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A STOCHASTIC PROCESS APPROACH TO FALSE
DISCOVERY CONTROL

BY CHRISTOPHERGENOVESE1 AND LARRY WASSERMAN2

Carnegie Mellon University
This paper extends the theory of false discovery rates (FDR) pioneered

by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300].
We develop a framework in which the False Discovery Proportion (FDP)—
the number of false rejections divided by the number of rejections—is
treated as a stochastic process. After obtaining the limiting distribution
of the process, we demonstrate the validity of a class of procedures for
controlling the False Discovery Rate (the expected FDP). We construct a
confidence envelope for the whole FDP process. From these envelopes we
derive confidence thresholds, for controlling the quantiles of the distribution
of the FDP as well as controlling the number of false discoveries. We also
investigate methods for estimating thep-value distribution.
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1036 C. GENOVESE AND L. WASSERMAN

Notation index
The following summarizes the most common recurring notation and indicates

where each symbol is defined.
Symbol Description Section Page

m Total number of tests performed 2.1 1037
P m Vector ofp-values(P1, . . . ,Pm) 2.2 1038
Hm Vector of hypothesis indicators(H1, . . . ,Hm) 2.2 1038
P(i) Theith smallestp-value;P(0) ≡ 0 2.2 1038
M0 Number of true null hypotheses 2.2 1039
M1 Number of false null hypotheses 2.2 1039
a Probability of a false null 2.2 1038

F , f Alternativep-value distribution (CDF, PDF) 2.2 1038
G, g Marginal distribution (CDF, PDF) of thePi ’s 2.2 1038
Ĝ Generic estimator ofG 3 1041

Gm Empirical CDF ofP m 3 1041
U Uniform CDF 2.2 1038
� FDP process 2.5 1040
� FNP process 2.5 1041
εm Dvoretzky–Kiefer–Wolfowitz nghd. radius 3 1041
Q Asymptotic mean of� 2.5 1041
Q̃ Asymptotic mean of� 2.5 1041

We use1{. . .} andP{. . .} to denote, respectively, the indicator and probability
of the event{. . .}; subscripts onP specify the underlying distributions when
necessary. We also useE to denote expectation, andXm � X to denote that
Xm converges in distribution toX. We usezα to denote the upperα-quantile of
a standard normal.

1. Introduction. Among the many challenges raised by the analysis of large
data sets is the problem of multiple testing. In some settings it is not unusual
to test thousands or evenmillions of hypotheses. Examplesinclude function
magnetic resonance imaging, microarray analysis in genetics and source detection
in astronomy. Traditional methods that provide strong control of familywise error
often have low power and can be unduly conservative in many applications.

Benjamini and Hochberg (BH) (1995, 2000) pioneered an alternative. Define the
False Discovery Proportion (FDP) to be the number of false rejections divided by
the number of rejections. The False Discovery Rate (FDR) is the expected FDP. BH
(1995) provided a distribution-free, finite sample method for choosing ap-value
threshold that guarantees that the FDR is less than a target levelα. The same
paper demonstrated that the BH procedure is often more powerful than traditional
methods that control familywise error.

Recently there has been much further work on FDR. We shall not attempt a
complete review here but mention the following. Benjamini and Yekutieli (2001)
extended the BH method to a class of dependent tests. Efron, Tibshirani, Storey
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and Tusher (2001) developed an empirical Bayes approach to multiple testing and
made interesting connections with FDR. Storey (2002, 2003) connected the FDR
concept with a certain Bayesian quantity and proposed a new FDR method which
has higher power than the original BH method. Finner and Roters (2002) discussed
the behavior of the expected number of type I errors. Sarkar (2002) considered
a general class of stepwise multiple testing methods.

Genovese and Wasserman (2002) showed that, asymptotically, the BH method
corresponds to a fixed threshold method that rejects allp-values less than
a thresholdu∗, and they characterizedu∗. They also introduced the False
Nondiscovery Rate (FNR) and found the optimal thresholdt∗ in the sense of
minimizing FNR subject to a bound on FDR. The two thresholds are related
by u∗ < t∗, implying that BH is (asymptotically) conservative. Abramovich,
Benjamini, Donoho and Johnstone (2000) established a connection between FDR
and minimax point estimation. (An interesting open question is whether the
asymptotic results obtained in this paper can be extended to the sparse regime
in the aforementioned paper where the fraction of alternatives tends to zero.)

In this paper we develop some large-sample theory for FDRs and present new
methods for controlling quantiles of the false discovery distribution. An essential
idea is to view the proportion of false discoveries as a stochastic process indexed
by thep-value threshold. The problem of choosing a threshold then becomes a
problem of controlling a stochastic process. Although this stochastic process is not
observable, we will show that it is amenable to inference.

The main contributions of the paper include the following:

1. Development of a stochastic process framework for FDP.
2. Investigation of estimators of thep-value distribution, even in the non-

identifiable case.
3. Proof of the asymptotic validity of a class of methods for FDR control.
4. Two methods for constructing confidence envelopes for the False Discovery

process and the number of false discoveries.
5. New methods, which we callconfidence thresholds, for controlling quantiles of

the false discovery distribution.

2. Preliminaries.

2.1. Notation. Consider a multiple testing situation in whichm tests are being
performed. SupposeM0 of the null hypotheses are true andM1 = m − M0 null
hypotheses are false. We can categorize them tests in the following 2× 2 table on
whether each null hypothesis is rejected and whether each null hypothesis is true:

H 0 Not Rejected H 0 Rejected Total

H0 True M0|0 M1|0 M0
H0 False M0|1 M1|1 M1
Total m − R R m
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We define the FDP and the FNP by

FDP=


M1|0
R

, if R > 0,

0, if R = 0
(1)

and

FNP=


M0|1
m − R

, if R < m,

0, if R = m.

(2)

The first is the proportion of rejections that are incorrect, and the second—
the dual quantity—is the proportion of nonrejections that are incorrect. Notice
that FDR= E(FDP), and following Genovese and Wasserman (2002), we define
FNR = E(FNP). Storey (2002) considered a different definition of FDR, called
pFDR for positive FDR, by conditioning on the event thatR > 0 and discussed the
advantages and disadvantages of this definition.

2.2. Model. Let Hi = 0 (or 1) if the ith null hypothesis is true (false) and
let Pi denote theith p-value. Define vectorsP m = (P1, . . . ,Pm) and Hm =
(H1, . . . ,Hm). Let P(1) < · · · < P(m) denote the orderedp-values, and define
P(0) ≡ 0.

