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A Stochastic Polygons Model for Glandular

Structures in Colon Histology Images

Korsuk Sirinukunwattana, David R. J. Snead, and Nasir M. Rajpoot†, Senior Member, IEEE

Abstract—In this paper, we present a stochastic model for glan-
dular structures in histology images of tissue slides stained with
Hematoxylin and Eosin, choosing colon tissue as an example. The
proposed Random Polygons Model (RPM) treats each glandular
structure in an image as a polygon made of a random number
of vertices, where the vertices represent approximate locations
of epithelial nuclei. We formulate the RPM as a Bayesian
inference problem by defining a prior for spatial connectivity
and arrangement of neighboring epithelial nuclei and a likelihood
for the presence of a glandular structure. The inference is made
via a Reversible-Jump Markov chain Monte Carlo simulation.
To the best of our knowledge, all existing published algorithms
for gland segmentation are designed to mainly work on healthy
samples, adenomas, and low grade adenocarcinomas. One of
them has been demonstrated to work on intermediate grade
adenocarcinomas at its best. Our experimental results show
that the RPM yields favorable results, both quantitatively and
qualitatively, for extraction of glandular structures in histology
images of normal human colon tissues as well as benign and
cancerous tissues, excluding undifferentiated carcinomas.

Index Terms—Histology image analysis, Gland modeling, Ran-
dom polygons, Bayesian inference, Reversible-Jump Markov
chain Monte Carlo.

I. INTRODUCTION

G
LANDS in epithelial tissue normally have a tubular

structure and consist of the lumen forming interior of

the tubular structure surrounded by columnar epithelial cells

with basally located nuclei, forming a radial epithelial nuclear

boundary, as shown in Figure 1a. While there are inter-gland

tissue constituents, including stromal nuclei and cytoplasm,

arrangement of epithelial nuclei around the lumen can be used

as a strong cue for the extraction of glandular structures.

Glandular structures are important for diagnosis of several

adenocarcinomas. Previous studies have suggested the useful-

ness of morphology of glands for grading of prostate, breast

and colon adenocarcinomas [1]–[5]. One of the challenges
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of modern histopathology is achieving good intra-observer

reproducibility in the grading of these cancers. The fusion

of morphometric approach and automated histology image

analysis1 offers a means of doing so and possibly increasing

the effectiveness of cancer grading as a result.

Glandular formation has been shown to reflect the degree

of aggressiveness of colon tumors [9]. In adenoma and well

differentiated (low grade) adenocarcinoma, the majority of

tumor still exhibits glandular structures that have appearance

similar to a normal gland (Figure 1d), whereas in moderately

differentiated (intermediate grade) and poorly differentiated

(high grade) adenocarcinomas, glandular structures become

increasingly degenerated (Figures 1e and 1f).

We propose a Random Polygons Model (RPM) for model-

ing glandular structures in images of Hematoxylin and Eosin

(H&E) stained histology slides, the most commonly used

stain in the morphological assessment of cancers. We choose

colon tissue including colonic carcinoma as an example. The

proposed approach treats each glandular structure as a polygon

made of a random number of vertices, where the vertices

represent approximate locations of epithelial nuclei. Based on

the biological fact that epithelial nuclei are present on the glan-

dular boundary surrounding the lumen as shown in Figure 1b,

edges connecting the vertices would result in a boundary of

the glandular structure in the image being represented by a

polygon, as shown in Figure 1c. We formulate the modeling

of glandular structures using the RPM as a Bayesian inference

problem, in which the prior distribution of a polygon is related

to the spatial connectivity and arrangement of their vertices,

while the likelihood term is related to the probability of a

glandular structure represented by the polygon. We exploit

the Reversible-Jump Markov Chain Monte Carlo (RJMCMC)

method [10] using the Metropolis-Hastings algorithm [11] to

infer all the maximum a posteriori polygons.

The RPM is devised to segment glandular structures on the

whole spectrum of differentiation grades of histology samples.

This ranges from glands in normal biopsies to those in poorly

differentiated adenocarcinomas. To the best of our knowledge,

all existing published algorithms for gland segmentation are

mainly designed to work on healthy samples, adenomas, and

well differentiated adenocarcinomas [12]–[16], except one of

them which has been demonstrated to work on moderately

differentiated adenocarcinomas [17]. However, it is worth

noting that the work in [17] is concentrated on the segmen-

tation of glandular structures on images of colon tissue slides

stained with Hematoxylin and DAB. In practice, moderately

1For broad reviews of automated histology image analysis, refer to [6]–[8].
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Fig. 1. (a) A sample colon histology image showing various components (epithelial cell or E, stromal nucleus or SN, lumen or L, goblet cell or G). (b)
Representative nuclei vertices are shown as yellow dots. (c) A maximum a posteriori polygon is shown as green boundary. Examples of glandular structures
found in (d) adenoma, (e) moderately differentiated adenocarcinoma, and (f) poorly differentiated adenocarcinoma.

and poorly differentiated colorectal adenocarcinomas account

for 70% and 20% of cases being diagnosed, respectively [9].

The main challenge in segmentation comes from the fact that

glandular structures in moderately and poorly differentiated

adenocarcinomas are deformed. Algorithms which assume the

architectural regularity of glandular structures (Figure 1a),

thus, are prone to fail. Note that in this work, we do not

consider undifferentiated adenocarcinomas as in such cases,

glandular morphology is totally lost and cannot offer any

useful information for the inference of the glandular structures.

This paper is organized as follows. In Section II, we briefly

review existing gland segmentation algorithms in the literature.

The Bayesian formulation of the random polygons model

and the framework for glandular structure segmentation are

elaborated in Sections III and IV. In Section V, we present a

comprehensive evaluation of the proposed gland segmentation

framework on two different datasets consisting of healthy

tissues as well as benign and malignant tumors.

II. RELATED WORK

Existing methods for glandular structure segmentation can

be categorized into two main classes: (a) texture based ap-

proaches and (b) structure based approaches. For textural

methods, Farjam et al. [12] employed variance and Gaussian

filters to extract texture features from glandular structures.

Texture based methods do not employ any prior knowledge

about the relationship between lumen and epithelial nuclei

and, therefore, may result in poor segmentation, as shown in

Section V-F.

