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A STOCHASTIC ROUNDOFF ERROR ANALYSIS
FOR THE FAST FOURIER TRANSFORM

DANIELA CALVETTI

To the memory of Peter Henrici

Abstract. We study the accuracy of the output of the Fast Fourier Transform
by estimating the expected value and the variance of the accompanying linear
forms in terms of the expected value and variance of the relative roundoff errors
for the elementary operations of addition and multiplication. We compare the
results with the corresponding ones for the direct algorithm for the Discrete
Fourier Transform, and we give indications of the relative performances when
different rounding schemes are used. We also present the results of numerical
experiments run to test the theoretical bounds and discuss their significance.

1. Introduction

1.1. Purpose. The subject of this paper is the analysis of the sensitivity of
the Fast Fourier Transform to numerical errors. The Fast Fourier Transform
(FFT) is an algorithm that evaluates the Discrete Fourier Transform of an «-
dimensional data vector of complex numbers in a number of operations much
smaller than the direct algorithm would require.

The model of error propagation that will be used is based on the usual as-
sumptions of floating-point arithmetic. The model is linear in the sense that the
absolute errors are approximated by the first-order terms of the Taylor expansion
in local relative errors, and is stochastic in the sense that these local errors are
regarded as random variables, independently and identically distributed (i.i.d.),
for each elementary operation in which they arise. This method of analysis will
allow us to measure the error in the final output by its statistical properties, i.e.,
its expected value and variance, rather than in worst-case terms. The statistical
properties of the final output will depend on the properties of the local errors
arising in elementary operations. Accordingly, a stochastic model of these local
errors is introduced and its validity is tested by numerical experiments.

1.2. Basic assumptions and methods of analysis. In the machine M, real
numbers x G R are represented by the elements of a discrete set RM , which,
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if x t¿ O, are of the form
x = ±mb ,

where b is the base of the machine, / is an integer such that -L < I < U,
and the mantissa m is a T-digit number in base b such that b~x <m< 1. If
x and y are elements of RM , and / is an elementary operation, the machine
will compute f(x, y)  , which is in RM and is such that

f(x,y)A = f(x,y)(\-e),
where |e| < eM, the bound eM depending only on M. The quantity e is
the local relative error related to the operation /, and it can be expressed as
follows:

r = fjx,y)-fjx,yf
fix,y)

In general, an algorithm is initiated from a set of data (x0, ... , xn_x) and
proceeds through a set of intermediate results tx, ... , tm, each of which is
computed through an elementary operation depending on the previous results
and the initial data, i.e.,

h = fkih > ••• ' tk_x ; xQ, ... , xn_x).
Hence, fk represents an elementary operation which depends explicitly on at
most two of the values tx, ... , tk_x; x0, ... , x,. In actual computation,
each Xj is replaced by its machine representation, x., and each t, is replaced
by a computed value r^. Hence, if ek is the local relative error for the kih
operation, then

tk ~ fkill ' • ■ • ' *k-\ > X0 ' ■ • • ' Xn-l)i^ ~ £k) •

If we assume that the initial data are machine numbers, then, using the differ-
entiability of the fk , it can be shown by induction on k that

(1.1) tAk = tk+Xk(e) + 0(\\e\\2),

where Xk is a homogeneous linear function of e = (ex, ... , ek).
The Xk in ( 1.1 ) are called the accompanying linear forms of the algorithm.

These forms can be used to compute the build-up of the first-order absolute
errors for the numbers computed in the algorithm by using the fact that all of
the e   are bounded in absolute value by eM :

\tAk-tk\<*k(\eM\) + 0(e2M).

An alternative approach, and one we shall use here, is to assume that the local
relative errors e are random variables with given distributions. In this case the
distributional properties of these first-order absolute errors can be estimated by
considering the properties of the accompanying linear forms, which are linear
combinations of random variables and hence random variables themselves.
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Because the Xk are linear, we can write
k

7=1

where the gkj are combinations of the t¡, and therefore depend on the initial
data. If we assume that the e   are independent identically distributed (i.i.d.)
random variables with means p and variances a , then the first two moments
of the Xk are of the form

k

Eih) = t*-T,Ski
7 = 1

and

var(^) = fj2-    ¿Ig*/    = \\gk\[\-°\

where || • ||2 indicates the l2 norm, and gk = (gkx, ... , gkk) ■
Some discussion of the interpretation of the local relative errors as random

variables is called for. The local relative error at the jlh. step of the algorithm,
e , is for any machine a function of the ;'th operation, f., and the two values
that this operation processes, say if and tf (I, k < j). Thus, it is a random
variable if the values of t¡ and tf are considered to be random variables, and
the distribution of e will depend on the distributions of tf and tf and on
the type of operation f,. In this work we will consider only the two operations
of addition and multiplication, and we will assume that these two operations
produce different distributions for the local errors. Thus the local errors occur-
ring in the algorithm under analysis will be separated into two groups, and the
contribution of each to the final error will be computed.

