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Abstract—Renewable energy such as solar and wind generation
will constitute an important part of the future grid. As the
availability of renewable sources may not match the load, energy
storage is essential for grid stability. In this paper we investigate
the feasibility of integrating solar photovoltaic (PV) panels and
wind turbines into the grid by also accounting for energy storage.
To deal with the fluctuation in both the power supply and
demand, we extend and apply stochastic network calculus to
analyze the power supply reliability with various renewable
energy configurations. To illustrate the validity of the model, we
conduct a case study for the integration of renewable energy
sources into the power system of an island off the coast of
Southern California. In particular, we asses the power supply
reliability in terms of the average Fraction of Time that energy
is Not-Served (FTNS).

Index Terms—Power Grid, Renewable Energy Sources, Com-
munication Networks, Stochastic Network Calculus

I. INTRODUCTION

The need to reduce greenhouse gas emissions is driving the

deployment of more environmentally friendly and sustainable

energy sources, such as solar and wind. The next-generation

grid will feature renewable energy sources to reduce the carbon

footprint. A challenge, however, of solar and wind generation

is their intermittency and randomness, rendering it hard to

match supply and demand, which is itself variable. One way

to help match uncertain supply and demand is to effectively

utilize energy storage, such as batteries. It has been recently

reported that the Los Angeles Department of Water and Power

(LADWP) has formed a partnership with BYD Ltd. Corp.

on a grid-scale battery project for renewable energy storage,

which will lead to the development of a power storage unit

up to 10 MWh [2]. In this paper we consider the deployment

of such a large energy storage unit into a grid powered by

an arbitrary number of PV panels and wind turbines, and
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we address the storage dimensioning problem subject to the

constraint of continuously satisfying the demand for energy.

A closely related system which faces a similar problem is

the Internet. As a concrete example, the apparently excessive

overprovisioning of buffer memory in Internet routers has

led to an intense debate in the research community over the

past years [3], [4], [5]. The Internet resource dimensioning

problem—concerning especially bandwidth dimensioning sub-

ject to certain Quality of Service guarantees—has been tradi-

tionally formulated in the framework of queueing theory [6],

and more recently in the framework of network calculus [7],

[8]. We extend and apply network calculus to the problem of

dimensioning of energy storage subject to certain constraints

on the power supply reliability.

Network calculus uses bounds to characterize arrivals and

service in a queueing system, and also to derive queue-

ing performance measures. This bounding approach has the

advantage that a very broad class of arrival processes (in-

cluding deterministically regulated, Markov modulated, and

even heavy-tailed and self-similar) can be analyzed. Network

calculus has been mostly applied in the context of computer

and communication networks, but also in other systems such

as automotive [9] or avionic networks [10]. The key idea

in network calculus is to transform a complex non-linear

queueing system into an analytically tractable system, in a

suitable (min,+) algebra. The development of network calcu-

lus has followed two interrelated directions: deterministic and

stochastic. The deterministic network calculus allows a broad

scope of queueing scenarios and enables the derivation of tight

bounds (see [8], p. 27). A concern, however, is that these

bounds can be conservative in highly multiplexed regimes

or when a small probability of violation is tolerable. This

motivates the stochastic extensions of the calculus (e.g., [11],

[12], [13], [14], [15]), which can reap the benefit of statis-

tical multiplexing gain, and consequently can yield efficient

solutions for resource dimensioning problems.

The ability of the stochastic network calculus to model

broad classes of queueing scenarios and capture statistical mul-

tiplexing gain, motivates our extension of a stochastic power

network calculus for the power grid. In this context, arrivals

can be regarded as the energy generated by the power sources,

whereas statistical multiplexing manifests itself through the

aggregation of many energy sources (e.g., turbines or PV

panels). Such an extension of the calculus, however, is not

straightforward. The reason lies in a slight conceptual differ-
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ence between a conventional queueing system (e.g., an Internet

router), which is described in terms of arrivals and service

processes, and the power system, which is described in terms

of energy supply and demand processes. More concretely, the

difference lies in the concept of an energy demand process

which is uncharacteristic to conventional queueing systems.

Moreover, the power system has a very specific performance

metric of critical interest, i.e., the Fraction of Time that energy

is Not-Served (FTNS) accounting for the time periods during

which energy demand exceeds energy supply plus storage.

To model the power system, our idea is to regard it as a

queueing system where 1) arrivals are described by the energy

supply process, 2) service is described by the energy demand

process, and 3) the buffer is the storage capacity. To model

this queueing system, we define energy supply and demand

stochastic curves to model the generated energy and desired

demand, respectively, in terms of probabilistic bounds. The

supply curve corresponds directly to the notion of a statistical

envelope, which is used in stochastic network calculus to

model queueing arrivals. In turn, the demand curve has no

direct correspondent in the conventional network calculus,

due to the conceptual issue mentioned above. Moreover, from

a technical point of view, the demand and supply curves

are defined in an entirely decoupled manner. This is unlike

the conventional coupling of arrival and service processes in

network calculus, and creates the main technical challenge to

be addressed in our power network calculus extension.

To summarize, the contribution of this paper is threefold:

• We build a stochastic power network calculus theoreti-

cal framework for the performance evaluation of power

networks with renewable energy generations and storage.

Our model extends the concepts of the conventional

stochastic network calculus by introducing new mod-

els and properly adjusting the analytical techniques for

queueing analysis.

• We derive explicit formulas of the performance metrics

for the power system reliability analysis and dimen-

sioning. In particular, the two main metrics which we

consider are 1) the average Fraction of Time that energy

is Not-Served (FTNS) and 2) the Waste of Power Supply

(WPS) due to improper energy storage dimensioning. The

obtained formulas provide fundamental guidance for the

configuration of the power system with renewable energy

sources and energy storage, in order to meet certain

constraints like negligible FTNS and WPS.

• To illustrate the validity of our stochastic power network

calculus, especially when aggregating multiple renewable

energy sources, we conduct a case study for the integra-

tion of renewable-energy sources into the power system

of an island off the coast of Southern California.

