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A STOCHASTIC PROCESS APPROACH TO FALSE
DISCOVERY CONTROL

BY CHRISTOPHERGENOVESE AND LARRY WASSERMAN?

Carnegie Mellon University

This paper extends the theory of false discovery rates (FDR) pioneered
by Benjamini and Hochbergl[Roy. Statist. Soc. Ser. B 57 (1995) 289-300].
We develop a framework in which the False Discovery Proportion (FDP)—
the number of false rejections divided by the number of rejections—is
treated as a stochastic process. After obtaining the limiting distribution
of the process, we demonstrate the validity of a class of procedures for
controlling the False Discovery Rate (the expected FDP). We construct a
confidence envelope for the whole FDP process. From these envelopes we
derive confidence thresholds, for controlling the quantiles of the distribution
of the FDP as well as controlling the number of false discoveries. We also
investigate methods for estimating thevalue distribution.
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1036 C. GENOVESE AND L. WASSERMAN

Notation index
The following summarizes the most common recurring notation and indicates
where each symbol is defined.

Symbol Description Section Page
m Total number of tests performed 2.1 1037
pm Vector of p-values(P, ..., Py) 2.2 1038
H™ Vector of hypothesis indicatok1y, ..., H,,) 2.2 1038
Pgy  Theith smallestp-value; P =0 2.2 1038
My Number of true null hypotheses 2.2 1039
M, Number of false null hypotheses 2.2 1039
a Probability of a false null 2.2 1038

F, f  Alternative p-value distribution (CDF, PDF) 2.2 1038
G, g Marginal distribution (CDF, PDF) of th&;’s 2.2 1038
G Generic estimator of; 3 1041
G Empirical CDF of P™ 3 1041
U Uniform CDF 2.2 1038
r FDP process 2.5 1040
B FNP process 2.5 1041
Em Dvoretzky—Kiefer—Wolfowitz nghd. radius 3 1041
0 Asymptotic mean of” 2.5 1041
) Asymptotic mean o 25 1041

We usel{...} andP{...} to denote, respectively, the indicator and probability
of the event{...}; subscripts onP specify the underlying distributions when
necessary. We also uge to denote expectation, and,, ~~ X to denote that
X,, converges in distribution t&. We usez, to denote the upper-quantile of
a standard normal.

1. Introduction. Among the many challenges raised by the analysis of large
data sets is the problem of multiple testing. In some settings it is not unusual
to test thousands or evemillions of hypotheses. Exampldaclude function
magnetic resonance imaging, microarray analysis in genetics and source detection
in astronomy. Traditional methods that provide strong control of familywise error
often have low power and can be unduly conservative in many applications.

Benjamini and Hochberg (BH) (1995, 2000) pioneered an alternative. Define the
False Discovery Proportion (FDP) to be the number of false rejections divided by
the number of rejections. The False Discovery Rate (FDR) is the expected FDP. BH
(1995) provided aidtribution-free, finite saple method for choosing a-value
threshold that guarantees that the FDR is less than a targetdevidie same
paper demonstrated that the BH procedure is often more powerful than traditional
methods that control familywise error.

Recently there has been much further work on FDR. We shall not attempt a
complete review here but mention the following. Benjamini and Yekutieli (2001)
extended the BH method to a class of dependent tests. Efron, Tibshirani, Storey
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and Tusher (2001) developed an empirical Bayes approach to multiple testing and
made interesting connections with FDR. Storey (2002, 2003) connected the FDR
concept with a certain Bayesian quantity and proposed a new FDR method which
has higher power than the original BH method. Finner and Roters (2002) discussed
the behavior of the expected number of type | errors. Sarkar (2002) considered
a general class of stepwise multiple testing methods.

Genovese and Wasserman (2002) showed that, asymptotically, the BH method
corresponds to a fixed threshold method that rejectspalalues less than
a thresholdu*, and they characterized*. They also introduced the False
Nondiscovery Rate (FNR) and found the optimal threshdldn the sense of
minimizing FNR subject to a bound on FDR. The two thresholds are related
by u* < t*, implying that BH is (asymptotically) conservative. Abramovich,
Benjamini, Donoho and Johnstone (2000) established a connection between FDR
and minimax point estimation. (An interesting open question is whether the
asymptotic results obtained in this paper can be extended to the sparse regime
in the aforementioned paper where the fraction of alternatives tends to zero.)

In this paper we develop some large-sample theory for FDRs and present new
methods for controlling quantiles of the faldiscovery distribution. An essential
idea is to view the proportion of false discoveries as a stochastic process indexed
by the p-value threshold. The problem of choosing a threshold then becomes a
problem of controlling a stochastic prase Although this stochastic process is not
observable, we will show that it is amenable to inference.

The main contributions of the paper include the following:

. Development of a stochastic process framewaork for FDP.

. Investigation of estimators of the-value distribution, even in the non-
identifiable case.

3. Proof of the asymptotic validity of a class of methods for FDR control.

4. Two methods for constructing confidence envelopes for the False Discovery

process and the number of false discoveries.
5. New methods, which we calbnfidencethresholds, for controlling quantiles of
the false discovery distribution.

N -

2. Preliminaries.

2.1. Notation. Consider a multiple testing situation in whightests are being
performed. Suppos#/y of the null hypotheses are true anh = m — Mg null
hypotheses are false. We can categorizerttiests in the following Z 2 table on
whether each null hypothesis is rejected and whether each null hypothesis is true:

HgNot Rejected Hg Rejected  Total

Hg True Moo Mo Mo
Hy False Moj1 Mi1 M1
Total m— R R m
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We define the FDP and the FNP by

M0 .
0, if R=0
and u
01 .
®) FNP= ’ m_g TR<m
0, if R=m.

The first is the proportion of rejections that are incorrect, and the second—
the dual quantity—is the proportion of nonrejections that are incorrect. Notice
that FDR= E(FDP), and following Genovese and Wasserman (2002), we define
FNR = E(FNP). Storey (2002) considered a different definition of FDR, called
pFDR for positive FDR, by conditioning on the event ti®at- 0 and discussed the
advantages and disadvantages of this definition.