In this paper we use a random effects (or hierarchical) model as in Efron,
Tibshirani, Storey and Tusher (2001). Specifically, we assume the following for
0 ≤ a ≤ 1:

H1, . . . ,Hm ∼ Bernoulli(a),

�1, . . . ,�m ∼ LF ,

Pi|Hi = 0, �i = ξi ∼ Uniform(0,1),

Pi|Hi = 1, �i = ξi ∼ ξi,

where�1, . . . ,�m denote distribution functions andLF is an arbitrary probability
measure over a class of distribution functionsF that stochastically dominates the
Uniform(0,1).

It follows that the marginal distribution of thep-values is

G = (1− a)U + aF,(3)

whereU(t) denotes the Uniform(0,1) CDF andF(t) = ∫
ξ(t) dLF (ξ). Note that

G ≥ U . Except where noted we assume thatG is strictly concave with density
g = G′.

REMARK 2.1. A more common approach in multiple testing is to use
a conditional model in whichH1, . . . ,Hm are fixed, unknown binary values. The
results in this paper can be cast in a conditional framework but we find the random
effects framework to be more intuitive.
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DefineM0 = ∑
i (1 − Hi) andM1 = ∑

i Hi . Hence,M0 ∼ Binomial(m,1 − a)

andM1 = m − M0.

2.3. The Benjamini–Hochberg and plug-in methods. The Benjamini–Hoch-
berg (BH) procedure is a distribution-free method for choosing which null
hypotheses to reject while guaranteeing that FDR≤ α for some preselected levelα.
The procedure rejects all null hypotheses for whichPi ≤ P(RBH), where

RBH = max
{

0 ≤ i ≤ m :P(i) ≤ α
i

m

}
.(4)

BH (1995) proved that this procedure guarantees

E(FDP|M0) ≤ M0

m
α ≤ α,(5)

regardless of how many nulls are true and regardless of the distribution of the
p-values under the alternatives. (When thep-value distribution is continuous,
BH shows that the first inequality is an equality.) In the context of our model,
this result becomes

FDR≤ (1− a)α ≤ α.(6)

Genovese and Wasserman (2002) showed that, asymptotically, the BH proce-
dure corresponds to rejecting the null when thep-value is less thanu∗, where
u∗ is the solution to the equationG(u) = u/α, in the notation of the current paper.
This u∗ satisfiesα/m ≤ u∗ ≤ α for largem, which shows that the BH method is
intermediate between Bonferroni (corresponding toα/m) and uncorrected testing
(corresponding toα). They also showed thatu∗ is strictly less than the optimal
p-value cutoff.

Benjamini and Hochberg (2000), in work originally written in 1994, showed
that the power of the BH (1995) procedure could be improved by estimating
the number of true null hypotheses. They also proposed an estimator ofF̂DR(t)

and proposed a thresholdT that maximizes the number of rejections subject to
F̂DR(T ) ≤ α. A similar approach was investigated in Storey (2002) and Storey,
Taylor and Siegmund (2004). It remains an open question whether FDR(T ) ≤ α.
We address an asymptotic version of this question in Section 5.

The thresholdT chosen this way can also be viewed as a plug-in estimator. Let

t (a,G) = sup
{
t :

(1− a)t

G(t)
≤ α

}
.(7)

Suppose we reject whenever thep-value is less thant (a,G). From Genovese
and Wasserman (2002) it follows that, asymptotically, the FDR is less thanα.
The intuition for (7) is that(1 − a)t/G(t) is, up to an exponentially small term,
the FDR at a fixed thresholdt . Moreover, ifG is concave this threshold has the
smallest asymptotic FNR among all procedures with FDR less than or equal toα
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[cf. Genovese and Wasserman (2002)]. We callt (a,G) theoracle threshold. The
standard plug-in method is to estimate the functionalt (a,G) by T = t (â, Ĝ),
whereâ andĜ are estimators ofa andG. Let Gm be the empirical CDF ofP m.
Theorem 2 of BH (1995) shows thatTBH = t (0,Gm) yields the BH threshold.
Benjamini and Hochberg (2000) and Storey (2002) showed thatT = t (â0,Gm)

has higher power than the BH threshold, where

â0 = max
(

0,
Gm(t0) − t0

1− t0

)
andt0 ∈ (0,1). Clearly, other estimators ofa andG are possible and we shall call
any threshold of the formT = t (â, Ĝ) a plug-in threshold.

We describe alternative estimators ofa in Section 3.2. Storey (2002) provided
simulations to show that the plug-in procedure has good power but did not provide
a proof that it controls FDR at levelα. We settle this question in Section 5 where
we show that, under weak conditions onâ, the procedure asymptotically controls
FDR at levelα.

2.4. Multiple testing procedures. A multiple testing procedure T is a mapping
taking [0,1]m into [0,1], where it is understood that the null hypotheses
corresponding to allp-values less thanT (P m) are rejected. We often callT the
threshold.

Let α, t ∈ [0,1] and 0≤ r ≤ m, and recall thatP(0) ≡ 0. LetĜ andĝ be generic
estimates ofG andg = G′, respectively. Similarly, let̂P{H = h|P = t} denote an
estimator ofP{H = h|P = t}.

Some examples of multiple testing procedures will illustrate the generality of
the framework:

Uncorrected testing TU(P m) = α

Bonferroni TB(P m) = α/m

Fixed threshold att Tt (P
m) = t

Benjamini–Hochberg TBH(P m) = sup{t :Gm(t) = t/α} = P(RBH)

Oracle To(P
m) = sup{t :G(t) = (1− a)t/α}

Plug in TPI(P
m) = sup{t : Ĝ(t) = (1− a)t/α̂}

First r T(r) = P(r)

Bayes’ classifier TBC(P m) = sup{t : ĝ(t) > 1}
Regression classifier TReg(P

m) = sup{t : P̂{H1 = 1|P1 = t} > 1/2}.
2.5. FDP and FNP as stochastic processes. An important idea that we use

throughout the paper is that the FDP, regarded as a function of the thresholdt ,
is a stochastic process. This observation is crucial for studying the properties of
procedures.

Define theFDP process

�(t) ≡ �(t,P m,Hm) =
∑

i 1{Pi ≤ t} (1− Hi)∑
i 1{Pi ≤ t} + 1{allPi > t} ,(8)
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where the last term in the denominator makes� = 0 when nop-values are below
the threshold. Also define theFNP process

�(t) ≡ �(t,P m,Hm) =
∑

i 1{Pi > t}Hi∑
i 1{Pi > t} + 1{allPi ≤ t} .(9)

The FDP and FNP of a procedureT are�(T ) ≡ �(T (P m),P m,Hm) and�(T ) ≡
�(T (P m),P m,Hm). Let

Q(t) = (1− a)
t

G(t)
,(10)

Q̃(t) = a
1− F(t)

1− G(t)
.(11)

The following lemma is a corollary of Theorem 1 in Storey (2002).

