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We study in some detail the structure of the random attractor for the Chafee{Infante
reaction{di¬usion equation perturbed by a multiplicative white noise,

du = (¢u + ­ u ¡ u3) dt + ¼ u ¯ dWt; x 2 D » Rm:

First we prove, for m 65, a lower bound on the dimension of the random attractor,
which is of the same order in ­ as the upper bound we derived in an earlier paper, and
is the same as that obtained in the deterministic case. Then we show, for m = 1, that
as ­ passes through ¶ 1 (the ­ rst eigenvalue of the negative Laplacian) from below,
the system undergoes a stochastic bifurcation of pitchfork type. We believe that this
is the ­ rst example of such a stochastic bifurcation in an in­ nite-dimensional setting.
Central to our approach is the existence of a random unstable manifold.

Keywords: random attractors; stochastic bifurcation; Hausdor® dimension

1. Introduction

Attractors for in­ nite-dimensional dynamical systems have proven to be a very useful
tool in the study of the asymptotic behaviour of many partial di¬erential equations
(see, for example, Hale 1988; Ladyzhenskaya 1991; Temam 1988). Much attention has
been focused on the dimension of these attractors, since in many cases one can prove
that this is ­ nite, and deduce that the long-time behaviour of the system depends
on only a ­ nite number of degrees of freedom.

The de­ nition of an attractor has been generalized to the stochastic case by Crauel
& Flandoli (1994), Crauel et al . (1997) and Schmalfuº (1992), and has once again
been fruitful in furthering our understanding of the associated random and stochastic
di¬erential equations, in particular in ­ nite dimensions (Arnold 1998).

Roughly speaking, a random attractor is a family of compact random sets, that is
invariant for the stochastic ®ow and attract all solutions `from t = ¡ 1’. Once again,
it is possible to show that a certain number of these attractors are ­ nite dimensional,
although the number of examples is much more limited than in the deterministic case.
Debussche (1998) has adapted the most powerful deterministic technique to treat the
stochastic case, and in a previous paper (Caraballo et al . 2000) we used his method
to obtain an upper bound on the Hausdor¬ dimension of the random attractor for
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the Chafee{Infante reaction{di¬usion equation perturbed by a multiplicative noise
in the sense of Stratonovich,

du = (¢u + ­ u ¡ u3) dt + ¼ u ¯ dWt; x 2 D » Rm: (1.1)

Di¬erent techniques are required, for both stochastic and deterministic systems, to
obtain lower bounds on the dimension of these attractors. Such bounds are generally
based on ­ nding some invariant manifolds, which must be subsets of the attractor
(Babin & Vishik 1983).

Here we adopt this approach, using some ideas due to Da Prato & Debussche
(1996), to show (in x 4) that there is an n-dimensional unstable manifold near the
zero solution when ¶ n < ­ < ¶ n + 1 (the ¶ j are the eigenvalues of the negative
Laplacian, see x 3). This gives a lower bound on the attractor dimension, which is
of the same order as our previous upper bound. Remarkably, these bounds do not
depend on the level of the noise ( ¼ in (1.1)), and are of the same order as the bounds
in the deterministic case.

In the last decade there has been some research in stochastic bifurcation theory,
although it still seems to be unclear how this theory can be set up in general (Arnold
1998). However, to our knowledge, there are as yet no studies of bifurcations in
in­ nite-dimensional stochastic di¬erential equations. We adopt here the dynamical
concept of a stochastic bifurcation, which is understood as a qualitative change in
the invariant sets (or invariant measures) of the system (see x 5).

For the one-dimensional case m = 1, we use the manifold structure, which gave
us the lower bound on the dimension, to investigate in more detail what happens to
the random attractor as ­ passes through ¶ 1 from below. For ­ < ¶ 1, we showed
previously that the attractor is just the point f0g, and our lower bounds show that
for ­ > ¶ 1 the Hausdor¬ dimension of the attractor is at least 1. We show that for
¶ 1 < ­ < ¶ 2 the unstable manifold is, in fact, tangent to the space spanned by the
­ rst eigenfunction of the Laplacian, and thus actually has one branch in the cone of
positive solutions and the other one in the cone of negative solutions (see x 5). It is
only a short step from here to the required pitchfork bifurcation, using the theory of
monotonic random dynamical systems developed by Arnold & Chueshov (1998).

We end with some conclusions and open problems.

2. Formulation of the problem and deterministic results

Let D » Rm, m 6 5, be an open bounded set with regular boundary. We consider
the following Chafee{Infante reaction{di¬usion equation in D perturbed by a linear
multiplicative white noise,

du = (¢u + ­ u ¡ u3) dt + ¼ u ¯ dWt; (2.1)

with u(x; t) = 0 for x 2 @D, and where W (!) : « ! C0(R; R) is a one-dimensional
Wiener process on the probability space ( « ; F ; P).

We rewrite (2.1) as the following di¬erential equation on L2(D),

du = ( ¡ Au + ­ u ¡ u3) dt + ¼ u ¯ dWt; (2.2)

where A = ¡ ¢ on D with the appropriate (Dirichlet) boundary conditions. The
operator A is positive, linear, self-adjoint and has compact inverse. Thus there exists
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A stochastic pitchfork bifurcation 2043

a sequence f¶ j g of positive eigenvalues, whose associated eigenfunctions wj (with
Awj = ¶ jwj) form an orthonormal basis for H (see, for example, Renardy & Rogers
1992). We order these so that ¶ n+ 1 > ¶ n.

(a) The deterministic case ( ¼ = 0)

When ¼ = 0, existence and uniqueness results are proved for the equation in
Marion (1987), Temam (1988) and Robinson (2001). There exists a unique weak
solution

u(t; u0) 2 L2(0; T ; H1
0 (D)) \ L4((0; T ) £ D) \ C([0; T ]; L2(D));

so that, in particular, we can use the solutions to de­ ne a semigroup S(t) on L2(D),
via

S(t)u0 = u(t; u0):

S(t) satis­ es the usual semigroup properties,

S(0) = id; S(t)S(s) = S(t + s) and S(t)u0 continuous in t and u0: (2.3)

It is shown in all three of the above references that the equation also enjoys the
existence of a global attractor A, that is, a compact invariant set that attracts the
orbits of all bounded sets, i.e.