2.2. Moddl. Let H; =0 (or 1) if theith null hypothesis is true (false) and
let P; denote theith p-value. Define vector?™ = (Py,..., P,) and H" =
(Hy,...,Hy). Let Py < --- < Py, denote the ordereg-values, and define
P =0.

In this paper we use a random effects (or hierarchical) model as in Efron,
Tibshirani, Storey and Tusher (2001). Specifically, we assume the following for
O<a<l:

Hi, ..., H, ~ Bernoullia),

El?'“’ Em~£?a
P;|H; =0, E;=§&~ Uniform(O, 1),
Pi|H; =1, &;=§& ~§&,
whereEy, ..., E, denote distribution functions anflz is an arbitrary probability

measure over a class of distribution functigfighat stochastically dominates the
Uniform(0, 1).
It follows that the marginal distribution of the-values is

(3 G=(1-a)U+aF,

whereU (¢) denotes the Uniform(0,1) CDF arfd(¢) = [ &£(¢) d L #(£). Note that
G > U. Except where noted we assume tldais strictly concave with density
g=0G'.

REMARK 2.1. A more common approach in multiple testing is to use
a conditional model in whiclHy, ..., H,, are fixed, unknown binary values. The
results in this paper can be cast in a conditional framework but we find the random
effects framework to be more intuitive.
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DefineMp =73 ;(1— H;) andM1 = )_; H;. Hence,Mp ~ Binomial(m, 1 — a)
andM; =m — M.

2.3. The Benjamini—-Hochberg and plug-in methods. The Benjamini—-Hoch-
berg (BH) procedure is a distribon-free method for lvoosing which null
hypotheses to reject while guaranteeing that Fb&for some preselected level
The procedure rejects all null hypotheses for whithe P(gg,,), where

4) RBH:max{Osism:P(i)gal—}.
m
BH (1995) proved that this procedure guarantees
Mo
(5) E(FDP|Mp) < —a <a,
m

regardless of how many nulls are true and regardless of the distribution of the
p-values under the alternatives. (When thevalue distribution is continuous,

BH shows that the first inequality is an equality.) In the context of our model,
this result becomes

(6) FDR<(1—-a)xa <a.

Genovese and Wasserman (2002) showed that, asymptotically, the BH proce-
dure corresponds to rejecting the null when fhealue is less tham™, where
u* is the solution to the equatiafi(u) = u/«, in the notation of the current paper.
This u* satisfiesx/m < u* < « for largem, which shows that the BH method is
intermediate between Bonferroni (corresponding t@:) and uncorrected testing
(corresponding tax). They also showed that* is strictly less than the optimal
p-value cutoff.

Benjamini and Hochberg (2000), in work originally written in 1994, showed
that the power of the BH (1995) procedure could be improved by estimating
the number of true null hypotheses. They also proposed an estimaf@Rif)
and proposed a threshofd that maximizes the number of rejections subject to
FDR(T) < «. A similar approach was investigated in Storey (2002) and Storey,
Taylor and Siegmund (2004). It remains an open question whethef( FDR¢.

We address an asymptotic version of this question in Section 5.
The threshold chosen this way can also be viewed as a plug-in estimator. Let

(7) t(a,G):Sup{t: (1G_(;;)t 50{}.

Suppose we reject whenever thevalue is less tham(a, G). From Genovese
and Wasserman (2002) it follows that, asymptotically, the FDR is less dhan
The intuition for (7) is that(l — a)t/G(¢) is, up to an exponentially small term,
the FDR at a fixed threshold Moreover, if G is concave this threshold has the
smallest asymptotic FNR among all procedures with FDR less than or equal to
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[cf. Genovese and Wasserman (2002)]. We o@ll G) the oracle threshold. The
standard plug-in method is to estimate the functioral G) by T = ¢(a, 6),
wherea andG are estimators of andG. Let G,, be the empirical CDF oP™.
Theorem 2 of BH (1995) shows thdsy = ¢ (0, G,,) vields the BH threshold.
Benjamini and Hochberg (2000) and Storey (2002) showedThats (ag, G,,)
has higher power than the BH threshold, where

. Gm (10) — 10

do= ma><<0, 1 1o )
andrg € (0, 1). Clearly, other estimators afandG are possible and we shall call
any threshold of the forr = (a, G) a plug-in threshold.

We describe alternative estimatorsaoin Section 3.2. Storey (2002) provided
simulations to show that the plug-in procedure has good power but did not provide
a proof that it controls FDR at level. We settle this question in Section 5 where
we show that, under weak conditions &nthe procedure asymptotically controls
FDR at levelr.

2.4. Multipletesting procedures. A multipletesting procedure T is a mapping
taking [0, 1] into [0, 1], where it is understood that the null hypotheses
corresponding to alp-values less thafi' (P™) are rejected. We often call the
threshold. R

Leta, € [0, 1] and O<r < m, and recall thaP g = 0. Let G andg be generic
estimates of5 andg = G’, respectively. Similarly, IeP{H = h|P =t} denote an
estimator ofP{H = h|P =1t}.

Some examples of multiple testing procedures will illustrate the generality of
the framework:

Uncorrected testing Ty (P™) =«

Bonferroni Tg(P™)y=a/m

Fixed threshold at T;(P™) =t

Benjamini-Hochberg Tgn(P™) =supt:G,, (1) =t/a} = Prgy)
Oracle To(P™) =supt:G(t) = (A —a)t/a}
Plug in Toi(P™) = supzr: G (1) = (1 — a)t /&)
Firstr T(r) = P(r)

Bayes’ classifier Tac(P™) =supr:g(t) > 1}

Regression classifier Treg(P™) =suft:P{H1 =1|Py =1t} > 1/2}.