LEMMA 2.1. Under the mixture model, for t > 0,

E�(t) = Q(t)
(
1− (

1− G(t)
)m)

,

E�(t) = Q̃(t)
(
1− G(t)m

)
.

The second terms on the right-hand side of both equations differ from 1 by an
exponentially small quantity.

One of the essential difficulties in studying a procedureT is that �(T ) is
the evaluation of the stochastic process�(·) at a random variableT . Both
depend on the observed data, and in general they are correlated. In particular, if
Q̂(t) estimates FDR(t) well at each fixedt , it does not follow that̂Q(T ) estimates
FDR(T ) well at a randomT . The stochastic process point of view provides
a suitable framework for addressing this problem.

3. Estimating the p-value distribution. Recall that, under the mixture
model,P1, . . . ,Pm have CDFG(t) = (1−a) t +a F (t). Let Ĝ denote an estimator
of G. LetGm denote the empirical CDF ofP m. We will use the Dvoretzky–Kiefer–
Wolfowitz (DKW) inequality: for anyx > 0,

P{‖Gm(t) − G(t)‖∞ > x} ≤ 2e−2mx2
,(12)

where‖F − G‖∞ = sup0≤t≤1 |F(t) − G(t)|. Givenα ∈ (0,1), let

εm ≡ εm(α) =
√

1

2m
log

(
2

α

)
(13)

so that, from DKW,P{‖Gm(t) − G(t)‖∞ > εm} ≤ α.
Several improvements onGm are possible. SinceG ≥ U , we replace any

estimatorGm with max{Gm(t), t}. WhenG is assumed to be concave, a better
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estimate ofG is the least concave majorant (LCM)GLCM, m defined to be the
infimum of the set of all concave CDF’s lying aboveGm. Mostp-value densities
in practical problems are decreasing inp, which implies thatG is concave. We
can also replaceGLCM,m with max{GLCM,m(t), t}. The DKW inequality and the
standard limiting results still hold for the modified versions of both estimators. We
will thus useĜ to denote the modified estimators in either case. We will indicate
explicitly if concavity is required or if the LCM estimator is proscribed.

Once we obtain estimatesâ andĜ, we define

Q̂(t) = (1− â)

Ĝ(t)
.(14)

3.1. Identifiability and purity. Before discussing the estimation ofa, it is
helpful to first discuss identifiability. For example, ifa is not identifiable, there
is no guarantee that the estimate used in the plug-in method will give good
performance. The results in the ensuing sections show that despite not being
completely identified, it is possible to make sensible inferences abouta.

Say thatF is pure if ess inft f (t) = 0, wheref is the density ofF . Let OF be
the set of pairs(b,H) such thatb ∈ [0,1], H ∈ F andF = (1− b)U + bH . F is
identifiable ifOF = {(1,F )}.

Define

ζF = inf{b : (b,H) ∈ OF },
F = F − (1− ζF )U

ζF

,

aF = aζF .

We will often drop the subscriptF onaF andζF . Note thatG can be decomposed
as

G = (1− a)U + aF

= (1− a)U + a[(1− ζ )U + ζF ]
= (1− aζ )U + aζF

= (1− a)U + a F .

Purity implies identifiability but not vice versa. Consider the following example.
LetF be the Normal (θ ,1) family and consider testingH0 : θ = 0 versusH1 : θ 
= 0.
The density of thep-value is

fθ (p) = 1
2e−nθ2/2[e−√

nθ�−1(1−p/2) + e
√

nθ�−1(1−p/2)
]
.

Now, fθ (1) = e−nθ2/2 > 0 so this test is impure. However, the parametric
assumption makesa andθ identifiable when the null is false. It is worth noting
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that fθ (1) is exponentially small inn. Hence, the difference betweena anda is
small. Even whenX has at-distribution with ν degrees of freedom,fθ (1) =
(1 + nθ2/ν)−(ν+1)/2. Thus, in practical cases,a − a will be quite small. On
the other hand, one-sided tests for continuous exponential families are pure and
identifiable.

The problem of estimatinga has been considered by Efron, Tibshirani, Storey
and Tusher (2001) and Storey (2002) who also discussed the identifiability issue.
In particular, Storey noted thatG(t) = (1 − a)t + aF (t) ≤ (1 − a)t + a for all t .
It then follows that, for anyt0 ∈ (0,1),

0 ≤ a0 ≡ G(t0) − t0

1− t0
≤ a ≤ a ≤ 1.(15)

Thus, an identifiable lower bound ona is a0. The following result gives precise
information about the best bounds that are possible.

PROPOSITION 3.1. If F is absolutely continuous and stochastically domi-
nates U , then

ζ = 1− inf
t

F ′(t) and a = 1− inf
t

G′(t).

If F is concave, then the infima are achieved at t = 1. For any b ∈ [ζ,1] we can
write G = (1−ab)U +abFb, where Fb = (F −(1−b)U)/b is a CDF and F ≤ Fb.

3.2. Estimating a. Here we discuss estimatinga. Related work includes
Schweder and Spjøtvoll (1982), Hochberg and Benjamini (1990), Benjamini and
Hochberg (2000) and Storey (2002).

We begin with a uniform confidence interval fora.

THEOREM 3.1. Let

a∗ = max
t

Ĝ(t) − t − εm

1− t
.(16)

Then [a∗,1] is a uniform 1− α confidence interval for a, that is,

inf
a,F

Pa,F {a ∈ [a∗,1]} ≥ 1− α,(17)

and if one restricts Ĝ to be the empirical distribution function, then for each (a,F )

pair,

Pa,F {a ∈ [a∗,1]} ≤ 1− α + 2
∞∑

j=1

(−1)j+1
(

α

2

)j2

+ O

(
(logm)2

√
m

)
,(18)

where the remainder term may depend on a and F . Because a ≥ a, [a∗,1] is a valid
finite-sample 1− α confidence interval for a as well.
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PROOF. The inequality (17) follows immediately from DKW becauseG(t) ≥
Ĝ(t) − εm for all t with probability at least 1− α. The sum on the right-
hand side of (18) follows from the closed-form limiting distribution of the
Kolmogorov–Smirnov statistic, and the order of the error follows from the
Hungarian embedding. To see this, note that

a < a∗ �⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1− t
+ √

m
G(t) − t

1− t
− εm

√
m

1− t

�⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1− t
+ √

ma − εm

√
m

1− t

�⇒ 0 < max
t

√
m

Gm(t) − G(t)

1− t
− εm

√
m

1− t

�⇒ 0 < max
t

√
m

(
Gm(t) − G(t)

) − εm

√
m

�⇒ ‖√m
(
Gm(t) − G(t)

)‖∞ > εm

√
m.