Given the group of local relative errors corresponding to the operation of
addition, we will assume that local errors, denoted by a^, are independently
and identically distributed (i.i.d.) with means pa and variances aa . Similarly,
we denote the local errors arising from multiplication by n¡ and denote their
means by pm and variances by am . The assumption of independence of the
local errors introduced at different steps can be questioned. For example, it
can be easily seen by following the algorithm for the FFT that in computing
the tk+x a few multiplications are repeated, therefore the same roundoff errors
are repeated and the relative roundoff errors for these particular operations are
correlated. However, these correlated errors affect different components of the
output vector. Less obvious correlation might be observed through numerical
experiments. In any case, it is reasonable to expect that, for large sets of data,
the effect of correlation will be relatively small.

Since Xk is linear, Xk(e) can now be written

Xk(e) = (Xa)k(a) + (Xm)k(n),
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where a = (ax, ... , a¡) and n = (nx, ... , 7i¡) with i + l = k. Thus,

E(Xk) = E((Xa)k) + E((Xm)k) = pa • ¿ gakj + /^ • £ *J
7=1 7=1

and
i i

var(Afc) = a\ ■ £ \gak/ + °l ■ £ l**/|2 ■
7=1 7=1

The expression for the mean will remain valid even without assuming indepen-
dence of the relative errors. The expression for the variance, on the other hand,
would need to contain all the terms of the correlation coefficients, which in the
case of independent variables are zero.

The main result of this paper are the bounds on E((Xa)) and E((Xm)) for
the final step of the Radix-2 Fast Fourier Transform expressed in terms of the
expected values of the relative roundoff errors for the elementary operations of
addition and multiplication.

1.3. Literature. Since the appearance of the article [7] in which Cooley and
Tukey proved the existence and provided an implementation of the Fast Fourier
Transform, several papers have appeared on the subject, and numerous versions
of the algorithm have been implemented for use in digital computers. Our
treatment of the FFT, based on reduction formulas for the case « = 2 , follows
Cooley, Lewis, and Welsh [5]. Several authors have dealt with implementations
of FFT algorithms; in addition to the ones already mentioned, see Singleton
[18], Uhrich [22], Cooley, Lewis, and Welsh [6], Gander and Mazzario [9], de
Boor [8], and Temperton [21]. A survey of implementations can be found in
Merz [16]. Recently, a highly optimized FFT subroutine has been included in
the Engineering and Scientific Subroutine Library (ESSL) for the IBM 3090
Vector Facility (see Agarwal and Cooley [1]).

The question of accuracy when the FFT is implemented on a finite-length-
word computer has been previously addressed by Gentleman and Sande [10].
They showed, by comparing upper bounds on roundoff noise, that the accu-
mulated roundoff error, in floating-point arithmetic, is considerably lower than
that obtained when the Discrete Fourier Transform is computed directly from
the definition. Welsh [23] provides upper and lower bounds on the root mean
square (RMS) error in a power-of-two algorithm in fixed-point arithmetic, and
Ramos [17] derives upper bounds for the RMS and maximum roundoff errors
in floating-point arithmetic for Radix-2 and Radix-4 FFT algorithms.

A statistical model for floating-point roundoff errors is used by Weinstein
[24] to predict the output noise variance, and by Kanero and Liu [15], who
derived expressions for the mean square error in a power-of-two FFT. A linear
model of error propagation is used by Henrici [14] in a worst-case rounding
error analysis for a power-of-two FFT in floating-point arithmetic.

Our roundoff error analysis for the Radix-2 FFT is more general than the
work of Weinstein [24] and Kanero and Liu [15] because it does not assume
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that the expected value of the relative roundoff errors is zero and, by differ-
entiating between the relative errors coming from addition and those coming
from multiplication, it can be used to predict the expected global error in the
output when different rounding schemes are used. In the special case where the
relative errors have zero mean, our upper bound on the variance agrees with
theirs. In the present work we apply the same type of roundoff error analysis
also to the traditional algorithm to compute the Discrete Fourier Transform
(pre-FFT), and we are able to point out how first- and second-order moments
of the relative errors play a fundamental role in establishing which algorithm
gives a more accurate output. The advantage of our analysis over the worst-case
approach of Ramos and Henrici is that the constant eM, largest possible rela-
tive roundoff error, is replaced by the mean value of the actual relative roundoff
errors, which, in general, will be smaller. The results of numerical experiments
are in good agreement with the theoretical findings.

The accompanying linear forms that we use to describe the first-order effects
of the local relative errors on the intermediate results, and therefore on the
output, were introduced by Stummel and Heiner [20] (see also Stummel [19]).
For fixed-point arithmetic this technique was used earlier by Henrici [11].