S(t)A = A for all t 2 R (2.4)

and
dist(S(t)B; A) ! 0 as t ! 1; (2.5)

where B is any bounded subset of L2(D) and dist(A; B) is the Hausdor¬ semi-
distance between A and B,

dist(A; B) = sup
a 2 A

inf
b2 B

ja ¡ bj: (2.6)

Estimates of the Hausdor¬ dimension of this attractor in terms of ­ can also be
obtained, namely

dH(A) 6C­ m=2:

(Recall that D » Rm.) By showing the existence of an unstable manifold near the
origin, Babin & Vishik (1983) show that a similar lower bound holds, so that, in fact,
there exists a constant c such that

c­ m=2 6 dH(A) 6C­ m=2

(see also Temam 1988). We write this more compactly as

dH(A) = O(­ m=2): (2.7)

We will obtain, below, the same behaviour in the stochastic case.
In the particular case m = 1, the structure of this attractor is extremely well

understood: the attractor consists of a collection of stationary points, which bifurcate
from the origin as ­ passes through each eigenvalue ¶ j , and the unstable manifolds
joining them (Hale 1988; Henry 1984). In particular, as ­ passes through ¶ 1, the
attractor changes from a single stable ­ xed point at u ² 0 to a set, homeomorphic
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to an interval, which consists of the one-dimensional unstable manifold of the origin.
This has two distinct components, one of which lies in the cone of positive solutions
and on which all solutions approach a new positive ­ xed point, and one which lies
in the cone of negative solutions and on which all solutions approach a new negative
­ xed point. It is this pitchfork bifurcation that we will seek to mirror in the stochastic
case.

3. Random attractors

We now brie®y discuss the de­ nition of a random dynamical system and a random
attractor, unsurprisingly using our equation (2.2) as an illustrative example.

(a) Random dynamical systems

Let ( « ; F ; P) be a probability space and f³ t : « ! « ; t 2 Rg a family of
measure-preserving transformations such that (t; !) 7! ³ t! is measurable, ³ 0 = id,
and ³ t + s = ³ t ³ s for all s; t 2 R. The ®ow ³ t, together with the corresponding proba-
bility space

( « ; F ; P; ( ³ t)t 2 R);

is called a (measurable) dynamical system.
In our case, we take ( « ; F ; P) to be the probability space that generates the one-

dimensional Wiener process dWt. The shift ³ t acts on « , so that

Wt(³ s!) = Wt + s(!) ¡ Ws(!); (3.1)

the additional subtracted term ensuring that W ( ³ s!) is still a Brownian motion. For
this example, it also follows that the shift ³ t is ergodic (Arnold 1998).

A continuous random dynamical system (RDS) on a Polish space (X; d) with Borel
¼ -algebra B over ³ on ( « ; F ; P) is a measurable map

’ : R+ £ « £ X ! X;

(t; !; x) 7! ’(t; !)x;

such that, P-almost surely (P-a.s.),

(i) ’(0; !) = id on X,

(ii) ’(t + s; !) = ’(t; ³ s!) ¯ ’(s; !) for all t; s 2 R+ (cocycle property),

(iii) ’(t; !) : X ! X is continuous.

When ¼ 6= 0, it is known (Pardoux 1975) that for each u0 2 L2(D) and T > 0
there exists a unique solution u(t; x0) of (2.2), with

u(t; x0) 2 L2( « £ (0; T ); H1
0 (D)) \ L4( « £ (0; T ) £ D) \ L2( « ; C(0; T ; L2(D))):

In particular, it follows that the solutions of (2.2) can be used to generate a random
dynamical system if we de­ ne

’(t; !)u0 = u(t; !; u0);

where u(t; !; u0) is the solution to (2.2) with noise ! and initial condition u(0) = u0.
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(b) Random attractors

A random set A(!) is said to be a random attractor for the RDS ’ if the following
hold.

(i) A(!) is a random compact set, that is, P-a.s., A(!) is compact and for all
x 2 X, and the map ! 7! dist(x; A(!)) is measurable with respect to F .

(ii) P-a.s., ’(t; !)A(!) = A( ³ t!) for all t >0 (invariance).

(iii) For all B » X bounded (and non-random), P-a.s.,

lim
t ! 1

dist(’(t; ³ ¡t!)B; A(!)) = 0;

where dist( ; ) denotes the Hausdor¬ semi-distance in X (cf. (2.6)).

Since ’(t; ³ ¡t!)u0 can be interpreted as the position at t = 0 of the trajectory that
was at u0 at time ¡ t, this pull-back convergence property is essentially attraction
`from t = ¡ 1’.

In Caraballo et al . (2000), we proved the existence of a random attractor for our
equation, using a theorem due to Crauel & Flandoli (1994). We also showed that if
­ < ¶ 1, then A(!) = f0g and, more generally (using a result of Debussche (1998)),
that if

­ <
1

d

dX

j = 1

¶ j ;

then dH(A(!)) < d. Since one can bound
Pd

j = 1 ¶ j 6Cd(m + 2)=m, this implies the
upper bound

dH(A(!)) 6 c1­ m=2: (3.2)

Note that this is of the same order as the deterministic bound in (2.7), and of course
is extremely suggestive of the fact that the attractor becomes more complicated as
­ increases through ¶ 1.

4. A lower bound on the attractor dimension

We now turn to proving the promised lower bound on the dimension of the random
attractor A(!). We make use of an idea from the deterministic theory, which is to
show that the attractor must contain an unstable manifold of a certain dimension.
However, this approach usually requires various di¬erentiability properties of the
®ow, and such technicalities are by no means straightforward in the stochastic case.
Furthermore, there is currently no well-developed theory of unstable manifolds for
general stochastic partial di¬erential equations (PDEs).

So we proceed in a manner that we believe is slightly unusual, and could prove
useful not only for other stochastic examples but also in the deterministic case, by
proving not the existence of a C1 unstable manifold, but of a Lipschitz manifold in a
neighbourhood of the origin. The theory of inertial manifolds, introduced by Foias et
al . (1988) in the deterministic case, and developed by various authors for stochastic
equations (Bensoussan & Flandoli 1995; Chueshov & Girya 1994), is well suited to
this, and we follow some ideas from a paper of Da Prato & Debussche (1996) in our
proof.