In structural methods, Naik et al. [13] used a level set

method to segment lumen areas in a gland. A Bayesian

classifier is used to detect potential lumens and a level set

curve is automatically initialized at the boundary of each

detected luminal area. An evident limitation of the framework

is that level sets often lead to erroneous segmentation in

cases where lumen appears as a complex texture rather than

a relatively smooth region such as healthy and adenomatous

colon tissues. Nguyen et al. [14] employed the prior knowl-

edge about glandular constituents in order to extract glandular

regions. Their algorithm first jointly segments nuclei and

cytoplasm to form a rough glandular boundary and then uses a

region growing algorithm to expand the luminal area. Gunduz-

Demir et al. [15] proposed object graphs for segmentation

of glandular structures. Their algorithm first identifies nuclei

and lumen using object-based information. A boundary of

the gland is then constructed by connecting centroids of the

nuclei objects. Fakhrzadeh et al. [16] employed low level

color features to detect lumen and glandular boundaries. The

outer borders of glands are delineated using geodesic distance

transform. The major limitations of all the aforementioned

algorithms are as follows. (a) They solely rely on pixel-level

color information to detect different constituents of the tissues,

which can be susceptible to stain variation. (b) They assume

the architectural regularity of glandular structures, i.e., the
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lumen is immediately surrounded by the cytoplasm and the

cytoplasm is then surrounded by the epithelial boundary. This

regularity may be degenerated in benign or cancerous colon

tissues.

Fu et al. [17] devised a segmentation algorithm that makes

use of the geometric property of the polar coordinate system.

The algorithm first converts the image of a single gland

embedded in the polar coordinate system into the Cartesian

coordinate system, resulting in a close glandular boundary

being transformed into a stretched curve. A contour rep-

resenting the glandular boundary in the transform domain

is then inferred through a conditional random field model.

The algorithm has been mainly demonstrated on images of

Hematoxylin and DAB stained slides from adenomas, and well

to moderately differentiated adenocarcinomas. In contrast, for

H&E stained slides, the algorithm has been demonstrated only

on a limited amount of images belonging to healthy samples.

Sabata et al. [18] tailored a gland segmentation method for

PIN-4 stained slides of prostate needle biopsies. A graph-

based segmentation method is run on the glandular probability

map which is generated using a pixel classifier trained on

Haar-like features. This method sometimes merges several

glands together. The authors, thus, proposed to use ad hoc

cues available via PIN-4 stain to separate them. Neither the

information on tumor grade nor a comparative segmentation

result is provided in the paper.

Previous image segmentation approaches that are close to

the RPM in terms of methodology are based on Voronoi tes-

sellation and point process [19]–[21]. These methods partition

an image into a set of polygons represented by Voronoi cells,

and each polygon corresponds to an area of homogeneous

texture in the image. RJMCMC based on Metropolis-Hastings

algorithms involving particular moves such as birth, death,

position change and label change of generating points of

Voronoi tessellation have been used to estimate the joint

posterior distribution of the tessellation, labels of polygons,

and the number of different textures. The RPM, however,

is more well suited to the problem of gland segmentation

due to the following facts: (a) It does not segment the

glandular structures based on spatial homogeneity of texture

since each glandular structure often comprises of an area with

heterogeneous texture. (b) It separately generates a polygon for

each individual glandular structure by sampling vertices from

the epithelium boundary. It, therefore, can provide a better

representative polygon for the glandular structure.

III. THE RANDOM POLYGONS MODEL

In this section, we will describe the inference of polygons

for modeling glandular structures mathematically. To facilitate

the reader’s comprehension, frequently used mathematical

notations are listed and defined in Table I. Given the evidence

y = (V, x(Z)) available to us in the form of set of vertices

representing approximate nuclei positions V and glandular

probability map x(Z), we infer the most likely polygon that

encloses an individual glandular structure through Bayesian

inference using the formulation below. For details on how V
and x(Z) are obtained, see Section IV.

TABLE I
FREQUENTLY USED NOTATIONS IN SECTION III

Notation Definition

z a vertex (pixel coordinates) on an image

Z a set of all 2-dimensional pixel coordinates on an image

V a set of vertices representing approximate nuclei loca-
tions, and V ⊂ Z

x(·) a function x : Z → [0, 1] such that ∀z ∈ Z, x(z) is the
probability of z belonging to a glandular structure

x(Z) glandular probability map

y an observation (V, x(Z))

S a simple polygon

ES a set of all edges of polygon S

le length of edge e of a polygon

zkzk+1 an edge between vertices zk and zk+1 of a polygon

θz an angle that is less than 180 degrees at vertex z of a
polygon

6 zk−1zkzk+1 a corner at vertex zk of a polygon

ΩS a set of all pixel coordinates enclosed by polygon S

P (S) prior probability for polygon S

P (S|y) posterior probability of polygon S given evidence y

L(y|S) likelihood probability for evidence y given polygon S

N (·|µ, σ) a probability density function of a normal distribution
with mean µ and standard deviation σ

µl, σl mean and standard deviation of a normal distribution for
empha priori length of polygon edge

µθ, σθ mean and standard deviation of a normal distribution for
a priori angle that is less than 180 degrees of polygon
corner

σd standard deviation of a normal distribution for the sum-
mation of the two edges to be built by adding a new
vertex to a polygon

Si, Sf polygons at the current and proposed states of the Markov
chain in the RJMCMC simulation, respectively

g a proposal function, i.e., invertible deterministic function
such that (Sf , z

′) = g(Si, z
∗), where z′ and z∗

denote random variables required for dimension matching
condition in the RJMCMC simulation

Q(A|B) proposal probability of state A given state B in the
RJMCMC simulation

P (A → B) probability of choosing the type of move that allows
the transition from state A to state B in the RJMCMC
simulation

A. The Bayesian Formulation

Let S = {z1, ..., zn : zj ∈ V } be a simple polygon2

consisting of n vertices, where the polygon edges are defined

in the given order of vertices. According to the Bayes’ rule,

the posterior distribution of polygon S given observation y is

written as follows,

P (S|y) ∝ L(y|S)P (S). (1)

The prior probability P (S) can be defined in terms of the

length of edges of S and the angle at corners of S. Assume

that both factors can be independently modeled by normal

distributions. Then the prior probability P (S) can be expressed

as follows,

P (S) =
∏

e∈ES

N
(
le

∣∣∣µl, σl

) ∏

z∈S

N
(
θz

∣∣∣µθ, σθ

)
, (2)

2A simple polygon is a polygon with non-intersecting edges.
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Fig. 2. Illustration of the proposed moves. (a) Addition of a vertex: edge zkzk+1 of polygon Si is sampled according to distribution Gedge (5). Then vertex
z∗ is uniformly drawn from set Um