2. Error analysis of Fast Fourier Transform

2.1. Accompanying linear forms for the Discrete Fourier Transform. The Dis-
crete Fourier Transform is a method which can be used to analyze an arbitrary
set of data by transforming it into periodic components of certain frequencies,
whether or not the data appears to be periodic. Let œ = 2nj/n be the jth
Fourier frequency, 0 < j < n/2, and let x0, xx, ... , xn_x be any set of «
complex numbers. Then it is well known that, for / = 0,...,«- 1,

n-\

x^^y^exviioijt),
7=0

where

1   ""'(2.1) yj = --Y,xt-exp(-ia)jt).
t=o

The vector (y0, ... , yn_x) is called the Discrete Fourier Transform of (x0, xx,
••• ' Xn-\) •

The computation of the Discrete Fourier Transform directly from the defini-
tion is quite inefficient. The computation requires « complex multiplications
and a similar number of complex additions, hence is very costly to perform on
large data sets. It is well known that the algorithm known as the Radix-2 Fast
Fourier Transform computes the transformation much more efficiently, on the
order of n log2 « operations. In this paper we compare the accuracy of the two
methods of computation. Since the particular Fast Fourier Transform algorithm
that we are interested in requires n to be a power of 2, we assume that n = 2 .
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Furthermore, the components of the data vector x0,..., xn_x are assumed to
be machine numbers, thus eliminating the error inherent in rounding the origi-
nal data to machine numbers. In most applications the lack of accuracy in the
initial data makes this initial rounding insignificant.

It should be noticed that, so far as the accuracy of the output is concerned,
dividing by « in a base-2 machine does not introduce any roundoff error be-
cause, since « is a power of 2, it merely amounts to a shift in the exponent of
the number.

We obtain expressions for the accompanying linear forms for the Direct
Fourier Transform and, under reasonable assumptions, bounds on the mean
and variance of these forms. In order to compute recursively the components

1   "_1yk~ ñ'Y,xtwk¡>       k = 0,... ,n-l,
t=o

where w = exp(-2ni/n), we define the jth intermediate components

zk,j=J2xtw '•        k = Q, ...,«- 1,
r=0

for j = 0, ... , n- 1. Hence, for j = 0,...,«- 2 and k = 0, ... , n-l,

(2.2) zkJ+l = zkJ + xj+lwk'U+l).

Computationally,

z .Mj+iM
= *o'       h,j+i = ihj + xj+i-1î>       )k,0 - •*<)

where z is the computed value of z. Since for machine numbers a, b, and c
we have

(a + b • cf = (a + b ■ c( 1 + n)) ■ (1 + a),
where n is the relative error in multiplication and a is the relative error in
addition, we get for each k and j,

hj+i = {hj+xJ+i'*k'u+l)ii+Xk,j+i)}-ii+<*kj+i)

(2.3) =(zkJ + xj+1-wk-U+l))-(l+akJ+l)
~k-{j+\)

+ xj+x-w -nkJ+x,

where = indicates that only linear error terms have been retained.  Defining
the accompanying linear forms by

K,j+\ = Zk,j+\ ~ Zk,j+l '

we obtain from (2.2) and (2.3)

zkj+i+*kj+i = zkj + h,j + xj+i'ti>k'U+l)
-Jfc'O+l)

+ h,j+lak,j+l+Xj+l'W •**,,•+! •
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We now make the assumption that w = w . This is justified by the fact that
most programs which compute the Discrete Fourier Transform perform the
operations necessary to compute the w's in double precision. Now using (2.2)
and assuming that wk'u+x) = w 'U+X), we obtain, from (2.3), the recursion
equation for the linear forms

i2A) K,j+i=h,j + zk,j+iak,j+i+xj+iw°+l)k'nkj+i-

Decomposing the linear forms into the components generated by addition and
multiplication, we have

*kj = i*a)kj + i*m)k,j

where the (Xa)k     are only functions of the addition errors and the (Xm)k
are only functions of the multiplication errors. Thus, from (2.4) we obtain the
difference equations

ika)k,j+\ = ika)k,j + zk,j+i-ak,j+i

and

iXm)k,J+x = iXm)k,j + xj+iwU+1)k-7tk,j+i-

The initial conditions for the above difference equations are

(Xa)k<0 = 0,        (Xm)k<0 = 0.