In this way, we prove the following theorem.
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Theorem 4.1. If ¶ n < ­ < ¶ n+ 1, then there exists a set M ¯ (!), a (locally)
invariant n-dimensional Lipschitz manifold, which is part of the unstable set of the
origin, i.e.

lim
t ! 1

dist(’( ¡ t; !)u; 0) = 0 (4.1)

for all u 2 M(!).

In (4.1), ’( ¡ t; !)u is the point v 2 M( ³ ¡ t!) such that ’(t; ³ ¡t!)v = u (the fact
that M(!) is a ­ nite-dimensional invariant manifold ensures that such a point exists;
see proposition 4.6 for more details).

We now appeal to a result of Crauel (2001), which guarantees that the unstable set
of the origin (precisely de­ ned as in (4.1)) must be a subset of the random attractor,
and so obtain the lower bound on the attractor dimension given in the following
theorem.

Theorem 4.2. Provided that m 6 5, if ¶ n < ­ < ¶ n+ 1, then dH(A(!)) > n. In
particular, the dimension of the attractor satis es dH(A(!)) = O(­ m=2).

(a) Truncating the equation

We prove the existence of M ¯ (!) in a series of propositions. We apply a version
of the theory in Da Prato & Debussche (1996) developed to prove the existence
of inertial manifolds for stochastic PDEs with a general multiplicative noise term.
However, here, we do not look for an inertial manifold, but, in fact, an unstable
manifold in a neighbourhood of the origin.

The ­ rst task is to truncate the equation in a neighbourhood of the origin, to
ensure that the nonlinear term is globally Lipschitz, with a small Lipschitz constant.
(Our approach is, in fact, similar to that of Boxler (1991) for centre manifolds,
although here, we can truncate our equation in a manner which is independent of
!.) Although this is a standard approach in the deterministic theory, in which one
has a compact absorbing ball, it is perhaps the main weakness of the theory of inertial
manifolds for stochastic equations, where, in general, the radius of the absorbing ball
will depend on !, and, as yet, there is no proof which allows the Lipschitz constant of
the nonlinearity to vary in this way. However, since we require only a local unstable
manifold, we will be able to truncate the equation in a consistent fashion.

We are restricted to the case m 65, for which we can use the embedding H2¬ » L6

with 3
4

< ¬ < 1 to show that F (u) = u3 is Lipschitz from H2 ¬ into L2 (we suppress
the D in all our function spaces from now on),

ju3 ¡ v3jL2 6C(kuk2
H2 ¬ + kvk2

H2 ¬ )ku ¡ vkH2 ¬ : (4.2)

Indeed, we have

ju3 ¡ v3j2L2 =

Z

D

(u3(x) ¡ v3(x))2 dx

=

Z

D

µZ u(x)

v(x)

3s2ds

¶2

dx

69

Z

D

ju(x) ¡ v(x)j2(u(x)2 + v(x)2)2 dx
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69

µZ

D

ju(x) ¡ v(x)j2p dx

¶1=pµZ

D

ju(x)2 + v(x)2j2q dx

¶1=q

69ju ¡ vj2L2p(jujL4q + jvjL4q )4

69ju ¡ vj2L6 (jujL6 + jvjL6 )4;

taking (p; q) = (3; 3
2
).

For a C1 cut-o¬ function ³ : R+ ! [0; 1], such that

³ (r) =

(
1; r 61;

0; r >2;

with j ³ 0(r)j 62, it is straightforward to verify (see Temam 1988) that

F (u) = ¡ ³

µ
kukH2 ¬

R

¶
u3 (4.3)

is globally bounded,

jF (u)j 6M0 for all u 2 H2¬ ;

and globally Lipschitz,

jF (u) ¡ F (v)j 6 ~Lku ¡ vkH2 ¬ for all u; v 2 H2¬ : (4.4)

with ~L 6 c0R2 for a constant c0. Note in particular that F (u) = ¡ u3 in BH2 ¬ (0; R),
and so the two equations agree in a small H2¬ -neighbourhood of the origin.

We will ­ nd it more convenient to use the norm equivalence between the H2 ¬ norm
and the norm in D(A ¬ ). Writing jA ¬ uj = juj ¬ , where A is the negative Laplacian on
D with Dirichlet boundary conditions, we have

kukH2¬ 6 cjuj ¬ : (4.5)

We can rewrite (4.4) as

jF (u) ¡ F (v)j 6Lju ¡ vj ¬ for all u; v 2 D(A¬ ); (4.6)

where L = c~L (with c as in (4.5)).
Note that we can make L as small as we wish provided that R in (4.3) is chosen

small enough.

(b) An invariant manifold for the truncated equation

We now work with the truncated equation

du = ( ¡ Au + ­ u + F (u)) dt + ¼ u ¯ dWt; (4.7)

and prove the existence of an invariant manifold of dimension n when ¶ n < ­ < ¶ n+ 1.
In the statement of the theorem we write Pn for the orthogonal projection onto the
­ rst n eigenfunctions of A, ordered so that the corresponding eigenvalues are non-
decreasing in n, and Qn for its orthogonal complement, Qn = I ¡ Pn.
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Theorem 4.3. If ¶ n < ­ < ¶ n + 1, and R in (4.3) is chosen small enough that L
satis es

­ ¡ ¶ n > 4L¶ ¬
n (4.8)

and
¶ n + 1 ¡ ­ > (2KL)1=(1¡ ¬ ); (4.9)

then (4.7) has an n-dimensional invariant manifold M(!),

’( ¶ ; !)M(!) = M( ³ ¶ !); ¶ >0:

Furthermore, M(!) is given as the graph of a Lipschitz function © ! : PnH !
QnH \ D(A¬ ),

j © !(p1) ¡ © !(p2)j ¬ 62jp1 ¡ p2j ¬ : (4.10)