The rest of the paper is organized as follows. In Section II

we present a description of the integrated power system,

introduce notation, and provide a brief introduction into the

(stochastic) network calculus. In Section III and IV we first

introduce the models for the stochastic power network calcu-

lus, and then we derive formulas on the performance metrics

of interest. In Section V we provide an aggregation result

Fig. 1. Schematic of the hybrid power system

needed for analyzing power systems with multiple power

supply sources and capturing the underlying multiplexing gain.

In Section VI we conduct a real case study for the integration

of renewable energy sources into the power system. Finally,

some related work is discussed in Section VII, and brief

conclusions are presented in Section VIII.

II. FORMULATION AND NOTATIONS

A. Problem Description

Figure 1 illustrates a hybrid power system consisting of

solar PV panels, wind turbines, battery storage, controller

units, etc. The PV panels and wind turbines work together

to satisfy the load demand. When the energy sources are

abundant, the excess power generation will feed the battery

until it is fully charged. Whenever there is a deficiency

in power, the battery will be discharged to cover the load

requirements until the energy storage is depleted.

Due to fluctuations in both power generation and demand,

our goal is to investigate the effects of energy storage on the

power supply reliability in configurations with different levels

of renewable generation. The reliability of the power supply

is assessed in terms of three performance metrics:

1) the Loss of Power Supply Probability (LPSP), at a

given time, which quantifies the probability that an

instantaneous demand cannot be met due to either a very

high energy demand and/or a low level of energy supply

plus storage.

2) the average Fraction of Time that energy is Not-Served

(FTNS), which follows directly by averaging out the

LPSP over some time scale.

3) the Waste of Power Supply (WPS), at a given time,

which quantifies the amount of instantaneous wasted

energy when the stored energy plus the supply exceed

the energy demand.

These reliability metrics are derived as functions of the number

Np of PV panels, the number Nw of wind turbines, and the

specified capacity C of battery storage; other factors, e.g.,

the AC/DC inverter, are ignored. The merit of these metrics,

obtained explicitly, is that they can assist the decision making

process for investing in the deployment of renewable energy

sources and energy storage.

Our approach to the dimensioning of the hybrid solar-wind

system from Figure 1, in terms of the battery storage needed

to guarantee negligible FTNS and WPS, is to formulate a

stochastic power network calculus, based on similar concepts
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from the stochastic network calculus. We do so by first

modelling the individual components of the power system and

then analyzing its reliability in terms of the three metrics listed

above. A key feature of the calculus is that it accounts for the

stochastic nature of the hybrid solar-wind system, and yet it

lends itself to explicit formulas on the performance metrics of

interest, e.g., FTNS and WPS.

B. Notations

We denote by F the set of non-negative, non-decreasing

functions, i.e.,

F = {f(·) : ∀ 0 ≤ x1 ≤ x2, 0 ≤ f(x1) ≤ f(x2)} ,

and by Fc the set of non-negative, non-increasing functions,

i.e.,

Fc = {f(·) : ∀ 0 ≤ x1 ≤ x2, 0 ≤ f(x2) ≤ f(x1)} .

For a random variable X , its cumulative distribution func-

tion (CDF) and cumulative complementary distribution func-

tions (CCDF) are denoted by

FX(x) = P{X ≤ x} and F c
X(x) = P{X > x} ,

respectively; the former belongs to F and the latter belongs

to Fc.

For two numbers x and y we use the notations

[x]+ = max{x, 0} and [x, y]+ = max{x, y, 0} .

For two function f(x) and g(x), the Stieltjes convolution is

f ∗ g(x) =

∫ x

0

f(y)dg(x− y) .

For the same functions, their (min,+) convolution, denoted

by ‘⊗’, is defined as follows:

(f ⊗ g)(x) = inf
0≤y≤x

[f(y) + g(x− y)].

This convolution is characteristic to network calculus theory.

We also remark that, although we adopt a discrete time model,

we prefer inf and sup instead of min and max operators.

C. Network Calculus

We now provide a brief introduction into some relevant

concepts and ideas from the conventional (stochastic) network

calculus, by making an analogy with linear systems theory

(see also [16], [17], [8], [18]).

Network calculus is an alternative to the traditional queueing

theory. It was conceived by Cruz [7] in the early 1990s

in a deterministic framework, and soon after, independently

by Chang [19], Kurose [20], and Yaron and Sidi [21] in

a probabilistic framework. Subsequently, many others have

contributed to both interrelated directions of the network

calculus (see [17], [8], [14] and references therein). While

the development of the deterministic calculus was motivated

by the need for a theory for worst-case performance guar-

antees (e.g., packet delay < 200 ms), the raison d’être for

the stochastic network calculus was to additionally capture

DcAc

CA D

(a) non−linear system

SA D

(b) transformed  
    tractable system

Fig. 2. A queueing system from the perspective of a flow A. In (a), the
system is not linear; in (b), the transformed system is analytically tractable.

statistical multiplexing gains when some small violation prob-

abilities of the performance guarantees are tolerable (e.g.,

P(packet delay > 200 ms) ≤ 10−3).

An example of a queueing scenario addressed with the

network calculus is depicted in Figure 2.(a). A server with

constant rate C serves two arrival flows, or aggregate of

flows, A and Ac. Whenever there are more arrivals than

serving capacity, the excess is temporarily stored in a shared

queue. From the perspective of flow A, the queueing system

transforms A’s arrival process (i.e., the input signal, in systems

theoretic terms) into a departure process (i.e., the output

signal). Besides the characteristics of A’s arrival process, this

transformation depends on several external factors (i.e., the

noise), e.g., the characteristics of the other (aggregate) flow

Ac, the type of scheduling algorithm, and the queue size.

Because of the complexity jointly induced by these factors,

A’s queueing system is generally not linear in the sense that

the existence of an algebra such that

T (c1A1 + c2A2) = c1T (A1) + c2T (A2)

is questionable. Here, c1 and c2 are scalars, A1 and A2

are input signals, T : F → F transforms an input signal

into an output signal, whereas the addition and multiplication

operators are relative to some (unknown) algebra, yet to

be discovered. Due to the lack of linearity, the analytical

tractability of A’s queueing system is conceivably hard.