2.5. FDP and FNP as stochastic processes. An important idea that we use
throughout the paper is that the FDP, regarded as a function of the threshold
is a stochastic process. This observation is crucial for studying the properties of
procedures.

Define theFDP process

Y L{P <t}(1—-H))

(8) re(y=r,P", H ):Zi]l{Pift}+]l{aIIPi>t}’
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where the last term in the denominator makKes 0 when nop-values are below
the threshold. Also define tHeNP process

>i WP >t} H;
Y U{P >t} +1{allp <t}

The FDP and FNP of a procedufearel’ (T) =I'(T(P™), P™, H™) and&(T) =
E(T(P™), P™ H™). Let

9) E(t)=E(, P", H™) =

t

(10) 0t)=(1-a) G0
~ . 1-FQ@
(12) o) =a 1-G60)

The following lemma is a corollary of Theorem 1 in Storey (2002).

LEMMA 2.1. Under the mixture model, for r > 0,
El(t)=0@®)(1—(1-G®)"),
EE() =01 (1-G(®)™).

The second terms on the right-hand side of both equations differ from 1 by an
exponentially small quantity.

One of the essential difficulties in studying a procediirés thatT'(T) is
the evaluation of the stochastic proceSé) at a random variable’. Both
depend on the observed data, and in general they are correlated. In particular, if
O (1) estimates FDR{ well at each fixed, it does not follow thaD(T) estimates
FDR(T) well at a randomT. The stochastic process point of view provides
a suitable framework for addressing this problem.

3. Estimating the p-value distribution. Recall that, under the mixture
model,Py, ..., P, have CDFG(t) = (1—a)t+a F(¢). Let G denote an estimator
of G. LetG,, denote the empirical CDF @t". We will use the Dvoretzky—Kiefer—
Wolfowitz (DKW) inequality: for anyx > 0,

(12) PUIGn (1) — G(1)|loe > X} < 2e~2m°
where||F — Glloo = SURy<;<1 | F (1) — G(1)|. Givena € (0, 1), let
(13) em=éepm(a) = % Iog(é)

so that, from DKWP{||G,, (1) — G () |lco > &m} < .
Several improvements ofy,, are possible. Sinc& > U, we replace any
estimatorG,, with max{G,, (1), t}. When G is assumed to be concave, a better
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estimate ofG is the least concave majorant (LCNB_cm. ,» defined to be the
infimum of the set of all concave CDF'’s lying abotg,. Most p-value densities

in practical problems are decreasingznwhich implies thatG is concave. We
can also replac& cm. » With maxGiLcm, m(t), t}. The DKW inequality and the
standard limiting results still hold for the modified versions of both estimators. We
will thus useG to denote the modified estimators in either case. We will indicate
explicitly if concavity is required or if the LCM estimator is proscribed.

Once we obtain estimatésandG, we define

(14) 0(1) = —~—

3.1. ldentifiability and purity. Before discussing the estimation of it is
helpful to first discuss identifiability. For example,dfis not identifiable, there
is no guarantee that the estimate used in the plug-in method will give good
performance. The results in the ensuing sections show that despite not being
completely identified, it is possible to make sensible inferences about
Say thatF is pureif essinf f(r) = 0, wheref is the density ofF. Let O¢ be
the set of pairgb, H) suchthat € [0,1], He £ andF = (1—-b)U +bH. F is
identifiable ifOF = {(1, F)}.
Define
¢rp=inf{b: (b, H) € OF},
p_F-Q-¢nU
o {F

ap =agf.

’

We will often drop the subscript ona and¢r. Note thatG can be decomposed
as

G=0A-a)U+aF
=A-—a)U+all—)U+¢F]
=1 —ay)U +atF
=(1-a)U+akfk.

Purity implies identifiability but not vice versa. Consider the following example.
Let ¥ be the Normald,1) family and consider testinfp: 6 = 0 versusH; : 6 # 0.
The density of thep-value is

2 -1 -1
fo(p) = %e_”e /2[6—\/'7%> A=p/2) 4 /0@ (1—P/2)].

Now, fy(1) = e 9%/2 5 0 so this test is impure. However, the parametric
assumption makes andé identifiable when the null is false. It is worth noting
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that f (1) is exponentially small im. Hence, the difference betweeranda is

small. Even whenX has at-distribution with v degrees of freedomfy (1) =

(1 + n62/v)~+D/2 Thus, in practical cases, — a will be quite small. On

the other hand, one-sided tests for continuous exponential families are pure and
identifiable.

The problem of estimating has been considered by Efron, Tibshirani, Storey
and Tusher (2001) and Storey (2002) who also discussed the identifiability issue.
In particular, Storey noted th&t(r) = (1 — a)t + aF(t) < (1 — a)t +a for all ¢.

It then follows that, for anyg € (0, 1),

_ G(t9) — 1o

15 0<
(15) sdo=——

<a<a=<l

Thus, an identifiable lower bound anis ag. The following result gives precise
information about the best bounds that are possible.

PrRoOPOSITION 3.1. If F is absolutely continuous and stochastically domi-
nates U, then

(=1- irt]f F'(t) and a=1- ir;f G'(1).

If F is concave, then the infima are achieved at t = 1. For any b € [¢, 1] we can
writeG = (1—ab)U +abFy,,where F, = (F—(1—b)U)/bisaCDF and F < Fp,.

3.2. Estimating a. Here we discuss estimating. Related work includes
Schweder and Spjgtvoll (1982), Hochberg and Benjamini (1990), Benjamini and
Hochberg (2000) and Storey (2002).

