
Introduction

There are three different mechanisms of
discrete, continuous, and hybrid material
transportation in open mines, including (but
not limited to) (i) truck and shovel system
(discrete), (ii) slurry piping (continuous), and
(iii) in-pit crusher and conveyor belts (hybrid).
Although each mechanism has its own
advantages, the truck and shovel system is the
dominant method of material loading and
handling in open pit mines, owing to its high
production rate, excellent flexibility, relatively
low operating and capital costs, and good
maintainability. General objectives of optimal
equipment selection include (i) meeting the
long- and short-term requirements of
production rates, (ii) human and equipment
safety, (iii) environmental protection, and (iv)
economic operations (Figure 1).

The two most important decision factors
regarding selection of a truck and shovel
system are the equipment geometry and size.

Geometry (equipment width, weight, turning
radius, swing angle, etc.) is controlled mostly
by mine design and layout, as well as the
operational constraints. After selection of a
favorable geometry based on the constraints,
the next step is to select the equipment
manufacturer. Once the geometry and
manufacturer are selected, the next step is to
decide on the models (bucket size) and
required numbers of each unit. 

Because of the undeniable effect of a
proper truck-shovel system selection and
sizing plan on open pit mines economics,
many researchers have tried to study this issue
using different techniques such as linear
programming (Edwards, Malekzadeh, and
Yisa, 2001), analytical hierarchy process
(Ayağ, 2007), nonlinear programming
(Søgaard and Sørensen, 2004), genetic
algorithms (Aghajani, Osanloo, and
Akbarpour, 2007; Marzouk and Moselhi,
2003), mixed integer programming
(Camarena, Gracia, and Cabrera Sixto, 2004),
machine repair modelling (Krause and
Musingwini, 2007), queuing theory
(Komljenovic, Paraszczak, and Fytas, 2004),
and conventional spreadsheet calculations
based on experience, engineering  judgment,
and manufacturers’ catalogues  (Burt et al.,
2005). Due to the large number of parameters
that affect the system performance and the
stochastic nature of the input variables,
developing a deterministic mathematical
optimization solution for the problem is
extremely difficult, if not impossible (Haldar
and Mahaderan, 2000).
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A truck and shovel operation is a set of discrete-event
activities, i.e. loading, hauling, dumping, and returning,
which all occur in a stochastic manner (Figure 2). Discrete-
event system simulation (DES) is a modelling method for
such time-discrete and probabilistic phenomena (Schriber,
1992). Other abovementioned techniques have different
limitations in addressing this problem comprehensively and
accurately (Schriber, 1991). These limitations include
deterministic pre-assumptions and/or  not considering the
real-world system specifications through derivation and
application of relevant time-frequency distributions for the
different operations involved. Most of these techniques
therefore do not lead to robust models (Burt et al., 2005).
However, DES has been employed by different researchers in
mining engineering through available software and
languages such as GPSS, SIMAN-ARENA, and SLAM (Baffi
and Ataeepur, 1996; Runciman, Vagenas, and Newson, 1996;
Awuah-Offei, Temeng, and Al-Hassan, 2003; Ross et al.,
2010; Sturgul, and Thurgood, 1993). Most of the studies to
date have endeavoured to evaluate some what-if scenarios in
order to understand the possible effects of changing different
input variables on the overall economics of current operating
mines. For instance, (Stout et al., 2013) used Arena to
simulate a truck and shovel operation. Very good background
reviews of the application of this technique in the mining
industry can be found in Sturgul, (1995, 1999) and Hollocks,
(2006). 

Previous studies (Burt et al., 2005) have shown that
different approaches, including deterministic, stochastic, and
experimental methodologies, result in considerable
differences in outputs. These techniques lead to different
solutions regardless of the quality of the technique/software
itself or the knowledge of the modelling team. Hence, the first
step is to develop a comprehensive simulation framework for
the problem of truck and shovel selection, sizing, and
dispatching in open pit mines that obtains nearly the same
optimal results for the same input variables, regardless of the
technique employed (Burt, and Caccetta, 2014). In this study,
a simulation technique was selected to solve the problem due
to: i) possibility of incorporating uncertainties in different
governing activities of the system, ii) extensive background
of application of the technique in previous research and real
world practices, iii) dynamic nature of the technique, which
makes it applicable during the entire life of mine, and iv)
relatively wide range of available software and languages.