To circumvent the lack of linearity problem, the key idea of

network calculus is to transform A’s original non-linear queue-

ing system into an analytically tractable system, as depicted in

Figure 2.(b). Here, S can be regarded as the impulse-response

(in systems theoretic terms), which characterizes A’s queueing

system in that

D(t) ≥ A⊗ S(t) , (1)

for all arrival processes A(t) ∈ F , where D(t) is the cor-

responding departure process. Note the underlying (min,+)
algebra over which the convolution is operated. Note also the

similarity between 1) describing the system from Figure 2.(b)

with a (min,+) convolution, and 2) describing conventional

linear systems in terms of a (conventional) convolution (see,

e.g., [22]). This similarity drives the analytical tractability of

broad queueing systems with network calculus.

In network calculus terms, S is a service (bi-variate) process

S(s, t), and the convolution from Eq. (1) expands as

D(t) ≥ inf
0≤s≤t

[A(s) + S(s, t)] ∀t ≥ 0 .

In other words, S characterizes A’s queueing system through

a lower bound on A’s received service. Because the lower

bound holds for all arrival processes A(t), the service process

S almost entirely characterizes the queueing system (the
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characterization is not complete due to the formulation of

Eq. (1) with an inequality, and not with an equality). We also

note that, for the transformed system from Figure 2.(b), S

may depend on the service capacity C, the arrivals Ac, the

scheduling at the server, and possibly the queue size as well.

For a survey of service processes see [23].

In addition to the concept of a service process, network

calculus uses the concept of an envelope to characterize an

arrival process A(t). A version of a stochastic sample-path

envelope (e.g., see Definition 3.11 in [14]) can be defined by

a function or curve α(t) ∈ F , and a bounding function ε(x) ∈
Fc, such that for all t, x ≥ 0

P

{

sup
0≤s≤t

[A(s, t)− α(t− s)] > x

}

≤ ε(x) . (2)

Once a queueing system, from the perspective of a flow

A, is described with a service process S(s, t) and an en-

velope α(t) with some bounding function ε(x), then A’s

queueing performance measures of interest can be derived.

Consider for instance the virtual delay process W (t) =
inf [d : A(t− d) ≤ D(t)] describing the delay of the last de-

parting data unit (if any) at time t. If S(s, t) = C(t − s),
i.e., modelling a queueing scenario with constant-rate service

given to A, then a probabilistic bound on A’s delay process

is for all x ≥ 0

P {W (t) > h(α+ x, β)} ≤ ε(x) , (3)

where β(t) = Ct and h(α+ x, β) is the maximum horizontal

distance between the functions α(t) + x and β(t) for t ≥ 0
(see Theorem 5.4 in [14]).

III. POWER SYSTEM MODELLING

In this section we introduce the stochastic power network

calculus, in particular the energy demand, energy supply, and

storage models for the power system from Figure 1.

The time model is discrete with 1 hour increments. Consider

a time interval [0, t] with t ≤ T , where T is the maximum

considered time. With abuse of notation, the process D(t) ∈ F
denotes the cumulative amount of energy demand in the

system (in MWh). Also, the process S(t) ∈ F denotes the

cumulative amount of energy supply in the system. D(t) is

called the energy demand process, and S(t) is called the

energy supply process of the system, with initial conditions

D(0) = S(0) = 0. The bivariate processes’ extensions are

D(s, t) = D(t)−D(s) and S(s, t) = S(t)−S(s) ∀ 0 ≤ s ≤ t.

Before introducing stochastic models for these two processes,

we describe the evolution of the power system in terms of the

energy storage process.

A. Energy Storage

The energy storage, or battery load, is modelled by a

discrete time process b(t), with maximum capacity C, and

which is defined recursively as follows: If the energy generated

from the PV/wind system is greater than the load for a

particular hour, then the surplus energy is stored in the battery

and the battery is charged:

b(t) = min[C, b(t− 1) + [S(t− 1, t)−D(t− 1, t)]ηc] , (4)

where ηc denotes the charge efficiency of the battery. When

the battery reaches its maximum value C, any excess energy

generated cannot be charged and is wasted.

In turn, if the energy demand is greater than the supply for

a particular hour, then the battery is discharged in order to

supplement the supply. In this case the recursion becomes:

b(t) = [b(t− 1)− [D(t− 1, t)− S(t− 1, t)]ηd]
+ , (5)

where ηd denotes the discharge efficiency of the battery. Due

to physical constraints, the minimal quantity level of battery is

determined by the maximum depth of discharge. If the battery

decreases to its minimum value Cmin, then the deficient

energy demand cannot be meted out from the battery system,

and we refer to this event as Loss of Power Supply (LPS).

We make the initial condition b(0) = 0 (zero initial buffer

storage), and assume for brevity ηc = ηd = 1 and Cmin = 0.

To further simplify notation, we introduce the process C(t),
representing the actual storage capacity for any time t ≥ 0, by

C(t) =

{

C , t > 0
0 , t = 0

.

Note that, by convention, there is no storage capacity at time

zero. When clear from the context, we write C for C(t).

B. Energy Demand and Supply

The power queueing system described in Eqs. (4) and (5)

is conceptually different from conventional queueing systems.

Concretely, the energy demand process, which can be regarded

using standard queueing terms as a (desired) departure process,

is given as input to the power queueing system. Moreover,

it is decoupled from the energy supply (i.e., arrival) process,

which means that the departure process is not a function of the

arrival process. In turn, in conventional queueing systems (e.g.,

the one from Figure 2) the two are coupled through an addi-

tional service process (e.g., see the (min,+) convolution from

Eq. (1)). This conceptual difference of uncoupled vs. coupled

departure and arrival processes, in power and conventional

queueing systems, motivates the extension of conventional

stochastic network calculus models and techniques.

To this end, we model the energy demand (i.e., the desired

departure) process D(s, t) using a standard network calculus

model for arrival processes with probabilistic sample-path

upper and lower bounds. In other words, we treat the energy

demand process as arrivals to the queueing system.