We analyse the equation ! by !. To this end, we consider not equation (2.2) for
u, but, setting v = e¡ ¼ Wt u and observing that

dv = e¡ ¼ Wt du ¡ e¡ ¼ Wt ¼ u ¯ dWt;

we can treat the non-autonomous equation for v,

dv

dt
= ¡ Av + ­ v + e¡ ¼ Wt F (e ¼ Wtv): (4.11)

We write this as
dv

dt
= ¡ Av + ­ v + F ¼ (v);

where
F ¼ (v) = e¡ ¼ WtF (e ¼ Wtv):

Note that

jF ¼ (u) ¡ F ¼ (v)j 6 e¡ ¼ Wt jF (e ¼ Wt u) ¡ F (e ¼ Wt vj
6 e¡ ¼ Wt Lje ¼ Wtu ¡ e¼ Wtvj ¬
= Lju ¡ vj ¬ ; (4.12)

so that the Lipschitz property of F in (4.6) is transferred to F ¼ . Furthermore, it
follows, since the support of F is contained in a bounded set in D(A ¬ ), and F (0) = 0,
that

jF ¼ (u)j 6M1

for some constant M1.
We write the solution operator corresponding to the transformed equation as

Á(t; !). Clearly,

Á(t; !) = e¡ ¼ Wt(!)’(t; !): (4.13)

For a function
y : ( ¡ 1; 0] ! PnH; (4.14)

we de­ ne a norm
kykE = sup

t 2 (¡ 1 ;0]

jy(t)j ¬ ; (4.15)
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and similarly for

z : ( ¡ 1; 0] ! QnD(A¬ ): (4.16)

For a pair (y; z), we de­ ne

k(y; z)kE = max(kykE ; kzkE): (4.17)

The space of all functions (y; z), as in (4.14) and (4.16), with ­ nite E norm (the
norm in (4.17)) we denote by E.

We will need the following standard bound on the operator norm of A ¬ e¡AtQn

from L2 into L2 (see, for example, Temam 1988),

kA¬ e¡AtQnkop 6 ~K(t¡ ¬ + ¶ ¬
n + 1)e¡ ¶ n+1t for all t >0: (4.18)

We also set

K = ~K

Z 1

0

(t¡ ¬ + 1)e¡t dt: (4.19)

From now on, we write P = Pn and Q = Qn.
Roughly speaking, we follow the proof in Da Prato & Debussche (1996). However,

here the argument is somewhat di¬erent, since our particular choice of multiplicative
noise allows us to consider the transformed equation (4.11) ! by !, and we do not
have to deal with the problems which arise when trying to solve a more general
stochastic equation backwards in time. We also need to tailor the analysis to make
sure that the dependence on ­ remains explicit.

Proposition 4.4. For each ! 2 « , there exists a unique solution (y; z) of the
coupled equations

dy

dt
= ¡ Ay + ­ y + P F ¼ (y + z); y(0) = y0

dz

dt
= ¡ Az + ­ z + QF ¼ (y + z); z(t) ! 0 as t ! ¡ 1;

9
>=

>;
(4.20)

on the interval ( ¡ 1; 0].

Proof . We use a contraction mapping argument. For a given pair ( ² ; ¹ ) 2 E, we
de­ ne

Ty0
( ² ; ¹ ) = (y; z);

where (y; z) solve the coupled system

dy

dt
= ¡ Ay + ­ y + P F ¼ ( ² + ¹ ); y(0) = y0

dz

dt
= ¡ Az + ­ z + QF ¼ ( ² + ¹ ); z(t) ! 0 as t ! ¡ 1:

9
>=

>;
(4.21)

Note that such a solution is well de­ ned, since, using the variation of constants
formula on the second equation, we have

z(t) = e¡(A¡ ­ I)(t¡ ½ )z( ½ ) +

Z t

½

e¡A(t¡s)QF ¼ ( ¹ (s) + ² (s)) ds:
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Since (A ¡ ­ I) is a positive operator, letting ½ ! ¡ 1 and using the condition that
z( ½ ) ! 0, we obtain the unique solution

z(t) =

Z t

¡ 1
e¡A(t¡s)QF ¼ ( ¹ (s) + ² (s)) ds: (4.22)

To show that Ty0
is a contraction on E, ­ rst we estimate the di¬erence between

two solutions to the equation

dyi

dt
= ¡ Ayi + ­ yi + P F ¼ ( ² i + ¹ i); yi(0) = y0; (4.23)

corresponding to two di¬erent choices of ( ² ; ¹ ) 2 E in (4.21). Writing y(t) = y1(t) ¡
y2(t), it follows that y satis­ es

dy

dt
= ¡ Ay + ­ y + P F ¼ ( ² 1 + ¹ 1) ¡ P F ¼ ( ² 2 + ¹ 2); y(0) = 0: (4.24)

Using the variation of constants formula, we can write, for t < 0,

y(0) = e(A¡ ­ I)ty(t) +

Z 0

t

e(A¡ ­ I)(t¡s)(P F ¼ ( ² 1(s) + ¹ 1(s)) ¡ P F ¼ (² 2(s) + ¹ 2(s))) ds;

and so, since y(0) = 0,

y(t) = ¡
Z 0

t

e¡(A¡ ­ I)s(P F ¼ ( ² 1(s) + ¹ 1(s)) ¡ P F ¼ ( ² 2(s) + ¹ 2(s))) ds: (4.25)

Taking the norm in D(A ¬ ) throughout (4.25), we obtain, since ¡ (A ¡ ­ I) is a
positive operator on P H , with eigenvalues bounded below by ­ ¡ ¶ n,

jy(t)j ¬ 6L¶ ¬
n

Z 0

t

e(­ ¡ ¶ n)s(j ² (s)j ¬ + j ¹ (s)j ¬ ) ds;

where ² = ² 1 ¡ ² 2, and similarly for ¹ .
This becomes

jy(t)j ¬ 62L¶ ¬
n

Z 0

t

e(­ ¡ ¶ n)sk( ² ; ¹ )kE ds

6
2L¶ ¬

n

­ ¡ ¶ n
k( ² ; ¹ )kE[1 ¡ e(­ ¡ ¶ n)t]:

Since ­ > ¶ n,

kykE 6
2L¶ ¬

n

­ ¡ ¶ n
k( ² ; ¹ )kE : (4.26)

Equation (4.8) now guarantees that kykE 6 1
2k( ² ; ¹ )kE .

