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ABSTRACT

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate

and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order

to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining

plumes and is similar to other current parameterizations. The stochastic variability describes the local

fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distri-

bution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each

model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is

computed with a CAPE closure method. The characteristics of each plume produced are determined using

an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column

version of the Unified Model verify that the scheme is effective in producing the desired distributions of

convective variability without adversely affecting the mean state.

1. Introduction

In numerical models of the atmosphere on global

scales and mesoscales, the effects of moist convection

cannot be adequately represented by the resolved-scale

motions. Some form of parameterization scheme is nec-

essary in order to obtain reliable and realistic results.

Traditionally, such schemes are deterministic. The in-

stantaneous grid-scale flow is taken as input and the

scheme produces the feedbacks to that flow from the

subgrid convective motions. In practice, there may, of

course, be a wide range of subgrid states that are con-

sistent with the resolved-scale flow, and therefore a de-

terministic scheme must be regarded conceptually as an

attempt to evaluate the ensemble-mean effect of the

subgrid states.

It is straightforward to demonstrate explicitly that

the convective states consistent with a given resolved

flow can indeed be wide ranging (see, e.g., Xu et al.

1992), given the lack of scale separation between the

resolved flow and the convective motions. Figure 1

shows the distribution of updraft mass fluxes (defined

as in section 2) near cloud base that were obtained from

a cloud-resolving-model (CRM) simulation of radia-

tive–convective equilibrium. [The simulation was per-

formed on a doubly periodic grid of 128 � 128 km2 with

a horizontal resolution of 2 km. Convection was

strongly forced by artificially cooling the troposphere at

16 K day�1, with the sea surface temperature held

fixed. The Coriolis parameter was set to zero and no

mean shear was imposed. For full details of the simu-

lation see Cohen (2001) and Cohen and Craig (2006).]

The resulting mass fluxes are averaged over regions of

different area, representative of possible grid box sizes

in a larger-scale model. For such a strong and uniform

external forcing, one might hope to find relatively little

variability in the convective response after averaging

over areas comparable with the grid box sizes of NWP

or climate models. However, the actual distribution for

a mesoscale grid length of 16 km is undeniably broad.

The increased averaging for a grid length of 64 km does

produce a narrower distribution. Nonetheless, its width

is about 30% of the mean flux, indicating that fluctua-

tions about the mean may still be a notable feature of

the system.
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Our discussion would be purely academic, were it not

for the fact that convective fluctuations are capable of

interacting strongly with nonlinearities in the convec-

tive system and with the resolved-scale dynamics. A

powerful illustration of the point is provided by the

marginal predictability of some convective structures

on the mesoscale. In such cases, moist convection reacts

strongly to near-grid-scale noise, which can cause simu-

lations to evolve in quite distinct ways (Zhang et al.

2003; Done et al. 2006). Interactions of this sort con-

tribute to the spread of ensembles that are based upon

simulations with perturbed initial conditions. However,

although existing ensemble techniques provide useful

probabilistic information, in many situations the en-

semble spread is insufficient to cover the full range of

possible flows (Buizza 1997; Buizza et al. 2005). A not

unrelated point is that many GCMs have insufficient

high-frequency variability of convective heating (Ric-

ciardulli and Garcia 2000) and precipitation (Horinou-

chi et al. 2003) in the tropics. This missing variability

damages the model wave spectra in the middle atmo-

sphere (Ricciardulli and Garcia 2000; Horinouchi et al.

2003) and so impacts on important low-frequency fea-

tures of the climate system, such as the equatorial

quasi-biennial oscillation (Horinouchi et al. 2003).

Current ensemble approaches usually aim to allow

for uncertainties in the initial conditions and to do so in

a controlled fashion, by which we mean that an increase

in the number of ensemble members always leads to an

increase in the information content. However, model

uncertainty is not normally taken into account. Doubt-

less this is because details of such uncertainty are not

known, the size and character of the errors involved

being only sketchily understood.

Possible approaches include the construction of en-

sembles whose members take different parameter val-

ues in the parameterizations (Yang and Arritt 2002),

employ different parameterizations entirely (Houteka-

mer et al. 1996; Stensrud et al. 2000; Bright and Mullen

2002), or even are derived from different models

(Evans et al. 2000; Hou et al. 2001). Another approach

has been to introduce a random multiplicative factor to

the tendencies obtained from all parameterization

schemes prior to feedback to the resolved scale (Buizza

et al. 1999). Although such methods are not without

flaws, nonetheless there is good evidence that there are

genuine benefits from at least trying to deal with model

uncertainty (Buizza et al. 1999; Hou et al. 2001; Mylne

et al. 2002).

Progress can also be made by recognizing model un-

certainties explicitly within the formulation of the

model itself by introducing a stochastic forcing (Palmer

2001; Wilks 2005). It should be noted that there are

some fundamental issues in the numerical solution of

stochastic differential equations, but the situation is far

from hopeless (Penland 2003; Ewald et al. 2004). The

scheme of Buizza et al. (1999) represents perhaps the

simplest and best-known example of a stochastic forc-

ing. A straightforward improvement would be to scale

the tendencies from each parameterization scheme

separately (Lin and Neelin 2002; Teixeira and Reynolds

2008). However, perhaps a more promising approach is

to introduce small-scale variability by including sto-

chastic elements directly in a model’s parameterization

schemes. There are of course many possible ways of

doing so. Existing examples include Palmer’s (2001)

suggestion of an approach using cellular automata and

Bright and Mullen’s (2002) use of a stochastic element

FIG. 1. Frequency plot of total convective mass flux per unit

area (at a height of 2 km) obtained from a CRM simulation (Co-

hen and Craig 2006) of radiative–convective equilibrium. The to-

tal mass flux is computed for different-sized areas and binned into

intervals of 0.01 kg m�2 s�1. Data are taken from the established

equilibrium state only using 340 times over 2 days. The vertical

axis is scaled to account for the larger number of suitable areas

that become available as the unit-averaging area is reduced in size.
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in the trigger function of the Kain and Fritsch (1993)

convection scheme. Alternatively, Majda and Khouider

(2002) and Khouider et al. (2003) have described a sto-

chastic scheme for evaluating the fractional area of a

grid box that supports deep convection, while Lin and

Neelin (2003) have proposed stochastic deep-convec-

tive parameterizations based on random perturbations

to either the CAPE (Lin and Neelin 2000) or to the

vertical heating profile.