We begin with a uniform confidence interval f@r

THEOREM3.1. Let
Gt)—t—ep
1—1t ’
Then [a,, 1] isa uniform 1 — « confidenceinterval for a, that is,

(16) a, = max

a,

and if onerestricts G to bethe empirical distribution function, then for each (a, F)
pair,

o0 ) J [ 2
18) Porlacla.d)<l-a+2) (-1 () +0((°%) )

wheretheremainder termmay dependon a and F. Becausea > 4, [a,, 1] isavalid
finite-sample 1 — « confidenceinterval for a aswell.

j=1
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PrRoOOF The inequality (17) followsmmediately from DKW becaus@(r) >
G(t) — &, for all ¢ with probability at least - «. The sum on the right-
hand side of (18) follows from the closed-form limiting distribution of the
Kolmogorov—Smirnov statistic, and the order of the error follows from the
Hungarian embedding. To see this, note that

a<a, = a\/_<max\/_ (t) G(t)+ﬂG(t)_t_8mﬁ

—t 1—1¢ 1—1¢
—  aJm< maxf—(t) G + /ma — Ef:/’?
— 0< max\/—Gm(t) _tG(t) 8;1-1:/’?
= 0<maxy/m(Gu(®) = G(1) — emv/m
= IVm(Gu(®) — G®))lloc > em~/m.
Hence,
(19) Pla < as} < P{INm(Gu(t) — G®))lloc > em/m }.

Next apply the Hungarian embedding [van der Vaart (1998), page 269]:
limsup——--— \/_ 2 IvVm (G, — G) — By lloo < 00 a.s,

for a sequence of Brownlan bridgBs . Recall the distribution of the Kolmogorov—
Smirnov statistic:

o0
P{IBlloc > x} =2 Z(_1)4i+1e—212x2
j=1

for a generic Brownian bridgB. The result follows by taking = /me;,. In the
concave case, the LCM can be substltutecﬂcand the result still holds since, by
Marshall's IemmaHGLCMm — Gl < ||G —Glloo. O

PROPOSITION3.2 (Storey’s estimator). Fix 7g € (0, 1) and let

o — (Gm(tO) - tO)
°” 1-10 /4

If G(1g) > 19,
G _
510—1D> %toto =ap=a,
and
.~ G(to) —10 G(t0)(1— G(10))
ﬁ<a°_ 1-19 ) WN<O’ (1—10)2 )
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If G (10) = to,

1 1 to
mag ~ =8 —N+(0, ),
mao~> 500+ 5 1—1o

where §g is a point-mass at zero and N is a positive-truncated normal.

A consistent estimate afis available if we assume weak smoothness conditions
ong. For example, one can use the spacings estimator of Swanepoel (1999) which
is of the form 2,,/(mV,,), wherer,, = m*>(logm)~% andV,, is a selected
spacing in the order statistics of tipevalues.

THEOREM 3.2. Assume that at the value ¢ where g achieves its minimum,
g" is bounded away from 0 and oo and Lipschitz of order A > 0. For every § > 0,
there exists an estimator a such that

m@/5
——(G—a)~ N(0,(1—a)?).
(Iogm)a(a a) 0. (1-a))

PROOFE Let a be the estimator defined in Swanepoel (1999) with=
m*5(logm)=2% and s,, = m*°(logm)®. The result follows from Swanepoel
[(1999), Theorem 1.3]. [

REMARK 3.1. An alternative estimator i& =1 — min, g(¢), whereg is a
kernel estimator.

Now suppose we assume only that is concave and hence = G’ is
decreasing. Hengartner and Stark (1995) derived a finite-sample confidence
envelopdy ~(-), y ()] for a densityg assuming only that it is monotone. Define

dps=1—minfh(L):y~ <h <y}

THEOREM 3.3. If G is concave and ¢ = G’ is Lipschitz of order 1 in a
neighborhood of 1, then

n \Y3 ,
(Iogn) (ays —a)— 0.

Also, [1 —y*(1),1—y~(1]isal— o confidenceinterval for ¢ for 0 <o <1
and all m. Further,

infPlacl—y* (D), 1} >1-«,
a,
where the infimumis over all concave F’s.

ProoOF Follows from Hengartner and Stark (1995).]



1046 C. GENOVESE AND L. WASSERMAN

3.3. Estimating F. It may be useful in some cases to estimate the alternative
mixture distribution F. There are many possible methods; we consider here
projection estimators defined by

(20) Ep,=arg min||G — (1 —a)U —aH| oo,
He¥
wheread is an estimate of. The Appendix gives an algorithm to firfd,.
Itis helpful to consider first the case wherés known, and here we substitute
for a in the definition ofF),,.
THEOREM 3.4. Let
Fp=arg min||G — (1—a)U — aH | so.
m=arg min[|G — (1-a)U —aH oo
Then

2IG — Gl as

IF = Eplloo < 2o

a
PrROOE
allF = Fuloo = llaF — aFy s
=l1—a)U+aF — (1 —a)U —aFp|eo
=G —(1—a)U —aFpllx
=|IG-G+G—1—a)U —aFple
<G = Glloo + IG — (1= a)U — aFp i
<G -Gl + G —(1—a)U —aF |
=G = Gl + G — Gllo.
The last statement follows from the uniform consistencgof [

Whena is unknown, the projection estimatéris consistent whenever we have
a consistent estimator af Recall that in the identifiable cage=a andF = F.

THEOREM 3.5. Let a be a consistent estimator of a. Then

IG — Gllow+1a—al »
—
a

| Fop — Flloo < 0.

PROOF Let$,, = |G — (1— &)U — aF | s. SinceF is the minimizer,

Sm < IG—(1—a)U —aF |
= IG-G+(@-aU—(@-a)Fllx
< IG =Gl +ld—a
Lo
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We also have that
8m = IG — (L= &)U — GF oo — QllF — Fllool-

Sinces,, and||G — (1 — &)U — GF oo Lo by the above and 5> a, it follows that
IF — Fllo <> 0. Moreover,

IG = Glloo + |a —
a ' O

IF — Flloo <

4. Limiting distributions. In this section we discuss the limiting distribution
of I"andQ. Let

m

1 12
Mm=;§ﬂ—mmﬂsﬂaM1M®=;;MMB§&
and, for each € (0, 1), define
1
Qan=(r—wAmo—cAﬂn=7;§ijn

whereD; (1) =1{P; <t}(1— H; — ¢). Let
pe(t) =ED1(t) = (1 —a)t — cG(1).