Hence,

P{a < a∗} ≤ P
{‖√m

(
Gm(t) − G(t)

)‖∞ > εm

√
m

}
.(19)

Next apply the Hungarian embedding [van der Vaart (1998), page 269]:

lim sup
m→∞

√
m

(logm)2 ‖√m(Gm − G) − Bm‖∞ < ∞ a.s.,

for a sequence of Brownian bridgesBm. Recall the distribution of the Kolmogorov–
Smirnov statistic:

P{‖B‖∞ > x} = 2
∞∑

j=1

(−1)j+1e−2j2x2
,

for a generic Brownian bridgeB. The result follows by takingx = √
mεm. In the

concave case, the LCM can be substituted forĜ and the result still holds since, by
Marshall’s lemma,‖ĜLCM,m − G‖∞ ≤ ‖Ĝm − G‖∞. �

PROPOSITION3.2 (Storey’s estimator). Fix t0 ∈ (0,1) and let

â0 =
(

Gm(t0) − t0

1− t0

)
+
.

If G(t0) > t0,

â0
P→ G(t0) − t0

1− t0
≡ a0 ≤ a,

and
√

m

(
â0 − G(t0) − t0

1− t0

)
� N

(
0,

G(t0)(1− G(t0))

(1− t0)2

)
.
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If G(t0) = t0,

√
mâ0 � 1

2
δ0 + 1

2
N+

(
0,

t0

1− t0

)
,

where δ0 is a point-mass at zero and N+ is a positive-truncated normal.

A consistent estimate ofa is available if we assume weak smoothness conditions
ong. For example, one can use the spacings estimator of Swanepoel (1999) which
is of the form 2rm/(mVm), where rm = m4/5(logm)−2δ and Vm is a selected
spacing in the order statistics of thep-values.

THEOREM 3.2. Assume that at the value t where g achieves its minimum,
g′′ is bounded away from 0 and ∞ and Lipschitz of order λ > 0. For every δ > 0,
there exists an estimator â such that

m(2/5)

(logm)δ
(â − a) � N

(
0, (1− a)2).

PROOF. Let â be the estimator defined in Swanepoel (1999) withrm =
m4/5(logm)−2δ and sm = m4/5(logm)4δ . The result follows from Swanepoel
[(1999), Theorem 1.3]. �

REMARK 3.1. An alternative estimator iŝa = 1 − mint ĝ(t), where ĝ is a
kernel estimator.

Now suppose we assume only thatG is concave and henceg = G′ is
decreasing. Hengartner and Stark (1995) derived a finite-sample confidence
envelope[γ −(·), γ +(·)] for a densityg assuming only that it is monotone. Define

âHS = 1− min{h(1) :γ − ≤ h ≤ γ +}.

THEOREM 3.3. If G is concave and g = G′ is Lipschitz of order 1 in a
neighborhood of 1, then (

n

logn

)1/3

(âHS − a)
P→0.

Also, [1 − γ +(1),1 − γ −(1)] is a 1 − α confidence interval for a for 0 ≤ α ≤ 1
and all m. Further,

inf
a,F

P{a ∈ [1− γ +(1),1]} ≥ 1− α,

where the infimum is over all concave F ’s.

PROOF. Follows from Hengartner and Stark (1995).�
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3.3. Estimating F . It may be useful in some cases to estimate the alternative
mixture distributionF . There are many possible methods; we consider here
projection estimators defined by

F̂m = arg min
H∈F

‖Ĝ − (1− â)U − âH‖∞,(20)

whereâ is an estimate ofa. The Appendix gives an algorithm to find̂Fm.
It is helpful to consider first the case wherea is known, and here we substitutea

for â in the definition ofF̂m.

THEOREM 3.4. Let

F̂m = arg min
H∈F

‖Ĝ − (1− a)U − aH‖∞.

Then

‖F − F̂m‖∞ ≤ 2‖G − Ĝ‖∞
a

a.s.→0.

PROOF.

a‖F − F̂m‖∞ = ‖aF − aF̂m‖∞
= ‖(1− a)U + aF − (1− a)U − aF̂m‖∞
= ‖G − (1− a)U − aF̂m‖∞
= ‖G − Ĝ + Ĝ − (1− a)U − aF̂m‖∞
≤ ‖Ĝ − G‖∞ + ‖Ĝ − (1− a)U − aF̂m‖∞
≤ ‖Ĝ − G‖∞ + ‖Ĝ − (1− a)U − aF‖∞
= ‖Ĝ − G‖∞ + ‖Ĝ − G‖∞.

The last statement follows from the uniform consistency ofĜ. �

Whena is unknown, the projection estimator̂F is consistent whenever we have
a consistent estimator ofa. Recall that in the identifiable casea = a andF = F .

THEOREM 3.5. Let â be a consistent estimator of a. Then

‖F̂m − F‖∞ ≤ ‖Ĝ − G‖∞ + |â − a|
a

P→0.

PROOF. Let δm = ‖Ĝ − (1− â)U − âF̂‖∞. SinceF̂ is the minimizer,

δm ≤ ‖Ĝ − (1− â)U − âF‖∞
= ‖Ĝ − G + (â − a)U − (â − a)F‖∞
≤ ‖Ĝ − G‖∞ + |â − a|
P→ 0.
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We also have that

δm ≥ ∣∣‖Ĝ − (1− â)U − âF‖∞ − â‖F − F̂‖∞
∣∣.

Sinceδm and‖Ĝ− (1− â)U − âF‖∞
P→0 by the above and̂a

P→a, it follows that

‖F − F̂‖∞
P→0. Moreover,

‖F − F̂‖∞ ≤ ‖Ĝ − G‖∞ + |â − a|
a

. �

4. Limiting distributions. In this section we discuss the limiting distribution
of � andQ̂. Let

0(t) = 1

m

m∑
i=1

(1− Hi)1{Pi ≤ t} and 1(t) = 1

m

m∑
i=1

Hi1{Pi ≤ t},

and, for eachc ∈ (0,1), define

�c(t) = (1− c)0(t) − c1(t) = 1

m

∑
i

Di(t),

whereDi(t) = 1{Pi ≤ t}(1− Hi − c). Let

µc(t) = ED1(t) = (1− a)t − cG(t).