The consensus emerging from the above studies is

that the use of stochastic techniques to introduce small-

scale variability to numerical models of the atmosphere

is desirable for both conceptual and practical reasons

(see also Williams 2006; Hermanson 2006). However,

the stochastic schemes listed above are based on rather

ad hoc assumptions about the time and space scales and

structures of convective variability. This is not to deny

their value. Indeed, there are good reasons for explor-

ing different types of stochastic representations and

their impacts with frameworks that are relatively

straightforward. However, stochastic convection

schemes should ultimately be based on systematic ob-

servations or simulations of convective behavior.

In this paper we describe a first attempt to build and

test a stochastic cumulus parameterization that will, in

a limited sense, produce the “correct” convective vari-

ability. In particular, the scheme is designed to repro-

duce the convective fluctuations that occur in radiative–

convective equilibrium over a uniform sea surface, a

situation that is relatively well understood from theory

and cumulus ensemble simulations (Craig and Cohen

2006; Cohen and Craig 2006).

Section 2 summarizes the key properties of convec-

tive variability in radiative–convective equilibrium (sec-

tion 2a) and the implications for the design of a param-

eterization (section 2b). Sections 3 and 4 describe in

detail the implementation of the scheme. Tests with a

single-column model are described in section 5 to dem-

onstrate the robustness of the scheme and its ability to

produce correct behavior when interacting with an at-

mospheric state that can vary in time. It will also be

important to demonstrate that the correct variability is

reproduced in a full three-dimensional model with ar-

bitrary grid size; this will be subject of a follow-up pa-

per.

2. Basis for a stochastic scheme

In this paper we attempt to construct a stochastic

parameterization based on a physical description of

convective variability. In particular, we follow Arakawa

and Schubert (1974) and assume the existence of a sta-

tistical equilibrium where the total mass flux of the en-

semble of convective clouds found in a region is con-

trolled by the large-scale environment. It is important

to note that “large-scale environment” is defined by the

dynamics of the meteorological situation and does not

necessarily correspond to a region defined by the model

grid length (although the grid length must be at least

small enough to resolve the dynamical features). Ar-

akawa and Schubert (1974) explained that the size of

the region required to define an equilibrium must be

large enough to contain many clouds—a statement that

will be made more precise in the next section. A sub-

region, perhaps a model grid box, that is smaller than

required will contain only a subset of the equilibrium

convective ensemble. Its (spatially averaged) properties

at any given moment will thus not equal those of the

full ensemble and will vary in adjacent subregions, even

though the system as a whole is in equilibrium. The

mass flux in a subregion will thus be a random variable,

but the fact that the convection is a subensemble of an

equilibrium system implies that it will be drawn from a

distribution determined by the large-scale flow.

The basic outline of an equilibrium-based parameter-

ization that includes this randomness is as follows:

1) Average the atmospheric state (temperature, mois-

ture, etc.) in the horizontal, over a region large

enough to contain many clouds (possibly many grid

boxes) to determine the large-scale environmental

properties;

2) Compute the equilibrium statistics of the full con-

vective ensemble;

3) Draw randomly from the equilibrium distribution to

get the convective mass flux and other cumulus

properties in each grid box;

4) Compute convective tendencies of grid box atmo-

spheric variables like temperature and moisture

from the mass flux and cumulus properties.

The crucial additional information required for the

stochastic parameterization is the equilibrium distribu-

tion to be used in steps 2 and 3, and implicitly the scale

required for spatial averaging in step 1. A conventional

mass-flux-based scheme only requires the mean mass

flux in a grid box.

A model for equilibrium convective statistics was

presented by Craig and Cohen (2006) and tested in

numerical experiments (Cohen and Craig 2006), and

will serve as the basis of the parameterization presented

here. The next section (2a) summarizes this work, and

the following section (2b) presents an explicit version of

the above algorithm.

It should be recognized that the concept of a large-

scale environment is not well defined unless there exists
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a scale separation in the spectrum of cumulus dynamics.

Whether any such separation exists has been ques-

tioned (e.g., Mapes 1997), most recently on the basis of

evidence for 1/f noise (Yano et al. 2001, 2004a) and

self-organized criticality (Peters and Neelin 2006) in the

tropics. Nonetheless, the concept is the basis for most,

if not all current, cumulus parameterizations (Arakawa

2004).

a. Fluctuations in radiative–convective equilibrium

The convecting atmosphere is considered to support

an ensemble of convective clouds (updrafts or updraft–

downdraft pairs). Assuming a large-scale environment

that is in equilibrium, there are two contributions to the

convective variability in a subregion. First, the indi-

vidual clouds may be weaker or stronger; that is, clouds

have different mass fluxes. Second, a region of given

area may contain a larger or smaller number of clouds,

depending on where it is located.

Using elementary concepts from statistical mechan-

ics, Craig and Cohen (2006) showed that for an en-

semble of weakly interacting convective clouds in sta-

tistical equilibrium, the probability distribution func-

tion (PDF) of mass flux per cloud, m, is exponential:

p�m�dm �
1

�m�
exp��m

�m�
�dm, �1�

where angled brackets have been used to denote an

ensemble average. The distribution has been verified in

CRM simulations of radiative–convective equilibrium

(Cohen 2001; Cohen and Craig 2006). The updraft mass

fluxes in those CRM simulations were defined for the

updraft cores: connected grid points, each with a verti-

cal velocity larger than 1 m s�1 (LeMone and Zipser

1980). The mass flux was then �Aw, where A is the area

of the updraft core and the overbar denotes an average

over contributing grid points. The relationship between

this definition of mass flux and those used in a convec-

tive parameterization can be problematic (Yano et al.

2004b). Nonetheless, we shall assume that the same dis-

tribution [Eq. (1)] can also be used to describe the pa-

rameterized mass flux.

The PDF in Eq. (1) applies to a fixed level of the

atmosphere. However, there is nothing in the argu-

ments of Craig and Cohen (2006) to constrain what that

level should be. For verification purposes, Cohen and

Craig tested the distribution at 2.4 km (at the moist

static energy minimum; their Figs. 1 and 2) and also just

above cloud base. Further testing reveals the exponen-

tial shape to be remarkably robust, applying over a

wide range of heights and with different forcings of the

CRM. For example (other examples are given by Len-

nard 2004), Fig. 2 shows histograms for tropospheric

cooling rates of 8 and 16 K day�1 at heights of 3.1 and

1.3 km, respectively. (Note that the distribution does

not extend to the smallest updrafts, a truncation that

arises from the finite grid length and the cloud defini-

tion used.)

The assumptions leading to the exponential distribu-

tion include a statement of equilibrium that enables one

to link the large-scale forcing to the ensemble-mean

convective response. The strength of the response can

be characterized by the ensemble-mean mass flux,

�M� � �N � �m�, where �N � is the ensemble-mean num-

ber of convective clouds present. In equilibrium �M�

can be regarded as some function of processes operat-

ing on the large scale. Thus, we follow the standard

practice in mass-flux schemes of regarding �M� as being

defined by a closure assumption, specified in section 4.