Using our assumption that division by « introduces no additional error, we see
that

n-\ .     n-l*       n— L ,       n—i   /     t

iÁa)k,n-i = --T,zk,i<*k,i = --T.[T,xt
¿=1 ¡=1   \í=0

and similarly

tk
'Sk.t

1     "~l
iXm)k,n-i = n'^XtWtk'nk

t=\

for each fc = 0,...,»—1.
If we assume that the ak (.'s are i.i.d. with mean pa and variance a2 and

that the nk t's are i.i.d. with mean pm and variance am , then we can obtain
the following bounds on the expected value of the linear form for addition and
multiplication errors:

(2.5) <=» '=o i=i

=^4(n+i-^)||x||~
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and

(2.6) l^((^),,„-i)l<^-(l-i)lWloo
for k = 0, 1,...,«- 1.

Under the i.i.d. assumption on the errors we can also obtain the following
bounds for the variances of (Xa)k n_x and (Xm)k n_x:

1 w—1    i i n-l

I var((Xa)k n_x)\ < — ■ o] ■ £ £ \xt\2 < — ■ a] ■ £ HxH*
(2.7) " !=i t=o n i=i

= <v(—J-INI2
and

1 "_1 1
(2.8) | var((Xm)kn_x)\ < -j • <r2m -]T |xf|  < -^ • ̂  • ||x|£.

2.2. Accompanying linear forms for the Radix-2 Fast Fourier Transform. The
FFT, which was discovered by Cooley and Tukey in 1965 [7], reduces the num-
ber of arithmetic operations required to compute the Fourier transform. If «
is a power of 2, « = 2 , the "Duplication Theorem" can be applied recursively
until one arrives at the Fourier Transform of a vector of size 1, which is just
the identity. This algorithm is often referred to as the Radix-2 FFT; the imple-
mentation used here organizes the intermediate results in a pyramidal structure
and can be found in Henrici [13, pp. 367-371].

If we denote by q(j, m) the wth vector of the jth step of the iteration, then
for k = 0, 1, ... , 2J' - 1

4kiJ > m) = xv '    withiy =Pj(k) + 2Jm,

where p. is the bit-reversing function that maps the set of integers {0,1,...,
2J - 1} onto itself by sending

m := m0 + 2mx H-h 2!~ «j._,,       w(. e {0, 1},

to
Pj(m) := mj_x + 2mj_2 + ■ ■ ■ + 2J~ mQ

if j' ^ 0, while p0(0) := 0. Now let zk(j, m), for k = 0, ... , 2J - 1, denote
the components of the Discrete Fourier Transform of the vector q(j, m) ; from
the duplication formulas it follows that

(2.9) z0(0,m) = xv,    where v =p¡(m),

and

(2.10) zk(j, m) = {2(zk(j -l,2m) + wk2'~'' zk(j - 1, 2m + 1)),

(2.11) zk+2MJ, m) = \(zk(j -1,2m)- wk2'~'zk(j - 1, 2m + 1)),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ERROR ANALYSIS FOR THE FAST FOURIER TRANSFORM 763

where k = 0, 1, ... , 2j x - 1 ; m = 0,l, ... ,2l J' - 1 ; and j = 1, 2, ... , I.
Thus starting at j = 0, we can compute the Fourier coefficients recursively to
obtain the coefficients for j = I which are the Fourier coefficients of x.

Since each row of the pyramid contains the same number of entries, 2 , each
row can be thought of as a vector z. with components ids), s = 0.2 -1,
where

Zj(2Jm + k):=zk(j, m)

for ; = 0,1,..., /, m = 0,1,... , 2l~¡- 1, and k = 0, 1, ... , 2J' - 1. With
this notation, the formulas (2.9)—(2.11) become

ij(2jm + k + b2j'x) = \ ■ {z;_1(2;_1 -2m + k)
(2.12)

+ (-l)V2'"'z._1(27-1(2m + l) + fc)},

where k = 0, 1, ... , 2j ' - 1, m = 0, 1, ... , 2' J - 1, j = 1, 2, ...,/, and
b = 0, 1, and

(2.13)
for m = 0, 1,..., 2l - 1.

We can rewrite (2.12) in matrix notation in the following way:

(2.14) ij^Wjtj^,
where W. is a block diagonal matrix of the form

z0(m) = x(p¡(m))

■¡-j

V-1 „->7-l

h      -DJ

h       DJ

>7-l „tJ-1where /   is the 2      x 2      identity matrix and D- is the 2     x 2J     diagonal
matrix with entries ¡-i

DJ(p,p) = w{p-l)2

In particular, by induction on j, we have that zn_x = Fn_xz0 , where Fn_x =

uL-iK-
In the computation of the Discrete Fourier Transform via the Radix-2 Fast

Fourier Transform of a data vector x with « = 2 entries we will need to
compute the following quantities for b = 0 and b = 1 :

Zj.(2;'«7 + k + b2J~l) = \ ■ [Zj_x(2j~x -2m + k) + (-l)bwk2'~'

(2,15) ■zj_x(2j-x(2m + l) + k)],
zrj(m) = x[p!(m)],

for m = 0, 1, ... , 2 - 1, where w := exp(-2ni/2 ).
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Let a be the local error due to addition and let n¡ be the local error due
to multiplication in the computation of the components of z, . Then in com-
putation:

Zj(2jm + k + b2j~x) = \ • [z;_1(2;_1 -2m + k)

+ (-l)bwk2'''zj_x(2i~x(2m + l) + k)f.