Let (Wp, W1) be a continuous two-dimensional mean zero Gaussian process with
covariance kernek;; (s, r) = Cou(W;(s), W;(¢)) given by

[(A=a)sAt) = (L—a)?st —A—a)saF @)
(21) RGs,n)= [( —(1—a)taF(s) aF(s A D) —aZF(s)F(;))]'
THEOREM 4.1. Let W be a continuous mean zero Gaussian process with
covariance

Ko, ) =L—a)l—0o)[A—c)(s At — (A —a)st)+ac(tF(s)+sF(1))]

(22)
+acl[cF(s At) —acF(s)F(1)].
Then
\/”;(Qc — ) W,
PROOF Let

Zn(t) = /m(Qe(t) — pe(0)) and  Zp (1) = V/m(QE@) — Lc(0))
fort € [0, 1]. Let
(Win,0(t), Wi 1(1)) = (v/m(Ao(t) — (1 — a)t), V/m(A1(t) — aF (1))).

By standard empirical process theotW,,, o(z), W, 1(¢)) converges tqWo, W1).
The covariance kernet stated in (21) follows by direct calculation. The result
for Q. is immediate sinc&2,. is a linear combination ofAg andA1. O
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THEOREM 4.2 (Limiting distribution of FDP process).For ¢ € [§, 1] for any
§>0,let
Zn(t) = /m(Tp (1) — Q1))
Let Z be a Gaussian processon (0, 1] with mean 0 and covariance kernel
A—a)stF(sAt)+aF($)F()(s At)

Kr(s,r)=a(l—a) G2(s)G2(1)

Then Z,, ~ Z on [4, 1].

REMARK 4.1. The reason for restricting the theorem[#01] is that the
variance of the process is infinite at zero.

PROOF OF THEOREM 4.1. Note thatl’,,(r) = Ao(t)/(Ag(t) + A1(r)) =
r(Ao, A1), whereAg and A1 are defined as before and, -) mapse™ x £°° —
£%°, where{* is the set of bounded functions @8, 1] endowed with the sup
norm. Note that((1 — a)U,aF) = Q. It can be verified that(-, -) is Fréchet
differentiable at(1 — @)U, a F) with derivative

aFVo— (1—a)UV
r((l—a)U,aF)(V) = G2 )

whereU (t) =t, V = (Vo, V1). Hence, by the functional delta method [van der
Vaart (1998), Theorem 20.8],
aFWo— (1—a)UW

G2 ’
where(Wp, W1) is the process defined just before (21). The covariance kernel of
the latter expression K (s, 7). O

Zip ~> ”é(l—a)U,aF)(W) =

REMARK 4.2. A Gaussian limiting process can be obtained for FNP [i.e.,
E (1)] along similar lines.

The next theorems follow from the previous results followed by an application
of the functional delta method.

THEOREM4.3. Let O(t) = (1—a)t/G(z). For any § > 0,

Vm(0(t) = Q1)) ~ W
on [§, 1], where W is a mean zero Gaussian process on (0, 1] with covariance
kernel
G At)—G)G()
G(s)G(1)

Ko(s,1) = Q(s)Q(1)
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THEOREM4.4. Let O(t) = (1—a)t/G(r). We have

Vm(Q7 ) — 07 W)~ W,
where W is a mean zero Gaussian process with covariance kernel
Ko(s, 1)
Q'(s)0' (1)

=(1- a)zuv

KQ—l(u, U) =

G(s At) — G(s)G(1)
[1—a—ug@)[1—a—vg)]

withs = 0~ 1(w) andr = 0~ 1(v).

THEOREM 4.5. Let Q(z) =(1- Ezo)t/é(t), where ag is Sorey’s estimator.
Then
Vm(Q() — Q1) ~ W,
where W is a mean zero Gaussian process with covariance kernel

12

(1—-10)2G?(5)G?(1)
X (G(S)G(l)to(l —1t0) + G(1)(1— G(t0))R(s, t0)

K(s,t)=

+G()(1— G1)R(t, 10) + (1= G(10)*R(s, ),

where R(s,t) =s At — st.

5. Asymptotic validity of plug-in procedures. LetQ~1(c)=sup0<7<1:
Q(t) < c}. Thenthe plug-in thresholfk, defined earlier can be writtefp|(P™) =
0 1(oe) Here we establish the asymptotic validity in the sense th&T' (T) <
a + o(1). First, suppose that is known. Define

(1—a)t
(}(t)
to be the estimator of) whena is known.

(23) 04(1) =

THEOREM 5.1. Assume that a is known and let O = Q,. Let 1o = 0 ()
and assume G # U. Then

Vm(Tp1 — 10) ~ N (0, K p-1(to, 10)),
Vm(Q(Tp)) — &) ~ N(0, (Q (t0))°K 110, 10)),
and
E(Tp) = a +0(1).
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PRooOE The first two statements follow from Theorem 4.4 and the delta
method.
For the last claim, let & § < g, write T = Tp; and note that

U (T) —a| < [Tn(T) = QD) +[Q(T) — ]
=sup|ly (1) — Q)| L{T < &}
t

+Stjp|rm(t) —O0MIUT =8} +|Q(T) — |

=T <34} +SU8|0|Fm(t) — 00|+ 19(T) —«f
>

1
=UT <48} + —msudﬂ(Fnz(t) —0M)|+10(T) —«f

>4
= 0p(m~/?).

Because & T',, < 1, the sequence is uniformly integrable, and the result follows.
O

Next, we consider the case wherés unknown and possibly nonidentifiable. In
this case, as we have seen, one can still construct an estimator that is consistent for
some valueig < a.

THEOREM 5.2 (Asymptotic validity of plug-in method). Assume that G is
concave. Let T =t (a, G) bea plug-in threshold where G isthe empirical CDF or

the LCM and & 5> ag for someag < a. Then
EL(T) <a+o(1).