Individual clouds within the ensemble have a mean

mass flux �m� that we take to be a fixed constant. Note

that a conventional mass-flux parameterization re-

quires only �M� and is insensitive to �m�. In the stochas-

tic context, however, �m� (or 1/�N �) sets the scale for

the fluctuations of M about �M�. Although the available

information about �m� is limited, there are indications

that a constant value provides a reasonable first ap-

proximation. It is found in CRM studies (Robe and

Emanuel 1996; Shutts and Gray 1999; Cohen 2001) that

the strength of an imposed forcing has only a weak

effect on the mean vertical velocity of individual up-

drafts, consistent with the scalings of Emanuel and Bis-

ter (1996) and Grant and Brown (1999). Thus, an in-

crease to the forcing is associated predominantly with

an increase to the fractional area of updrafts. Cohen

(2001) has gone further by suggesting that changes to

the fractional area may be largely attributable to a

change in the number of updrafts, with changes to their

size being a subsidiary effect. Figure 3 supports this

contention by showing CRM results for �m� as a func-

tion of height for different strengths of forcing. A dou-

bling of the imposed tropospheric cooling increases the

total mass flux by a similar factor (Cohen 2001; see also

Robe and Emanuel 1996, their Fig. 7a) but leaves the

mean mass flux per updraft essentially unchanged. In-

terestingly, the figure also reveals that there is only a

weak dependence of �m� on height in the midtropo-

sphere, suggesting that the midlevel changes in total

mass flux with height in these simulations are associ-

ated predominantly with changes to the number of

clouds reaching each level. Based on Fig. 3, we have

chosen �m� � 2 � 107 kg s�1 for the initial tests of the

stochastic parameterization.

The variability associated with different numbers of

clouds appearing in a subregion will depend on the de-
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gree of spatial organization of the convection. The sim-

plest assumption is that the clouds are randomly dis-

tributed in space, and this was found to be a reasonably

accurate approximation, even in simulations where a

strong environmental shear was imposed, leading to

squall line-like organization (Cohen and Craig 2006). In

such cases, the standard deviation of the mass flux in a

given region was within about 10% of the value for a

completely random spatial distribution. Craig and Co-

hen (2006) have shown that an exponential distribution

for the mass flux of each cloud then implies a PDF for

the total mass flux in a region given by

p�M� �
1

�m�
��M�

M
exp��

M 	 �M�

�m�
�

� I1� 2

�m�

�M�M�, �2�

where I1 denotes the modified Bessel function of order 1.

b. Outline of the stochastic parameterization

The stochastic parameterization is based on the equi-

librium distribution described above. The convection in

a grid box will be described by the number of clouds of

each mass flux present at a given time. Individual

clouds are assumed to have a size much smaller than a

grid box and are distributed randomly in space, leading

to no correlation between the mass flux occurring in

adjacent grid boxes. On the other hand, clouds may

have a finite lifetime, and at each time step new clouds

are initiated by choosing randomly from the distribu-

tion of Craig and Cohen (2006).

The distribution of Craig and Cohen (2006) has two

parameters, �M� and �m�. The ensemble-mean total

cloud-base mass flux, �M�, comes from a closure as-

sumption, in common with other mass-flux-based pa-

rameterizations, while the mean cloud-base mass flux

of an individual cloud, �m�, is assumed constant as dis-

cussed above. Another aspect in common with conven-

FIG. 2. Histograms of updraft mass fluxes obtained from CRM simulations (Cohen 2001) of radiative–convective equilibrium. The

mass flux is binned into intervals of 2 � 106 kg s�1 and lines of best fit for an exponential distribution have been added for a cooling

rate of (a) 8 K day�1 at 3.1 km and (b) 16 K day�1 at 1.3 km. Data are taken from the equilibrium state using (a) 98 times over 4 days

and (b) 30 times over 1.3 days.
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tional mass-flux parameterizations is the computation

of vertical profiles of temperature and moisture tenden-

cies from the cloud-base mass flux, using a cloud model

such as an entraining plume (Arakawa and Schubert

1974; Ooyama 1971).

With these assumptions, the four steps of the general

algorithm presented earlier can be restated more pre-

cisely:

1) Compute large-scale properties by horizontally av-

eraging vertical profiles of temperature and mois-

ture over a region centered on each grid point. The

size of the region is proportional to the length scale

L � 
�m�/�M�, where �M� is the ensemble-mean

total cloud-base mass flux per unit area. Here L is a

measure of the separation between clouds. In prin-

ciple this scale is variable, depending on the output

of the closure calculation, and iteration is required

to define an averaging region consistent with the

resulting �M�. As discussed later, no such iteration is

implemented for the single-column tests in this pa-

per.

2) Compute equilibrium convective distributions, with

�M� given by the closure applied to the spatially av-

eraged sounding and �m� assumed constant. Along

with Eq. (1), these parameters give the distribution

of the number of clouds of each cloud-base mass

flux in a grid box of a given size.

3) Given the lifetime of a cloud and the time step, the

probability of initiation of clouds of each cloud-base

mass flux in the grid box can now be computed.

Clouds at the end of their lifetime are removed and

new clouds are initiated randomly according to the

specified distribution. Note that if the size of the grid

box is large (compared with the averaging length

from step 1), each grid box will contain a represen-

tative sample of the entire distribution of cloud

sizes, and the parameterization will converge to a

deterministic equilibrium mass-flux scheme with a

spectral cloud model.

4) Compute large-scale convective tendencies based on

the population of clouds in the grid box. A cloud

model is used to compute vertical profiles of ten-

dencies for each cloud based on its cloud-base mass

flux.

To this point we have not specified which closure

assumption will be used to compute �M� (step 2), nor

which cloud model will be used for the tendency pro-

files (step 4). Many choices are possible, but for the

present work, these elements will be based on the

Kain–Fritsch parameterization scheme (KF; Kain and

Fritsch 1990, 1993; Kain et al. 2003; Kain 2004). This is

a state-of-the-art cumulus parameterization designed

for mesoscale models and widely used in research and

operational forecasting. A brief description of the KF

scheme can be found in the appendix. Using this exist-

ing scheme as a basis has the advantage that it is robust

and well-tested code, and allows the original KF

scheme to be used as a reference point for testing.