This paper introduces a methodology and sensitivity
analysis procedure for mine loading and haulage system
selection and sizing. In addition, the capability of the DES
technique in bulk material handling simulation is
demonstrated through the application of the GPSS/H
simulation language. The proposed framework was validated
and tested in a large open pit mine. All steps in the proposed
framework were followed attentively to ensure its
effectiveness. However, due to space limitation, only the most
important main components are discussed here, i.e. problem
definition, data acquisition, statistical analysis, simulation
language (technique) selection, model construction, model
verification and validation, and sensitivity analysis. More
information about the simulation history and GPSS/H
background is given in Schriber (1992), Hollocks (2006),
Nance (1995), Pidd and Carvalho (2006), and Robinson,
(2005). The paper is organized as follows:

➤ Proposed simulation frameworks for both new and
existing systems 

➤ Introduction of the case study 
➤ Model building, verification, and validation 
➤ Flow chart for performing sensitivity analysis 
➤ Results, with a discussion of the optimal results
➤ Concluding remarks.

Several important steps of simulation of the case study
are presented in more details in the Appendix. 

Simulation framework

The lack of a comprehensive simulation framework in this
field has resulted in considerably different solutions to the
problem of truck and shovel system selection and sizing.
Major source of these confusing differences include, but are
not limited to: 

➤ Different simulation approaches
➤ Different data requirements (quantity, quality, and

statistical methodology)
➤ Insufficient technical communication during all phases

of the project
➤ Insufficient determination of the objectives, resources,

and constraints. 

This study proposes a truck and shovel simulation
framework for minimizing the errors due to erroneous or
inaccurate assumptions and procedures, and provides a step-
by-step simulation guideline. The algorithm attempts to
render a framework for truck and shovel operation
simulation. In the construction of the simulation framework,
different blocks (Figure 2) were obtained from most of the

�
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Figure 1—Essentials of equipment selection 

Figure 2—Schematic of truck and shovel operation



available journal articles. The most important findings of the
previous studies were selected and incorporated to achieve an
efficient simulation strategy. 

The first step in developing this framework, with the
goals of completeness, comprehensiveness, and robustness,
was to identify the major components of a general simulation
modelling practice, regardless of the area of application. A
general simulation framework is illustrated in Figure 3. This
primary platform was set to serve as the structure of the
framework and consequently was customized through the
introduction of open pit mining specifications. These specified
characteristics were derived from published articles in the
field of mining operations simulation and modelling and were
incorporated in the base structure. The base framework was
composed of the following components:

➤ Problem definition, objectives, resources, and
limitations:

➤ Data acquisition and statistical processing
➤ Model construction
➤ Model modification, verification, and validation
➤ Sensitivity analysis and decision-making strategies.

It should be noted that there are several pitfalls in a
general simulation practice (Maria, 1997) as follows: unclear
objective, invalid model, simulation model too complex or too
simple, erroneous assumptions, undocumented assumptions,
and using the wrong input probability distribution.

The above pitfalls were incorporated in the proposed
simulation framework for the truck and shovel selection and
sizing problem.

The secondary mine-specific characteristics that
contribute to mining operational performance include:

(1)  Incorporation of the mining-environmental induced
constraints

(2)  Different traffic-dispatching scenarios
(3)  Different loading methods
(4)  Selection of hybrid or uniform loading/haulage fleets.

The framework is divided in two categories, for new and
existing systems (Figures 4 and 5 respectively). Since in a
new mine there is no operational data available, the
simulation procedure needs extra considerations. These
considerations are illustrated in the flow chart of Figure 4. In
addition, a sensitivity analysis algorithm is presented later
(Figure 12) that follows the simulation framework to
evaluate different scenarios in mine truck and shovel system
selection and sizing.

The main advantage of this simulation framework in
comparison with other research is its comprehensive
addressing of the problem of truck and shovel selection. All
other available practices try to find solutions to specific parts
of the problem, mainly in the form of what-if analysis. For
instance, what would be the effect of adding one extra truck
to the haulage fleet? Moreover, the framework is capable of
addressing both a new and an existing open pit mine
operation. This framework can add to the strength of
simulation techniques in solving the problem compared to
other abovementioned methods, which address the problem
only partially. 

Although this framework was validated in a large surface
mine in this study, for other projects some modifications
should be incorporated accordingly. For instance, production
planning strategies in a mine with restricted processing plant
requirements or ore grade limits dictate more frequent

A stochastic simulation framework for truck and shovel selection and sizing in open pit mines
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Figure 3—A general simulation flow chart (Banks, 2010)



relocations of working faces, compared with a mine with
more stable and predictable ore grade fluctuations. These
differences introduce frequent changes in haulage distances
and, hence, to the simulation approach at hand. Another
example is the difference between a small surface mine with
more short-term concentrated production plans and a large
mine with more strategic and long-term plans. These types of
specifications require more or less consideration of some
blocks of the framework than others, accordingly (Figure 5).