Since z = z + X, multiplication by \ produces no error, and we assume that

w        does not contain any error, it follows that

Zj(2jm + k + b2j~x)

= Zj(2jm + k + b2j~x) + Xj(2Jm + k + b2j~x)

= Zj(2jm + k + b2J~x)

+ Î • VLj-i&m + k) + (-l)bwk2'~' -X.^m + 2j'x + k)

+ (-l)bwk2'~JZj_x(2jm + 27"1 +k)n(j, m,k, b)]

+ Zj(2Jm + k + b2J~l)a(j ,m,k,b),

where a(j, m, k, b) and n(j, m,k,b) are the relative errors for addition
and multiplication introduced in the computation of the (2Jm + k + b2j~ )th
entry of the vector z . Therefore,

Xj(2jm + k + b2j~x)

= 5 • [A;_1(2;«i + k) + (-l)bwk2'~' -Xj^m + 2J~X + k)

+ (-l)bwk2'~1 zj_x(2im + 2i~x +k)n(j, m,k,b)]

+ Zj(2Jm + k + b2j~x)a(j ,m,k,b).

Again decomposing X as X = Xa + Xn to account separately for errors due to
additions and errors due to multiplications, we have that

Xcxj(2Jm + k + b2j~x) = { • [Xaj_x(2Jm + k)

(2.16) + (-l)bwk2'~JXaj_x(2jm + 2J~X + k)]

+ Zj(2Jm + k + b2J~l)a(j, m,k,b)

and

Xmj(2jm + k + b2J~x)

(2.17) = i • [Xmj_x(2jm + k) + (-l)b ■ wk2'~'Xmj_x(2jm + 2j~x + k)

+ (-l)bwk2'''zj_x(2jm + 2j~x + k)n(j ,m,k,b)],
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where b is either 0 or 1. The initial conditions are

(2.18) Xa0(m) = 0

and

(2.19) Xn0(m) = 0,

since we assume that the data are machine numbers and that the bit reversing
function does not introduce any rounding error.

Let X&j be the vector of Xa (p), for 0 < p < n , z • the vector of the zip),
and a the vector of relative roundoff errors coming from additions introduced
in the components of z   at the ;th iteration. Then, in vector notation,

Aa;.+1 = rVj+lXAj + zj+x D aj+1,       j > 0,
Aa0 = 0,

where by x D y we indicate the componentwise multiplication of the two vectors
x and y. Therefore,

¿a7+l » £ WJ+l ■ ■ ■ Wk+2Íh+ia<*k+i) + *}+l(z,°«,) + («/+! °«,+l) •
k=0

In particular,
1-3

(2.20) X*l = J£/W¡...Wk+2(zk+xnak+x) + W!(zl_xnal_l) + (zina¡).
k=0

Since each matrix Wp has exactly two nonzero entries in each row, each one of
absolute value one-half, and for each k the ak(p) are i.i.d. random variables
with mean pa , we have that, for each component of Xa¡,

l*(M)l<¿K+I IL^ + INL/V
k=0

Since zk = Y\r=k Wrz0, we have HzJI^ < HxH^ . Hence, for each entry of X&¡,

(2.21) I^CAa),! < log2« -HxUv
We now find a bound for the variance of the components of the vector Aa ,

that is, for the diagonal entries of the covariance matrix of Aa , cov(Aa ).

Proposition 2.2.1. // x is an n-vector of independent random variables and A
is an n x « matrix, then

cov(^x) = A cov(x)A ,

where cov(x) ¿v the diagonal matrix such that cov(x)u = var^) and Ä is the
transpose of A.
Proof. See Arnold [2, p. 41].   D
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Since the components of the vectors ak are assumed to be i.i.d. random
variables with mean pa and variance aa , the covariance matrix of (zkOak)
is a diagonal matrix, Ak, such that Ak(d, d) = aa(zk(d)) . From (2.20) and
Proposition 2.2.1 it follows that

7-3

cov(X*j) = <T2aJ2Wj---Wk+2Z2k+xWk'k+2 W
k=0

+ o2aWjZ2_xw] + a2aZ),

where Zk+X is the n x « diagonal matrix such that

In particular,

Z2k+l(d,d) = (zk+x(d))2

cov(Aa/)
1-3
¿2wr~ Wk+2Z2M K+2 ■■■wi + w,zL w'i + zf
,k=0

Since each Wk has exactly two entries in each row and column, each one of
absolute value one-half, and \zk\ < IMI^, then for each entry of the matrix
cow(Xa¡)

(2.22) co\(Xaj) < log2 «cr^llxH^

We now turn our attention to Xm. Let Am be the vector with compo-
nents XmÂp), and « the vector of the relative roundoff errors coming from
multiplication introduced at the j\Yi iteration. Then

Xmj(2Jm + k + b2J~x) = W^m^^m + k)

+ ^(-l)bwk2~\zj_xUnj)(21m + k),       ;>0,

Am0 = 0.