For a similar choice of (² i; ¹ i), we now estimate the di¬erence between solutions
to the two equations

dzi

dt
= ¡ Azi + ­ zi + QF ¼ ( ² i + ¹ i); zi(t) ! 0 as t ! ¡ 1:

Setting z = z1 ¡ z2, we have

dz

dt
= ¡ Az + ­ z + QF ¼ ( ² 1 + ¹ 1) ¡ QF ¼ ( ² 2 + ¹ 2):
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As before, we use the variation of constants formula, and, since z(t) ! 0 as t ! ¡ 1,
we have

z(t) =

Z t

¡ 1
e¡(A¡ ­ I)(t¡s)Q[F ¼ ( ² 1 + ¹ 1) ¡ F ¼ ( ² 2 + ¹ 2)] ds:

Once more, taking the norm in D(A ¬ ), using the Lipschitz property of F ¼ in (4.12),
and the bound on A¬ e¡A(t¡s)Q in (4.18), we have

jz(t)j ¬ 6 ~KL

Z t

¡ 1
((t ¡ s)¡ ¬ + ( ¶ n+ 1 ¡ ­ ) ¬ )e¡( ¶ n+1¡ ­ )(t¡s)(j ² (s)j ¬ + j ¹ (s)j ¬ ) ds:

Using the de­ nition of the norm in E (4.17) now gives

jz(t)j ¬ 6 ~KL

Z t

¡ 1
((t ¡ s)¡ ¬ + ( ¶ n + 1 ¡ ­ ) ¬ )e¡(¶ n+1¡ ­ )(t¡s)k( ² ; ¹ )kE ds

6 ~KLk( ² ; ¹ )kE

Z 0

¡ 1
(j ½ j¡ ¬ + ( ¶ n+ 1 ¡ ­ ) ¬ )e(¶ n+1¡ ­ ) ½ d ½

6 ~KLk( ² ; ¹ )kE

Z 0

¡ 1
(j ½ j¡ ¬ + ( ¶ n+ 1 ¡ ­ ) ¬ )e(¶ n+1¡ ­ ) ½ d ½

6
~KL

¶ n+ 1 ¡ ­
k( ² ; ¹ )kE( ¶ n + 1 ¡ ­ ) ¬

Z 0

¡ 1
[juj¡ ¬ + 1]eu du:

It follows that

kzkE 6
KL

( ¶ n + 1 ¡ ­ )1¡ ¬
k( ² ; ¹ )kE ;

where the constant K is de­ ned in (4.19).
The condition on L in (4.9) now ensures that kzkE 6 1

2 k( ² ; ¹ )kE . It follows that
k(y; z)kE 6 1

2 k( ² ; ¹ )kE , and so Ty0
is a contraction, and we obtain the unique solution

to our coupled pair of equations.

We now de­ ne
© !(y0) = z(0);

where z is the solution to (4.20) with y(0) = y0 and noise Wt(!). Observe in particular
that © !(0) = 0 for all ! 2 « .

Proposition 4.5. For almost every ! 2 « ,

j © !(y0
1) ¡ © !(y0

2)j ¬ 62jy0
1 ¡ y0

2 j ¬ ;

and the graph M(!) of © ! is invariant for ’,

’( ¶ ; !)M(!) = M( ³ ¶ !); ¶ >0;

i.e. for any y0 2 P H and ¶ >0, we have

’(¶ ; !)(y0 + © !(y0)) = y¶ + © ³ ¶ !(y ¶ ); (4.27)

P-a.s., where
y ¶ = P ’( ¶ ; !)(y0 + © !(y0)):
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Proof . First we show the Lipschitz property of © ! by estimating

kTy1
0
( ² ; ¹ ) ¡ Ty2

0
(² ; ¹ )kE :

We will write
(yi; zi) = Ty0

i
( ² ; ¹ ):

Since z1 = z2, we need only estimate the di¬erence y = y1 ¡ y2 between two solutions
of

dyi

dt
= ¡ (A ¡ ­ I)yi + P F ¼ ( ² + ¹ ); yi(0) = yi

0;

but with the same pair ( ² ; ¹ ) 2 E. So,

dy

dt
= ¡ (A ¡ ­ I)y:

Thus,
y(0) = e(A¡ ­ I)ty(t);

and so, for t < 0,
jy(t)j ¬ 6 e(­ ¡ ¶ n)tjy1

0 ¡ y2
0 j ¬ :

It follows, since ­ > ¶ n, that

kTy1
0
( ² ; ¹ ) ¡ Ty2

0
( ² ; ¹ )kE 6 jy1

0 ¡ y2
0 j ¬ :

So, we have

k(y1; z1) ¡ (y2; z2)kE = kTy1
0
(y1; z1) ¡ Ty2

0
(y2; z2)kE

6kTy1
0
(y1; z1) ¡ Ty2

0
(y1; z1)kE + kTy2

0
(y1; z1) ¡ Ty2

0
(y2; z2)kE

6 jy1
0 ¡ y2

0 j ¬ + 1
2 k(y1; z1) ¡ (y2; z2)kE ;

and so
k(y1; z1) ¡ (y2; z2)kE 62jy1

0 ¡ y2
0 j ¬ :

Since © !(yi
0) = zi(0), the Lipschitz bound follows.

To show the invariance, observe that © !(y0) is de­ ned as the solution at time 0 of
the z component of (4.20) when y(0) = y0. Solving (4.11) with the initial condition
y0 + © !(y0) produces a solution to the coupled equations

dy

dt
= ¡ Ay + ­ y + P F ¼ (y + z); y( ¶ ) = P Á( ¶ ; !)[y0 + © !(y0)]

dz

dt
= ¡ Az + ­ z + QF ¼ (y + z); z(t) ! 0 as t ! ¡ 1;

which is unique, by proposition 4.4. Now, observe that z(¶ ) is the same as the z(0)
produced as the solution to (4.11) with Wt(!) replaced by

Wt + ¶ (!) = Wt( ³ ¶ !) + W ¶ (!):

With this change, we obtain the solution to (4.11) with ! replaced by ³ ¶ !, but
multiplied by an additional factor of e ¼ W ¶ (!).