PROOF  First note that the concavity @f implies thatQ(t) = (1 — a)t/G(¢)
is increasing. Le§ = (a —ag)/(1 — a) sothat(1 —ag)/(1 —a) =1+46. Then

o =L-D_ 174 0 50,0
T G(n)  1-ap ¢
= (14 0p(D))(1+8)0u(®),

whereQ, is defined in (23). Hence

T=0Ya)= Q;1<1L+8 + 0p(1))

< 0. a+0p(D) =0 @) +0p(D).

Becausa) 1% 0. and becaus@, (o) < 0, 1(«), the result follows from the
argument used in the proof of the previous theorem ugigin place of Q.
O
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Recall that the oracle procedure is defined By(P™) = 0~ 1(«). This
procedure has the smallest FNR for all procedures that attainERRPp to sets of
exponentially small probability [cf. Genovese and Wasserman (2002), page 506].
In the nonidentifiable case, no data-based method can disting@elda, so the
performance of this oracle cannot be attained. We thus define the achievable oracle
procedurelao to be analogous t@p with (1 — @)t/ G (¢) replacingQ. The plug-
in procedure that uses the estimafodescribed in Theorem 3.2 asymptotically
attains the performance dfap in the sense thatl'(Tp) = a + o(1) and
EE(Tp)) =EE(Tao) +0(D).

6. Confidence envelopesfor FDP. Because the distribution of the FDP need
not be concentrated around its expected value, controlling the FDR does not
necessarily offer high confidence that the FDP will be small. As an alternative,
we develop methods in this section for making inferences about the FDP process.

A 1 — « confidence envelope for the FDP process is a random fundtion
on [0, 1] such that

P{I'(t) <T()forallt} >1—a.

In this section we give two methods for constructing sudh, @ne asymptotic,
one exact in finite samples. See also Havranek and Chytil (1983), Hommel and
Hoffman (1987) and Halperin, Lan and Hamdy (1988).

Besides being informative in its own right, a confidence envelope can be used
to construct thresholds that control quantiles of the FDP distribution. Wercall
a 1— « confidencethreshold if there exists a statistiZ such that

PI(T)<Z}>1—q.

We consider two cases. In the first, callete ceiling confidence thresholds, we
take Z to be a prespecified constanfthe ceiling). The thresholds we develop
here are derived from a confidence enveldbpas the maximal threshold such that
T <c. In the second, calleshinimum rate confidence thresholds, the threshold is
derived fromI" by T =argmin T'(tr) andZ =T (T).

When a is known, it is possible to construct an asymptotic rate ceiling
confidence threshold directly.

THEOREM 6.1. Let . = Q~1(c) and let Kq(s, 7) be the covariance kernel
defined in (22). Assumethat F # U. Define

2o VKale o)
Jml—a—cg(t)

tem = tc,m(a) =1l —

Then
PiT(tem) <c}=1—-a+ O(m_l/z)'
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PRoOF We have

P{F(tc,m) <c}= P{Qc(tc,m) - M(tc,m) =< _M(tc,m)}

QC c c
:p{m () S_ﬂu(t,m)}ﬂ(l)’
\/KQ(IC7tC) \/KQ(IC7tC)
from Lemma 6.1. It suffices, in light of Theorem 4.1 and Lemma 6.1, to show that
p M(tc,nz) g
v Kql(t., tc) ¢

Now u(t.) = (1 — a)t, — cG(t.) = 0 sinceQ(t.) = c. Hence
() = (t — 1)/ (tc) + ot — tc|)
=t —tc)(1—a—cg(te)) +o(lt —tc|).
Hence
Wltem) = ten — 1) (1= a = g (10)) + o(m™Y/?).
The result follows from the definition of ,. O
LEMMA 6.1. Let t. = QO %(c), and assume O < 1, < 1. If 1. — t. =

O(m™2), Qeltem) = wltem) = Qe(te) + op(m=Y2). Thus, if u = vm="2 +
o(m~1/2) for some v,

P{Qc(tc,m) =< M(tc,m) +upm) —P{Qe(t:) Sup)=o0().

PrRoOOF Note thatu(z.) = (1 —a)t. — ¢G(t;) = 0 and that
Q2 (tem) — Qe(te)] <maxie, L—chm ™Y [1{P; <tem} — P, <t}

l
<G (tem) — G(to)],

which is Binomialm, |G (t..,) — G(t.)|)/m and has variance of order /2.
Hence

Qc(tc,m) - M(tc,m) — Q¢ (1)
= Qc(l‘c,m) - M(tc,m) — Q¢ (te) — (M(tc,m) - M(tc)) + (M(tc,m) - M(tc))

1
=O0p (W) — p(te)

-or{ke) ()

The second claim is immediated
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However, whem is unknown, there is a problem. When plugging in a consistent
estimator ofa that converges at a sulfm rate, the error iz is of larger order
thanz. — . ,,. Using an estimator, such as Storey’s estimator, which converges
at a ./m rate but is asymptotically biased, causes overcoverage because the
asymptotic bias dominates. Interestingly, as demonstrated in the next section, it is
possible to ameliorate the bias problem, but not the rate problem, with appropriate
conditions. Thus, a “better” estimator af need not lead to a valid confidence
threshold.

6.1. Asymptotic confidence envelope. In this section, we show how to obtain
an asymptotic confidence envelope forcentered ap. Throughout this section

we useG based on the empirical distribution functiowt the LCM.

For reasons explained in the last section, we use Storey’s estimator rather than
the consistent estimators @fdescribed earlier. That is, 16§ = (G (19) — to)/(1—
to) be Storey’s estimator for a fixed € (0, 1). Then

(1—aopt 1-G(o) t
Gty  1-10 G@)
To make the asymptotic bias in Storey’s estimator negligible, we make the

additional assumption that depends on a further parametes v(m) in such
a way that

(24) Fy(t) >1—e¢ V0
for somec(t) > 0, for all 0< ¢ < 1. The marginal distribution oP; becomes
Gp,=01A—-a)U + aFv(m).