Let (W0,W1) be a continuous two-dimensional mean zero Gaussian process with
covariance kernelRij (s, t) = Cov(Wi(s),Wj (t)) given by

R(s, t) =
[(

(1− a)(s ∧ t) − (1− a)2st −(1− a)s aF (t)

−(1− a)t aF (s) aF (s ∧ t) − a2F(s)F (t)

)]
.(21)

THEOREM 4.1. Let W be a continuous mean zero Gaussian process with
covariance

K�(s, t) = (1− a)(1− c)
[
(1− c)

(
s ∧ t − (1− a)st

) + ac
(
tF (s) + sF (t)

)]
(22) + ac[cF (s ∧ t) − acF (s)F (t)].
Then √

m(�c − µc) � W.

PROOF. Let

Zm(t) = √
m

(
�c(t) − µc(t)

)
and Z∗

m(t) = √
m

(
�∗

c (t) − µ̂c(t)
)

for t ∈ [0,1]. Let(
Wm,0(t),Wm,1(t)

) ≡ (√
m

(
0(t) − (1− a)t

)
,
√

m
(
1(t) − aF (t)

))
.

By standard empirical process theory,(Wm,0(t),Wm,1(t)) converges to(W0,W1).
The covariance kernelR stated in (21) follows by direct calculation. The result
for �c is immediate since�c is a linear combination of0 and1. �
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THEOREM 4.2 (Limiting distribution of FDP process).For t ∈ [δ,1] for any
δ > 0, let

Zm(t) = √
m

(
�m(t) − Q(t)

)
.

Let Z be a Gaussian process on (0,1] with mean 0 and covariance kernel

K�(s, t) = a(1− a)
(1− a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)

G2(s)G2(t)
.

Then Zm � Z on [δ,1].

REMARK 4.1. The reason for restricting the theorem to[δ,1] is that the
variance of the process is infinite at zero.

PROOF OF THEOREM 4.1. Note that�m(t) = 0(t)/(0(t) + 1(t)) ≡
r(0,1), where0 and1 are defined as before andr(·, ·) maps�∞ × �∞ →
�∞, where�∞ is the set of bounded functions on(δ,1] endowed with the sup
norm. Note thatr((1 − a)U,aF ) = Q. It can be verified thatr(·, ·) is Fréchet
differentiable at((1− a)U,aF ) with derivative

r ′
((1−a)U,aF )(V ) = aFV0 − (1− a)UV1

G2
,

whereU(t) = t , V = (V0,V1). Hence, by the functional delta method [van der
Vaart (1998), Theorem 20.8],

Zm � r ′
((1−a)U,aF )(W) = aFW0 − (1− a)UW1

G2 ,

where(W0,W1) is the process defined just before (21). The covariance kernel of
the latter expression isK�(s, t). �

REMARK 4.2. A Gaussian limiting process can be obtained for FNP [i.e.,
�(t)] along similar lines.

The next theorems follow from the previous results followed by an application
of the functional delta method.

THEOREM 4.3. Let Q̂(t) = (1− a)t/Ĝ(t). For any δ > 0,
√

m
(
Q̂(t) − Q(t)

)
� W

on [δ,1], where W is a mean zero Gaussian process on (0,1] with covariance
kernel

KQ(s, t) = Q(s)Q(t)
G(s ∧ t) − G(s)G(t)

G(s)G(t)
.
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THEOREM 4.4. Let Q̂(t) = (1− a)t/Ĝ(t). We have
√

m
(
Q̂−1(v) − Q−1(v)

)
� W,

where W is a mean zero Gaussian process with covariance kernel

KQ−1(u, v) = KQ(s, t)

Q′(s)Q′(t)

= (1− a)2uv
G(s ∧ t) − G(s)G(t)

[1− a − ug(s)][1 − a − vg(t)] ,

with s = Q−1(u) and t = Q−1(v).

THEOREM 4.5. Let Q̂(t) = (1 − â0)t/Ĝ(t), where â0 is Storey’s estimator.
Then

√
m

(
Q̂(t) − Q(t)

)
� W,

where W is a mean zero Gaussian process with covariance kernel

K(s, t) = t2

(1− t0)2G2(s)G2(t)

×
(
G(s)G(t)t0(1− t0) + G(t)

(
1− G(t0)

)
R(s, t0)

+ G(s)
(
1− G(t0)

)
R(t, t0) + (

1− G(t0)
)2

R(s, t)
)
,

where R(s, t) = s ∧ t − st.

5. Asymptotic validity of plug-in procedures. Let Q̂−1(c) = sup{0 ≤ t ≤ 1 :
Q̂(t) ≤ c}. Then the plug-in thresholdTPI defined earlier can be writtenTPI(P

m) =
Q̂−1(α). Here we establish the asymptotic validity ofTPI in the sense thatE�(T ) ≤
α + o(1). First, suppose thata is known. Define

Q̂a(t) = (1− a)t

Ĝ(t)
(23)

to be the estimator ofQ whena is known.

THEOREM 5.1. Assume that a is known and let Q̂ = Q̂a . Let t0 = Q−1(α)

and assume G 
= U . Then
√

m(TPI − t0) � N
(
0,KQ−1(t0, t0)

)
,

√
m

(
Q(TPI) − α

)
� N

(
0,

(
Q

′
(t0)

)2
KQ−1(t0, t0)

)
,

and

E�(TPI) = α + o(1).
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PROOF. The first two statements follow from Theorem 4.4 and the delta
method.

For the last claim, let 0< δ < t0, write T = TPI and note that

|�m(T ) − α| ≤ |�m(T ) − Q(T )| + |Q(T ) − α|
≤ sup

t
|�m(t) − Q(t)|1{T < δ}

+ sup
t

|�m(t) − Q(t)|1{T ≥ δ} + |Q(T ) − α|
≤ 1{T < δ} + sup

t≥δ

|�m(t) − Q(t)| + |Q(T ) − α|

= 1{T < δ} + 1√
m

sup
t≥δ

∣∣√m
(
�m(t) − Q(t)

)∣∣ + |Q(T ) − α|

= OP (m−1/2).

Because 0≤ �m ≤ 1, the sequence is uniformly integrable, and the result follows.
�

Next, we consider the case wherea is unknown and possibly nonidentifiable. In
this case, as we have seen, one can still construct an estimator that is consistent for
some valuea0 < a.