V \Si
(yellow dots) and added to Si, resulting in polygon Sf . (b) Deletion of a vertex: vertex zk of Si is sampled according

to distribution Gvertex (8) and removed from Si, resulting in polygon Sf . (c) Change of a vertex: vertex zk of polygon Si is sampled according to distribution

P (12) and is replaced by vertex z∗ sampled according to distribution P̃ (13), resulting in polygon Sf .

where the notation is as defined in Table I. The likelihood of

observation y given polygon S, L(y|S), is defined in terms

of how close the area inside S matches a glandular structure,

while the area outside matches non-glandular structure. This

information is available to us in the form of the glandular

probability map x(Z). The likelihood L(y|S) is defined as

below,

L(y|S) =
∏

z∈ΩS

x(z)
∏

z 6∈ΩS

(1− x(z)), (3)

where the notation is as in Table I. Note that pixels z ∈ Z
such that x(z) = 0 or x(z) = 1 can rarely occur and cause (3)

to be zero. It is preferable to transform such pixel probabilities

or not include them in the calculation of (3).

B. The Reversible-Jump Markov Chain Monte Carlo

The posterior distribution P (S|y) in (1) cannot be de-

termined analytically. We, therefore, resort to Markov chain

Monte Carlo (MCMC) simulation to approximate the poste-

rior distribution. Reversible-Jump Markov chain Monte Carlo

(RJMCMC) [10] using Metropolis-Hastings algorithm is em-

ployed due to its ability to accommodate changes in the

dimensionality of the state space. This property is vital as it

allows us to sample a polygon with varying number of vertices.

Suppose that the current state and the proposal state of the

Markov chain are polygons Si and Sf , respectively, and the

transition from Si to Sf is defined by a proposal function g
such that (Sf , z

′) = g(Si, z
∗), where z′ and z∗ are auxiliary

random variables due to dimensional matching condition. The

acceptance ratio for a transition from Si to Sf according to

the Metropolis-Hastings method is given by

α(Si, Sf ) = min {1, R} , (4)

where

R =
L(y|Sf )

L(y|Si)

P (Sf )

P (Si)

Q(Si|Sf )

Q(Sf |Si)

P (Sf → Si)

P (Si → Sf )

∣∣∣∣
∂(Sf , z

′)

∂(Si, z∗)

∣∣∣∣ ,

Q(Sf |Si)
(
Q(Si|Sf )

)
denotes the proposal distribution of Sf

given Si

(
Si given Sf

)
, P (Si → Sf )

(
P (Sf → Si)

)
denotes

the probability of selecting a type of move that allows the

transition from Si to Sf

(
Sf to Si

)
, and |∂(Sf , z

′)/∂(Si, z
∗)|

denotes a Jacobian arising from the change in dimensionality.

In order to fulfill the reversibility condition of the Markov

chain, we define three types of moves, including addition,

deletion, and change of a vertex. Note that addition and

deletion of a vertex are the reverse of each other.

Addition of a Vertex: In this move, we favor the addition

of a new vertex to an edge of a polygon that is longer than the

a priori mean length µl. The move is illustrated in Figure 2a.

Assume that the current state of the Markov chain is a polygon

Si = {z1, ..., zk−1, zk, zk+1, zk+2, ..., zn}. The move proposes

a new polygon Sf by first sampling an edge of polygon Si

according to a Gibbs distribution

Gedge(e|S, µl) =
exp(|le − µl|/Tl)∑

e′∈ES
exp(|le′ − µl|/Tl)

, (5)

where Tl =
1

|ES |

∑
e′∈ES

|le′ −µl| is a temperature parameter

for the Gibbs distribution, and |ES | denote the cardinality of

set ES . Here, the edge of polygon S with higher deviation

from µl is more likely to be selected.

Suppose that edge e∗ = zkzk+1 of Si is chosen. We define

a score for each vertex z ∈ V \ Si as follows,

fe∗(z) = N
(
lzkz + lzzk+1

∣∣∣le∗ , σd

)
×

N (θ̃zk |µθ, σθ)N (θ̃z|µθ, σθ)N (θ̃zk+1
|µθ, σθ), (6)

where θ̃zk , θ̃z, θ̃zk+1
denote angles that are less than 180

degrees at corners 6 zk−1zkz, 6 zkzzk+1, 6 zzk+1zk+2, respec-
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tively. The score fe∗(z) indicates (a) the proximity between

vertex z and edge e∗, measured in terms of the deviation of

the summation lzkz + lzzk+1
from le∗ , and (b) the irregularity

of shape of edges to be built if z is selected and added to the

polygon, measured by the deviation of angles θ̃zk , θ̃z, θ̃zk+1

from the a priori mean angle µθ. The higher the value of

fe∗(z), the closer the position of z to e∗ and the values of

θ̃zk , θ̃z, θ̃zk+1
to µθ.

Let Um
V \S be a set of m vertices z ∈ V \ S with the

highest values of fe∗ score in the descending order. A new

vertex z∗ is then uniformly drawn from Um
V \Si

and added into

Si between vertices zk and zk+1. Hence, Sf = g(Si, z
∗) =

{z1, ..., zk, z
∗, zk+1, ..., zn}, |∂Sf/∂(Si, z

∗)| = 1, and

Q(Sf |Si) = Gedge(e
∗|Si, µl)

1∣∣Um
V \Si

∣∣ . (7)

We assume that this move occurs with probability P (Si →
Sf ) = radd. Note that even though (5) also favors the selection

of an edge shorter than µl, the addition of a vertex to the

shorter edge is less likely to be accepted due to the small

acceptance ratio (4).

Deletion of a Vertex: In this move, we favor the

deletion of a narrow angle from a polygon. The move

is illustrated in Figure 2b. Assume that polygon Si =
{z1, ..., zk−1, zk, zk+1, ..., zn} is the current state of the

Markov chain. We sample vertex z ∈ Si and remove it from

Si according to a Gibbs distribution

Gvertex(z|S, µθ) =
exp(|θz − µθ|/Tθ)∑

z′∈S exp(|θz′ − µθ|/Tθ)
, (8)

where Tθ = 1

|S|

∑
z′∈S |θz′ − µθ|. From (8), the likelihood

of vertex z ∈ S, whose angle θz is more deviated from the

a priori mean angle µθ, to be selected is higher than those

with smaller deviation. Given that in general, µθ is an obtuse

angle close to 180 degrees, a narrow angle is more likely to

be selected.