Definition 1: (ENERGY DEMAND) An energy demand pro-

cess D(s, t) is said to have a stochastic upper demand curve

αu(t) ∈ F with bounding function εud(x) ∈ Fc, denoted by

D ∼ ⟨εud , α
u⟩, if for all t, x ≥ 0

P{ sup
0≤s≤t

[D(s, t)− αu(t− s)] > x} ≤ εud(x) , (6)

and it is said to have a stochastic lower demand curve

αl(t) ∈ F with bounding function εld(x) ∈ Fc, denoted by

D ∼ ⟨εld, α
l⟩, if for all t, x ≥ 0

P{ sup
0≤s≤t

[αl(t− s)−D(s, t)] > x} ≤ εld(x) . (7)
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Additionally, we use the same arrival model for the energy

supply process S(s, t), i.e., the other input/arrival process to

the power queueing system.

Definition 2: (ENERGY SUPPLY) An energy supply process

S(s, t) is said to provide a stochastic upper supply curve

βu(t) ∈ F with bounding function εus (x) ∈ Fc, denoted by

S ∼ ⟨εus , β
l⟩, if for all t, x ≥ 0

P{ sup
0≤s≤t

[S(s, t)− βu(t− s)] > x} ≤ εus (x) , (8)

and it is said to have a stochastic lower supply curve βl(t) ∈ F
with bounding function εls(x) ∈ Fc, denoted by S ∼ ⟨εls, β

l⟩,
if for all t, x ≥ 0

P{ sup
0≤s≤t

[βl(t− s)− S(s, t)] > x} ≤ εls(x) . (9)

We remark that the energy demand and supply processes,

especially the upper curves, are modelled similarly to how

arrival processes are modelled in conventional stochastic net-

work calculus (see Eq. (2)). The technical consideration of

entire sample-path bounds in all four bounds from Eqs. (6)-(9)

is motivated by the simplicity of derived queueing performance

metrics (see for instance the delay bound from Eq. (3)).

Furthermore, the need for both upper and lower bounds for

both energy demand and supply processes is motivated by the

type of performance metrics of interest for the power system.

In particular, the upper bound from Eq. (6) together with the

lower bound from Eq. (9) are sufficient to analyze the loss

of power supply probability (LPSP). In turn, the lower bound

from Eq. (7) together with the upper bound model from Eq. (8)

are sufficient to analyze the waste of power supply (WPS)

process.

C. On Model Tightness

In practice, the shapes of the demand/supply curves and the

corresponding bounding functions from Eqs. (6)-(9) should

adequately capture a broad range of fluctuations in the power

system. For instance, as two extreme cases, βu(t) and εus (x)
should capture maximum power generation situations (e.g.,

sunny all the time in the case of solar), whereas βl(t) and

εls(x) should capture a minimal level of generated energy.

The tightness of the four modelling bounds from Eqs. (6)-

(8) depends on the trade-off between the shapes of the

demand/supply curves and the corresponding bounding func-

tions. For instance, when fitting or tuning αu(t) and εud(x),
an increase in one implies a decrease in the other. This trade-

off is further complicated by the need to jointly account for

high fluctuations in both energy demand and supply, in order

to produce tight bounds in the queueing analysis. To illustrate

this constraint, note that the selection of very tight modelling

bounds (e.g., very small εud(x) in Eq. (6), which implies very

large demand curve αu(t), as mentioned earlier) can lead to

meaningless performance measures since the power system

would be incorrectly viewed as mostly in underflow. At the

other extreme, i.e., smaller demand curves at the expense of

bigger bounding functions, can lead to very loose performance

bounds, e.g., on the loss of power supply probability. In

practice, the demand/supply curves can be constructed to

D(t) 
!

S(t) 
!

C

b(t)
! L(t) 

!
W(t) 

!

Fig. 3. A visualization of the power queueing system. S(t) and D(t)
denote the cumulative energy supply and demand processes, respectively; b(t)
denotes the instantaneous buffer storage with maximum capacity C; W (t)
and L(t) denote the instantaneous waste of power supply and loss of power
supply processes.

slightly deviate from the average rates of their demand/supply

processes, and the corresponding bounding functions can be

properly tuned.

IV. PERFORMANCE METRICS IN THE POWER QUEUEING

SYSTEM

In this section we first recall a non-recursive identity for the

energy storage process b(t), which was defined recursively

in Section III-A. The non-recursive identity will enable the

analysis of the three processes of interest for the power

queueing system reliability analysis: 1) the loss of power

supply (LPS), 2) the Fraction of Time that energy is Not-

Served (FTNS), and 3) the Waste of Power Supply (WPS).

Based on Eqs. (4) and (5), the Energy Storage Process b(t)
can be concisely defined as follows:

b(t) = min[C, [b(t− 1) + S(t− 1, t)−D(t− 1, t)]+]

By fitting this recurrence with Eq. (3) from [24], and ac-

counting for the initial conditions b(0) = 0 and C(0) = 0, the

following non-recursive identity for b(t) holds (see Theorem 1

from [24])

b(t) = inf
0≤s≤t

[ sup
s≤u≤t

[S(u, t)−D(u, t), S(s, t)−D(s, t)+C(s)]] .

(10)

With this explicit expression we can next conduct the reliabil-

ity analysis of the power system.

A. Loss of Power Supply (LPS)

Here we first derive a non-recursive formula for the loss of

power supply process denoted by L(t) (for visualization see

Figure 3). Using this formula can then derive performance

bounds on the loss of power supply probability and also

on the average Fraction of Time energy Not-Served (FTNS)

performance metric.

Recall that the instantaneous LPS process characterizes the

deficient energy demand which cannot be meted out from the

battery at some time t. According to the evolution of the power

queueing system described in Section III-A, L(t) is defined for

all t ≥ 1 as

L(t) = [D(t− 1, t)− S(t− 1, t)− b(t− 1)]+ .

Note that L(t) would correspond to the amount of unused

service capacity in a (conventional) queueing system, by

regarding the demand process as a service process.