THEOREM 5.2 (Asymptotic validity of plug-in method). Assume that G is
concave. Let T = t (â, Ĝ) be a plug-in threshold where Ĝ is the empirical CDF or

the LCM and â
P→a0 for some a0 < a. Then

E�(T ) ≤ α + o(1).

PROOF. First note that the concavity ofG implies thatQ(t) = (1− a)t/G(t)

is increasing. Letδ = (a − a0)/(1− a) so that(1− a0)/(1− a) = 1+ δ. Then

Q̂(t) = (1− â)t

Ĝ(t)
= 1− â

1− a0
(1+ δ)Q̂a(t)

= (
1+ oP (1)

)
(1+ δ)Q̂a(t),

whereQ̂a is defined in (23). Hence

T = Q̂−1(α) = Q̂−1
a

(
α

1+ δ
+ oP (1)

)
≤ Q̂−1

a

(
α + oP (1)

) = Q̂−1
a (α) + oP (1).

BecausêQ−1 a.s.→Q−1
a0

and becauseQ−1
a0

(α) ≤ Q−1
a (α), the result follows from the

argument used in the proof of the previous theorem usingQa0 in place ofQa .
�
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Recall that the oracle procedure is defined byTO(P m) = Q−1(α). This
procedure has the smallest FNR for all procedures that attain FDR≤ α up to sets of
exponentially small probability [cf. Genovese and Wasserman (2002), page 506].
In the nonidentifiable case, no data-based method can distinguisha anda, so the
performance of this oracle cannot be attained. We thus define the achievable oracle
procedureTAO to be analogous toTO with (1− a)t/G(t) replacingQ. The plug-
in procedure that uses the estimatorâ described in Theorem 3.2 asymptotically
attains the performance ofTAO in the sense thatE�(TPI) = α + o(1) and
E�(TPI) = E�(TAO) + o(1).

6. Confidence envelopes for FDP. Because the distribution of the FDP need
not be concentrated around its expected value, controlling the FDR does not
necessarily offer high confidence that the FDP will be small. As an alternative,
we develop methods in this section for making inferences about the FDP process.

A 1 − α confidence envelope for the FDP process is a random function�

on [0,1] such that

P{�(t) ≤ �(t) for all t} ≥ 1− α.

In this section we give two methods for constructing such a�, one asymptotic,
one exact in finite samples. See also Havránek and Chytil (1983), Hommel and
Hoffman (1987) and Halperin, Lan and Hamdy (1988).

Besides being informative in its own right, a confidence envelope can be used
to construct thresholds that control quantiles of the FDP distribution. We callT

a 1− α confidence threshold if there exists a statisticZ such that

P{�(T ) ≤ Z} ≥ 1− α.

We consider two cases. In the first, calledrate ceiling confidence thresholds, we
takeZ to be a prespecified constantc (the ceiling). The thresholds we develop
here are derived from a confidence envelope� as the maximal threshold such that
� ≤ c. In the second, calledminimum rate confidence thresholds, the threshold is
derived from� by T = arg mint �(t) andZ = �(T ).

When a is known, it is possible to construct an asymptotic rate ceiling
confidence threshold directly.

THEOREM 6.1. Let tc = Q−1(c) and let K�(s, t) be the covariance kernel
defined in (22).Assume that F 
= U . Define

tc,m ≡ tc,m(α) = tc − zα√
m

√
K�(tc, tc)

1− a − cg(tc)
.

Then

P{�(tc,m) ≤ c} = 1− α + O(m−1/2).
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PROOF. We have

P{�(tc,m) ≤ c} = P{�c(tc,m) − µ(tc,m) ≤ −µ(tc,m)}

= P
{√

m
�c(tc)√
K�(tc, tc)

≤ −
√

mµ(tc,m)√
K�(tc, tc)

}
+ o(1),

from Lemma 6.1. It suffices, in light of Theorem 4.1 and Lemma 6.1, to show that

−√
m

µ(tc,m)√
K�(tc, tc)

→ zα.

Now µ(tc) = (1− a)tc − cG(tc) = 0 sinceQ(tc) = c. Hence

µ(t) = (t − tc)µ
′(tc) + o(|t − tc|)

= (t − tc)
(
1− a − cg(tc)

) + o(|t − tc|).
Hence

µ(tc,m) = (tc,m − tc)
(
1− a − cg(tc)

) + o(m−1/2).

The result follows from the definition oftc,m. �

LEMMA 6.1. Let tc = Q−1(c), and assume 0 < tc < 1. If tc,m − tc =
O(m−1/2), �c(tc,m) − µ(tc,m) = �c(tc) + oP (m−1/2). Thus, if um = vm−1/2 +
o(m−1/2) for some v,

P{�c(tc,m) ≤ µ(tc,m) + um} − P{�c(tc) ≤ um} = o(1).

PROOF. Note thatµ(tc) = (1− a)tc − cG(tc) = 0 and that

|�c(tc,m) − �c(tc)| ≤ max{c,1− c}m−1
∑
i

|1{Pi ≤ tc,m} − 1{Pi ≤ tc}|

≤ |Ĝ(tc,m) − Ĝ(tc)|,
which is Binomial(m, |G(tc,m) − G(tc)|)/m and has variance of orderm−3/2.
Hence

�c(tc,m) − µ(tc,m) − �c(tc)

= �c(tc,m) − µ(tc,m) − �c(tc) − (
µ(tc,m) − µ(tc)

) + (
µ(tc,m) − µ(tc)

)
= OP

(
1

m3/4

)
− µ(tc)

= OP

(
1

m3/4

)
= oP

(
1√
m

)
.

The second claim is immediate.�
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However, whena is unknown, there is a problem. When plugging in a consistent
estimator ofa that converges at a sub-

√
m rate, the error in̂a is of larger order

than tc − tc,m. Using an estimator, such as Storey’s estimator, which converges
at a 1/

√
m rate but is asymptotically biased, causes overcoverage because the

asymptotic bias dominates. Interestingly, as demonstrated in the next section, it is
possible to ameliorate the bias problem, but not the rate problem, with appropriate
conditions. Thus, a “better” estimator ofa need not lead to a valid confidence
threshold.

6.1. Asymptotic confidence envelope. In this section, we show how to obtain
an asymptotic confidence envelope for�, centered at̂Q. Throughout this section
we useĜ based on the empirical distribution function,not the LCM.

For reasons explained in the last section, we use Storey’s estimator rather than
the consistent estimators ofa described earlier. That is, letâ0 = (Ĝ(t0) − t0)/(1−
t0) be Storey’s estimator for a fixedt0 ∈ (0,1). Then

Q̂(t) = (1− â0)t

Ĝ(t)
= 1− Ĝ(t0)

1− t0

t

Ĝ(t)
.