Without loss of generality, suppose that zk is being sam-

pled. It then follows that (Sf , zk) = g(Si) where Sf =
{z1, ..., zk−1, zk+1, ..., zn} , |∂(Sf , zk)/∂Si| = 1, and

Q(Sf |Si) = Gvertex(zk|Si, µθ). (9)

Here, we assume that the deletion occurs with probability

P (Si → Sf ) = rdelete.

Change of a Vertex: Figure 2c shows an illustration of

the move. Suppose that the current state of the Markov chain

is given by polygon Si = {z1, ...zk−1, zk, zk+1, ..., zn}. This

move proposes a new state of the chain, Sf , by replacing a

vertex in Si that makes it less conform to the prior knowledge

of polygons (2) with a new vertex. Let us consider vertex

zk ∈ Si. The variables involved in the calculation of (2)

that depend on zk are adjacent edges zk−1zk and zkzk+1 and

angles θzk−1
, θzk , and θzk+1

. Thus, the probability of selecting

zk is defined based on these terms as follows,

P(zk|Si, µl, µθ) =
∏

e∈{zk−1zk,zkzk+1}

Gedge(e|Si, µl)×

∏

z∈{zk−1,zk,zk+1}

Gvertex(z|Si, µθ). (10)

This probability takes into account the deviation of zk−1zk and

zkzk+1 from the a priori mean length µl, and the deviation of

θzk−1
, θz, and θzk+1

from the a priori mean angle µθ. Next,

we draw a vertex z∗ ∈ V \ Si to replace zk according the

probability

P̃(z∗|Sf , µl, σl, µθ, σθ) =
∏

e∈{zk−1z∗,z∗zk+1}

N (e|µl, σl)×

∏

z∈{zk−1,z∗,zk+1}

N (z|µθ, σθ).(11)

Consequently, we have that (Sf , zk) = g(Si, z
∗) where Sf =

{z1, ..., zk−1, z
∗, zk+1, ..., zn}, |∂(Sf , zk)/∂(Si, z

∗)| = 1, and

Q(Sf |Si) = P(zk|Si, µl, µθ)P̃(z
∗|Sf , µl, σl, µθ, σθ) (12)

We assume that this move occurs with a probability P (Si →
Sf ) = rchange.

For the reverse transition from Sf to Si, we sim-

ply select z∗ according to the distribution P(z|Sf , µl, µθ)
and replace it with vertex zk drawn from the distribution

P̃(z|Si, µl, σl, µθ, σθ). The proposal distribution of Si given

Sf , therefore, can be expressed by

Q(Si|Sf ) = P(z
∗|Sf , µl, θl)P̃(zk|Si, µl, σl, µθ, σθ). (13)

We also assume that this transition occurs with the probability

P (Sf → Si) = rchange.

IV. THE GLANDULAR MODELING FRAMEWORK

An illustration of the operation of the proposed framework

is shown in Figure 3. Given an H&E image (Figure 3a), first

we generate the glandular probability map (Figure 3b) and

nuclei vertices (Figure 3c), two evidences necessary to perform

an inference for random polygons. Seed areas (Figure 3d)

to initialize the random polygons used in the RJMCMC

simulation are derived from the glandular probability map.

Maximum a posteriori polygons are then estimated using the

RJMCMC simulation (Figure 3e). Finally, as a post-processing

operation for the RPM, false positive polygons are removed,

and a relatively smoother contour of the glandular structures

is generated (Figure 3f).

A. The Glandular Probability Map

Following [22], [23], the generation of glandular probability

map x(Z) for a given image is a 3-step process, as described

below.

Step 1: Superpixel Segmentation. We segment the image

into superpixels using the Simple Linear Iterative Clustering

(SLIC) algorithm [24].

Step 2: Feature Extraction. For each superpixel i, let Bi
denote a union of intermediate neighboring superpixels of i.
A feature vector for each superpixel i,

fi =
[
f

color
i

⊤
, f texture

i

⊤
]⊤

, (14)

comprises two cues, namely color and texture, from the

superpixel i itself and its neighboring superpixels. The color

feature is calculated as f color
i = [h(i), h(Bi)]

⊤
, where h(i) and

h(Bi) are normalized histograms of quantized L∗a∗b∗ color



6 TO APPEAR IN IEEE TRANSACTIONS ON MEDICAL IMAGING

(a) (b) (c)

(d) (e) (f)

Fig. 3. The Random Polygons Model framework. (a) A sample Hematoxylin and Eosin stained colon histology image. (b) A glandular probability map. The
brighter the intensity, the higher the probability of the area belonging to glandular structures. (c) Representative vertices of nuclei are shown as yellow dots.
(d) Seed areas for initializing random polygons in the Reversible-Jump Markov chain Monte Carlo simulation. (e) Maximum a posteriori polygons are shown
in green. (f) Post-processed polygons.

intensities calculated over superpixels i and Bi, respectively.

The texture feature is defined as f
texture
i = [S̄p(i), S̄p(Bi)]

⊤,

where S̄p(i) and S̄p(Bi) denote scattering symmetric positive

definite descriptors [22] based on gray-scale intensities of

pixels in superpixels i and Bi, respectively.

Step 3: Glandular Probability Assignment. A glandular

probability for each superpixel is obtained from a random

forest classifier trained on the extracted features. This results

in a map indicating the likelihood for each pixel in the image

belonging to the glandular region. The map is then smoothed

by a spatial average filter, e.g., Gaussian filter, yielding the

glandular probability map x(Z).

B. The Nuclei Vertices

We employ a color-deconvolution method [25] to extract

the Hematoxylin channel from the image. By thresholding the

Hematoxylin channel using Otsu’s threshold [26], we obtain

a binary image corresponding to the approximate locations

of nuclei in the image. To construct a set of vertices V
representing nuclei locations, we sample vertices from a set

of coordinates of boundary pixels of the binary mask. The

sampling without replacement is done in a greedy fashion

where, at each step, a single vertex z∗ is uniformly randomly

drawn. If there exists z ∈ V such that ‖z∗ − z‖ ≤ d where d
is a desired minimum distance between any two vertices, then

z∗ is rejected, otherwise it is put in V .

C. The Seed Areas

These provide an initial guess about the number of glands

and their locations in the image. We threshold the probability

map to produce a binary image that coarsely represents the

location of glandular structures in the image. The value of the

glandular probability in the region close to the boundary of the

glandular structures is often less reliable than that of the inner

region. We, therefore, process each connected component in

the binary image by a morphological operation which consists

of boundary erosion and boundary smoothing to get seed

areas which can provide more reliable information regarding

the location of individual glandular structure. Each seed area

is used to initialize an individual polygon in the RJMCMC

simulation.