Case study

Golegohar iron ore mine is located in southern Iran, 50 km
from Sirjan, in the southwest of Kerman Province (latitude
29°7′N and longitude 55°19′E, Figure 6). This iron complex
includes six  known ore reserves and is one of the largest
producers and exporters of iron concentrate in the country. 
It has a measured and indicated reserve of over 1 100 Mt of
ore (Golegohar Iron Ore Complex, 2006). In Golegohar, over 
10 Mt of iron concentrate is produced annually, through

crushing, dry and wet grinding, and low-intensity magnetic
separation (Figure 7). 

To test the simulation framework, the operation of the
current haulage system at Golegohar was investigated and
necessary data collected. After statistical analysis of the raw
data and deriving probabilistic distributions for each data-set

A stochastic simulation framework for truck and shovel selection and sizing in open pit mines
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Figure 5a—The proposed simulation framework for existing mines;

Phase I: Preparation and information

Figure 4—The proposed simulation framework for new mines

Figure 5b—The proposed simulation framework for existing mines;

Phase II: Execution

Figure 5c—The proposed simulation framework for existing mines;

Phase III: Evaluation and decision
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Figure 6—Location of Golegohar  iron ore mine

(Carlsberg, 2011), a DES model was coded in GPSS/H
(student version). In the next step, the proposed model was
verified and then validated by comparing it with the real
mine data by means of statistical tests (e.g. chi square)
(Zimmermann, 2008). A series of sensitivity analyses were
performed for the purpose of establishing the optimum
number of cable shovels and dump trucks required to meet
the production targets with the maximum possible system
productivity. The simulation model was run with different
combinations of the truck and shovel system numbers in a
matrix pattern in order to identify the most appropriate
system. The major constraint was set to achieve the annual

production rate, and the main goal to accomplish the job with
a minimum amount of equipment. Different scenarios were
tested to find the highest equipment utilization and minimum
idle and waiting time in queues. A dispatching system was
introduced with the main objective of minimizing shovel idle
time and the number of trucks in queues. The most important
data acquired in the observation phase included mine
production plans and layouts, current fleet geometry and
parameters, and time data of the real system. Details of the
applied methodology are illustrated in Figure 5.

Observation of the current system 

Direct observation of the loading and haulage operations over
150 days, during different shifts and hours, resulted in
recognition of the following problems in the current system:

➤ Truck loading method was single-sided
➤ On many occasions, only two out of the four cable

shovels were operating. The other two were not used,
either because of frequent mechanical failures or lack
of proper working faces

➤ Shovels idle times were too long (mostly over 6
minutes). On some occasions, three or more trucks
were arriving together (trucks queue)

➤ Almost always, there was a long queue before the
primary crusher. The average queue length was four
trucks (in random observations) and the average
waiting time for each truck was 11.5 minutes

➤ There was no haulage fleet dispatching system in the
mine

➤ The main bottleneck in the haulage fleet flow was at
the primary crusher.

Figure 7—Working area showing main ramps, roads and dumps

(source: Google Earth, 2014)



Model construction

After obtaining and analysing all necessary data, the next
step was to construct a simulation model by programming in
GPSS/H (student version). GPSS/H (General Purpose
Simulation System) is both a computer language and a
computer program. It was designed for studying systems
represented by a series of discrete events. GPSS/H is a low-
level, nonprocedural language. GPSS/H was selected as the
simulation language as part of this study, for the following
reasons: 

(i) It is multivendor, so it is continually being upgraded
(ii) It is widely available 
(iii) It is written in machine language and, therefore, is

inherently very fast
(iv) It can solve a wide variety of problems rapidly and

accurately
(v) It has proved to be extremely versatile for modelling

mining operations. These include both surface and
underground operations, as well as material flow
through a smelter, mill, and refinery. It is easily
coupled with PROOF for making animations
(Sturgul, 2000).

A block diagram of the case study is illustrated in 
Figure 8.

It should be noted that, due to the application of
probability distribution and random numbers in a queue
system simulation (Figure 8), and for error reduction
purposes, the final model, which consisted of 115 GPSS
blocks, was executed with different random data-sets.

Model animation and validation

Some issues can be investigated easily in an animation that
would be very hard to catch in the simulation model – like
collisions or subtle logic glitches. The ability to see a model in
action makes animation a great verification tool for the model

builder (Ståhl et al., 2011; Wolverine Software, 2013;
University of Nevada, 2013). An animation model of the case
study was executed by importing the GPSS/H model outputs
to Proof Animation software. Observation of the animation
model for different durations demonstrated that the proposed
model logic had been achieved.