To make the asymptotic bias in Storey’s estimator negligible, we make the
additional assumption thatF depends on a further parameterν = ν(m) in such
a way that

Fν(t) ≥ 1− e−νc(t)(24)

for somec(t) > 0, for all 0< t < 1. The marginal distribution ofPi becomes

Gm = (1− a)U + aFν(m).

This assumption will hold in a variety of settings such as the following:

1. The p-valuesPi are computed from some test statisticsZi that involve a
common sample sizen, where the tests all satisfy the standard large deviation
principle [van der Vaart (1998), page 209]. In this caseν = n.

2. As in the previous case except that each test has a sample sizeni drawn from
some common distribution.

3. Each test is based on measurements from a counting process (such as an
astronomical image) whereν represents exposure time.

Under these assumptions, we have the following theorem.

THEOREM 6.2. Let tm be such that tm → 0 and mtm/(logm)4 → ∞. Let
wα/2 denote the upper α/2 quantile of max0≤t≤1 B(t)/

√
t , where B(t) denotes

a standard Brownian bridge. Let

�m = max

{
2(1− â0)wα/2,

√
2

1− t0

√
log

(
4

α

)}
.(25)
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Define

�(t) = min
{
Q̂(t) + �m

√
t√

mĜ(t)
,1

}
.(26)

Assume that
ν(m)

logm
→ ∞(27)

as m → ∞. Then

lim inf
m→∞ P{�(t) ≤ �(t) for all t ≥ tm} ≥ 1− α.(28)

PROOF. Let

N(t) = M1|0(t)
m

= 1

m

m∑
i=1

(1− Hi)1{Pi ≤ t}.

Note thatE(N(t)) = (1 − a)t and Cov(N(t),N(s)) = (1 − a)2(s ∧ t − st). By
Donsker’s theorem,

√
m(N(t)− (1−a)t) � (1−a)B(t), whereB(t) is a standard

Brownian bridge. By the Hungarian embedding, there exists a sequence of standard
Brownian bridgesBm(t) such that

N(t) = (1− a)t + (1− a)Bm(t)√
m

+ Rm(t),

where

Rm ≡ sup
t

|Rm(t)| = O

(
(logm)2

m

)
a.s.

Let

V (t) = (1− â0)t + �m

√
t√

m
.(29)

Now,

P{N(t) > V (t) for somet ≥ tm}
= P

{
(1− a)t + (1− a)Bm(t)√

m
+ Rm(t)

> (1− â0)t + �m

√
t√

m
for somet ≥ tm

}
(30)

= P
{

max
t≥tm

(√
m(â0 − a)

√
t + (1− a)

Bm(t)√
t

+
√

mRm√
t

)
> �m

}

≤ P
{
max
t≥tm

(√
m|â0 − a|√t

)
>

�m

2

}
+ P

{
(1− a)max

t≥tm

Bm(t)√
t

>
�m

2

}

+ O

(
(logm)2

√
tm

√
m

)
.
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The last term iso(1) sincemtm/(logm)4 → ∞.
Let

a0 = G(t0) − t0

1− t0
= a

Fν(m)(t0) − t0

1− t0
.

Then

a − a0 = a
1− Fν(m)(t0)

1− t0
≤ e−ν(m)c(t0)

1− t0
.

By assumption, we can write

ν(m) = sm logm

c(t0)

for somesm → ∞. Hencea − a0 = O(m−sm). In particular,a − a0 = o( 1√
m

).
Hence

√
m|â0 − a| ≤ √

m|â0 − a0| +
√

m|a0 − a| = √
m|â0 − a0| + o(1).

Thus

P
{
max
t≥tm

(√
m|â0 − a|√t

)
>

�m

2

}
= P

{√
m|â0 − a| > �m

2

}
= P

{√
m|â0 − a0| > �m

2

}
+ o(1)

= P
{√

m|Ĝ(t0) − Gm(t0)|
1− t0

>
�m

2

}
+ o(1)

= P
{
|Ĝ(t0) − Gm(t0)| > �m(1− t0)

2
√

m

}
+o(1)

≤ 2 exp
{
−m

2�2
m

4

(1− t0)
2

m

}
+ o(1)

≤ α

2
+ o(1)(31)

by the DKW inequality and the definition of�m.
Fix ε > 0. Sinceâ0

a.s.→a0, we have, almost surely for all largem, that

�m

2(1− a)
≥ 2(1− â0)wα/2

2(1− â)

= 1− â0

1− a
wα/2 = 1− â0

1− a0

(
1+ o(1)

)
wα/2 ≥ wα/2 − ε.
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Let Wm(t) = Bm(t)/
√

t . Then for all largem

P
{
(1− a)max

t≥tm
Wm(t) >

�m

2

}
= P

{
max
t≥tm

Wm(t) >
�m

2(1− a)

}

≤ P
{
max
t≥tm

Wm(t) > wα/2 − ε

}
≤ P

{
max

0≤t≤1
Wm(t) > wα/2 − ε

}

= P
{

max
0≤t≤1

Wm(t) > wα/2

}

+ P
{
wα/2 − ε < max

0≤t≤1
Wm(t) ≤ wα/2

}

= α

2
+ P

{
wα/2 − ε < max

0≤t≤1
Wm(t) ≤ wα/2

}
.

Sinceε is arbitrary, this implies that

lim sup
m→∞

P
(
(1− a)max

t≥tm
Wm(t) >

�m

2

)
≤ α

2
.(32)

From (31), (32) and (30) we conclude that

lim sup
m→∞

P
(
N(t) > V (t) for somet ≥ tm

) ≤ α.

Notice that�(t) = N(t)/Ĝ(t). HenceN(t) ≤ V (t) implies that

�(t) ≤ V (t)

Ĝ(t)
= �(t).

The conclusion follows. �

Both types of confidence thresholds can now be defined from�. For example,
pick a ceiling 0< c < 1 and defineTc = sup{t ≥ tm :�(t) ≤ c}, whereTc is defined
to be 0 if no sucht exists. The proof of the following is then immediate from the
previous theorem.

COROLLARY 6.1. Tc is an asymptotic rate ceiling confidence threshold with
ceiling c.

It is also worth noting that we can construct a confidence envelope for the
number of false discoveries processM1|0(t).
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COROLLARY 6.2. With tm as in the above theorem and V (t) defined as
in (29),

lim inf
m→∞ P{M1|0(t) ≤ mV (t) for t ≥ tm} ≥ 1− α.(33)

6.2. Exact confidence envelope. In this section we will construct confidence
thresholds that are valid for finite samples.