D. Inference for Random Polygons

Let Ci denote a set of all coordinates in the ith seed area. To

infer a random polygon corresponding to the glandular struc-

ture that is represented by the ith seed area, we first restrict

the analysis to the neighborhood of Ci. This neighborhood is

formed by expanding all sides of the minimum bounding box

of Ci by mexpand pixels. We define WCi
to be a set of all

coordinates in the expanded bounding box, i.e.,

WCi
= {(a, b) ∈ Z : amin −mexpand ≤ a ≤ amax +mexpand

and bmin −mexpand ≤ b ≤ bmax −mexpand}, (15)
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Algorithm 1 Metropolis-Hastings and RJMCMC Simulation

Input: Evidence y = (V |W , x(Z)|W ), initial polygon S0,

total number of iterations ttotal, probabilities of moves

radd, rdelete, rchange (not all inputs are listed here)

Output: Set of sample polygons {St}
ttotal

t=1, posterior distribu-

tion P (S|y)
1: for t = 1 to ttotal do

2: Draw a type of move based on probabilities

{radd, rdelete, rchange}
3: if addition of a vertex then

4: S̃ ← addition of a vertex (St−1) (Section III-B)

5: Calculate α(St−1, S̃) in (4)

6: else if deletion of a vertex then

7: S̃ ← deletion of a vertex (St−1) (Section III-B)

8: Calculate α(St−1, S̃) in (4)

9: else

10: S̃ ← change of a vertex (St−1) (Section III-B)

11: Calculate α(St−1, S̃) in (4)

12: end if

13: if S̃ is a simple polygon then

14: r ← a random number uniformly drawn from [0, 1]
15: if r > α(St−1, S̃) then

16: S̃ ← St−1

17: end if

18: else

19: S̃ ← St−1

20: end if

21: St ← S̃
22: Calculate P (St|y) in (1)

23: end for

where amin = min{a|(a, b) ∈ Ci}, amax = max{a|(a, b) ∈
Ci}, bmin = min{b|(a, b) ∈ Ci}, and bmax = max{b|(a, b) ∈
Ci}. Further, we define x(Z)|WCi

to be the probability map

restricted to WCi
, and V |WCi

to be the set of all vertices

restricted to WCi
that are closest to the ith seed area than the

others, i.e.,

V |WCi
= {z ∈ V : z ∈WCi

and

for all j 6= i, min
z′∈Ci

‖z − z′‖ < min
z′∈Cj

‖z − z′‖}.(16)

Next, we form an initial polygon S0 from vertices z ∈ V |WCi

that are close to the boundary of the ith seed.

Then we use the evidence y = (V |WCi
, x(Z)|WCi

) and

the initial polygon S0 as inputs to the RJMCMC simulation

(Algorithm 1). The cardinality of V |WCi
reflects the size of the

sample space for random polygons. Thus, we define the total

number of iterations ttotal for the RJMCMC to be proportional

to the cardinality of V |WCi
, i.e., ttotal = β ·

∣∣V |WCi

∣∣, where

β is a constant factor. Assume that a sequence of polygons

{St}
ttotal

t=1 is sampled from the posterior distribution P (S|y) by

the RJMCMC. We use the maximum a posteriori polygon

SMAP = argmax
S∈{St}

ttotal
t=1

P (S|y), (17)

as an estimator of the glandular structure. Note that it is

straightforward to adapt the above procedure to utilize par-

allel computing since random polygon modeling is performed

separately on each seed area.

E. Post-Processing

It is possible that false positive polygons are generated due

to imperfections in the glandular probability map. We remove

these polygons using a heuristic criterion related to the number

of vertices and the size of the polygons as will be explained

in more detailed in Section V-D. As can be seen in Figure 3e,

false positive polygons may occupy some vertices on glandular

structures, preventing the true positive polygons to model the

whole glandular structure that they correspond to. After false

positive removal, we therefore treat the remaining polygons

as seed areas and rerun the procedure in Section IV-D for a

small number of iterations. Finally, we smooth the boundary

of the obtained polygons by cubic spline interpolation.

V. EXPERIMENTAL SETUP, EXPERIMENTAL RESULTS AND

DISCUSSION

A. Datasets

1) The Bilkent Dataset: This dataset used in [15] consists of

72 microscopic images of H&E stained healthy colon tissues.

The images were captured at 20× magnification using Nikon

Coolscope Digital Microscope with resolution 480×640. The

expert annotation of a total of 1,009 glandular structures are

available for this dataset.

2) The Warwick-QU Dataset: This dataset consists of 165

images extracted from H&E stained colon histology slides.

The slides were digitally scanned at 20× magnification by

Zeiss MIRAX MIDI Slide Scanner. A total of 52 visual

fields were extracted, and an expert pathologist graded these

fields into five categories: healthy, adenomatous, moderately

differentiated, moderately-to-poorly differentiated, and poorly

differentiated (well-differentiated adenocarcinoma is not ob-

served). Handmarked ground truth for glandular structures in

each visual field is also provided. This results in a total of

165 non-overlapping images taken from the graded visual

fields, where the grade of the image is assigned according

to the original field. This gives 42 healthy, 32 adenomatous,

47 moderately differentiated, 20 moderately-to-poorly differ-

entiated, and 24 poorly differentiated images, respectively

containing 670, 298, 287, 135, and 195 glandular structures

present in them. In terms of dimensions, 151 of the images

have the resolution of 520×775, and 14 have the resolution

of 430×575. At the time of publication, this dataset is being

released as part of the Gland Segmentation (GlaS) challenge

contest to be held in conjunction with MICCAI 2015.

B. Comparative Algorithms

To compare the performance of the RPM framework against

others gland segmentation approaches proposed in the liter-

ature, we implemented the methods by Farjam et al. [12],

Naik et al., Nguyen et al. [14], as well as the RPM in

Matlab. We did not implement the approach by Gunduz-

Demir et al. [15], but carefully followed the protocol given

by the authors in order to make a fair comparison for the
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Bilkent dataset. The glandular probability map was also used

for segmentation, whereby pixels are labeled as belonging to

glands if their probability is greater than or equal to 0.5. This

threshold was empirically found to be the best for majority of

our experiments (Table S1). We will denote this method by

Thresholded Glandular Probability Map (TGPM), henceforth.