Model validation, as the most important phase of a DES
exercise, was performed through comparison of the model
outputs with the real system’s data by designing statistical
tests, e.g. chi-square and Kolmogorov-Smirnov at 5% signif-
icance level (Ross, 2006; Zimmermann, 2008). For this
purpose, a new set of actual data, separate from the data
used in the model, was collected. Three samples of the
comparison results are illustrated in Figures 9–11, which
were validated through chi-square method at the 5% signif-
icance level.

Further processing

A flow chart of the sensitivity analysis is presented in 
Figure 12. To evaluate the effectiveness of employing an
appropriate traffic-dispatching strategy, the current model
was modified to take this issue into account. The main goal
of the dispatching algorithm was set to assign the incoming
trucks first to the idlest shovels. However, many other what-
if type questions may be answered by this model with
minimum cost, safety issues, and disturbance to the current
operation routines e.g. the effect of operators’ skills, changes
in road grades, the possibility of increasing the primary
crusher’s capacity, purchasing new trucks to replace some
older ones with low mechanical availabilities (Burt et al.,
2011), changing the current truck sizes (Bozorgebrahimi,
Hall, and Morin, 2005), employing a hybrid haulage fleet,
different dispatching strategies (Alarie and Gamache, 2002),
feasibility of changing the current system to a conveyor belt
system as the depth of the mine increases (Mcnearny and
Nie, 2000).

A stochastic simulation framework for truck and shovel selection and sizing in open pit mines
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Figure 8—Block diagram of the case study operation flow
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Discussion of the simulation results

To demonstrate the capabilities of simulation in what-if
analysis, a sample of the many analyses conducted in this
study is discussed below:

Figure 13 illustrates the effect of the haulage fleet size on
the number of production cycles per shift when only two
shovels are operating. Increasing the number of dump trucks
results in an increase of production rate per shift up to an
optimum point. After that, because of the haulage fleet
oversize and limited number of shovels (only two in this
case), much time will be wasted in different truck queues at
shovels. This results in no further increase in production.
After this point the extra dump trucks in the system will be

Figure 9—Production comparison

Figure 10—Shovel utilization

Figure 11—Number of idle trucks (queue length)

Figure 12—Flow chart of the sensitivity analysis



put into queues, thus making no contribution to production
(Sturgul, 1995). Thus, the maximum production rate with
two shovels is achieved with 22 dump trucks. This rate is 
9.5 M t/a, which does not meet the minimum production
requirements of the mine. At least three shovels are needed.
The effect of the number of shovels on production rate is
demonstrated in Figure 14. The simulation outputs show that
increasing the number of shovels will result in more
production with an equal number of trucks. For this range of
truck numbers, operation with three and four shovels results
in almost the same production rates. This is due to the fact
that at least one of the shovels would be idle for most of a

shift. Obviously, operating four loaders is not justified. At
this point, three cable shovels will be the best choice for the
mine’s production target.

The effect of the size of both the haulage and the loading
fleet on effective shovel working hours is illustrated in 
Figure 15.

Figure 16 shows the effect of application of a traffic
dispatching system on the mine’s operation. Regardless of
the number of trucks, a proper dispatching strategy increases
the productivity of the system.

Summary of the optimal results

Table I shows that the modifications suggested by the
simulation result in a 10% increase in production.
Furthermore, using one less cable shovel contributes to
increasing the mine profitability by introducing lower
operational costs (assuming that the operational cost of one
large shovel outweighs the associated costs of operating two
additional trucks).

Conclusions

The truck and shovel system is the dominant method of
material loading and haulage in open pit mining. Proper
selection and sizing of the equipment has considerable effects
on a mine’s productivity and economics. A critical survey and
analysis of the literature showed that deterministic,
stochastic, and experimental methodologies for optimizing
truck and shovel systems result in considerably different
outputs. Thus, designing a comprehensive modelling
framework is of high importance in system selection and
sizing for mining operations. In addressing this issue, a
stochastic simulation framework for truck and shovel system
selection and sizing, for both new and existing open pit
mines, was proposed. As part of the study, a proper
simulation technique (discrete-event system simulation) and
language (GPSS/H) were employed. Simulations were
validated through real operations at a large open pit mine.
The proposed framework is a useful guideline and should be
applied accordingly based on the specific characteristics of the
particular loading and haulage operation. Consideration of all
the effective parameters and their interactions with the
system, which are elaborated in the proposed framework,
should be the top priority of a mine simulation team.
Application of the proposed methodology resulted in consid-
erable improvements in loading and haulage operations at 
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Figure 16—Regular vs. Dispatching (3-month plan)