If we define the vector b, as

bj(p) = \wp2'~'(-l)p^,
,i-iwhere p = ^2s=0ps2 , then (2.17) can be written, in vector notation, as

r=j+\ k=0t=j+\        s=\

In particular,

(2.23)

1-3

*»/=E^"-»i+2fl>*+l°**°«*+l)
k=0

+ Wl(hl_xUz,_2Unl_x) + (b, Dz,., Un,).
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Since, for each k, the nk(p) are i.i.d. random variables with mean pm, we
have, for each component of Am,,

1 l~2 1
\E(^mt)\ < _- ¿2 WL^ + 2 llVilloc^m -

k=0

hence

(2.24) ^(Am/)! < i log2 «||x||oo//m .

Now we obtain an estimate for a bound for the variance of the components
of the vector Am^ . Since the components of the vectors nk are assumed to be
i.i.d. random variables with mean pm and variance am , the covariance matrix
of (b^. Hzk Dak) is a diagonal matrix, Ak , such that Ak(d, d) = \a2(zk(d)) .
From (2.23) and Proposition 2.2.1 it follows that

cov(Am.) = -a2m
7-3
£^--^+2zX+2--X

Ut=0

^i^zlX + aizl,
where Zk+X is the « x « diagonal matrix such that

Z2k+X(d,d) = (zk+X(d))2.

In particular,
r/-3

r2,cov(Am/) = -a2m £*,••• wk+2zl K+2 -w¡+ WjZf_2 W¡ + z]_
7c=0

Hence, for each entry of the matrix cov(Am/),

(2.25) cov(Am7)< AaJIxll^-log^.

3. A ROUNDING MODEL AND EXPERIMENTAL RESULTS

The purpose of this section is to provide estimates of the first and second
moment of the relative errors due to the elementary operations used by the
algorithms that we have analyzed, that is, addition and multiplication. These
relative errors are for a particular type of rounding and are not necessarily ap-
plicable for any real machine. However, they will illustrate the type of rounding
error magnitude that can be encountered and will serve as a model for estab-
lishing the validity of the error estimates in the Fast Fourier Transform.

In our rounding model we assume that b, an even positive integer, is the
base of the number system in the machine and each floating-point number x
is represented by the pair (m, I) such that

x = mb , -L<l<U,
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and «z is a T-digit number, with first digit different from zero if x ^ 0. Given
any number x between ¿T( +    and bu~x, we round it to T-digit precision

— T"— 1 /
by adding \ ' to it, then writing the sum in the form mb , where m is
a number in base b whose first digit is different from zero, and finally by
truncating m to T digits. Note that if x e [0, ¿?_(¿+1)), the roundoff process
we use is undefined (on a machine, an underflow message would be returned).
In this case we will set x = 0. In the present paper we will not worry about
the machine representation of numbers greater than or equal to bu , which on
a machine would cause an overflow error.

If we assume the real data to have a uniform distribution, the relative round-
off error for the operations of addition and multiplication inherit a stochastic
structure. However, owing to the complexity of the model, we decided to per-
form numerical experiments to estimate the expected value and the variance of
the relative roundoff error for the operations of addition and multiplication in
our model.

In order to estimate numerically the first and second moment of the relative
roundoff error for addition, we generated 60,000 pairs of independent, pseudo-
random numbers from the uniform (-1, 1) distribution. The interval (-1, 1)
was chosen to be consistent with the numerical test of the roundoff error prop-
agation for the FFT on independent random data from the uniform (0,1) dis-
tribution, where pairs of numbers may be either added or subtracted. Each
number was rounded to a T-digit base 10 floating-point number (where T
ranged from 3 to 8), and the sum of the two rounded numbers, x + y, was
evaluated in 18-digit precision and rounded to T digits, (x + y) . The quan-
tity ((x + y) - (x + y)A)/(x + y) was computed in 18-digit precision and its
mean and variance were evaluated over the 60,000 samples. It is interesting
to notice that the values obtained for the mean are extremely consistent with
a value of approximately -.12x10      for all values of T chosen, while the

_27"*
value of the variance is clearly of order 10 . It is important to note that a
common assumption that the mean is zero (e.g., Weinstein [24]) is not valid, at
least for our model.