Therefore, we do not obtain an invariance of M(!) for the transformed equation,
but rather

Á( ¶ ; !)M(!) = e¼ W ¶ (!)M( ³ ¶ !):

The required invariance property for the untransformed equation is now immediate
using (4.13).
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(c) A local unstable manifold for the original equation

Finally, we show that the inertial manifold found in the previous section is, in fact,
part of the unstable set of the origin, within the small neighbourhood on which the
truncated and original equations agree.

Proposition 4.6. There exists a ¯ (!) such that M ¯ (!), the intersection of M(!)
with the ball BH2 ¬ (0; ¯ (!)), is part of the unstable set of the origin for the original
equation.

Proof . We consider the stochastic `inertial form’, i.e. the equation on the inertial
manifold for the P components of u, and show that there exists a ¯ (!) < R such
that, for all p0 with jp0j ¬ 6 ¯ ,

(i) jp(t)j ¬ 6R for all t 60, and

(ii) p(t) ! 0 as t ! ¡ 1.

Point (i) shows that the trajectory `backward’ from p0 + © !(p0) remains within
BH2 ¬ (0; R), so that it is, in fact, a solution to the original (untruncated) equation,
while (ii) shows that p0 + © !(p0) is an element of the unstable set of the origin.

Note that we can consider trajectories `backwards in time’, since M(!) is invariant:
’(t; ³ ¡t!)M( ³ ¡t!) = M(!), and so for u 2 M(!) there exists at least one point v
in M( ³ ¡ t!) such that ’(t; ³ ¡ t!)v = u. Since the governing equation reduces to a
­ nite-dimensional random ordinary di¬erential equation on M(!) (see below), this
point is unique.

The inertial form is

dp = f¡ (A ¡ ­ I)p + P F (p + © ³ t!(p))gdt + ¼ p ¯ dWt:

Writing x(t) = e¡ ¼ Wt p(t), this becomes

dx

dt
= ¡ (A ¡ ­ I)x + e¡ ¼ Wt P F (e ¼ Wt x + © ³ t!(e ¼ Wt x)):

Now, we have
jA ¬ P F (u)j 6 ¶ ¬

n jF (u)j 6L¶ ¬
n juj ¬ ;

since F is Lipschitz and F (0) = 0. Therefore, we have, noting that the Lipschitz
constant of © ! in (4.10) is independent of !,

1

2

d

dt
jx( ¡ t)j2¬ 6 ¡ (­ ¡ ¶ n)jx( ¡ t)j2¬ + e¡ ¼ W¡ t ¶ ¬

n3Le¼ W¡ t jx( ¡ t)j2¬ ;

or
d

dt
jx( ¡ t)j ¬ 6 ¡ (­ ¡ ¶ n ¡ 3 ¶ ¬

nL)jx( ¡ t)j ¬ :

Note that it follows from (4.8) that

® ² ­ ¡ ¶ n ¡ 3 ¶ ¬
nL > ¶ ¬

nL;

and in particular is positive. We therefore have, for t < 0,

jx(t)j ¬ 6 e® tjx0j ¬ ; (4.28)
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which gives, for p(t),

jp(t)j ¬ 6 e ® te ¼ Wt jp0j ¬ : (4.29)

Now, for each ­ xed !, given ° > 0 there exists a constant C ° (!) such that

e¼ Wt 6C ° e
¡ ° t for all t 60: (4.30)

Therefore, we have

jp(t)j ¬ 6 e ® te¡ ° tC ° (!)jp0j ¬ ;

and so, if we choose ¯ (!) = min(R; R=C ° (!)), the result follows.

5. A bifurcation of pitchfork type

We now make further use of the unstable manifold to help us prove the existence of
a stochastic bifurcation as ­ increases through ¶ 1.

(a) A de¯nition of a stochastic pitchfork bifurcation

To motivate our de­ nition, we brie®y recall a simple example in which such a
bifurcation has been studied by Arnold & Boxler (1992).

The stochastic ordinary di¬erential equation

dx = (­ x ¡ x3) dt + ¼ x ¯ dWt;

can be solved explicitly. As ­ passes through zero from below, behaviour similar to
that in the deterministic case can be observed. A random ¯xed point is a random set
which, for almost all !, consists of just one point, a(!), and is invariant,

’(t; !)a(!) = a( ³ t!):

Arnold & Boxler (1992) show that for ­ < 0 the random attractor is just the ­ xed
point f0g, whereas for ­ > 0, two new random ­ xed points appear, §a(!). The
random attractor now consists of the interval [ ¡ a(!); +a(!)].

Crauel et al . (1999) discuss such bifurcations in one-dimensional systems in more
detail, and give a de­ nition of a stochastic pitchfork bifurcation in terms of random
invariant measures. They de­ ne a stochastic pitchfork bifurcation as the appearance
of two new invariant measures, associated with new random ­ xed points, which are
stable in an appropriate sense.

Below, we adopt a de­ nition of a pitchfork bifurcation based on the appearance
of new random ­ xed points rather than in terms of invariant measures.

De¯nition 5.1. Let (’­ )­ 2 R be a family of RDS parametrized by ­ . We say that
(’­ ) undergoes a stochastic pitchfork bifurcation at ­ = ­ 0 if

(i) for ­ 6 ­ 0, the random attractor consists solely of one (random) ­ xed point,
f0g, and

(ii) for ­ > ­ 0, the random attractor contains f0g and two new random ­ xed
points, a + (!) and a¡(!), and P-a.s. a§ (!) ! 0 as ­ # ­ 0.
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Although, unlike Crauel et al . (1999), we do not include a criterion of stability
for the new ­ xed points, we believe that this type of bifurcation still merits the title
`pitchfork’, and we now prove that, in the case of a one-dimensional domain, such
a bifurcation occurs as ­ passes through ¶ 1. Some discussion of the stability of the
new ­ xed points is given at the end of x 5.