Using the explicit expression of b(t) from Eq. (10), an

explicit expression for L(t) follows immediately:
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Corollary 1: (Loss of Power Supply) The LPS process L(t)
satisfies for all t ≥ 1

L(t) = sup
0≤s≤t−1

[ inf
s≤u≤t−1

[D(u, t)− S(u, t),

D(s, t)− S(s, t)− C(s)]+] . (11)

This explicit expression enables further the derivation of the

instantaneous LPS probability:

Theorem 1: (LPS Probability) Given the power queueing

system, assume that the energy demand process has a stochas-

tic upper demand curve αu with bounding function εud , i.e.,

D ∼ ⟨εud , α
u⟩, and the energy supply process has a stochastic

lower supply curve βl with bounding function εls, i.e., S ∼
⟨εls, β

l⟩. Then the loss of power supply probability satisfies

for all t ≥ 1

P{L(t) > 0} ≤ εud ⊗ εls

(

C − sup
0≤s≤t

[αu(s)− βl(s)]

)

.

The theorem is quite general in the sense that it does

not require a statistical independence assumption between the

energy demand and supply processes. Therefore, the theorem

accounts for the situation when the demand and supply pro-

cesses are correlated, e.g., high energy demand implies high

energy supply. The proof is based on Lemma 1 from the

Appendix, which bounds the distribution of a sum of non-

necessarily independent random variables.

Proof: Fix t ≥ 1. From Eq. (11), we have

P{L(t) > 0} = P{ sup
0≤s≤t−1

[ inf
s≤u≤t−1

[D(u, t)− S(u, t),

D(s, t)− S(s, t) + C(s)]] > 0} .

The event from the right-hand side can be bounded as follows:

sup
0≤s≤t−1

[ inf
s≤u≤t−1

[D(u, t)− S(u, t), D(s, t)− S(s, t)− C(s)]]

≤ sup
0≤s≤t

[D(s, t)− S(s, t)− C(s)]

≤ sup
0≤s≤t

[D(s, t)− S(s, t)− C]

= sup
0≤s≤t

[D(s, t)− αu(t− s) + αu(t− s) + βl(t− s)

− βl(t− s)− S(s, t)]− C

≤ sup
0≤s≤t

[D(s, t)− αu(t− s)] + sup
0≤s≤t

[βl(t− s)− S(s, t)]

+ sup
0≤s≤t

[αu(s)− βl(s)]− C .

By accounting for the assumptions in the theorem that

P{ sup
0≤s≤t

[D(s, t) − αu(t − s)] > x} ≤ εud(x) and

P{ sup
0≤s≤t

[βl(t − s) − S(s, t)] > x} ≤ εls(x), the rest of the

proof follows from Lemma 1 by regarding the two supremums

as non-necessarily independent random variables.

As we have previously mentioned, the result of Theorem 1 is

quite general in that it holds without a statistical independence

assumption between the energy supply and demand processes.

Under such an additional assumption, the bound from Theo-

rem 1 can be tightened as follows.

Theorem 2: (LPS Probability - Statistical Independence

Case) With the same conditions as in Theorem 1, along

with a statistical independence assumption between the energy

demand and supply processes, the loss of power supply

probability satisfies for all t ≥ 1

P{L(t) > 0} ≤ εud(z) + εud ∗ εls(z) ,

where z = C − sup
0≤s≤t

[αu(s)− βl(s)].

The proof is similar to the proof of Theorem 1, except

that right at the end one needs to apply Lemma 2 (see the

Appendix), instead of Lemma 1, to bound the distribution of

a sum of independent random variables (note that, according

to the assumptions from the Theorem 2, the supremums

sup
0≤s≤t

[D(s, t)− αu(t− s)] and sup
0≤s≤t

[βl(t− s)− S(s, t)] are

independent).

The second considered reliability metric, closely related to

the loss of power supply probability, is the average Fraction of

Time energy Not-Served. This metric, denoted by FTNS(T ),
is defined over the entire system time period [0, T ]:

FTNS(T ) :=
1

T

T
∑

t=1

P{L(t) > 0} . (12)

The FTNS metric will be used in our real case study from

Section VI. Depending on the statistical independence between

energy supply and demand, the loss of power supply proba-

bilities from Eq. (12) can be bounded by either Theorem 1 or

Theorem 2.

B. Waste of Power Supply (WPS)

The instantaneous WPS process, denoted here by W (t),
characterizes the amount of wasted energy at time t due to

insufficient energy storage and/or demand (for visualization

see Figure 3). Following the structure of the previous subsec-

tion, we first derive an explicit expression for W (t) and then

compute a bound on its CCDF.

To define W (t) at some time t, assume that there is b(t−1)
remaining energy in the storage at the end of time slot t− 1.

Adding S(t−1, t) supplied energy and subtracting D(t−1, t)
consumed energy in time slot t, it follows that there is no more

than [b(t−1)+S(t−1, t)−D(t−1, t)]+ remaining energy in

the system at the end of time slot t. If [b(t−1)+S(t−1, t)−
D(t− 1, t)]+ > C, then some arrivals to the power queueing

system have to be dropped (i.e., energy is wasted). Formally,

W (t) is defined as

W (t) = [b(t− 1) + S(t− 1, t)−D(t− 1, t)− C]+ .

Note that W (t) would correspond to the amount of buffer

overflow in a (conventional) queueing system.

Recalling the explicit expression of b(t) from Eq. (10), an

explicit expression on W (t) follows immediately:

Corollary 2: (WPS Process) For all t ≥ 1 it holds

W (t) = inf
0≤s≤t−1

[ sup
s≤u≤t−1

[S(u, t)−D(u, t)− C,

S(s, t)−D(s, t) + C(s)− C]+] . (13)
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This result corresponds directly to the (conventional) queueing

result from Theorem 2 in [24].

This expression lends itself to the following upper bound

on the CCDF of W (t).

Theorem 3: (WPS CCDF) Given the power queueing sys-

tem, assume that the energy supply process has a stochas-

tic upper supply curve βu with bounding function εus , i.e.,

S ∼ ⟨εus , β
u⟩, and the energy demand process has a stochastic

lower demand curve αl with bounding function εld, i.e.,

D ∼ ⟨εld, α
l⟩. Then the waste of power supply probability

satisfies for all t ≥ 1 and x ≥ 0

P{W (t) > x} ≤ εus ⊗ εld

(

C − sup
0≤s≤t

[βu(s)− αl(s)] + x

)

.