Figure 13—Effect of number of trucks on production (per simulated

shift) for two cable shovels

Figure14—Effect of both the number of trucks and cable shovels on ore

production (per simulated shift)

Figure 15—Effect of both the number of trucks and cable shovels on

shovels working time % (per simulated shift)
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a large open pit mine, with production rate increasing by
about 10%. 
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Appendix A

The basic steps of the proposed simulation program are
summarized here to familiarize readers with the underlying
process. Readers might follow the procedure to simulate their
own mining operations. However, detailed application of the
proposed simulation framework is recommended for a more
comprehensive practice.

Step 1

All loading units should be monitored carefully during
different operating conditions. Necessary loading cycle times
are measured during this phase. Table A.1 shows a sample of
data collected in this case study.

Step 2

All haulage cycle times for all dump trucks should be
collected. Loading and dumping stations, as well as, the
number of idle trucks in queues, are required data in this
phase. (Table A.2).

Data statistical analysis 

Step 3 

The raw data obtained in the previous two phases should be 
analysed to derive statistical information. Probability distri-
bution functions (PDFs) are required data for Monte Carlo
stochastic sampling (Burt et al., 2011) and discrete-event
simulation by GPSS/H (Bozorgebrahimi, Hall, and Morin,
2005) (Table A.3).

Step 4

All the PDFs in Table A.4 are needed along with Step 3, as
the minimum requirements of the simulation program.

Step 5

Finally, a simulation program should be coded. A block
diagram of the program is illustrated in Figure 8. For a very
good source of GPSS/H programming see Sturgul (1995).

Step 6

Based on the simulation purposes, relevant sensitivity
analysis might be executed (see Figure 12).
Some important specifications of the introduced model of the
case study are summarized in Table A.5.     ◆
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Table A.1

Sample shovel data form (all times in minutes)

No. Loading Shovel Shovel Truck waiting Trucks in 

posing idle time time in queue queue

1 1.73 0.36 0 3.2 2

2 1.64 0.32 0 1.6 1

3 1.82 0.56 6.8 0 0
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Table A.4

Frequency distribution of other required times (minutes)

No. Operation Distribution Parameters Quantity (minutes)

1 Loading Exponential Mean 1.54

2 Truck spot time Uniform Min - Max 0.52-0.13

3 Maneuver and return time Uniform Min - Max 0.42-0.11

4 Spot time to dump station Uniform Min - Max 0.42-0.10

5 Dumping time Exponential Mean 1.7

6 Maneuver and return from dumping station Uniform Min - Max 0.54-0.13

Table A.5

Model specifications

Item Description

OOutput validation 1- Chi Square or Klomogorov-Smirnov test at 5% significance level

2- Direct observation of real results

No. of iterations 2000 iterations completed, after this, the changes in the mean and variance of the results were negligible.

Domain of validity The proposed models are valid under current operational conditions. Any major future changes shall be incorporated accordingly.

Applicability Before introducing the recommended changes, a detailed economical evaluation is needed.

Model maintenance The model should become up-to-dated with operation progress, e.g. opening of new working benches, increase in haulage distances,

and etc.

Table A.2

Sample truck data form (all times in minutes)

No. Loading Haulage Dump station Dumping Maneuver Return Waiting in queue Loader

1 1.5 6.3 Crusher 2.9 0.5 5 ---- Shovel 1

2 1.3 6.5 Crusher 1.8 0.4 5.6 0.5 Shovel 1

3 1.9 7.5 Waste Dump 1.2 0.45 7.1 ---- Shovel 2

4 2.2 7.2 Waste Dump 1.6 0.55 6.6 ---- Shovel 2

5 1.4 6.8 Stockpile 1.4 0.56 5.3 1.3 Shovel 3

6 1.8 7.1 Stockpile 1.5 0.62 5.2 1.8 Shovel 4

Table A.3

Normal distributions of loaded haulage times from all shovels to all destinations (minutes)

Loader Crusher Waste dump Stockpile

Standard deviation Average Standard deviation Average Standard deviation Average

Shovel 1 0.9 5.5 1.3 7.6 1.1 6.2

Shovel 2 0.95 6.1 1.2 8.1 1.4 6.8

Shovel 3 1.1 6.5 1.5 8.5 1.55 7.2

Shovel 4 1.02 6.4 1.4 7.9 1.42 7.05