We showed in a previous paper (Caraballo et al . 2000) that, for ­ < ¶ 1, the
random attractor consists solely of the ­ xed point u ² 0. To study the structure of
the attractor for ­ > ¶ 1, we argue as follows. First we show that the manifold M(!)
is tangent to the linear space spanned by the ­ rst eigenfunction of the Laplacian,
and, with a little care, it follows that this manifold intersects the cone K + of positive
functions. Since K + is in fact invariant for the cocycle (see, for example, Kotelenez
1992), the restriction of the cocycle to K + has a non-trivial attractor A + (!). Now,
since the cocycle is order-preserving, the theory developed by Arnold & Chueshov
(1998) shows that functions in A + (!) are bounded above and below by random
­ xed points: below by zero, and above by a new random ­ xed point a + (!). The
same argument applies in K ¡ and proves the presence of a pitchfork bifurcation.

(b) Di® erentiability of M(!) at 0

First we prove the di¬erentiability property of the manifold. In particular, the
cubic bound (5.1) will be used to show that a portion of M(!) lies in K + .

Proposition 5.2. The manifold M(!) is tangent to PnH at the origin, and,
moreover,

j © !(p)j ¬ 6C!jpj3¬ : (5.1)

Proof . First observe that

F ¼ (u) = ¡ e¡ ¼ Wt ³

µ
jue ¼ Wt j ¬

R

¶
(ue¼ Wt)3

is essentially cubic, so that

jF ¼ (u)j 6 e2¼ Wt

µZ
u6 dx

¶1=2

6 e2¼ Wt kuk3
L6

6Ce2¼ Wt juj3¬ :

Now, © !(y0) is z(0) from the coupled equations in proposition 4.4, so we know (see
(4.22)) that

z(0) =

Z 0

¡ 1
e(A¡ ­ I)sQF ¼ (y(s) + z(s)) ds;

and hence,

jz(0)j ¬ 6 ~K

Z t

¡ 1
(( ¡ s)¡ ¬ + (¶ n+ 1 ¡ ­ ) ¬ )e(¶ n+1¡ ­ )sCe2¼ Ws juj3¬ ds:

Since
juj3¬ 6 (jyj ¬ + jzj ¬ )3 68(jyj3¬ + jzj3¬ );
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we have, using (4.30),

jz(0)j ¬ 6K![kyk3
E + kzk3

E ]: (5.2)

Now, we know that

z(t) =

Z t

¡ 1
e¡(A¡ ­ I)(t¡s)QF ¼ (y + z) ds;

and we can estimate jz(t)j ¬ as in the proof of proposition 4.4, using the fact that
F ¼ (0) = 0,

jz(t)j ¬ 6 ~KL

Z t

¡ 1
((t ¡ s) ¬ + ( ¶ n+ 1 ¡ ­ ) ¬ )e¡( ¶ n+1¡ ­ )(t¡s)jy + zj ¬ ds

6
µ

~KL

Z t

¡ 1
((t ¡ s) ¬ + ( ¶ n+ 1 ¡ ­ ) ¬ ))e¡( ¶ n+1¡ ­ )(t¡s) ds

¶
(kykE + kzkE):

Now, we saw in proposition 4.4 that the integral expression here is bounded by 1
2
,

and so, we have kzkE 6 1
2
(kykE + kzkE), i.e. kzkE 6kykE .

Equation (5.2) now becomes

jz(0)j ¬ 62K!kyk3
E ; (5.3)

so it only remains to estimate kykE . However, this is the solution to the governing
equation which has y(0) = y0 and z(0) = © !(y0), and so which lies on M(!). The
inequality (4.28) from proposition 4.6 shows that, in fact,

jy(t)j ¬ 6 jy0j ¬ for all t 60;

and so kykE 6 jy0j ¬ . Combining this with (5.3) gives the required bound.

(c) The bifurcation theorem

We now prove our second main result.

Theorem 5.3. Let m = 1. Then (2.2) undergoes a stochastic pitchfork bifurcation
at ­ = ¶ 1. In particular, for ­ > ¶ 1 there exist positive and negative random xed
points §a(!), and a(!) ! 0 as ­ # ¶ 1.

Note that one could easily recast this result in terms of the appearance of two new
invariant measures, namely the random Dirac measures concentrated at §a(!).

Proof . Choose and ­ x ­ > ¶ 1. Since the ­ rst eigenfunction of the Laplacian is
positive, we use the cubic estimate to show that M ¯ (!) must contain a positive
function. More precisely, we let

K + = fu 2 L2(D) : u(x) >0 almost everywhereg;

and

K ¡ = fu 2 L2(D) : u(x) 60 almost everywhereg:

The main idea is to show that one portion of the unstable manifold must be a subset
of K + , and another a subset of K ¡ .
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On a one-dimensional domain, [0; L], we know that the eigenfunctions of the Lapla-
cian with Dirichlet boundary conditions are proportional to

wn(x) = sin(nº x=L):

Since the manifold M ¯ (!) is given as a graph over the space spanned by the ­ rst
eigenfunction, for each ­ xed ! the manifold consists of a family of functions (here
parametrized by ° ) given in the form

u(x; ° ) = ° sin( º x=L) +

1X

j = 2

cj sin(j º x=L);

where cj = cj( ° ; !).
Since

sin(j º x=L)

sin( º x=L)
6 j

(simply rewrite the sine terms using complex exponentials), we have

u(x; ° ) > sin( º x=L)

·
° ¡

1X

j = 2

jcj jj
¸
:

Using the cubic bound on © !, we know that

1X

j = 2

cj sin(j º x=L)
¬

= C

µ 1X

j = 2

jcj j2j4¬

¶1=2

6C!j ° sin( º x=L)j3¬ = K! ° 3:

Since ¬ > 3
4
, we can now write

1X

j = 2

jcj jj 6
µ 1X

j = 2

j4¬ jcj j2
¶1=2µ 1X

j = 2

j2(1¡2 ¬ )

¶1=2

6C° 3;

and so
u(x; ° ) > sin( º x=L)[ ° ¡ C° 3]:

Thus, for ° > 0 and small enough, u(x; ° ) >0 on [0; L]; similarly, for ° < 0 and small
enough, u(x; ° ) 6 0 on [0; L]. In other words, there are portions of M ¯ (!) near the
origin which intersect non-trivially with K + and K ¡ .