The proof follows the same line of argument as the proof

of Theorem 1; for completeness we give it next.

Proof: For the right-hand side of Eq. (13), we have:

inf
0≤s≤t−1

[ sup
s≤u≤t−1

[S(u, t)−D(u, t)− C,

S(s, t)−D(s, t) + C(s)− C]]

≤ sup
0≤u≤t

[S(u, t)−D(u, t)− C, S(0, t)−D(0, t)− C]

= sup
0≤s≤t

[S(s, t)−D(s, t)− C]

= sup
0≤s≤t

[S(s, t)− βu(t− s) + βu(t− s) + αl(t− s)

− αl(t− s)−D(s, t)]− C

≤ sup
0≤s≤t

[S(s, t)− βu(t− s)] + sup
0≤s≤t

[αl(t− s)−D(s, t)]

+ sup
0≤s≤t

[βu(s)− αl(s)]− C .

The right-hand side in the last line indicates a sufficient

condition to derive P{W (t) > x}. By accounting for the

assumptions that P{ sup
0≤s≤t

[S(s, t)− βu(t− s)] > x} ≤ εus (x)

and P{ sup
0≤s≤t

[αl(t − s) − D(s, t)] > x} ≤ εld(x), the rest of

the proof follows from Lemma 1.

This theorem, alike Theorem 1, is quite general in that

it does not require the statistical independence between the

demand and supply processes. Under such an additional as-

sumption, the upper bound can be further strengthened as

follows:

Theorem 4: (WPS CCDF - Statistical Independence Case)

With the same conditions as in Theorem 3, along with an

additional statistical independence assumption between the

energy demand and supply processes, the waste of power

supply probability satisfies for all t ≥ 1

P{W (t) > x} ≤ εus (z) + εus ∗ εld(z) ,

where z = C − sup
0≤s≤t

[βu(s)− αl(s)] + x.

The proof follows the same steps as the proof of Theorem 3,

except for the last step application of Lemma 2 instead of

Lemma 1.

V. AGGREGATING DIFFERENT ENERGY SOURCES

In this section we provide two results concerning the

aggregation of heterogeneous power supply sources. These ag-

gregation results transform multiple supply curves into a single

one, which can be then immediately used in Theorems 1-4.

First we give a general result holding irrespectively of the

statistical independence amongst the sources.

Proposition 1: (Energy Aggregation Property) Consider a

power system that consists N power generators in parallel. If

each power generator (n = 1, 2, ..., N) provides a stochastic

lower energy supply curve Sn ∼ ⟨εln, β
l
n⟩, then the power

system provides a stochastic lower supply curve S ∼ ⟨εl, βl⟩
with

βl(t) = βl
1(t) + βl

2(t) + ...+ βl
N (t),

εl(x) = εl1 ⊗ εl2 ⊗ ...⊗ εlN (x).

A similar result for a stochastic upper arrival curve appeared

in [14] (p. 108), using conventional network calculus terms.

The proof of our result follows the same line of argument as

in [14].

Proof: Here we only consider the case with 2 energy

generators, from which the proof can be easily extended to the

general case with N generators. As S(t) is the aggregation of

2 power supplies, we have that S(s, t) = S1(s, t) + S2(s, t)
for all 0 ≤ s ≤ t. We can now write

sup
0≤s≤t

[

βl(t− s)− S(s, t)
]

= sup
0≤s≤t

[

(βl
1(t− s) + βl

2(t− s))− (S1(s, t) + S2(s, t))
]

= sup
0≤s≤t

[(

βl
1(t− s)− S1(s, t)

)

+
(

βl
2(t− s)− S2(s, t)

)]

≤ sup
0≤s≤t

[

βl
1(t− s)− S1(s, t)

]

+ sup
0≤s≤t

[

βl
2(t− s)− S2(s, t)

]

.

With the above assumptions, we have P{ sup
0≤s≤t

[βl
1(t− s)−

S1(s, t)]} ≤ εl1(x), and P{ sup
0≤s≤t

[βl
2(t − s) − S2(s, t)]} ≤

εl2(x). Applying Lemma 1 from the Appendix concludes the

proof.

If the individual energy supply processes are statistically

independent, then a tighter bounding function can be obtained

as shown in the next result.

Proposition 2: (Energy Aggregation Property - Statistical

Independence Case) Under the same conditions as in Propo-

sition 1, and assuming additionally that the energy supply

process Sn (n = 1, 2, ..., N) are statistically independent, then

the power system provides a stochastic lower supply curve

S ∼ ⟨εl, βl⟩ with the same βl(t) = βl
1(t)+βl

2(t)+ ...+βl
N (t)

as in Proposition 1, but a tighter bounding function

εl(x) =

N
∑

n=1

n
∑

i=1

ε1 ∗ · · · ∗ εi(x) .

With conventional network calculus terms, a similar im-

provement for a stochastic upper arrival curve can be found in

[14] (p. 133). The proof is similar to the proof of Proposition 1,

with the difference that at the end one should invoke Lemma 2

instead of Lemma 1.
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(a) January
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(b) July

Fig. 4. Per unit solar generation daily profiles in Long Beach, CA
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(b) July

Fig. 5. Per turbine wind generation daily profiles on an island near Santa Barbara
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(b) July

Fig. 6. Daily load profiles on Santa Catalina Island

VI. CASE STUDY

A. Description of the Data Set

As a case study, we consider Santa Catalina Island, which is

located 26 miles off the coast of Southern California, USA. It

has an area of 76 square miles and it has 54 miles of coastline.

Currently, the electricity on Catalina is generated by a central

diesel plant, and the island is served by three 12kV distribution

circuits which are separated from the grid on the California

mainland. It is desirable to reduce diesel-based generation for

both environmental and economic reasons. This paper aims to

investigate the feasibility of replacing diesel generation with

generation from renewable sources.