The cloud model is an entraining/detraining plume

with relatively detailed microphysics. Some details of

the KF plume model have been adapted for the present

purposes, notably the determination of cloud-base

properties for each plume, and the cloud lifetime, as

described in section 3. The vertical profiles of tempera-

ture and moisture tendency are calculated as sums over

the population of plumes in the grid box. The closure

assumption is to set �M� to be sufficient to remove

CAPE over a specified time scale. The closure time

scale will depend on forcing via the cloud spacing, fol-

FIG. 3. The mean mass flux of a convective updraft obtained

from CRM simulations of radiative–convective equilibrium (Co-

hen and Craig 2006). The mean is calculated for each vertical

level, using 98 times over 4 days (for the 8 K day�1 cooling rate)

and 159 times over 7.75 days (for the 4 K day�1 cooling rate).
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lowing Cohen and Craig (2004), and discussed in sec-

tion 4.

3. The cloud model

a. The ensemble of plumes

The plume model from the KF scheme is used to

specify the behavior of each cloud in the distribution.

Plumes are required with a full range of mass fluxes at

the lifting condensation level (LCL) in order to create

an exponential distribution [Eq. (1)] there. Exponential

distributions should also occur at higher levels (section

2a) but are not imposed by the parameterization; in

section 5b, we test whether the plume ensemble is ca-

pable of maintaining exponential distributions aloft. In

this section, we consider how a desired cloud-base mass

flux is assigned to a plume.

In the plume model, the maximum entrainment rate

for the updraft is inversely proportional to updraft ra-

dius. In the KF parameterization a single radius is used

to represent all convection within a grid box. Here, a

spectrum of clouds can be obtained by allowing a spec-

trum of entrainment rates (radii). Although the values

used for the updraft radii should not be interpreted too

literally (Emanuel 1994; Kain 2004) it may nonetheless

be reasonable to assume that the radius-like parameter

in the entrainment formulation provides some mean-

ingful measure of updraft size. Indeed, Kuang and

Bretherton (2006) have recently found support for this

notion from CRM simulations. We will assume the re-

lationship

m �
�m�

�r2�
r2. �3�

The equation essentially requires that the vertical ve-

locities in updrafts be independent of updraft size (and

hence of the entrainment rate). Such a condition is

manifestly false within the body of an updraft but may

hold close to the level where it is initiated. Eqs. (1) and

(3) are used at the LCL to provide a PDF of plume

radii, or equivalently of entrainment rates. We remark

that the ensemble scheme of Frank and Cohen (1985)

also relies on a transformation between cloud size and

mass-flux distributions, which is achieved by an equiva-

lent relationship. A similar assumption was made by

Donner (1993).

The probability in a single time step (of duration dt)

of initiating a plume of radius r in the range r to r 	 dr

with a cloud-base mass flux given by Eq. (3) can now be

written as

�N�p�r�dr
dt

T
�

�M�

�m�

2r

�r2�
exp��r2

�r2�
�dr

dt

T
, �4�

where T is the lifetime for which a plume persists. In

principle, T may be a function of plume radius and

properties of the large-scale environment.1 Here, we

make the simple choice2 of T � 45 min.

A description of the closure for determining �M� is

deferred to section 4. Assuming this to be known, ran-

dom numbers in the range 0 to 1 can then be generated3

for each possible updraft radius and tested against the

probabilities given by Eq. (4). The probability of initia-

tion has a maximum for r � 
�r2 �/2, and the radius

interval dr is selected such that this probability is 5%,

subject to a maximum bin width of 50 m.

The convective clouds at a given moment consist of

plumes initiated at the current time step, together with

plumes initiated previously whose lifetimes have not

expired. Thus, a preexisting set of plumes should be

specified as part of the initial conditions for a model

run. If such information (from a previous model run) is

not available, it is convenient to generate a full set of

plumes during the first time step. This can be achieved

by neglecting the factor dt/T in Eq. (4). Plumes gener-

ated in this fashion are not to be designated as newly

initiated clouds but have ages assigned randomly as a

uniform distribution extending up to the full lifetime.

b. Adaptations of KF plume model

When a plume is initiated its characteristics above

cloud base are unconstrained by the theory of section 2.

They could be regarded as depending on the local (grid

box) or on the large-scale environmental state. (In the

latter case, the whole parameterization would then de-

pend only on large-scale properties.) Both possibilities

have been explored (section 5d). Regardless of whether

the input sounding is local or spatially averaged, the KF

plume model is used to calculate plume characteristics

aloft, albeit with some adaptations that are desirable

for our present purposes. This section outlines modifi-

cations to the choice of source layer and initial tem-

perature perturbation, and notes how negative mois-

ture tendencies are treated.

The plume model considers a sequence of potential

updraft source layers, each spanning a whole number of

1 Within an ensemble of clouds, one might expect a larger cloud

to persist longer than a smaller one. It would certainly be inter-

esting to collect some quantitative information on this point, per-

haps by introducing an element of cloud tracking to CRM simu-

lations.
2 Other choices of lifetime produced only minor changes to the

radiative–convective equilibrium state described in section 5.
3 The random number generator is the minimal Park and Miller

method with Bays–Durham shuffle and added safeguards, as pre-

sented in Press et al. (1992).
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model levels. This proved problematic in that changes

to the identity of the actual updraft source layer be-

tween time steps could result in jumps in the height of

the LCL that are undesirable if attempting to close the

parameterization there. We achieve smoother varia-

tions in the LCL by defining potential source layers to

be exactly 50 mb deep, the base of each being 5 mb

higher than the previous potential layer tested. Note

that once a suitable source layer has been found it is

then held fixed for a given sounding: that is, the source

layer is not permitted to vary with plume radius.

Another issue related to the search for a suitable

updraft source layer is the temperature perturbation

applied when testing for buoyancy at the LCL. This has

been simplified to use a fixed perturbation of 0.2 K,

similarly to the Gregory and Rowntree (1990) scheme.

However, should no buoyant source layer be identified

then the search is repeated with the perturbation incre-

mented in steps of 0.1 K. When a parcel is released at

the LCL, the updraft calculations assume an initial ve-

locity dependent upon the temperature perturbation.

In practice, we have found that, for any perturbation

beyond threshold, reasonable variations in its strength

have little consequence. This agrees with Nober’s

(2003) observation for a different plume model.

Each convective plume present has associated ten-

dencies of the grid box moisture variables (in our case

water vapor, cloud water, and cloud ice). With multiple

plumes present over multiple time steps, there is a pos-

sibility of producing a negative value for one of the

moisture variables. In such an eventuality, the offend-

ing variable is simply reset to zero by borrowing mois-

ture of another type (including a corresponding latent

heat adjustment). This procedure may be insufficient if

a required drying exceeds the total moisture available,

and in that case all plumes present that have a drying

tendency on the problematic model level are removed

before the end of their envisaged lifetime. Although

occasional small changes of this type are necessary, it is

reassuring to note that removal of plumes is extremely

rare in our experience.

