upper bound on the survival probabilities
7 in Assumption 5.2(ii). Let C be the compact set {(s,k) : 0 < s < By +pB2, k=0
or 1}. Then

P[(Sn,Kn) € C|(S0,Ko) = (s,k)} = (1 —=n")/2

for every n > 1 and all (s, k). Thus (5.10) is verified. |

Here is the analogue of Lemma 5.4 for the case of individual inheritance.

Lemma 5.10 Under a stationary distribution &, the marginal distribution of wealth
has a finite mean.

Proof Assume that (Sp,Ko) has the stationary distribution ¢ so that (S, K,) also
has distribution ¢ for every n. We need to show that E(Sp) < occ.
Condition on Ky, to obtain

E(S) = iE[SOVCO =n|P[y=n| = iE[S’O\KO = nlvy,

n=0 n=0
1 - *\N
< Z;E[S()I/Co =n](n*)",

where {v,} is the stationary age distribution of Section 4.1, A is the quantity of
(4.2), and n* is from Assumption 5.2(ii).
By stationarity, E[So|lCo = n] = E[S,|K,, = n] for every n. Also, for n > 1,
K, =n] C[K,,—1 =n —1]. Thus, by Lemma 5.2 and (5.11), we have
E[So|Ko =1] = E[S1|K; =1]
= E[Sy — ¢(50,0) +pY1|K1 =1] < By +pm
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and, for n > 2,

E[S()VC() = n] =E Sn|ICn = n}

[
= E[S, 1 —¢(Sp-1,n— 1) + pY,|K,, = n]
< E[S, 1| 1=n—1]+pm
= E[S()UCO =n— 1] +pm

where m is from Assumption 5.2(iii). It follows easily that
E[So|Ko=n]| < By +pmn, n>1
and thus -
> E[So|Ko = n](7")" < oo.

n=1

It remains for us to check that E[Sy|KCy = 0] < co. By stationarity
E[Sy|Ko = 0] = E[S1|K1 = 0]

= ZE{SIVCO =n, K1 = 0} . P[]CO — 7’L|]C1 — 0]

n=0
Now calculate
— (1 B Un)Vn
0
< )"
- oA

and

E[S1|1Ko =n, K1 =0] = E[Sy — ¢(So,n) + pYri1|Ko =n, K1 =0]
< E[So|Ko =n] + pm
S Bl —|—pm(n + 1),

where the final inequality is by (5.12). It follows from (5.13)—(5.15) that
E[S()UCO = 0} < 00.

The analogue of Lemma 5.6 holds also.

Lemma 5.11  p =4 [ (s, k){(d(s, k).

(5.12)

(5.13)

(5.14)

(5.15)

Proof Consider the chain {(S,,K,)} with its stationary initial distribution ¢. By

(5.8), we have
S =8y — C(S(),IC()) —l—pY]CO.

Take expectations and use the fact that E(S;) = E(Sp) by stationarity.
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6 Existence of Stationary Markov Equilibrium

Consider again the many-person game of Section 4 under the assumptions of that
section, as well as Assumptions 5.1, 5.2, and 5.3. Fix a possible price p € (0,00) and
let m = 7, be the unique optimal stationary plan of Theorem 5.1(b).

First, suppose that the rule of inheritance is egalitarian and let ((d(s,k)) be a
stationary distribution for the one-person Markov chain {(Sy,, K,)} that balances in-
heritance and legacy as in Lemma 5.5. For each k = 0,1, ..., let u;. be the distribution
of wealth among agents of age k under (. That is,

i (A) = C(Ax {k}), A€ B([0,00)).

Theorem 6.1 Any given price p € (0,00), together with the family of strategies
{r* = 7p,, a € I} and wealth distributions {1y}, form a stationary Markov equilib-
rium for the many-person game with egalitarian inheritance.

Proof As mentioned in Section 4, we use the construction of Feldman & Gilles
(1985) to obtain the endowment variables Y, (w) = Y} ¢(a,w) so that

(Vo) Yio(a,:),Ye1(a,-),- - are independent with distributions X, A1,--- and

’

(Vw) Yio(,w),Ye1(-,w),--- are also independent with distributions Ag, Aq,---.