We use data profiles including power load, solar PV genera-

tion, and wind generation for our analytical study. We consider

two typical data profiles in winter and summer seasons. The

hourly variations of all data profiles for the month of January

2010 are shown in Figures 4a, 5a, and 6a. In addition, the

hourly variations of the data profiles for the month of July

2010 are shown in Figures 4b, 5b, and 6b. They are obtained

at various locations near Santa Catalina Island with similar

meteorological characteristics:

• Solar generation profile: Based on the typical meteorolog-

ical year (TMY) data sets derived from the National Solar

Radiation Data Base (NSRDB) archives [25], the hourly

per unit (35m2) solar PV energy generation data for Long

Beach, California, is calculated using the System Advisor

Model [26].

• Wind generation profile: The hourly energy generation

data for a wind turbine located off an island near Santa

Barbara, California is obtained from the Western Wind

Sources data set available at the National Renewable

Energy Laboratory (NREL) [27].

• Load profile: The peak values for Santa Catalina Island

are obtained by personal communication with researchers

from Southern California Edison [28]. The load profiles

are generated from a proxy distribution circuit statistically

similar to the island, whose peak is scaled to match the

peak data for each of the three distribution circuits on the

island.

The cumulative per unit solar generation, per turbine wind

generation and load profiles are depicted in Figures 7a, 7b, and

7c. As shown in the figures, the solar PV generation in July
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(a) Per unit solar generation profiles
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(b) Per turbine wind generation profiles

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

Time of month HhoursL

A
c
u
m
u
la
ti
v
e
P
o
w
e
r
L
o
a
d
HM
W
h
L

(c) Cumulative load profiles on Santa Catalina Island

Fig. 7. Cumulative energy supply/demand profiles in January (blue line) and July (red line)

is significantly greater than in January due to meteorological

factors. We also notice that the load in July is greater than in

January, a fact which could be attributed to the abundant usage

of air conditioning in the summer. For the wind generation

profile, there is no significant difference in the cumulative

amount; a slight difference lies in fluctuations characteristic

to daily behaviors.

With the typical power load and generation profiles for a

certain period, we are next going to address the following

design question: Given different configurations of renewable

sources, what are the appropriate amounts of battery storage

needed to ensure a certain level of power supply reliability?

To answer, we will illustrate in particular the impact of battery

storage on the average Fraction of Time that energy is Not-

Served (FTNS) performance metric from Eq. (12).

B. Model Fitting

From the data set given above, we first fit the stochastic

demand and supply curves and the corresponding bounding

functions from Definitions 1 and 2. The demand/supply curve

functions are linear functions with the rate equal to the long-

term mean rate of the fitted data. Once these curves are set,

we next fit exponential functions for the bounding functions.

In particular, for the energy demand process, we can get a

stochastic upper demand curve αu(t) with bounding function

εud , denoted by D ∼ ⟨εud , α
u⟩. In turn, to fit the solar

power supply data, we first assume that all the PV panels are

homogeneous. Then, based on the per unit data profile and

given the total number Np of PV panels, we fit a stochastic

lower supply curve βp(t) with bounding function εps , denoted

by Sp ∼ ⟨εps , β
p⟩. Similarly, all the wind turbines are also

assumed to be homogeneous. Based on the per turbine data

profile and given the total number Nw of wind turbines, we

fit a stochastic lower supply curve βw(t) for the wind energy

supply with bounding function εws , denoted by Sw ∼ ⟨εws , β
w⟩.

To aggregate heterogeneous power supply sources together, we

use the aggregation property from Proposition 1.

C. Numerical Results

For a given battery capacity C, the loss of power supply

probability (LPSP) metric is provided by Theorem 1. Together

with Eq. (12), we can get the average Fraction of Time that

energy is Not-Served (FTNS) over the entire time period of

the given data profile, e.g., T = 744 hours in January 2010.

FTNS is used next to illustrate the impact of three factors, i.e.,

concerning wind and solar generation, and also seasonality, to

the reliability of the power system.

1) Wind Generation Impact: Figure 8a depicts the FTNS

metric as a function of the battery storage capacity, with a fixed

level of solar generation, i.e., Np = 2×103, for different values

Nw of wind turbines in January. As Nw increases, FTNS

decreases with the same battery capacity and approaches a

constant value. For a targeting FTNS value, say 0.01, we

can readily get the amount of required battery storage for

different energy configurations. For instance, when the number

of wind turbines increases from 2 to 5 units, while fixing the

other settings, the battery storage requirement is reduced from

66.5 MWh to 51.3 MWh, 48.4 MWh, and 46.6 MWh,

respectively. This example illustrates the fact that, due to the

complementary characteristics between solar and wind energy

for certain locations, the hybrid solar-wind power generation

system with storage banks can offer a highly reliable source

of power, which is suitable for electrical loads with high

reliability constraints.

2) Solar Generation Impact: Figure 8b depicts the FTNS

metrics as a function of the battery storage for different levels

of solar generation with a single wind turbine in January. As

expected, FTNS decreases as the battery capacity increases.

Similar to the decreasing rate of FTNS shown in Figure 8a by

increasing Nw, the transition from high FTNS to low FTNS

sharpens by increasing Np. That means that for some targeting

FTNS value, increasing the number of wind turbines would

have a smaller impact on reducing the battery requirement

due to the fluctuating nature of the renewable power sources.

As an example, for a targeting FTNS value of 0.01, the

battery capacity requirement with the configuration of one

wind turbine and 2× 103 units of PV panels is 116.8 MWh;

by further increasing the number of PV units to 5×103 units,

the battery capacity requirement decreases to 61.2 MWh.

3) Meteorological Impact: For a fixed configuration of

renewable generations, we next investigate the impact of

different seasons. Figure 8c shows the FTNS metric as a

function of the battery storage with a single wind turbine

and Np = 2 × 103 units of PV panels, in January and July.