4. Implementation of the CAPE closure

Calculation of the required ensemble-mean mass flux

�M� is based on the deep-convection closure of the KF

parameterization (see appendix), extended to apply to

an ensemble of plumes. The plume spectrum is divided

into 50 equal radius intervals ranging up to 2 km, with

each spectral element described by the entraining/

detraining plume model. The ensemble-mean mass-flux

profile and dilute CAPE are determined from the sum

over spectral elements, weighted by their probability of

occurrence [Eq. (1)]. Mass fluxes are scaled4 such that

at least 90% of the dilute CAPE would be removed

were the full ensemble of plumes to act on the large-

scale environmental sounding for a time Tc, the closure

time scale. The extended closure has been validated by

a number of explicit checks: for example, taking an

“ensemble” of plumes all having the same updraft ra-

dius and with arbitrary weightings that sum to unity, the

method produces identical results to the KF closure

using that radius.

The closure time scale can be interpreted as the ad-

justment time in response to a change of forcing (if the

forcing were removed, convection would decay in this

time). Following Cohen and Craig (2004), we relate this

time scale to the cloud separation in the large-scale

environment, such that

Tc � kL � k��m�

�M�
, �5�

where k is a constant, which will depend on the defini-

tion of adjustment. This relationship is consistent with

the view that the response to a change of forcing is

governed by the time taken for a gravity wave signal to

propagate between clouds (Bretherton and Smolark-

iewicz 1989) since the average speed of convectively

generated gravity waves appears to be rather insensi-

tive to the large-scale environment (Cohen and Craig

2004). Equation (5) produces a closure time scale that is

relatively long with weak forcing but short with strong

forcing.

5. Tests of the scheme

In this section, we test the behavior of the stochastic

scheme. A precondition before more ambitious use of

the scheme is that it should be capable of replicating

both the mean convective state and the statistical fluc-

tuations about that state for the situation in which Eqs.

(1) and (2) are known to hold. To test this, we perform

single-column model (SCM) experiments that aim to

replicate the radiative–convective equilibrium CRM

simulations of Cohen and Craig (2006). In particular,

we address the following questions:

1) For a steady external forcing, does the convective

variability become small with increasing grid box

size? (Section 5b.)

4 Subject to the constraint of a maximum scaling governed by

the mass in each layer. There are also some simplifications for

extremely weak forcings and facilities for dealing with numerical

problems in the iteration procedure. These are broadly similar to

those in the KF code.
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2) Are the time-mean temperature and humidity pro-

files reasonable (comparable with those obtained

using the unmodified KF scheme)? (Section 5b.)

3) Are the properties of individual plumes consistent

with CRM results (the exponential distribution of

plume mass fluxes and the approximate constancy of

ensemble-mean mass flux with height)? (Section

5c.)

4) Does the variability in a finite-sized grid box follow

the prescribed distribution of M [Eq. (2)]? (Section

5d.)

5) Is the parameterization stable under steady external

forcing (can the imposed variability be removed by

time averaging to provide stable input, representa-

tive of the large-scale environment, for the closure

calculation in subsequent time steps)? (See section

5d.)

a. SCM arrangement

The single-column configuration of the Unified

Model (UM; Cullen 1993) is used. Apart from the ra-

diation (imposed) and convection (under test) schemes,

we employ the physical parameterizations available in

version 4.5 of that model. Layer clouds are parameter-

ized using the Smith (1990) scheme with associated pre-

cipitation represented as in Smith et al. (1998) and Wil-

son and Ballard (1999). The variables considered are

for water vapor, liquid water, frozen water, and rain.

Total cloud condensate is determined by assuming a

triangular probability distribution function of cloud-

conserved variables about the grid box mean (Smith

1990). Various microphysical processes (Wilson and

Ballard 1999) make transfers between the moisture

variables, with frozen water being treated prognosti-

cally while liquid water and rain are diagnostic.

Surface fluxes are represented as simple linear func-

tions of the temperature and moisture differences be-

tween the first model level and the surface. Constants

of proportionality are derived from the mean fluxes

that occur in the equilibrium state of the corresponding

CRM run (B. Cohen 2003, personal communication).

In the absence of any boundary layer shear in these

SCM experiments, the boundary layer mixing of tem-

perature, water vapor, and layer-cloud water (Smith

1990) is calculated with a first-order turbulence closure

and using free-convective scalings for the eddy diffu-

sivities (Smith and Williams 2000).

Sea surface temperature is held fixed at 300 K, and 49

sigma surfaces are chosen to correspond approximately

with the vertical resolution of the CRM simulations.

As in the CRM simulations, explicit radiation calcu-

lations are replaced by a prescribed tropospheric cool-

ing rate, which is constant up to 400 mb and decays to

zero linearly with pressure up to 200 mb. The cooling

rate is here set at 8 K day�1. Budget diagnosis of pre-

liminary runs showed that the only process operating

above 200 mb was the convection scheme, which occa-

sionally produced cooling at the top of the deepest

clouds. The result was a drift in potential temperature

around the tropopause. This is an artifact of the simple

prescribed radiative cooling; similar changes also occur

in CRM simulations (B. Cohen 2003, personal commu-

nication; C. Roadnight 2001, personal communication).

We therefore introduced a Newtonian relaxation of the

potential temperature toward its initial state above 200

mb with a relaxation time of a few hours.

Unless otherwise stated, the SCM uses the default set

of parameters listed in Table 1. The table includes ref-

erences to section numbers where discussion can be

found on the choice of each parameter and relevant

sensitivities. It should be noted that, in the results to be

presented here, calculations of initiated plumes were

based on instantaneous soundings (see section 3b). The

alternative of using a time-averaged sounding to repre-

sent the large-scale environment produced almost iden-

tical results for these single-column tests.

It is convenient in the SCM to use a time step of 5

min so that there are several time steps within the speci-

fied cloud lifetime T.

An SCM equilibrium state was also obtained with the

unmodified KF parameterization for comparison pur-

poses. This required an additional assumption since

there was no column-scale vertical velocity available for

calculation of a temperature perturbation, �T (see ap-

pendix). Instead, �T was taken to be constant. There is

some sensitivity to the choice made. While a deep

plume is present approximately 40% of the time, shal-

low plumes can be relatively rare (small �T) or preva-

lent (�T � 0.1 K). For �T � 0.2 K, the boundary layer

structure starts to suffer, becoming unrealistically shal-

low. Reasonable agreement with mean thermodynamic

profiles from the CRM was obtained for 0.02 � �T �

0.2 K, with shallow convection occurring more than

TABLE 1. Default parameter choices for the stochastic convec-

tive parameterization, as used in the SCM runs of section 5. In

each case the choice made is discussed in the section referred to in

the final column. Here Ns denotes the number of soundings that

are time averaged to provide large-scale profiles. All other sym-

bols are defined in the main text.