C. Data Pre-processing

To reduce stain variation across different images which

may affect the performance of the algorithms that use color

cues, we normalize all images in both datasets to the same

target stain distribution using a recently proposed algorithm

[27]. Moreover, white background outside tissue regions is

cropped and not considered in the performance evaluation of

all algorithms.

D. Implementation Details and Parameters

The values of the following parameters are determined

on the training part of the Bilkent dataset and fixed in all

the experiments. In glandular probability map generation, we

construct superpixels on a regular grid of 15 pixels apart

and set the compactness parameter in SLIC [24] to 10.

Superpixels constructed in this way allow us to capture a

thin epithelial boundary in healthy glands. As suggested in

[22], for color histogram, we quantize pixels based on their

L∗a∗b∗ intensity into 20 bins. In the calculation of scattering

symmetric positive definite descriptor, we use a filter bank

consisting of Gaussian filters at 6 scales and Gabor filters at

21 scales and 8 orientations. In the probability assignment, the

number of trees in the random forest classifier is set to 50.

For constructing the set V of representative nuclei locations,

we sample vertices which are at least d = 8 pixels apart from

each other. For the seed area generation, after thresholding the

glandular probability map at 0.5, we shrink the binary mask to

60% of the original area to get seed areas which provide more

reliable information regarding the location of each individual

glandular structure in the image. Note that the RPM is not too

sensitive to the size of the shrunk seed areas as long as they

can provide the approximate location of glandular structures

(Table S2). The expanded bounding box for each seed area is

constructed using mexpand = 100.

For the prior distribution of polygons given in (2), we cal-

culate all the required statistics from the manually constructed

polygons on the training part of the Bilkent dataset. This con-

struction is simply done by connecting vertices from V lying

along the boundary of a glandular structure to form a polygon

surrounding each glandular structure. The following values of

parameters are found: µl = 12.7, σl = 4.2, µθ = 157.2, σθ =
23.3, σd = 10. In the proposal moves of the RJMCMC, we

empirically set m = 10, radd = rdelete = 0.45, rchange = 0.1.

The RPM is not sensitive to these parameter values (Table S3).

We found the scale factor β = 20 to be a good compromise

between the quality of the estimated random polygons and

computational complexity of the RJMCMC simulation.

For false positive removal, we consider the following poly-

gons as extreme and remove them: (a) polygons with the

number of vertices less than or equal to 4, and (b) polygons

with square root of their area less than or equal to the 10th

percentile of the square root of the area of glands in training

images. Both values were empirically found for the training

part of the Bilkent dataset.

E. Evaluation Indices

We calculate pixel-wise segmentation accuracy in order to

evaluate performance of different algorithms. For each image,

the calculation is done at the pixel level and at the object

level to examine the segmentation quality of the whole image

as well as individual glands.

For the pixel-level segmentation accuracy, we use two

evaluation indices, i.e. Jaccard [28] and Dice [29] indices.

Given G a set of pixels marked as ground truth and O a

set of pixels segmented as glandular structures, both indices

measure the similarity between G and O. The Jaccard index

is formulated as

Jaccard(G,O) =
|G ∩O|

|G ∪O|
, (18)

and the Dice index is formulated as

Dice(G,O) =
2|G ∩O|

|G|+ |O|
, (19)

where | · | denotes the set cardinality. Both indices produce

scores ranging between 0 and 1, where 1 indicates perfect

segmentation.

For the object-level segmentation accuracy, we are con-

cerned with: (A1) how well each segmented object overlaps

with the ground truth objects, and (A2) how well each ground

truth object overlaps the segmented objects. These two terms

are not equivalent. Let Oi denote the set of pixels of the ith
segmented object in O and Gi denote the set of pixels of

ground truth objects in G that intersect Oi. Further, let G̃i

denote the set of pixels of the ith ground truth object in G
and Õi denote the set of pixels of segmented objects in O that

intersect G̃i. We defined the object-level Jaccard index as

Jaccardobject(G,O) =
1

2

[ nO∑

i=1

ωiJaccard(Gi, Oi)

+

nG∑

i=1

ω̃iJaccard(G̃i, Õi)
]
, (20)

and the object-level Dice index as

Diceobject(G,O) =
1

2

[ nO∑

i=1

ωiDice(Gi, Oi)

+

nG∑

i=1

ω̃iDice(G̃i, Õi)
]
, (21)

where ωi = |Oi|/
∑nO

j=1
|Oj |, ω̃i = |G̃i|/

∑nG

j=1
|G̃j |, and nO

and nG are the total number of segmented objects and the total

number of ground truth objects, respectively. On the right-hand

side of (20) and (21), the first term corresponds to (A1) and

the second term corresponds to (A2). Both terms are weighted

by the relative area of the objects. As shown in Figure S1,

the object-level accuracy is a more appropriate measure of

performance than the pixel-level accuracy for the task of gland

segmentation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Results for different gland segmentation approaches on an example healthy case in the Bilkent dataset: (a) Original image; (b) Ground truth; (c)
Farjam et al. [12]; (d) Naik et al. [13]; (e) Nguyen et al. [14]; (f) TGPM; (g) RPM; (h) RPM (post-processed). Glandular structures are shown in green in
(b)-(h).

F. Comparative Results

In this section, we present a variety of experiments to

demonstrate the effectiveness and degree of generalization of

the RPM. Due to stochastic nature of the RJMCMC simulation

employed by the RPM, for each image, we run the algorithm

for 5 repetitions and aggregate the mean segmentation ac-

curacy result. All the competing algorithms are described in

Section V-B. We did not perform the false positive removal

routine used for the RPM on these algorithms due to the

fact that they do not significantly benefit from the routine

(Table S4). Other false positive removal methods may provide

better quantitative results. All the experiments are conducted

on a 2.8 GHz Intel Core i7 machine with 16GB RAM.

TABLE II
SEGMENTATION ACCURACIES ON THE BILKENT DATASET

(EXPERIMENT 1)

Approach
Pixel-Level Object-Level

Jaccard Dice Jaccard Dice

Gunduz-Demir et al. [15]a NA 0.89 ± 0.05 NA NA

Farjam et al. [12] 0.43 ± 0.12 0.59 ± 0.12 0.39 ± 0.14 0.52 ± 0.15

Naik et al. [13] 0.57 ± 0.14 0.72 ± 0.12 0.43 ± 0.14 0.56 ± 0.14

Nguyen et al. [14] 0.52 ± 0.12 0.67 ± 0.12 0.35 ± 0.09 0.46 ± 0.09

TGPM 0.78 ± 0.07 0.87 ± 0.05 0.68 ± 0.12 0.77 ± 0.11

RPM 0.82 ± 0.07 0.90 ± 0.05 0.78 ± 0.10 0.85 ± 0.08

a The result is excerpted from [15].
NA means not available. The reported figures are the average ± standard deviation
across images. Bold figures indicate the best results.