The expected value and variance of the relative roundoff error for multipli-
cation was estimated numerically in a very similar way. For each value of T
chosen, 100,000 pairs of independent random numbers from the uniform (0,1)
distribution were generated and then rounded to T-digit floating-point num-
bers in base 10. The product of each pair of rounded numbers was computed
in 18-digit precision, x-y , then rounded to T-digit precision, (x • y) . The
quantity ((x • y) - (x • y)A)/(x • v) was computed and its mean and variance
evaluated for the 100,000 pairs of numbers. The value of the sample variance

—IT
was 1.5x10 for all values of T, while the value of the sample mean ranged
from -.1 x 10_r_1 to .3 x 10_r_ .To test our theoretical predictions on the
mean and variance of the global error for the Radix-2 FFT, we generated several
vectors of complex numbers whose real and imaginary parts are independent
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Table 3.1
Infinity norm of the mean and variance of the global error in the
FFT. Sample size is 10,000 for M = 8, 16, 32, and 5,000
for M = 64.

M
4 8
5 8
6 8

mean
.28E-3
.28 E-4
.28E-5

4 16     .44E-3
5 16     .44 E-4
6 16     .45E-5
4 32     .73E-3
5 32     .74 E-4
6 32     .73E-5
4 64     .11E-2
5 64     .11E-3
6 64     .11E-4

variance
.21E-07
.21E-09
.21E-11
.24E-07
.25E-09
.25E-11
.35E-07
.36E-09
.35E-11
.37E-07
.38E-09
.37E-11

pseudorandom numbers from the uniform (0,1) distribution. For each value
of T = 4, 5, 6 we generated 10,000 vectors of length M = 8, 16, and 32,
and 5,000 vectors of length M = 64. For each vector we rounded the real and
imaginary part of each entry to T digits and we computed the Discrete Fourier
Transform via the Radix-2 Fast Fourier Transform algorithm, where the result
of each addition and multiplication, other than those used for the computation
of the w's, was rounded to T digits. We then computed the Discrete Fourier
Transform of the same rounded data via the FFT algorithm with all operations
performed in double precision (18 digits in the machine we used). The mean
and the variance of the absolute value of the difference in each component of
the Discrete Fourier Transform was then computed.

In order to compare the sizes of the vectors of means and variances, we
computed their infinity norms. The infinity norms of these vectors for different
length of the data vector and different values of T are listed in Table 3.1 and
Table 3.2. Notice that the values are extremely consistent, and their dependence
on T as well as on the length of the data vector is quite clear.

The theoretical results suggested that the infinity norm of the mean absolute
error should grow like log2 « • IMIoo^ ' trieref°re we expect the ratio between the
infinity norms of the mean absolute error for consecutive values of / = log2 «
to be approximately

log2(2w)
log,« « = 1 + 1

log,« h,

where h is the ratio of the infinity norms of the 2«-dimensional data vectors
to the infinity norm of «-dimensional data vectors. This value approaches 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



770 DANIELA CALVETTI

Table 3.2
Infinity norm of the mean and variance of the global error in the
FFT. Sample size is 1, 000 for each T.

T      M        mean variance"1       128      .16E-3 .40E-09

6 128  .16E-4 .41 E-ll
7 128  .16E-5 .40E-13
5 256  .25E-3 .59E-09
6 256  .25E-4 .58E-11
7 256  .25E-5 .58E-13
5 512  .37E-3 .63E-09
6 512  .37E-4 .63E-11
7 512  .37E-5 .63E-13
5 1024 .55 E-3 .67E-09
6 1024 .55E-4 .68E-11
7 1024 .55E-5 .66E-13

as n becomes large. The numerical experiments indicate that the ratio of the
infinity norm of the mean absolute error for consecutive values of / decreases
as « becomes larger, going from about 1.9 to approximately 1.4. It should
be pointed out that even though the results of the numerical experiments are
in quite good agreement with the theoretical results, this is not sufficient to
assume that the predicted expected value and variance of the global error in the
output of the Fast Fourier Transform will be as close to the sample values when
the distribution of the real and imaginary part of the data is not uniform on
(0,1). Numerical experiments testing the deviation of the theoretical expected
value and variance of the global error from the sample values corresponding to
different distributions of the data are currently being performed.