Parameter Value Reference section

�m� 2 � 107 kg s�1 2a

T 45 min 3a

�r 2 � 450 m 5b

k 0.3 s m�1 5d

Ns 90 5d
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30% of the time. Results presented in this paper are for

�T � 0.05 K.

b. Tests of mean state

We consider first a column that represents a large

“grid box” of side 400 km. Some statistics at equilib-

rium with the default parameter set are given in Table

2. It is immediately apparent that the SCM produces

fewer clouds per unit area than the CRM. We shall see

in section 5c that, while there are considerably fewer

shallow clouds in the SCM, the numbers penetrating to

the midtroposphere are similar. The SCM column con-

tains �180 clouds present at any instant. The stochastic

aspect of the parameterization is therefore weak and

the variability of convective properties is small (see

Table 2). This is convenient for testing the equilibrium

state.

With the steady external forcing used in these SCM

experiments, the total mass-flux response M at equilib-

rium for a large grid box should also be steady. Figure

4 shows normalized time series of mass flux. The con-

vective response is, indeed, steady when running the

SCM over large areas (Figs. 4a,b). By contrast, signifi-

cant time variations occur when using the KF param-

eterization (Fig. 4d). Such variations are purely artifi-

cial: the results of a conventional mass-flux parameter-

ization are independent of grid box area but sensitive to

details of the triggering (as noted above, on–off behav-

ior occurs when using the KF scheme with this forcing

for small �T). Coincidentally, a similar level of variabil-

ity is produced by the stochastic parameterization op-

erating over an area of (64 km)2 (Fig. 4c). In section 5d

we check that these variations are appropriate by in-

vestigating the PDF of total mass flux.

Figure 5 shows thermodynamic profiles from the

equilibrium state of the CRM, along with the depar-

tures from that state that occur in various SCM experi-

ments. The equilibrium states from the SCM are some-

what moister within the boundary layer and lower tro-

posphere and somewhat drier and cooler above.

Departures of this size, however, are consistent with

expectations for a change of modeling framework: the

corresponding radiative–convective equilibrium pro-

files obtained from a different CRM (C. Roadnight

2001, personal communication) exhibit differences of

similar size to those between the SCM and CRM

states.5

The time-averaged equilibrium state in the SCM is

not significantly modified by the larger fluctuations that

occur at individual time steps when running over

smaller areas. For model levels below 12 km, the rms

differences between equilibrium states when running

over areas of (400 km)2 and (64 km)2 are 0.23 K and

0.11 g kg�1 for potential temperature and water vapor,

respectively. In comparison, the rms differences in

states between SCM runs at (400 km)2 using rms radii

of 450 and 600 m (as in Fig. 5) are 0.49 K and 0.31 g

kg�1.

The stochastic parameterization contains a rms ra-

dius parameter 
�r2 � that governs the proportions of

small and large plumes. Preliminary tests suggested that

a good balance is obtained for 
�r2 � � 450 m, and we

have adopted this as a default value (Table 1). Results

for other choices of the parameter are shown in Figs. 5

and 6. The changes are modest. With an increased

weighting for small clouds, it is necessary for the plumes

to be more penetrative: this is achieved by weakening

the inversion, with a cooler mid-to-upper troposphere

and a slightly warmer boundary layer. A consequence is

that the lower-tropospheric peak in the updraft mass-

flux profile is raised for a smaller rms radius (Fig. 6).

Otherwise the mass-flux profile is rather insensitive to

the rms radius, and effects on the heating budget are

likewise minor (not shown).

c. Tests of individual plume properties

Let us now consider the behavior of individual

plumes within the SCM equilibrium state. Running the

plume model offline for various updraft radii produces

the mass-flux profiles shown in Fig. 7. The profiles are

highly sensitive to radius, as recognized by Kain and

5 See also, for example, Guichard et al. (2004) for a comparison

of CRMs and SCMs in simulations of the diurnal cycle of deep

convection.

TABLE 2. Statistics of the SCM equilibrium state produced by

the stochastic convective parameterization. The SCM represented

an area (400 km)2. “SCM mean” values are calculated as time

averages between the 10th and 20th days. “Dilute” CAPE is that

calculated for the plume ensemble (section 4). Also given (where

appropriate) are corresponding values obtained from the domain-

averaged state of the companion CRM experiment. This was run

over a domain area (128 km)2, so the number of clouds has been

scaled up by the ratio of SCM to CRM areas to provide an ap-

propriate comparison.

Quantity

Mean

SCM

Standard

deviation

Mean

CRM

Closure time scale Tc (min) 144 6 —

LCL (m) 1297 72 1839

Number of clouds �N� 181 19 449

Forcing at LCL �M�

(kg m�2 s�1)

0.0243 0.0018 0.0634

Dilute CAPE (J kg�1) 212 36 —

Surface heat flux (W m�2) 102 2 102

Surface latent heat flux

(W m�2)

546 8 557
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FIG. 4. Time series of the total mass flux M at 1.8 km for the 10th day of various SCM experiments. The mass

flux has been normalized by its time-mean value for that day. The SCM runs are for the stochastic parameterization

over areas of (a) (1000 km)2, (b) (400 km)2, and (c) (64 km)2, and for (d) the KF parameterization (area irrelevant).
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FIG. 5. (a) Tephigram showing the spatially averaged temperature (solid, bold line) and dewpoint (dotted, bold line) from the CRM

equilibrium state. Also shown are the time-averaged departures from that state for (b) the potential temperature and (c) the water

vapor obtained at equilibrium in various SCM experiments. The SCM runs use either the stochastic parameterization (solid, with

different values for 
�r 2� marked), or the KF parameterization (dashed). Results from the SCM have been averaged over the 10th day

of each run.

98 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65



Fritsch (1993). The unmodified KF parameterization

uses a radius of 1 km and this produces a deep-

convective profile that is in marked contrast6 to that

found in the CRM (Fig. 6). A reasonable balance be-

tween deep and shallow convection can be achieved

when using the KF parameterization in the SCM (Fig.

6), but only by generating artificial variations in time

between deep, shallow, and no convection (Fig. 4b).

Allowing a spectrum of plumes leads to a weighted sum

over cloud types without requiring artificial fluctuations

of a model sounding.

Plumes that entrain very strongly (i.e., with small up-

draft radii) are unable to rise even a single model level.