1) Experiment 1: Healthy Samples: In this experiment, we

evaluate the segmentation accuracy of different algorithms on

the Bilkent dataset [15]. All 72 images in the dataset are

assessed as healthy by the experts. We follow the protocol

given in [15], where 24 images are used for training and

the rest for testing. Table II shows comparative results from

the experiment. At the pixel level, the RPM produces a

comparable result to that of Gunduz-Demir et al. [15], which

is a benchmark algorithm on this dataset. As compared with

all the other algorithms, the RPM yields the best results both

at the pixel and the object levels. An important observation

here is that the accuracy of the TGPM at the pixel level is one

of the factors attributing to the success of the RPM. However,

the main benefit of the RPM over the TGPM is that it tends

not to fuse neighboring glands together (Figures 4f,4h). This

owes to the fact that the RPM models each individual glandular

object separately by utilizing nuclei vertices surrounding the

glandular structure. Thus, the RPM achieves statistically sig-

nificant segmentation accuracy at both pixel and object levels

as compared to TGPM (Table S5).

Figure 4 shows an example of the segmentation results.

Farjam et al. [12] (Figure 4c) labels a region as gland or non-

gland based on statistics computed from its pixel-level texture

features. This information alone, however, is not sufficient to

assign an accurate label because some areas in the stromal

region can have similar texture statistics as those of the

luminal areas. Naik et al. [13] and Nguyen et al. [14] only

utilize pixel-level color cue to label pixels as part of different

constituents of a tissue. Consequently, areas with similar color

characteristic but belonging to different tissue components

will be assigned the same label. As shown in Figures 4d

and 4e, some white areas in stroma are being mislabeled as

lumen. The glandular probability map (Figure 4f), on the other

hand, is generated using superpixel-based color and texture

information. Thus, it provides a more reliable observation for

the RPM.

2) Experiment 2: Healthy and Adenomatous Samples: The

goal of this experiment is to compare the effectiveness of dif-

ferent segmentation algorithms on segmenting glandular struc-

tures in healthy and adenomatous samples. The experiment is

conducted on 74 images (42 healthy, 32 adenomatous) from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results for different gland segmentation approaches on an example adenomatous case in the Warwick-QU dataset: (a) Original image; (b) Ground
truth; (c) Farjam et al. [12]; (d) Naik et al. [13]; (e) Nguyen et al. [14]; (f) TGPM; (g) RPM; (h) RPM (post-processed). Glandular structures are shown in
green in (b)-(h).

TABLE III
SEGMENTATION ACCURACIES ON THE WARWICK-QU DATASET: HEALTHY

AND ADENOMATOUS CASES (EXPERIMENT 2)

Approach
Pixel-Level Object-Level

Jaccard Dice Jaccard Dice

Farjam et al. [12] 0.33 ± 0.12 0.48 ± 0.13 0.30 ± 0.13 0.42 ± 0.15

Naik et al. [13] 0.46 ± 0.17 0.62 ± 0.17 0.46 ± 0.14 0.58 ± 0.14

Nguyen et al. [14] 0.45 ± 0.15 0.60 ± 0.16 0.29 ± 0.11 0.40 ± 0.12

TGPM 0.77 ± 0.12 0.87 ± 0.08 0.71 ± 0.13 0.80 ± 0.11

RPM 0.77 ± 0.11 0.87 ± 0.08 0.74 ± 0.11 0.82 ± 0.09

The reported figures are the average ± standard deviation across images.
Bold figures indicate the best results.

the Warwick-QU dataset. In adenomas, damaged glands often

are associated with morphological changes such as branching

of a new gland due to regeneration, or enlargement of gland

with serrated boundary due to inflammation, etc. Nonetheless,

the glandular architecture still resembles closely to that of

normal glands, and an individual gland is distinguishable.

Table III reports the results from 2-fold cross-validation,

and Figure 5 shows qualitative comparison of the results. The

RPM overall performs better than the others in this experiment.

Despite producing comparable results to the TGPM at the pixel

level, there is a statistically significance difference between

the results of the RPM and the TGPM at the object level

(Table S5). This is in line with the argument given in the

Experiment 1. It is also worth noting that the object-level per-

formance is more important than the pixel-level performance

since the main goal here is to segment objects rather than

pixels.

3) Experiment 3: Generalization for Healthy and Adenoma-

tous Samples: We demonstrate the generalization of the RPM

framework on a strong cross-validation experiment, where

72 images classified as healthy from the Bilkent dataset are

used for training and 74 images classified as healthy and

adenomatous from the Warwick-QU dataset are treated as the

unseen data. The results are reported in Table IV. The highest

segmentation accuracy among different methods on the strong

cross-validation indicates a high degree of generalization of the

RPM framework. Note that there is a statistically significance

difference between the performance of the RPM and the

TGPM at both pixel and object levels (Table S5).

TABLE IV
SEGMENATION ACCURACIES WHEN SEGMENTATION APPROACHES ARE

TRAINED AND TESTED ON DIFFERENT DATASETS (EXPERIMENT 3)

Approach
Pixel-Level Object-Level

Jaccard Dice Jaccard Dice

Farjam et al. [12] 0.33 ± 0.12 0.48 ± 0.13 0.30 ± 0.13 0.42 ± 0.15

Naik et al. [13] 0.52 ± 0.13 0.67 ± 0.12 0.33 ± 0.12 0.45 ± 0.12

Nguyen et al. [14] 0.45 ± 0.15 0.60 ± 0.16 0.29 ± 0.11 0.40 ± 0.12

TGPM 0.69 ± 0.11 0.81 ± 0.09 0.64 ± 0.12 0.75 ± 0.10

RPM 0.73 ± 0.12 0.84 ± 0.09 0.69 ± 0.13 0.78 ± 0.12

The reported figures are the average ± standard deviation across images.
Bold figures indicate the best results.

4) Experiment 4: Moderately Differentiated Samples: This

experiment evaluates the viability of the gland segmentation

algorithms on segmenting glandular structures in moderately

differentiated adenocarcinomas. Disarray of glandular archi-

tecture renders the segmentation problem very challenging.

Absence of goblet cells leaves the glandular lumen empty.