4. Summary of results

A statistical model of error propagation has been used to compare bounds on
the absolute roundoff error of the Radix-2 Fast Fourier Transform (FFT) and
the traditional Fourier Transform (TFT). In this paper the bounds are given
in terms of the norm of the input data, the size of the input vector, and the
expected values of the relative roundoff errors arising from the operations of
addition and multiplication. The bounds themselves are expected values and
variances of the linear part of the absolute roundoff error for the output vector
of the Fourier Transform. These estimates agree with earlier results in the sense
that the upper bound on the variance of the absolute error is essentially the same
as in Kanero and Liu [15], and the bounds on the mean absolute error are of
the same order as those found by Henrici [14] when the same scalar is used in
the definition of FFT. A new contribution given by our work is that we apply
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Table 4.1
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\E(Xa)\ <
\E(Xm)\ <
|var(A<a)| <

|var(Am)| <

TFT
3(" + ! - ïïKIWI

:i-^ m"XHoc

(^il)CT2||x||2

1     2 il   it 2

FFT

\og2npa\\x\\

i log2 n//m||x||

l0g2«(72||x|¿

\ log2 naa ||x||

our roundoff error analysis also to the traditional algorithm (pre 1965), which
computes the discrete Fourier transform directly from the definition, and we are
therefore able to give an indication of which algorithm produces more accurate
output in the context of the rounding scheme used. In particular, it will turn
out that for very small expected value of the relative error for addition and
multiplication, the traditional algorithm will produce more accurate results.

The type of error analysis carried out in this paper is believed to be more
useful than those performed previously. Because the bounds are given in terms
of the expected values of the relative roundoff errors of addition and multiplica-
tion, pa and pm , they are more sensitive to the particular rounding scheme of a
given computer. Moreover, they are in some ways more realistic than worst-case
bounds involving the absolute roundoff error eM , as these worst-case bounds
are often severe overestimates (see Ramos [17]).

Table 4.1 shows the derived bounds on the expected values and variances of
the absolute roundoff error for the transform algorithms FFT and TFT due to
both addition and multiplication. Several of these results are worthy of special
comment.

First of all, it should be noticed that the bounds on the expected value on the
accompanying linear forms for both addition and multiplication for the FFT
grow like log2 « • p, where p is the expected value of the relative error for
the elementary operation, while for the TFT the bound on the expected value
of the accompanying linear form for addition is of the order of « • pa, and
the bound on the accompanying linear form for multiplication is of the order
of pm . Therefore we come to the conclusion that the FFT can be considered
more accurate than the TFT only if the expected value of the relative error for
addition is of the same size or larger than the expected value of the relative
error for multiplication. In the case that both expected relative errors are zero,
which was actually assumed by Weinstein [24] and by Kanero and Liu [15], a
measure of the numerical accuracy of the algorithms is given by the variance of
the absolute error.

It is also interesting to notice that while for the FFT the bounds on the
variance for the accompanying linear forms for both addition and multiplication

2 2are of the order of log2 n ■ a , where a is the variance of the relative error
for the operation considered, for the TFT the bound on the variance for the
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accompanying linear form for addition is of the order of j¡ • a2 and the bound
on the variance for the accompanying linear form for multiplication is of the
order of \-am. Therefore, in case the rounding scheme used has zero mean
relative error for both addition and multiplication, as assumed by Kanero and
Liu [15] and in Weinstein [24], the TFT should be considered more accurate
than the FFT in the sense that the absolute error in the output is expected to
deviate less from the zero mean.

The bounds in Table 4.1 were obtained by assuming that the relative round-
off errors introduced at each step are mutually independent and independent
of the relative roundoff errors introduced at previous steps, and by neglecting
second-order effects. Both these hypotheses should be tested numerically, given
a particular rounding scheme. For example, the E(Xa) term ignores terms of

2 2 2the order pa, and as long as pa is smaller than aa the contribution of the
neglected terms will not be significant. However, should the rounding scheme
used have larger pa , the contribution of the quadratic terms in the local errors
need be considered in order to have an accurate roundoff error analysis.

In an attempt to verify our results, we constructed a model that simulates a
rounding scheme. This model was defined in §3, and numerical attempts were
made to predict the values of pa and pm. Numerical estimates of pa and
pm were determined experimentally on large samples, for b = 10 and different
values of T. The numerical experiments consistently indicated the value of the

_27"
variance for the relative error for both operations to be of the order of 10 ,
which implies that in both cases the standard deviation is about 10~ . The
values of the sample mean for addition were so consistent as to suggest that the
true value of pa is, when b = 10, very close to 10 .It should be emphasized
that these numerical results are only valid for the rounding model described in
§3.

The numerical results from this rounding model suggest that the hypothesis
that the expected values of the local relative errors for addition and multipli-
cation are zero, which was assumed in the two previous statistical analyses of
roundoff errors for the Radix-2 FFT (see [15, 24]) may not be valid.

The numerical experiments were performed to verify our results on the FFT
when the real and imaginary parts of the data were uniformly distributed in the
interval (0,1). The base of the number system was chosen to be 10, the number
of digits of the mantissa, T, ranged from 3 to 6, and the size « of the data
vector varied from 8 to 1024. While the agreement of the experimental results
with the theory was quite good, numerical experiments testing the validity of
the theoretical results for different distributions of the data are called for and
are in progress.
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