Then the wealth—age process {(S§(w), )} satisfying (5.2) has the same dynamics
for each fixed w as for each fixed a. (The age process moves independently in either
case.) Thus (, being a stationary distribution when « is fixed, is also a stationary
distribution for fixed w.

Assume that the initial price pg is p and that ( is the initial distribution of wealth
and age. Then, by Lemma 5.6, the price p;, formed as in (4.7), remains equal to p.
Since ( is an invariant distribution for the chain, and the price remains fixed, ¢ will
be the distribution of wealth and age in the next period also. The strategies 7% = m,
are optimal for individual agents since no one agent can affect the price. |

Now suppose that there is an individual rule of inheritance and let (d(s, k)) be
the stationary distribution for the chain of Section 5.3. Define

(A) = ((Ax {k}), AeB([0,00)), k=0,1,...
Theorem 6.2 Any given price p € (0,00) together with {1% = 7,, o € I} and
{fi.} form a stationary Markov equilibrium for the many-person game with individual

inheritance.

Proof The same as for Theorem 6.1 using (5.8) and Lemma 5.9. |
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7 Some Examples

In [KSS1] (Example 2.5) we considered a simple one-good economy with infinitely-
lived homogeneous agents, each with a utility function

b, b<1
“(b)_{L b>1}

and an income variable Y in each period given by
PY=2=7y=1-PlY =0}, 0<~y<]1/2

Utility was discounted in each period by a factor 3 € (0,1), and each agent sought
to maximize expected total discounted utility

E (Z ﬁnu(bn+1)> :
n=0

where b,, is the bid in the nth period and the price of the single good is p = 1. The
optimal bid for an agent with wealth s was shown to be

o(s) = s, s<1
L, os>17
That is, the agent bids all of his fortune up to 1 and saves any excess over 1. This
leads to a stationary wealth distribution p given by

s—1
where 6 = (1 —27v)/(1 — 7).
Here we consider four OLG examples in which agents have the same utility func-
tion and income distribution as in this example from [KSS1], but with differing as-
sumptions on life-span and inheritance rules.

Example 7.1 (Geometric life-span and individual inheritance) Assume a
constant survival probability n, =n € (0,1) for all k = 0,1, ... as in Example 4.1 and
an individual inheritance rule as explained at the end of Section 4 and studied further
in Sections 5 and 6. An individual agent then faces the same optimization problem
as in [KSS1], with the discount factor # now replaced by the survival probability 7.
The optimal strategy for an agent of age k with wealth s remains the same, namely

C@Jﬂz{i iii}. (7.2)

The wealth process {Sy,} of (5.7) has the same dynamics as in [KSS1]. Consequently,
in equilibrium the distribution of wealth is again that of (7.1). As in Example 4.1
the age-distribution is the geometric distribution

vk) =00 -n)n*  k=0,1,.. (7.3)
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Since age is independent of wealth, the joint stationary distribution for wealth and
age ( is the product of the marginals

C(s,k) = p(s)v(k) (7.4)
S1=mA=mn* , s=0
_ ] sy —mn* , s=1

) (ﬁ)kl 11—k , s=2,3,..

The fraction of total wealth inherited by the newborn in each period is equal to 1 —n,
the fraction of the population that dies. The conditional distribution of wealth among
the newborn is again (7.1).

Example 7.2 (Geometric life-span with egalitarian inheritance) As in the
previous example, assume a constant survival probability 1, = € (0, 1), but suppose
that inheritance is egalitarian as explained at the end of Section 4 and in Section
5.2. At every stage, a fraction 1 — n of the population dies (independently of age
and wealth) and is replaced by an equal number of newborn agents, each of whom
receives an initial endowment of one unit of money. The equilibrium age distribution
v is still geometric as in (7.3). Also the optimization problem remains the same for
each agent and the optimal strategy is again given by (7.2). However, wealth is no
longer independent of age. Since every newborn has one unit of money and agents
follow the optimal strategy (7.2), their wealth s will increase or decrease by at most
one unit in each period when s > 1. Indeed, it is easy to see that the equilibrium
distribution of wealth for agents of age k is concentrated on the set {0,1, ...,k + 1}.
The equilibrium distribution of wealth p for the collection of all agents satisfies

(0) = (1 =4)nu0) + (1 = y)nu(l), w1) =1 —y)nu2) + (1 —n),
u(2) = yn(p(0) + p(1)) + (1 —)nu(3), (7.5)
p(n) = ynpu(n+1) + (1 —y)gu(n +1), for n=3.