Sometimes it is filled with necrotic debris or red blood cells,

making the luminal texture close to that of stroma. Moreover,

some glandular structures are purely consisting of proliferate

nuclei.

The experiment is conducted on 47 moderately differenti-

ated images from the Warwick-QU dataset. In the experiment,

we employ 2-fold cross-validation, where one fold consists

of 23 images and the other consists of 24 images. The

summarized results are shown in Table V, and the results

of an example case are shown in Figure 6. One of the

potential reasons ascribing for the relatively low segmentation
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Results for different gland segmentation approaches on an example moderately differentiated case in the Warwick-QU dataset: (a) Original image;
(b) Ground truth; (c) Farjam et al. [12]; (d) Naik et al. [13]; (e) Nguyen et al. [14]; (f) TGPM; (g) RPM; (h) RPM (post-processed). Glandular structures are
shown in green in (b)-(h).

accuracies attained by Naik et al. [13] and Nguyen et al. [14]

is the simplistic structural assumption. They assume that, in

glandular structure, luminal area is immediately followed by

cytoplasmic area, and the cytoplasmic area is enclosed by a

chain of epithelial boundary. This assumption does not hold

true, in general, in intermediate and high grade cancer. On

the contrary, the RPM does not make such an assumption

regarding the arrangement of glandular components, but it

instead infers the presence of glandular structures as a whole,

based on texture and color cues, and the spatial connectivity

of epithelial cells. Consequently, the RPM yields better per-

formance among the considered algorithms in this experiment,

and there is a statistically significant difference at the object-

level results between the TGPM and the RPM (Table S5).

TABLE V
SEGMENTATION ACCURACIES ON THE WARWICK-QU DATASET:

MODERATELY DIFFERENTIATED CASES (EXPERIMENT 4)

Approach
Pixel-Level Object-Level

Jaccard Dice Jaccard Dice

Farjam et al. [12] 0.18 ± 0.10 0.30 ± 0.14 0.15 ± 0.11 0.23 ± 0.14

Naik et al. [13] 0.16 ± 0.15 0.24 ± 0.21 0.16 ± 0.13 0.23 ± 0.18

Nguyen et al. [14] 0.39 ± 0.16 0.54 ± 0.18 0.27 ± 0.11 0.39 ± 0.13

TGPM 0.72 ± 0.11 0.83 ± 0.08 0.64 ± 0.15 0.74 ± 0.13

RPM 0.72 ± 0.14 0.83 ± 0.11 0.67 ± 0.17 0.76 ± 0.14

The reported figures are the average ± standard deviation across images.
Bold figures indicate the best results.

5) Experiment 5: Moderately-to-Poorly and Poorly Differ-

entiated Samples: In this experiment, we assess the practi-

cability of the gland segmentation approaches on high grade

adenocarcinomas. As compared to the gland segmentation in

healthy to moderately differentiated cases, the nature of this

problem is more convoluted, as high proliferation rates cause

glandular structures highly indistinguishable. We conduct the

experiment on 20 moderately-to-poorly differentiated and 24

poorly differentiated images, using 2-fold cross-validation.

The quantitative results together with qualitative results on an

example case are shown in Table VI and Figure 7, respectively.

The RPM achieves significantly better results among all the

algorithms considered in the comparison (Table S5).

TABLE VI
SEGMENTATION ACCURACIES ON THE WARWICK-QU DATASET:

MODERATELY-TO-POORLY AND POORLY DIFFERENTIATED CASES

(EXPERIMENT 5)

Approach
Pixel-Level Object-Level

Jaccard Dice Jaccard Dice

Farjam et al. [12] 0.18 ± 0.09 0.29 ± 0.12 0.13 ± 0.10 0.20 ± 0.13

Naik et al. [13] 0.22 ± 0.14 0.34 ± 0.19 0.18 ± 0.12 0.27 ± 0.15

Nguyen et al. [14] 0.46 ± 0.12 0.62 ± 0.12 0.31 ± 0.12 0.44 ± 0.13

TGPM 0.76 ± 0.08 0.86 ± 0.05 0.65 ± 0.13 0.76 ± 0.11

RPM 0.79 ± 0.09 0.88 ± 0.06 0.70 ± 0.13 0.79 ± 0.11

The reported figures are the average ± standard deviation across images.
Bold figures indicate the best results.

G. Execution Times

In this section, we provide an analysis on computational

efficiency of different segmentation algorithms in terms of the

execution time. We only consider the execution time taken to

segment glandular structures in test images, as in practice a

training process is done offline. Table VII shows the execution

time for each algorithm for the Experiment 2 (strong cross-

validation). Similar to other stochastic modeling process, the

RPM has higher computational complexity than deterministic

algorithms, which results in the algorithm taking longer time

than its competing algorithms to complete the segmentation.

VI. CONCLUSIONS

In this work, we have presented a novel random poly-

gons model (RPM) for modeling glandular structures in

Hematoxylin and Eosin stained histology images of human
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Results for different gland segmentation approaches on an example poorly differentiated case in the Warwick-QU dataset: (a) Original image; (b)
Ground truth; (c) Farjam et al. [12]; (d) Naik et al. [13]; (e) Nguyen et al. [14]; (f) TGPM; (g) RPM; (h) RPM (post-processed). Glandular structures are
shown in green in (b)-(h).

TABLE VII
EXECUTION TIMES AT TEST FROM EXPERIMENT 2 IN SECONDS

Approach Execution Time

Farjam et al. [12] 3.0 ± 0.5

Naik et al. [13] 108.2 ± 74.4

Nguyen et al. [14] 6.1 ± 2.3

TGPM 36.6 ± 11.8

RPM 206.4 ± 332.5

The reported figures are the av-
erage ± standard deviation across
images.

colon tissue. The model employs Bayesian inference and

the Reversible-Jump Markov chain Monte Carlo (RJMCMC)

simulation to estimate the glandular structures as polygons

whose vertices are sampled from epithelial nuclei. Without a

strict assumption about architectural regularity of glands, the

RPM is shown to be broadly applicable for modeling glandular

structures in all grades of colon cancer, excluding undifferenti-

ated carcinomas. Results from comprehensive evaluation show

the effectiveness and the degree of generalization of the RPM

over other state-of-the-art gland segmentation algorithms. Due

to its stochastic modeling to infer polygons, the RPM takes

relatively higher amount of time to segment glandular struc-

ture. However, the polygon inference procedure can be easily

adapted to take advantage of parallel computation.
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