This assumption will hold in a variety of settings such as the following:

o) =

1. The p-values P; are computed from some test statisti€s that involve a
common sample size, where the tests all satisfy the standard large deviation
principle [van der Vaart (1998), page 209]. In this casen.

2. As in the previous case except that each test has a sample slevn from
some common distribution.

3. Each test is based on measurements from a counting process (such as an
astronomical image) whenerepresents exposure time.

Under these assumptions, we have the following theorem.
THEOREM 6.2. Let 1, be such that ,, — 0 and mt,,/(logm)* — oco. Let

we 2 denote the upper «/2 quantile of maxy<;<1 B(t)//t, where B(¢) denotes
a standard Brownian bridge. Let

2 4
(25) A =maxi 2(1 — dg)wy 2, L Iog(—) }
1—1 o
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Define
- A A/t

(26) '@ = mln{ o)+ ﬁ@(r) , 1}.
Assume that

v(m)
@7) logm
asm — oo. Then
(28) 'Lﬂ'g‘of P{T'(t)<T(t)forallt>1,}>1—a.

PrROOE Let

N(r) = Llr':l’(”

— 1 a-Hyup <1

miZ1
Note thatE(N (1)) = (1 — a)t and Co¥N (¢), N(s)) = (1 — a)2(s A t — st). By
Donsker’s theoremy/m (N (t) — (1 —a)t) ~ (1 —a)B(r), whereB(r) is a standard
Brownian bridge. By the Hungarian embedding, there exists a sequence of standard
Brownian bridge®,, (¢) such that

~ (1—a)By (1)
N(t)—(l—a)t-i—T-{—Rm(I),
where
2
Ry, = SUP| Ry, (1)] = o(dogm) ) as.
t m
Let
R A/t
(29) V() =(1—ao)t + T
Now,
P{N(¢) > V (¢) for somer > 1,,}
_pla—ay+ EZOBO e
= {( —a) +T m
> (1—ap)t + At for somer > tm}
(30) vm
~ IB%m(l‘) ﬁRm
=P{§Q%X(ﬂ(ao—a)x/;+(1—a) AR )>Am}
Bm m
§P{£YZ\%)<(\/171|&0—61|\/;)>A—2’”}—{—P{(l—a)g%x \/(;) >A7}
(logm)?
+0<Mﬁ>'
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The last term i (1) sincemt,, /(logm)* — oc.

Let
G(to) — 1o Fym)(t0) — o
ag= =a .
) 1-1o
Then
1—F ¢ —v(m)c(to)
a—ag=a v(m)(O)Se
1-1 1-1
By assumption, we can write
»(m) = s logm
c(t0)

for somes,, — oco. Hencea — ag = O(m™"). In particular,a — ag = o(%).
Hence

Vm|ag — a| < v/mlag — aol + v/mlag — al = v/mlao — aol + o(1).
Thus

A
P{;L\?X(«/ml&o—alx/;) > 7’"}
A
=Pivml|ag—al| > 7’"}

A
=P{/m|dg — ag| > 7’"} + o(1)

__[(V/m|G(t0) — Gu(t0)| _ Ap
=P 1 1 >7}+0(1)

Am(]- - IO)
2Jm
2A2 (1 —19)?

SZQX%—MTT} +0(1)

=P11G(10) — Gu(10)| >

}+o<1)

(31) < % +o(1)

by the DKW inequality and the definition &,,.
Fix & > 0. Sincedg =5 ag, we have, almost surely for all large, that
Ap > 2(1— &O)Wa/Z
2l—a) = 21-a)
1-ag 1-a

do
=T Va2 = 1_a0(1+0(1))wo¢/22wo¢/2_8-




1056 C. GENOVESE AND L. WASSERMAN

LetW,,(t) =B,,(t)/+/t. Then for all largen

Am
P{(l —a)maxWw,,(t) > —}
1>ty 2

P{maxw,, (r) B }
= >
=ty 2(1—a)

<P m?xwm(t) > Wy /2 — e}

<P{ maxW,, (1) > wa/z—e}

O<r<1

=Pi maxW,,(¢t) > w
0<r<1 m() oc/Z}

+ P{wa/Z — &< On;tas)iwm(t) = wa/Z}

o

Sincee is arbitrary, this implies that

Ap
(32) lim supP((l— a) m?xwm(t) > 7) <

m—00

N R

From (31), (32) and (30) we conclude that

limsupP(N (¢) > V (¢) for somer > 1,,) < c.

m—0o0
Notice thatl" (r) = N(t)/@(t). HenceN (1) < V(¢) implies that
Vi) =
@) <=—==rT@).
(1) < 0 (1)
The conclusion follows. [J

Both types of confidence thresholds can now be defined froffor example,
pick a ceiling O< ¢ < 1 and defing. = suft > t,, : T'(t) < ¢}, whereT, is defined
to be 0 if no such exists. The proof of the following is then immediate from the
previous theorem.

COROLLARY 6.1. T, isan asymptotic rate ceiling confidence threshold with
ceiling c.

It is also worth noting that we can construct a confidence envelope for the
number of false discoveries proce®s|o(z).
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COROLLARY 6.2. Wth ¢, as in the above theorem and V (¢) defined as
in (29),

(33) I%nll&f P{Myo(t) <mV(t)fort >1t,} >1—a.

6.2. Exact confidence envelope. In this section we will construct confidence
thresholds that are valid for finite samples.

LetO<a < 1. GivenVy,..., Vi, letgr(vy, ..., v) be a nonrandomized level
test of the null hypothesis thaf, ..., Vi are drawn i.i.d. from a Unifort®, 1)
distribution. Definepg (h™) = (p; :h; =0,1<i <m) andmo(h™) = 3_/L1(1 —
hi) and U (p™) = {h™ € {0, 1} L @pom) (py (™)) = 0}. Note that as defined,
U, always contains the vectot, 1, ..., 1).