We notice that FTNS decreases much sharper in July than

in January, beyond some critical point of the battery storage

capacity. In other words, in order to guarantee a certain level

of system reliability, less battery storage capacity is needed

in July. This can be explained by the significantly higher
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Fig. 8. FTNS as a function of battery storage capacity under various aggregation scenarios

solar PV generation in July than in January. As an example,

for a targeting FTNS value of 0.01, the battery capacity

requirements are 116.8 MWh for January and 89.3 MWh

for July. We also notice that FTNS in July is greater than

in January for smaller values of the battery storage than the

critical point. This fact can be attributed to the increased

energy demand in summer, which widens the gap between

power generation and demand at the beginning of the day due

to lack of any solar generation.

VII. RELATED WORK

Aggregating stochastic power sources to achieve reliable

electricity supply is a challenging problem. Various opti-

mization techniques for hybrid PV/wind systems sizing have

been proposed in the literature [29], such as probabilistic

approaches [30], [31], graphical construction techniques [32],

[33], artificial intelligence methods [34][35], and iterative tech-

niques [36], [37]. For instance, the authors of [30] developed

a probabilistic model of the hybrid solar-wind power system

to incorporate the fluctuating nature of the resources and the

load. In particular, the model convolves the probability density

function of power generated by solar and wind generations,

to assess the long-term performance of a hybrid system for

both stand-alone and grid-connected applications. To estimate

the load-shedding probability, [31] constructed a matrix for

the Markov chain model based on the empirical distribution

of the energy storage states, and the results derived were

translated into design choices. Unlike this set of works, our

analytical framework is based on very general stochastic

network calculus models to capture fluctuations in both energy

supply and demand.

Unlike much theoretical development in the field of the

stochastic network calculus, its application to critical prob-

lems, such as the reliability of a power system, is lagging

behind [38]. Recent examples of works, concerning applica-

tions of the stochastic network calculus, include for instance

[39] which analyzes the delay of the IEEE 802.11 distributed

coordination function (DCF), where the stochastic behavior of

the DCF is characterized by a time-domain model; the end-

to-end delay in some wireless networks is analyzed in [40].

The extension of the stochastic network calculus to analyze

information-driven networks, developed in [41], can be re-

garded as an important step to bridging the gap between com-

munication networks and information theory. Other extensions

of the stochastic network calculus are developed to study the

impact of network coding in acyclic networks [42] or the

problem of estimating the available bandwidth in networks

with random service [43]. The problem of scheduling sub-

piece transmission for P2P-VoD system is formalized in [44],

which further analyzes its delay performance.

Lastly we mention two parallel and closely related works

with ours. Wu et al. [45] also extend the stochastic network

calculus to account for the supply and demand energy in

a power system with renewable energy sources, which is

used for the study of the stochastic energy constraint and the

correlation between QoS and the uncertain energy supply. The

common metric studied in both [45] and ours is the waste of

power supply (WPS), albeit in [45] it is derived in a simplified

queueing model with infinite storage. The main difference

between the two formulations is that the energy demand in [45]

is coupled with the energy supply using a stochastic service

curve model alike Eq. (1), whereas this paper uses an entirely

decoupled approach. The same decoupled approach is used

by Le Boudec and Tomozei [46] in a deterministic framework

of the network calculus. In that work, the authors investigate

several problems related to battery sizes, such as the existence

of necessary and sufficient conditions, and the construction of

online battery charging schedules, to guarantee zero loss of

power supply (LPS). For future work, it would be interesting

to compare the coupled vs. decoupled formulations from [45]

and ours in a stochastic framework, and to further relate them

with deterministic counterparts as in [46].

VIII. CONCLUSION

In this paper, we have extended the stochastic network

calculus framework to analyze system design in the context

of the power grid. This extension was motivated by the ability

of the calculus to account for high fluctuations in queueing

systems, which are especially characteristic to the power

grid when integrating renewable energy sources such as solar

and wind. We have provided explicit formulas for various

performance metrics characteristic of the power grid, such as

the power system reliability depending on the number of PV

cells, wind turbines, and energy storage capacity. To validate
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our model, we have investigated the feasibility of replacing

diesel generation entirely with PV panels and wind turbines,

supplemented with energy storage, in a case study on Santa

Catalina Island.
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APPENDIX

Here we give two lemmas which are useful for the main

results in the paper. The lemmas provide bounds on the

distribution of a sum of two random variables, which represent

instances of the energy demand or supply processes.

Lemma 1 ([14]): Let two random variables X and Y , with

CDFs FX(x) and FY (x), respectively. If F c
X(x) ≤ εX(x) and

F c
Y (x) ≤ εY (x) ∀ x ≥ 0, for some real functions εX(x) and

εY (x), then for all x ≥ 0

P{X + Y > x} ≤ F c
X(x)⊗ F c

X(x) ≤ εX ⊗ εY (x) .

We remark that the tail bound holds irrespectively of the

statistical independence between X and Y . If such an addi-

tional independence assumption holds, then the tail bound can

be further improved as follows.

Lemma 2: Let two non-negative random variables X and Y

such that F c
X(x) ≤ εX(x) and F c

Y (x) ≤ εY (x) for all x ≥ 0,

and εX(x) = εY (x) = 1 for all x < 0. Then for all x ≥ 0

P{X + Y > x} ≤ εX(x) + εX ∗ εY (x) .

This lemma provides a slight simplification of Lemma 6.1

from [14] and the proof follows similarly.

Proof: Fix x ≥ 0. Then we can write

P {X + Y > x} =

∫ ∞

0

P {X > x− y} dFY (y)

≤

∫ ∞

0

εX(x− y)dFY (y)

= εX(−∞)FY (∞)− εX(x)FY (0)−

∫ ∞

0

FY (y)dεX(x− y) ,

after using the bound from the theorem and then integrating

by parts formula for the Stieltjes integral. We can continue the

last equation as follows

P {X + Y > x} ≤ 1−

∫ ∞

0

dεX(x− y)

+

∫ ∞

0

F c
Y (y)dεX(x− y)

≤ 1− εX(−∞) + εX(x) +

∫ x

0

εY (y)dεX(x− y)

= εX(x) +

∫ x

0

εY (y)dεX(x− y) ,

which concludes the proof (in the third line we could restrict

the domain of the integral since εX(y) = 1 ∀y < 0).
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