Now, Kotelenez (1992) shows that the cocycle generated by the equation is order-
preserving on L2(D), so that if u0 >v0 almost everywhere, then

’(t; !)u0 >’(t; !)v0:

In particular, since zero is a ­ xed point of the equation, K § are invariant subspaces
for ’. (These two facts are easy to check, if u0 and v0 are continuous functions, by
applying the standard deterministic theory (essentially the maximum principle, see
Smith (1995)) to the equation for v(t) = e¡ ¼ Wtu(t).)

By following the analysis in Caraballo et al . (2000), one can show that the ®ow in
each of these subspaces has a positively invariant compact absorbing set, namely a
bounded set in H1(D) with radius r(!), where r(!) is a tempered random variable.
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In particular, therefore, using the theory in Flandoli & Schmalfuss (1996), the ®ow in
each of these subspaces has its own random attractor, A + (!) and A¡ (!), and these
attract all tempered random sets. Since M ¯ (!) \ K § forms part of the unstable
set of the origin, it must be a subset of A§ (!), and so, in particular, A§ (!) is
non-trivial.

Arnold & Chueshov (1998) develop an extensive theory for order-preserving ran-
dom dynamical systems, and, in particular, one of their results (theorem 2) provides
the existence of new stochastic ­ xed points in this example (essentially, we follow
Chueshov (2000)): if ’ is an order-preserving random dynamical system for which
there exists a random interval

J (!) = fu : b(!) 6u 6 c(!)g

which is attracted to and contains A(!), then there exist random ­ xed points
u¡(!) 6u + (!) such that

u¡(!) 6u 6u + (!) for all u 2 A(!):

Since A(!) lies within a random ball in H1(D) of radius r(!), and since H1(D) »
C0(D) with kuk1 6C(D)kuk1

H , it follows, in particular, that

0 6u 6 c(D)r(!) for all u 2 A + (!):

Using the above result, we can deduce that there exist two random ­ xed points u¡ (!)
and u + (!) such that

u¡(!) 6u 6u + (!) for all u 2 A+ (!):

Clearly, u¡(!) = 0, but since A + (!) is non-trivial, this proves the existence of
a new random (positive) ­ xed point a(!) = u + (!). By symmetry, there is also a
new random (negative) ­ xed point ¡ a(!). (For a similar argument, see Chueshov
(2000).)

That a(!) ! 0 as ­ # ¶ 1 follows from a slight variant of the general result on the
upper-semicontinuity of random attractors to be found in Caraballo & Langa (2001,
theorem 3), which guarantees, under conditions which are easily veri­ ed in our case
(convergence of the corresponding cocyles; convergence of the compact absorbing
sets; and positive invariance of the compact absorbing set for the limit equation
(­ = ¶ 1)), that P-a.s.

lim
­ # ¶ 1

dist(A +
­ (!); A¶ 1

(!)) = 0:

Since a(!) » A+ (!), and A ¶ 1
(!) = f0g, we have a(!) ! 0.

In fact, we know a little more than is stated in the theorem. For ­ > ¶ 1 the
attractor contains the two distinct, non-trivial, invariant subsets A + (!) and A¡(!),
which attract all initial conditions in K + and K ¡ , respectively. One can think of this,
loosely, as a transfer of stability of the origin to A + (!) and A¡ (!).

For a more concrete stability result, theorem 2 in Arnold & Chueshov (1998)
guarantees a limited type of stability for the new ­ xed points. In particular, a(!) is
stable from above, in that if u(!) >a(!) (note that this `initial condition’ cannot in
general be taken to be deterministic), then

lim
t ! 1

’(t; ³ ¡ t!)u( ³ ¡t!) = a(!)

Proc. R. Soc. Lond. A (2001)



A stochastic pitchfork bifurcation 2059

(stability `from below’ holds for ¡ a(!)). Since trajectories near zero in K + move
away from the origin, it seems reasonable to expect that a(!) is attracting in K + .
If one could show that solutions eventually enter K + or K ¡ , this would give the
stability of the ­ xed points. (A general result guaranteeing the existence of stable
­ xed points is given by Schmalfuº (1996), but we have not been able to apply this
in our case.)

6. Conclusion

We have shown that the structure of the random attractor for our example, the
Chafee{Infante equation with a multiplicative noise term, is surprisingly close to that
of the deterministic equation. In particular, we have shown that the dimension of the
attractor, asymptotically in ­ , exhibits the same behaviour as in the deterministic
case, and is independent of the level of noise ( ¼ ).

Analysing further the structure of this attractor, we have shown that as ­ passes
through ¶ 1, the attractor grows and two new random ­ xed points appear. Noting
that a§ (!) 2 A§ (!), what we expect is that, in fact, for ¶ 1 < ­ < ¶ 2,

A(!) = A + (!) [ A¡ (!);

with A§ (!) consisting of a one-dimensional manifold (the image of M ¯ (!) \ K §

under the ®ow) joining the origin to §a(!). This would ensure that the attractor’s
structure is exactly that in the deterministic case.

Some support for this picture, at least for small ¼ , is given by the upper semi-
continuity result in Caraballo et al . (1998). We proved there that, as ¼ ! 0, for each
!,

dist(A ¼ (!); A) ! 0:

Thus, the random attractor, a set which is at least one dimensional, must lie within a
small neighbourhood of A, which is itself homeomorphic to a line when ¶ 1 < ­ < ¶ 2.

Finally, we comment that we would not expect similar ideas to work in the case of
an additive noise term (e.g. + ° ¿ dWt, for some ¿ 2 H). Without the ­ xed point f0g,
there is no clear way to show that an invariant manifold for a truncated version of the
equation is a subset of the random attractor. Indeed, the one-dimensional example
in Crauel & Flandoli (1998) suggests that, with an additive noise, the attractor will
be very much simpler than in the deterministic case. We hope to investigate this
further in a future paper.
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and Iberdrola for their ¯nancial assistance during his visit. T.C. and J.A.L. have been partly
supported by DGICYT project PB98-1134.
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