Let
(34) Ga(p") ={L(C, A", p™) A" € Ua(p™)},
(35) Mo (p™) = {mo(h™) :h"™ € Uq(p™)}.

Then we have the following theorem, which follows from standard results on
inverting hypothesis tests to construct confidence sets.

THEOREM6.3. Forall 0<a <1, F, and positive integersm,

(36) Po,r{H" € Ue(P™)} 21—,

(37) Pa,r{Mo € Mo(P™)} > 1—a,

(38) Pa,r{L(, H", P") € o} > 1—a,

(39) Pa. piT(T;) <c} > 1—a,

where

(40) T, =sup::T'(; A", P™) <cand h™ € Uy (P™)}.
In particular,

(41) T(t) =supl(#):T € Go(P™)}

isa 1 — o confidence envelope for T', and 7, isa 1 — « rate ceiling confidence
threshold with ceiling c. Infact, inf, P, p{I'(r) <T'(z), forall t} > 1 —c.

REMARK 6.1. If there is some substantive reason to bofydfrom below,
theng, will have a nontrivial lower bound as well. In general, becaugealways
contains(1, 1, ..., 1), the pointwise infimum of functions ig, will be zero.

REMARK 6.2. At first glance, computation ¢, would appear to require
an exponential-time algorithm. However, for broad classes of tests, including the
Kolmogorov—Smirnov test, it is possible to constritt in polynomial time.
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REMARK 6.3. The choice of test can be important for obtaining a good
confidence envelope. A full analysis of this choice is beyond the scope of this
paper; we will present such an analysis in a forthcoming paper. In the examples
below, we use the test derived from the second-order statistic of a subset of
p-values.

REMARK 6.4. A similar construct yields a confidence envelope on the process
My o(1).

6.3. Examples.

ExaMPLE 1. We begin with a re-analysis of Example 3.2 from BH (1995).
BH give the following 15p-values

0.0001 0.0004 0.0019 0.0095 0.0201 0.0278 0.0298 0.0344
0.0459 0.3240 0.4262 0.5719 0.6528 0.7590 1

and at a @5 level Bonferroni rejects the first three null hypotheses and the BH
method rejects the first four.

Becausen is small, we construct only the exact confidence envelope for this
example. Figure 1 shows the upper 95% confidence envelope on the FDP for

1.0

0.8
|

0.4

False Discovery Proportion

0.2

0.0
|

. .
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Fic. 1. Plot of T(r) versus ¢ for Example 1, where T is derived from the exact method of
Section 6.2. The leftmost dot on the horizontal axis is the BH threshold; the rightmost dot is a
confidence threshold with the same ceiling.
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these data using the second-order statistic of any subset as a test statistic for the
exact procedure. Notice first that the confidence envelope never drops hémw 0
Second, while the BH thresholll = P4y = 0.0095 guarantees an FDR0.05,

we can claim thaP{I"(P4)) > 0.25} < 0.05, but this is also true for the larger
thresholdP;;, = 0.4262", which will have higher power. This difference occurs
because the envelope takes large values at small thresholds. The result could
be quite different with another choice of test statistic. The minimum rate 95%
confidence threshold h&s= 0.324 andZ =T'(T) = 0.111.

EXAMPLE 2. We present a simple, synthetic example, where= 1000,
a=0.25, and the test-statistic is from a Norrfgll) one-sided test with
Hyp:0=0andH1:0 =3.

Figure 2 compares the true FDP sample path with the 95% confidence envelopes
derived from the exact and asymptotic methods. For small values of the threshold
the exact envelope almost matches the truth, but for larger values it becomes more
conservative. The asymptotic envelope remains above but generally close to the
truth. The asymptotic and exact envelopes cross at an FDP level of abbui@e

0.5

0.4 —

0.3

0.2 Exact . !

False Discovery Proportion

0.1

.. W a—

T T T T T
0.000 0.001 0.002 0.003 0.004 0.005

0.05 4

0.0

Threshold

Fic. 2. Plot of the true I' sample paths and T for the exact (cf. Section 6.2) and asymptotic
(cf. Section 6.1) methods for the data in Example 2. The envelopes are shown here only for small
thresholds. Thetruth (solid) isthe lowest curve over the entire domain. The exact envel ope (dashed)
begins near 1, dips toward the truth and then rises sharply. The asymptotic envelope (dotted) is the
other curve.
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rate ceiling confidence thresholds with ceilin®® and level @5 are 000062 for
the asymptotic and.00046 for the exact. The minimum rate confidence threshold
for the exact procedure hds= 0.00039 andZ = 0.011.

APPENDIX

Algorithm for finding F,,. Here we restrict our attention to the case in which
we takeF as piecewise constant on the same gridza¥vhenF is concave, the
algorithm works in the same way with the sharper piecewise linear approximation.

STep 0. Begin by constructing an initial estimate 6fthat is a CDF. For
example, we can definfl to be the piecewise constant function that takes the
following values on theP;’s:

G(Piy)—(L—a)P;
J=<i a

__Step 1. lIdentify the segment with the biggest absolute difference between
Gand(1—-a)U +aH.

Step 2. Determine how far and in what direction (up or down) this segment
can be moved while keepin a CDF and minimizind|G — (1 — &)U + aH ||so.

Step 3. If the segment can be moved, move it and go to Step 1. Else go to
Step 4.

STEP 4. If no segment can be moved to redyd® — (1 — &)U + aH ||so,
STOP.

If the current segment is part of a contiguous block of segments where one
segment in the block can be moved to red{i6e— (1 — a)U + aH ||oo, Move the
segment at the end of the contiguous block of segments that provides the greatest
reduction in||G — (1 — 4)U + G H||«. GO to Step 1.

Acknowledgments. The authors are grateful to the referees for providing
many helpful suggestions.
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