Notice that all of the newborn are accounted for in the expression for p(1). The
solution of (7.5) takes the form

wn) =ad™t for n>3 (7.6)

where

g L=V/1-H(1 -’
2(1=)n
and the constant « is determined by (7.5) and the condition » u(n) = 1. It is
easy to check that # < /(1 — ). Thus, as expected, the wealth distribution (7.6)
for egalitarian inheritance has a smaller tail than the wealth distribution (7.1) for
individual inheritance. In other words, the proportion of very wealthy agents is
smaller than in (7.1). However, if we let 7 — 1 or, equivalently, expected life-span
approach infinity, then the wealth distribution (7.6) approaches that of (7.1).
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Example 7.3 (Nonstochastic life-span with individual inheritance) Assume
that every agent lives for exactly K periods and then dies (as in Example 4.2), and
that an individual inheritance rule is used. Although a newborn agent now faces a
dynamic programming problem with a finite horizon, it is straightforward to show
that the same strategy of (7.2) remains optimal. (There are other optimal strategies.
For example, an agent in the last period of his life could spend all of his wealth
on consumption and leave nothing to his replacement among the newborn. Indeed,
this would be uniquely optimal if the utility function v did not saturate but were
strictly increasing on [0,00). In the present case, an agent earns no further utility
after spending one unit and we will assume each agent follows (7.2).) The dynamics
of the wealth process are the same under (7.2) as in Example 2.5 of [KSS1] and
the stationary distribution of wealth p is given by (7.1) as it was in Example 7.1.
The age-distribution is uniform on {0,1,..., K} and given by v}, = (K +1)"! as in
Example 4.2. Furthermore, age and wealth are independent in equilibrium with joint
distribution

C(s,k) = (K +1) " uls)
fors=0,1,..; k=0,1,.... K.

Example 7.4 (Nonstochastic life-span with egalitarian inheritance) Asin
the previous example each agent is assumed to have life-span K, but inheritance is
now taken to be egalitarian. The strategy of (7.2) is optimal and we assume that
every agent follows it. It appears that there is no simple formula for the equilibrium
wealth distribution as a function of the parameters v and K. However, we know that
every newborn agent has the same wealth, say ¢, and an agent’s wealth can grow to
at most ¢ + K during the course of his lifetime. Hence, wealth is uniformly bounded
in equilibrium. Here is the joint equilibrium distribution ¢ for wealth and age in the
very special case when v = 1/4 and K =1 (two generations): Half of the population
is newborn and all of these have wealth 3/4 so that

((3/4,0) = 1/2;
of which 3/4 have wealth 0 and 1/4 have wealth 2, so that
¢(0,1) =3/8, ¢(2,1)=1/8.

It can be shown that if we let the life-span K tend to infinity in this example, then
the marginal distribution of wealth in equilibrium converges to the distribution p of
(7.1). In fact, the wealth distribution for all four examples is equal or close to (7.1)
for moderate values of v and expected life-span equal to 80 or so.

8 The Life-Cycle, Loans and Insurance

We have confined our remarks in this note to the specification of the birth and
death processes and bequests and inheritances. These are bare minimal requirements
in order to define fully a process model and be able to demonstrate existence of

23



a stationary equilibrium. An immediate extension of direct economic interest is
to consider aspects of the individual life-cycle, including the flow of resources to
the pre-productive young and to the post-productive old. Consideration of the life
cycle calls for multiperiod borrowing and lending, and creates a need for money and
credit independent of transactions needs. Insurance and pension schemes emerge
as potentially efficient ways to handle the uncertainties and gaps in timing between
earning and expenditures. These additional factors are topics for future research.
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