These are simply ignored by the stochastic parameter-

ization. For the SCM runs discussed here, the spectral

truncation typically results in losses of �1% of the total

mass flux and �3% of the cloud number. Experiments

with several “correction” methods to restore the miss-

ing mass flux and cloud number confirm that the trun-

cation has no significant effect for any of the tests in this

paper.

The distributions of plume mass fluxes in the SCM

equilibrium state provide an important test of the

physical basis for our parameterization. Recall from

section 2a that theory predicts an exponential distribu-

tion for any fixed height in the atmosphere. Although

an exponential distribution is imposed at the LCL,

other distributions may be established at other levels. It

6 Although mass fluxes from a CRM and a convective param-

eterization are not directly comparable, gross deviations in the

basic shape of the profiles can nonetheless be regarded as signifi-

cant.

FIG. 6. Profiles of the total convective mass flux per unit area

obtained at equilibrium from the CRM (Cohen 2001) and from

various SCM experiments. The SCM runs use either the stochastic

parameterization (solid, with different values for 
�r 2� marked)

or the KF parameterization (dashed). Results from the SCM have

been averaged over the 10th day of each run.

FIG. 7. Profiles of updraft mass flux per unit area produced by

running the plume model offline and using the time-averaged

SCM equilibrium state from the run over an area of (400 km)2.

Each profile corresponds to a particular updraft radius. Following

the profiles from left to right across the figure corresponds to an

increase in radius from 200 m to 1 km, in steps of 100 m. A profile

corresponding to the KF parameterization is indicated by a dotted

line. The profiles are normalized by applying Eq. (3) at the LCL,

the normalization points indicated with a cross.
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is therefore encouraging that an exponential distribu-

tion is, indeed, obtained at all heights, as shown for an

example level in Fig. 8a.

The value of �m� obtained by fitting to the exponen-

tial distribution is shown as a function of height in Fig.

8b. As for the convective updrafts in the CRM, the

ensemble-mean mass flux derived from the SCM varies

little with height over much of the troposphere. Values

in the lower-to-mid troposphere compare reasonably

well to those in the CRM. Taken in conjunction with

the mass-flux profiles of Fig. 6, this means that the SCM

has fewer shallow clouds, but that there are a similar

number of clouds at midlevels. This difference in the

number of shallow clouds explains the difference in the

total number of clouds seen in Table 2. The SCM also

contains fewer clouds in the upper troposphere, but

because the mass flux for each is larger (Fig. 8b) the

total mass flux there agrees well with the CRM (Fig. 6).

This upper-level behavior of �m� may reflect the ten-

dency of plume models to overestimate mass fluxes at

the level of zero buoyancy, as discussed by Kuang and

Bretherton (2006). Moreover, the parameterization

does not include downdrafts near cloud top, making it

impossible to reproduce the overturning in convective

anvils that occurs in the CRM.

d. Tests of statistical fluctuations

In this section, we consider fluctuations about the

time-mean equilibrium SCM state, which arise from the

quantization of convection into discrete plumes. A re-

lated issue is the steadiness of the forcing �M� provided

by the CAPE closure since the closure is not a physical

source of fluctuations. To investigate these issues, we

compare the PDF of total mass flux from SCM experi-

ments to the expected distribution, Eq. (2).

Some preliminary tests were conducted with an im-

posed closure: that is, with the ensemble-mean total

mass flux �M� specified as a fixed value at a fixed ref-

FIG. 8. (a) Histogram of individual plume mass fluxes at 5.75 km obtained at equilibrium in the SCM run with the stochastic

parameterization over an area (400 km)2. Note the logarithmic scale. The mass flux is binned into intervals of 5 � 106 kg s�1 and a line

of best fit for an exponential distribution has been added. (b) The mean mass flux for each plume obtained from an exponential fit at

each model level. Also shown is the mean mass flux of a convective updraft in the companion CRM simulation with a cooling rate of

8 K day�1 (as in Fig. 3).
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erence level. With a steady forcing imposed, the ex-

pected distribution should hold exactly and was, in-

deed, accurately reproduced (not shown).

We wish to check that any time step to time step

variability in the closure calculated by the parameter-

ization does not affect the convective statistics in an

undesirable way. There are two aspects of the closure

calculations to be considered: the closure time scale Tc

(section 4) and the profile averaging (step 1 of the al-

gorithm in section 2b). Restrictions on the closure time

scale arise independently of the averaging, limiting the

choice of k [Eq. (5)]. If Tc is too short, then the param-

eterization will overstabilize the atmosphere. This will

provoke the closure to reduce the forcing at future time

steps and may result in undesirable on–off behavior. It

is also important that Tc not be too long, not least be-

cause the parameterization must be capable of respond-

ing to genuine, physical changes in the large-scale forc-

ing. Our choice of k necessarily represents a compro-

mise and experimentation with the SCM indicates that

k � 0.3 s m�1 (as in Table 1) provides a reasonable

value. This corresponds to a closure time scale of a little

over two hours in our SCM runs (Table 2), consistent

with relaxation time scales used in other parameteriza-

tions (e.g., Betts and Miller 1986).

In an SCM, the only profile averaging available to

provide a representation of the large-scale environment

(section 2b) is time averaging. Thus, a complete defini-

tion of profile averaging for the stochastic parameter-

ization must be deferred to future research and testing

in a three-dimensional model. However, it is both pos-

sible and important to establish whether the sampling

required to define a suitable large-scale environment7 is

acceptable for practical use. The degree of sampling of

individual profiles in order to compute a steady forcing

must be compatible with the scales characterizing genu-

ine variations in large-scale forcing.

Consider for example a typical global forecast model

(or perhaps a high-resolution climate model) with a

grid length of 64 km. A practical number of profiles

available for space–time averaging would be 150, cor-

responding to an averaging area of side �320 km (the

neighboring and next-to-neighboring grid boxes) and

the six previous model time steps (2 h with a 20-min

step). Running the SCM over an area of (64 km)2 and

averaging the input profiles for the closure calculations

over the previous 150 time steps is sufficient to produce

the steady forcing required. Indeed, Fig. 9a indicates

that a smaller sample size of 100 would also be accept-

able.

Figure 9b shows results for a larger grid length of 96

km. Using the same space–time-averaging scales as

above and assuming a longer model time step of 30 min,

the corresponding number of individual profiles is re-

duced to 44 (or to 30 if using 100 samples on the 64 km

grid). This remains a sufficient number because of the

smaller variability between profiles. We have also ex-

plicitly tested the profile averaging for smaller grid

lengths more typical of a NWP model. The variability

between individual profiles is then relatively large, but

the increased number of profiles for the same space–

time averaging appears to provide more than adequate

compensation.