Let 0< α < 1. GivenV1, . . . , Vk , letϕk(v1, . . . , vk) be a nonrandomized levelα

test of the null hypothesis thatV1, . . . , Vk are drawn i.i.d. from a Uniform(0,1)

distribution. Definepm
0 (hm) = (pi :hi = 0,1 ≤ i ≤ m) andm0(h

m) = ∑m
i=1(1 −

hi) andUα(pm) = {hm ∈ {0,1}m :ϕm0(h
m)(p

m
0 (hm)) = 0}. Note that as defined,

Uα always contains the vector(1,1, . . . ,1).
Let

Gα(pm) = {�(·, hm,pm) :hm ∈ Uα(pm)},(34)

Mα(pm) = {m0(h
m) :hm ∈ Uα(pm)}.(35)

Then we have the following theorem, which follows from standard results on
inverting hypothesis tests to construct confidence sets.

THEOREM 6.3. For all 0 < a < 1,F , and positive integers m,

Pa,F {Hm ∈ Uα(P m)} ≥ 1− α,(36)

Pa,F {M0 ∈ Mα(P m)} ≥ 1− α,(37)

Pa,F {�(·,Hm,P m) ∈ Gα} ≥ 1− α,(38)

Pa,F {�(Tc) ≤ c} ≥ 1− α,(39)

where

Tc = sup{t :�(t;hm,P m) ≤ c and hm ∈ Uα(P m)}.(40)

In particular,

�(t) = sup{�(t) :� ∈ Gα(P m)}(41)

is a 1 − α confidence envelope for �, and Tc is a 1 − α rate ceiling confidence
threshold with ceiling c. In fact, infa,F Pa,F {�(t) ≤ �(t), for all t} ≥ 1− α.

REMARK 6.1. If there is some substantive reason to boundM0 from below,
thenGα will have a nontrivial lower bound as well. In general, becauseUα always
contains(1,1, . . . ,1), the pointwise infimum of functions inGα will be zero.

REMARK 6.2. At first glance, computation ofUα would appear to require
an exponential-time algorithm. However, for broad classes of tests, including the
Kolmogorov–Smirnov test, it is possible to constructUα in polynomial time.
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REMARK 6.3. The choice of test can be important for obtaining a good
confidence envelope. A full analysis of this choice is beyond the scope of this
paper; we will present such an analysis in a forthcoming paper. In the examples
below, we use the test derived from the second-order statistic of a subset of
p-values.

REMARK 6.4. A similar construct yields a confidence envelope on the process
M1|0(t).

6.3. Examples.

EXAMPLE 1. We begin with a re-analysis of Example 3.2 from BH (1995).
BH give the following 15p-values

0.0001 0.0004 0.0019 0.0095 0.0201 0.0278 0.0298 0.0344
0.0459 0.3240 0.4262 0.5719 0.6528 0.7590 1

and at a 0.05 level Bonferroni rejects the first three null hypotheses and the BH
method rejects the first four.

Becausem is small, we construct only the exact confidence envelope for this
example. Figure 1 shows the upper 95% confidence envelope on the FDP for

FIG. 1. Plot of �(t) versus t for Example 1, where � is derived from the exact method of
Section 6.2. The leftmost dot on the horizontal axis is the BH threshold; the rightmost dot is a
confidence threshold with the same ceiling.
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these data using the second-order statistic of any subset as a test statistic for the
exact procedure. Notice first that the confidence envelope never drops below 0.05.
Second, while the BH thresholdT = P(4) = 0.0095 guarantees an FDR≤ 0.05,
we can claim thatP{�(P(4)) > 0.25} ≤ 0.05, but this is also true for the larger
thresholdP −

(11) = 0.4262−, which will have higher power. This difference occurs
because the envelope takes large values at small thresholds. The result could
be quite different with another choice of test statistic. The minimum rate 95%
confidence threshold hasT = 0.324 andZ = �(T ) = 0.111.

EXAMPLE 2. We present a simple, synthetic example, wherem = 1000,
a = 0.25, and the test-statistic is from a Normal(θ,1) one-sided test with
H0 : θ = 0 andH1 : θ = 3.

Figure 2 compares the true FDP sample path with the 95% confidence envelopes
derived from the exact and asymptotic methods. For small values of the threshold
the exact envelope almost matches the truth, but for larger values it becomes more
conservative. The asymptotic envelope remains above but generally close to the
truth. The asymptotic and exact envelopes cross at an FDP level of about 0.05. The

FIG. 2. Plot of the true � sample paths and � for the exact (cf. Section 6.2) and asymptotic
(cf. Section 6.1) methods for the data in Example 2. The envelopes are shown here only for small
thresholds. The truth (solid ) is the lowest curve over the entire domain. The exact envelope (dashed )
begins near 1, dips toward the truth and then rises sharply. The asymptotic envelope (dotted ) is the
other curve.
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rate ceiling confidence thresholds with ceiling 0.05 and level 0.05 are 0.00062 for
the asymptotic and 0.00046 for the exact. The minimum rate confidence threshold
for the exact procedure hasT = 0.00039 andZ = 0.011.

APPENDIX

Algorithm for finding F̂m. Here we restrict our attention to the case in which
we takeF̂ as piecewise constant on the same grid asG. WhenF is concave, the
algorithm works in the same way with the sharper piecewise linear approximation.

STEP 0. Begin by constructing an initial estimate ofF that is a CDF. For
example, we can defineH to be the piecewise constant function that takes the
following values on thePi ’s:

H
(
P(i)

) = max
j≤i

Ĝ(P(j)) − (1− â)P(j)

â
.

STEP 1. Identify the segment with the biggest absolute difference between
Ĝ and(1− â)U + âH .

STEP 2. Determine how far and in what direction (up or down) this segment
can be moved while keepingH a CDF and minimizing‖Ĝ − (1− â)U + âH‖∞.

STEP 3. If the segment can be moved, move it and go to Step 1. Else go to
Step 4.

STEP 4. If no segment can be moved to reduce‖Ĝ − (1 − â)U + âH‖∞,
STOP.

If the current segment is part of a contiguous block of segments where one
segment in the block can be moved to reduce‖Ĝ − (1− â)U + âH‖∞, move the
segment at the end of the contiguous block of segments that provides the greatest
reduction in‖Ĝ − (1− â)U + âH‖∞. Go to Step 1.
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