6. Conclusions

There are strong theoretical and practical motiva-

tions for the use of stochastic convective parameteriza-

tions in both NWP and climate models, but work is only

beginning to determine an appropriate representation

of the variability. This paper has described a scheme in

which the variability is designed to replicate the known

fluctuations that occur about a state of radiative–

convective equilibrium above a uniform surface. The

parameterization is based on an ensemble of entrain-

ing/detraining plumes with a conventional mass-flux

closure. A Poisson distribution is expected for the oc-

currence of plumes with the plume mass fluxes (at any

fixed level) being drawn from an exponential distribu-

tion (Craig and Cohen 2006). The variability arises in a

natural way from the limited random sampling of the

plume ensemble in each grid box.

The particular closure assumption and plume model

used are adapted from the Kain–Fritsch (KF) param-

eterization. Note, however, that the various aspects of

the stochastic parameterization have some indepen-

dence so that one could derive new schemes of this

general type (section 2b) by replacing, for example, the

PDF or the plume model used.

Single-column tests have been carried out to estab-

lish that the parameterization is functioning as de-

signed. In particular, the following expected behaviors

are present:

1) In the limit of a large grid box, when the plume

ensemble is well sampled, convective variability be-

comes small, and the parameterization approxi-

mates a deterministic scheme.

2) Mean profiles of temperature and humidity are

comparable to those obtained in companion CRM

simulations and to those in the SCM when a con-

ventional parameterization (KF) is used.

7 In SCM tests using the instantaneous profiles as input to the

closure calculations, the computed �M� varied strongly between

time steps and was the dominant source of convective fluctua-

tions.
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3) Consistent with CRM simulations, the plume en-

semble in the SCM exhibits an exponential distribu-

tion of mass fluxes above cloud base, with a mean

mass flux that is approximately constant with height.

4) The prescribed distribution of total mass flux [Eq.

(2)] is maintained in SCM experiments for columns

of varying sizes.

5) An appropriate mean state for the closure calcula-

tion is produced by time averaging the atmospheric

profile. The averaging interval used in this study was

chosen conservatively in order to demonstrate the

viability of the parameterization. A detailed exami-

nation of profile averaging strategies is not possible

in the SCM context since the trade-off between tem-

poral and spatial averaging cannot be explored.
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APPENDIX

The Kain–Fritsch Parameterization

The Kain–Fritsch convective parameterization has a

long history, starting with the Fritsch and Chappell

(1980) parameterization, significantly modified to pro-

duce the Kain and Fritsch (1990, 1993) parameteriza-

tion and incrementally modified since. Kain (2004) re-

cently discussed the version used in a semioperational

configuration of the NCEP Eta Model. This version

provided a starting point for the plume model and

CAPE-closure code used in the stochastic parameter-

ization. A brief description of it is presented here. It is

suggested that the reader who requires a fuller descrip-

FIG. 9. Probability distribution functions at equilibrium for the total convective mass flux per unit area. Results from SCM runs are

shown over (a) an area (64 km)2 and (b) an area (96 km)2. The profiles used for the closure calculations are determined from an average

over previous time steps, the number of which is marked on the figure. Mass fluxes per unit area are recorded between the 40th and

80th days and binned into intervals of 0.0015 kg m�2 s�1. Also shown are the theoretical predictions from Eq. (2) for constant �M�

(dotted line). The plots have been normalized such that the area under each PDF is unity.
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tion consult section 2 of Kain et al. (2003) before study-

ing some of the more technical material in the original

papers.

The KF parameterization is a mass-flux scheme that

may be divided into three parts. First, a decision is

made as to whether convection will take place (the trig-

ger). Second, the convection is described in terms of

mass-flux profiles for a moist updraft, a moist down-

draft, and compensating dry vertical motions. Third,

the intensity of the convection must be determined (the

closure).

The viability of convection is tested by constructing

potential updraft source layers, each of which has ther-

modynamic properties computed as a mass-weighted

average over several model levels. A parcel from the

layer is assigned a temperature perturbation8
�T and its

buoyancy is tested at the LCL. If buoyant, an initial

vertical velocity is assigned.9 The second part of the

scheme is then used to calculate the resulting updraft.

The scheme searches for an updraft source layer that

will engender deep convection.10 It considers first a

layer based at the surface and, if necessary, the layer

base is then incremented in steps of one model level up

to 300 mb above the surface. Should no suitable source

layer be found for deep convection, then the source

layer corresponding to the deepest cloud will, nonethe-

less, be used as a source for shallow convection. In the

second and third parts of the parameterization, shallow

convection differs in that (i) the detrainment profiles

within the updraft are modified for consistency with

LES results, (ii) it does not support an associated down-

draft, and (iii) a different closure and lifetime is used.

We retain the two types of convection in our stochastic

parameterization but do not make the distinction (iii).

Updrafts are computed with an entraining/detraining

plume model that describes two-way mass exchange be-

tween the updraft and its environment on each model

level. Mixtures of updraft and environmental air are

entrained or detrained according to whether they are

positively or negatively buoyant, respectively. Such cal-

culations require estimates of the maximum rate of en-

trainment11 and the distributions of environmental and

updraft air in the mixtures (Kain and Fritsch 1990, their

section 2b). Conversion of condensate to precipitation

within the updraft is determined by an empirical for-

mulation [Kain and Fritsch 1990, their Eq. (9)]. The

downdraft is initiated 150 mb above the top of the up-

draft source layer. This is computed by assuming a fixed

entrainment rate of environmental air above the up-

draft source layer and detrainment within and below.

The downdraft is saturated above cloud base and dried

by 20% relative humidity per kilometer below (Kain

2004, p. 178). Compensating vertical motions within the

column are determined from mass continuity [Fritsch

and Chappell 1980, their Eq. (10)].

A starting point for the above mass-flux calculations

is the updraft mass flux at cloud base. This is guessed.

Closure of the scheme consists of rescaling that guess

(and all other mass fluxes appropriately) in an iterative

manner until the desired intensity of convection is

achieved. The intensity is defined by the requirement

that the convection acts to remove at least 90% of the

dilute CAPE within the closure time scale, Tc. Dilute

CAPE is calculated for the entraining/detraining plume

rather than for undilute parcel ascent. Note that, once

convective activity is identified at a grid box, it persists

for multiple time steps. Tendencies are applied to the

grid box state over the time Tc and the parameteriza-

tion is not called again during this time; Tc is set from an

estimate of the transit time for a cloud to cross the grid

box, subject to bounding values of 30 and 60 min

(Fritsch and Chappell 1980, p. 1724). In our stochastic

parameterization, the concept of a plume lifetime is

retained (section 3a) but convective activity does not

preclude the generation of other plumes during this

time.
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